dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / acpi / processor_idle.c
blobdcc289e30166cf78d2c33932dcbe304ee08bc5ff
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * processor_idle - idle state submodule to the ACPI processor driver
5 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
8 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 * - Added processor hotplug support
10 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
11 * - Added support for C3 on SMP
13 #define pr_fmt(fmt) "ACPI: " fmt
15 #include <linux/module.h>
16 #include <linux/acpi.h>
17 #include <linux/dmi.h>
18 #include <linux/sched.h> /* need_resched() */
19 #include <linux/tick.h>
20 #include <linux/cpuidle.h>
21 #include <linux/cpu.h>
22 #include <acpi/processor.h>
25 * Include the apic definitions for x86 to have the APIC timer related defines
26 * available also for UP (on SMP it gets magically included via linux/smp.h).
27 * asm/acpi.h is not an option, as it would require more include magic. Also
28 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
30 #ifdef CONFIG_X86
31 #include <asm/apic.h>
32 #endif
34 #define ACPI_PROCESSOR_CLASS "processor"
35 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
36 ACPI_MODULE_NAME("processor_idle");
38 #define ACPI_IDLE_STATE_START (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX) ? 1 : 0)
40 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
41 module_param(max_cstate, uint, 0000);
42 static unsigned int nocst __read_mostly;
43 module_param(nocst, uint, 0000);
44 static int bm_check_disable __read_mostly;
45 module_param(bm_check_disable, uint, 0000);
47 static unsigned int latency_factor __read_mostly = 2;
48 module_param(latency_factor, uint, 0644);
50 static DEFINE_PER_CPU(struct cpuidle_device *, acpi_cpuidle_device);
52 struct cpuidle_driver acpi_idle_driver = {
53 .name = "acpi_idle",
54 .owner = THIS_MODULE,
57 #ifdef CONFIG_ACPI_PROCESSOR_CSTATE
58 static
59 DEFINE_PER_CPU(struct acpi_processor_cx * [CPUIDLE_STATE_MAX], acpi_cstate);
61 static int disabled_by_idle_boot_param(void)
63 return boot_option_idle_override == IDLE_POLL ||
64 boot_option_idle_override == IDLE_HALT;
68 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
69 * For now disable this. Probably a bug somewhere else.
71 * To skip this limit, boot/load with a large max_cstate limit.
73 static int set_max_cstate(const struct dmi_system_id *id)
75 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
76 return 0;
78 pr_notice("%s detected - limiting to C%ld max_cstate."
79 " Override with \"processor.max_cstate=%d\"\n", id->ident,
80 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
82 max_cstate = (long)id->driver_data;
84 return 0;
87 static const struct dmi_system_id processor_power_dmi_table[] = {
88 { set_max_cstate, "Clevo 5600D", {
89 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
90 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
91 (void *)2},
92 { set_max_cstate, "Pavilion zv5000", {
93 DMI_MATCH(DMI_SYS_VENDOR, "Hewlett-Packard"),
94 DMI_MATCH(DMI_PRODUCT_NAME,"Pavilion zv5000 (DS502A#ABA)")},
95 (void *)1},
96 { set_max_cstate, "Asus L8400B", {
97 DMI_MATCH(DMI_SYS_VENDOR, "ASUSTeK Computer Inc."),
98 DMI_MATCH(DMI_PRODUCT_NAME,"L8400B series Notebook PC")},
99 (void *)1},
105 * Callers should disable interrupts before the call and enable
106 * interrupts after return.
108 static void __cpuidle acpi_safe_halt(void)
110 if (!tif_need_resched()) {
111 safe_halt();
112 local_irq_disable();
116 #ifdef ARCH_APICTIMER_STOPS_ON_C3
119 * Some BIOS implementations switch to C3 in the published C2 state.
120 * This seems to be a common problem on AMD boxen, but other vendors
121 * are affected too. We pick the most conservative approach: we assume
122 * that the local APIC stops in both C2 and C3.
124 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
125 struct acpi_processor_cx *cx)
127 struct acpi_processor_power *pwr = &pr->power;
128 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
130 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
131 return;
133 if (boot_cpu_has_bug(X86_BUG_AMD_APIC_C1E))
134 type = ACPI_STATE_C1;
137 * Check, if one of the previous states already marked the lapic
138 * unstable
140 if (pwr->timer_broadcast_on_state < state)
141 return;
143 if (cx->type >= type)
144 pr->power.timer_broadcast_on_state = state;
147 static void __lapic_timer_propagate_broadcast(void *arg)
149 struct acpi_processor *pr = (struct acpi_processor *) arg;
151 if (pr->power.timer_broadcast_on_state < INT_MAX)
152 tick_broadcast_enable();
153 else
154 tick_broadcast_disable();
157 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr)
159 smp_call_function_single(pr->id, __lapic_timer_propagate_broadcast,
160 (void *)pr, 1);
163 /* Power(C) State timer broadcast control */
164 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
165 struct acpi_processor_cx *cx,
166 int broadcast)
168 int state = cx - pr->power.states;
170 if (state >= pr->power.timer_broadcast_on_state) {
171 if (broadcast)
172 tick_broadcast_enter();
173 else
174 tick_broadcast_exit();
178 #else
180 static void lapic_timer_check_state(int state, struct acpi_processor *pr,
181 struct acpi_processor_cx *cstate) { }
182 static void lapic_timer_propagate_broadcast(struct acpi_processor *pr) { }
183 static void lapic_timer_state_broadcast(struct acpi_processor *pr,
184 struct acpi_processor_cx *cx,
185 int broadcast)
189 #endif
191 #if defined(CONFIG_X86)
192 static void tsc_check_state(int state)
194 switch (boot_cpu_data.x86_vendor) {
195 case X86_VENDOR_HYGON:
196 case X86_VENDOR_AMD:
197 case X86_VENDOR_INTEL:
198 case X86_VENDOR_CENTAUR:
199 case X86_VENDOR_ZHAOXIN:
201 * AMD Fam10h TSC will tick in all
202 * C/P/S0/S1 states when this bit is set.
204 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
205 return;
207 /*FALL THROUGH*/
208 default:
209 /* TSC could halt in idle, so notify users */
210 if (state > ACPI_STATE_C1)
211 mark_tsc_unstable("TSC halts in idle");
214 #else
215 static void tsc_check_state(int state) { return; }
216 #endif
218 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
221 if (!pr->pblk)
222 return -ENODEV;
224 /* if info is obtained from pblk/fadt, type equals state */
225 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
226 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
228 #ifndef CONFIG_HOTPLUG_CPU
230 * Check for P_LVL2_UP flag before entering C2 and above on
231 * an SMP system.
233 if ((num_online_cpus() > 1) &&
234 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
235 return -ENODEV;
236 #endif
238 /* determine C2 and C3 address from pblk */
239 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
240 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
242 /* determine latencies from FADT */
243 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.c2_latency;
244 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.c3_latency;
247 * FADT specified C2 latency must be less than or equal to
248 * 100 microseconds.
250 if (acpi_gbl_FADT.c2_latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
251 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
252 "C2 latency too large [%d]\n", acpi_gbl_FADT.c2_latency));
253 /* invalidate C2 */
254 pr->power.states[ACPI_STATE_C2].address = 0;
258 * FADT supplied C3 latency must be less than or equal to
259 * 1000 microseconds.
261 if (acpi_gbl_FADT.c3_latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
262 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
263 "C3 latency too large [%d]\n", acpi_gbl_FADT.c3_latency));
264 /* invalidate C3 */
265 pr->power.states[ACPI_STATE_C3].address = 0;
268 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
269 "lvl2[0x%08x] lvl3[0x%08x]\n",
270 pr->power.states[ACPI_STATE_C2].address,
271 pr->power.states[ACPI_STATE_C3].address));
273 snprintf(pr->power.states[ACPI_STATE_C2].desc,
274 ACPI_CX_DESC_LEN, "ACPI P_LVL2 IOPORT 0x%x",
275 pr->power.states[ACPI_STATE_C2].address);
276 snprintf(pr->power.states[ACPI_STATE_C3].desc,
277 ACPI_CX_DESC_LEN, "ACPI P_LVL3 IOPORT 0x%x",
278 pr->power.states[ACPI_STATE_C3].address);
280 return 0;
283 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
285 if (!pr->power.states[ACPI_STATE_C1].valid) {
286 /* set the first C-State to C1 */
287 /* all processors need to support C1 */
288 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
289 pr->power.states[ACPI_STATE_C1].valid = 1;
290 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
292 snprintf(pr->power.states[ACPI_STATE_C1].desc,
293 ACPI_CX_DESC_LEN, "ACPI HLT");
295 /* the C0 state only exists as a filler in our array */
296 pr->power.states[ACPI_STATE_C0].valid = 1;
297 return 0;
300 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
302 int ret;
304 if (nocst)
305 return -ENODEV;
307 ret = acpi_processor_evaluate_cst(pr->handle, pr->id, &pr->power);
308 if (ret)
309 return ret;
312 * It is expected that there will be at least 2 states, C1 and
313 * something else (C2 or C3), so fail if that is not the case.
315 if (pr->power.count < 2)
316 return -EFAULT;
318 pr->flags.has_cst = 1;
319 return 0;
322 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
323 struct acpi_processor_cx *cx)
325 static int bm_check_flag = -1;
326 static int bm_control_flag = -1;
329 if (!cx->address)
330 return;
333 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
334 * DMA transfers are used by any ISA device to avoid livelock.
335 * Note that we could disable Type-F DMA (as recommended by
336 * the erratum), but this is known to disrupt certain ISA
337 * devices thus we take the conservative approach.
339 else if (errata.piix4.fdma) {
340 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
341 "C3 not supported on PIIX4 with Type-F DMA\n"));
342 return;
345 /* All the logic here assumes flags.bm_check is same across all CPUs */
346 if (bm_check_flag == -1) {
347 /* Determine whether bm_check is needed based on CPU */
348 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
349 bm_check_flag = pr->flags.bm_check;
350 bm_control_flag = pr->flags.bm_control;
351 } else {
352 pr->flags.bm_check = bm_check_flag;
353 pr->flags.bm_control = bm_control_flag;
356 if (pr->flags.bm_check) {
357 if (!pr->flags.bm_control) {
358 if (pr->flags.has_cst != 1) {
359 /* bus mastering control is necessary */
360 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
361 "C3 support requires BM control\n"));
362 return;
363 } else {
364 /* Here we enter C3 without bus mastering */
365 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
366 "C3 support without BM control\n"));
369 } else {
371 * WBINVD should be set in fadt, for C3 state to be
372 * supported on when bm_check is not required.
374 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
375 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
376 "Cache invalidation should work properly"
377 " for C3 to be enabled on SMP systems\n"));
378 return;
383 * Otherwise we've met all of our C3 requirements.
384 * Normalize the C3 latency to expidite policy. Enable
385 * checking of bus mastering status (bm_check) so we can
386 * use this in our C3 policy
388 cx->valid = 1;
391 * On older chipsets, BM_RLD needs to be set
392 * in order for Bus Master activity to wake the
393 * system from C3. Newer chipsets handle DMA
394 * during C3 automatically and BM_RLD is a NOP.
395 * In either case, the proper way to
396 * handle BM_RLD is to set it and leave it set.
398 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
400 return;
403 static int acpi_processor_power_verify(struct acpi_processor *pr)
405 unsigned int i;
406 unsigned int working = 0;
408 pr->power.timer_broadcast_on_state = INT_MAX;
410 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
411 struct acpi_processor_cx *cx = &pr->power.states[i];
413 switch (cx->type) {
414 case ACPI_STATE_C1:
415 cx->valid = 1;
416 break;
418 case ACPI_STATE_C2:
419 if (!cx->address)
420 break;
421 cx->valid = 1;
422 break;
424 case ACPI_STATE_C3:
425 acpi_processor_power_verify_c3(pr, cx);
426 break;
428 if (!cx->valid)
429 continue;
431 lapic_timer_check_state(i, pr, cx);
432 tsc_check_state(cx->type);
433 working++;
436 lapic_timer_propagate_broadcast(pr);
438 return (working);
441 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
443 unsigned int i;
444 int result;
447 /* NOTE: the idle thread may not be running while calling
448 * this function */
450 /* Zero initialize all the C-states info. */
451 memset(pr->power.states, 0, sizeof(pr->power.states));
453 result = acpi_processor_get_power_info_cst(pr);
454 if (result == -ENODEV)
455 result = acpi_processor_get_power_info_fadt(pr);
457 if (result)
458 return result;
460 acpi_processor_get_power_info_default(pr);
462 pr->power.count = acpi_processor_power_verify(pr);
465 * if one state of type C2 or C3 is available, mark this
466 * CPU as being "idle manageable"
468 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
469 if (pr->power.states[i].valid) {
470 pr->power.count = i;
471 if (pr->power.states[i].type >= ACPI_STATE_C2)
472 pr->flags.power = 1;
476 return 0;
480 * acpi_idle_bm_check - checks if bus master activity was detected
482 static int acpi_idle_bm_check(void)
484 u32 bm_status = 0;
486 if (bm_check_disable)
487 return 0;
489 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
490 if (bm_status)
491 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
493 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
494 * the true state of bus mastering activity; forcing us to
495 * manually check the BMIDEA bit of each IDE channel.
497 else if (errata.piix4.bmisx) {
498 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
499 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
500 bm_status = 1;
502 return bm_status;
505 static void wait_for_freeze(void)
507 #ifdef CONFIG_X86
508 /* No delay is needed if we are in guest */
509 if (boot_cpu_has(X86_FEATURE_HYPERVISOR))
510 return;
511 #endif
512 /* Dummy wait op - must do something useless after P_LVL2 read
513 because chipsets cannot guarantee that STPCLK# signal
514 gets asserted in time to freeze execution properly. */
515 inl(acpi_gbl_FADT.xpm_timer_block.address);
519 * acpi_idle_do_entry - enter idle state using the appropriate method
520 * @cx: cstate data
522 * Caller disables interrupt before call and enables interrupt after return.
524 static void __cpuidle acpi_idle_do_entry(struct acpi_processor_cx *cx)
526 if (cx->entry_method == ACPI_CSTATE_FFH) {
527 /* Call into architectural FFH based C-state */
528 acpi_processor_ffh_cstate_enter(cx);
529 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
530 acpi_safe_halt();
531 } else {
532 /* IO port based C-state */
533 inb(cx->address);
534 wait_for_freeze();
539 * acpi_idle_play_dead - enters an ACPI state for long-term idle (i.e. off-lining)
540 * @dev: the target CPU
541 * @index: the index of suggested state
543 static int acpi_idle_play_dead(struct cpuidle_device *dev, int index)
545 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
547 ACPI_FLUSH_CPU_CACHE();
549 while (1) {
551 if (cx->entry_method == ACPI_CSTATE_HALT)
552 safe_halt();
553 else if (cx->entry_method == ACPI_CSTATE_SYSTEMIO) {
554 inb(cx->address);
555 wait_for_freeze();
556 } else
557 return -ENODEV;
560 /* Never reached */
561 return 0;
564 static bool acpi_idle_fallback_to_c1(struct acpi_processor *pr)
566 return IS_ENABLED(CONFIG_HOTPLUG_CPU) && !pr->flags.has_cst &&
567 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED);
570 static int c3_cpu_count;
571 static DEFINE_RAW_SPINLOCK(c3_lock);
574 * acpi_idle_enter_bm - enters C3 with proper BM handling
575 * @pr: Target processor
576 * @cx: Target state context
577 * @timer_bc: Whether or not to change timer mode to broadcast
579 static void acpi_idle_enter_bm(struct acpi_processor *pr,
580 struct acpi_processor_cx *cx, bool timer_bc)
582 acpi_unlazy_tlb(smp_processor_id());
585 * Must be done before busmaster disable as we might need to
586 * access HPET !
588 if (timer_bc)
589 lapic_timer_state_broadcast(pr, cx, 1);
592 * disable bus master
593 * bm_check implies we need ARB_DIS
594 * bm_control implies whether we can do ARB_DIS
596 * That leaves a case where bm_check is set and bm_control is
597 * not set. In that case we cannot do much, we enter C3
598 * without doing anything.
600 if (pr->flags.bm_control) {
601 raw_spin_lock(&c3_lock);
602 c3_cpu_count++;
603 /* Disable bus master arbitration when all CPUs are in C3 */
604 if (c3_cpu_count == num_online_cpus())
605 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
606 raw_spin_unlock(&c3_lock);
609 acpi_idle_do_entry(cx);
611 /* Re-enable bus master arbitration */
612 if (pr->flags.bm_control) {
613 raw_spin_lock(&c3_lock);
614 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
615 c3_cpu_count--;
616 raw_spin_unlock(&c3_lock);
619 if (timer_bc)
620 lapic_timer_state_broadcast(pr, cx, 0);
623 static int acpi_idle_enter(struct cpuidle_device *dev,
624 struct cpuidle_driver *drv, int index)
626 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
627 struct acpi_processor *pr;
629 pr = __this_cpu_read(processors);
630 if (unlikely(!pr))
631 return -EINVAL;
633 if (cx->type != ACPI_STATE_C1) {
634 if (acpi_idle_fallback_to_c1(pr) && num_online_cpus() > 1) {
635 index = ACPI_IDLE_STATE_START;
636 cx = per_cpu(acpi_cstate[index], dev->cpu);
637 } else if (cx->type == ACPI_STATE_C3 && pr->flags.bm_check) {
638 if (cx->bm_sts_skip || !acpi_idle_bm_check()) {
639 acpi_idle_enter_bm(pr, cx, true);
640 return index;
641 } else if (drv->safe_state_index >= 0) {
642 index = drv->safe_state_index;
643 cx = per_cpu(acpi_cstate[index], dev->cpu);
644 } else {
645 acpi_safe_halt();
646 return -EBUSY;
651 lapic_timer_state_broadcast(pr, cx, 1);
653 if (cx->type == ACPI_STATE_C3)
654 ACPI_FLUSH_CPU_CACHE();
656 acpi_idle_do_entry(cx);
658 lapic_timer_state_broadcast(pr, cx, 0);
660 return index;
663 static void acpi_idle_enter_s2idle(struct cpuidle_device *dev,
664 struct cpuidle_driver *drv, int index)
666 struct acpi_processor_cx *cx = per_cpu(acpi_cstate[index], dev->cpu);
668 if (cx->type == ACPI_STATE_C3) {
669 struct acpi_processor *pr = __this_cpu_read(processors);
671 if (unlikely(!pr))
672 return;
674 if (pr->flags.bm_check) {
675 acpi_idle_enter_bm(pr, cx, false);
676 return;
677 } else {
678 ACPI_FLUSH_CPU_CACHE();
681 acpi_idle_do_entry(cx);
684 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
685 struct cpuidle_device *dev)
687 int i, count = ACPI_IDLE_STATE_START;
688 struct acpi_processor_cx *cx;
690 if (max_cstate == 0)
691 max_cstate = 1;
693 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
694 cx = &pr->power.states[i];
696 if (!cx->valid)
697 continue;
699 per_cpu(acpi_cstate[count], dev->cpu) = cx;
701 count++;
702 if (count == CPUIDLE_STATE_MAX)
703 break;
706 if (!count)
707 return -EINVAL;
709 return 0;
712 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
714 int i, count;
715 struct acpi_processor_cx *cx;
716 struct cpuidle_state *state;
717 struct cpuidle_driver *drv = &acpi_idle_driver;
719 if (max_cstate == 0)
720 max_cstate = 1;
722 if (IS_ENABLED(CONFIG_ARCH_HAS_CPU_RELAX)) {
723 cpuidle_poll_state_init(drv);
724 count = 1;
725 } else {
726 count = 0;
729 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
730 cx = &pr->power.states[i];
732 if (!cx->valid)
733 continue;
735 state = &drv->states[count];
736 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
737 strlcpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
738 state->exit_latency = cx->latency;
739 state->target_residency = cx->latency * latency_factor;
740 state->enter = acpi_idle_enter;
742 state->flags = 0;
743 if (cx->type == ACPI_STATE_C1 || cx->type == ACPI_STATE_C2) {
744 state->enter_dead = acpi_idle_play_dead;
745 drv->safe_state_index = count;
748 * Halt-induced C1 is not good for ->enter_s2idle, because it
749 * re-enables interrupts on exit. Moreover, C1 is generally not
750 * particularly interesting from the suspend-to-idle angle, so
751 * avoid C1 and the situations in which we may need to fall back
752 * to it altogether.
754 if (cx->type != ACPI_STATE_C1 && !acpi_idle_fallback_to_c1(pr))
755 state->enter_s2idle = acpi_idle_enter_s2idle;
757 count++;
758 if (count == CPUIDLE_STATE_MAX)
759 break;
762 drv->state_count = count;
764 if (!count)
765 return -EINVAL;
767 return 0;
770 static inline void acpi_processor_cstate_first_run_checks(void)
772 static int first_run;
774 if (first_run)
775 return;
776 dmi_check_system(processor_power_dmi_table);
777 max_cstate = acpi_processor_cstate_check(max_cstate);
778 if (max_cstate < ACPI_C_STATES_MAX)
779 pr_notice("ACPI: processor limited to max C-state %d\n",
780 max_cstate);
781 first_run++;
783 if (nocst)
784 return;
786 acpi_processor_claim_cst_control();
788 #else
790 static inline int disabled_by_idle_boot_param(void) { return 0; }
791 static inline void acpi_processor_cstate_first_run_checks(void) { }
792 static int acpi_processor_get_cstate_info(struct acpi_processor *pr)
794 return -ENODEV;
797 static int acpi_processor_setup_cpuidle_cx(struct acpi_processor *pr,
798 struct cpuidle_device *dev)
800 return -EINVAL;
803 static int acpi_processor_setup_cstates(struct acpi_processor *pr)
805 return -EINVAL;
808 #endif /* CONFIG_ACPI_PROCESSOR_CSTATE */
810 struct acpi_lpi_states_array {
811 unsigned int size;
812 unsigned int composite_states_size;
813 struct acpi_lpi_state *entries;
814 struct acpi_lpi_state *composite_states[ACPI_PROCESSOR_MAX_POWER];
817 static int obj_get_integer(union acpi_object *obj, u32 *value)
819 if (obj->type != ACPI_TYPE_INTEGER)
820 return -EINVAL;
822 *value = obj->integer.value;
823 return 0;
826 static int acpi_processor_evaluate_lpi(acpi_handle handle,
827 struct acpi_lpi_states_array *info)
829 acpi_status status;
830 int ret = 0;
831 int pkg_count, state_idx = 1, loop;
832 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
833 union acpi_object *lpi_data;
834 struct acpi_lpi_state *lpi_state;
836 status = acpi_evaluate_object(handle, "_LPI", NULL, &buffer);
837 if (ACPI_FAILURE(status)) {
838 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _LPI, giving up\n"));
839 return -ENODEV;
842 lpi_data = buffer.pointer;
844 /* There must be at least 4 elements = 3 elements + 1 package */
845 if (!lpi_data || lpi_data->type != ACPI_TYPE_PACKAGE ||
846 lpi_data->package.count < 4) {
847 pr_debug("not enough elements in _LPI\n");
848 ret = -ENODATA;
849 goto end;
852 pkg_count = lpi_data->package.elements[2].integer.value;
854 /* Validate number of power states. */
855 if (pkg_count < 1 || pkg_count != lpi_data->package.count - 3) {
856 pr_debug("count given by _LPI is not valid\n");
857 ret = -ENODATA;
858 goto end;
861 lpi_state = kcalloc(pkg_count, sizeof(*lpi_state), GFP_KERNEL);
862 if (!lpi_state) {
863 ret = -ENOMEM;
864 goto end;
867 info->size = pkg_count;
868 info->entries = lpi_state;
870 /* LPI States start at index 3 */
871 for (loop = 3; state_idx <= pkg_count; loop++, state_idx++, lpi_state++) {
872 union acpi_object *element, *pkg_elem, *obj;
874 element = &lpi_data->package.elements[loop];
875 if (element->type != ACPI_TYPE_PACKAGE || element->package.count < 7)
876 continue;
878 pkg_elem = element->package.elements;
880 obj = pkg_elem + 6;
881 if (obj->type == ACPI_TYPE_BUFFER) {
882 struct acpi_power_register *reg;
884 reg = (struct acpi_power_register *)obj->buffer.pointer;
885 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
886 reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE)
887 continue;
889 lpi_state->address = reg->address;
890 lpi_state->entry_method =
891 reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE ?
892 ACPI_CSTATE_FFH : ACPI_CSTATE_SYSTEMIO;
893 } else if (obj->type == ACPI_TYPE_INTEGER) {
894 lpi_state->entry_method = ACPI_CSTATE_INTEGER;
895 lpi_state->address = obj->integer.value;
896 } else {
897 continue;
900 /* elements[7,8] skipped for now i.e. Residency/Usage counter*/
902 obj = pkg_elem + 9;
903 if (obj->type == ACPI_TYPE_STRING)
904 strlcpy(lpi_state->desc, obj->string.pointer,
905 ACPI_CX_DESC_LEN);
907 lpi_state->index = state_idx;
908 if (obj_get_integer(pkg_elem + 0, &lpi_state->min_residency)) {
909 pr_debug("No min. residency found, assuming 10 us\n");
910 lpi_state->min_residency = 10;
913 if (obj_get_integer(pkg_elem + 1, &lpi_state->wake_latency)) {
914 pr_debug("No wakeup residency found, assuming 10 us\n");
915 lpi_state->wake_latency = 10;
918 if (obj_get_integer(pkg_elem + 2, &lpi_state->flags))
919 lpi_state->flags = 0;
921 if (obj_get_integer(pkg_elem + 3, &lpi_state->arch_flags))
922 lpi_state->arch_flags = 0;
924 if (obj_get_integer(pkg_elem + 4, &lpi_state->res_cnt_freq))
925 lpi_state->res_cnt_freq = 1;
927 if (obj_get_integer(pkg_elem + 5, &lpi_state->enable_parent_state))
928 lpi_state->enable_parent_state = 0;
931 acpi_handle_debug(handle, "Found %d power states\n", state_idx);
932 end:
933 kfree(buffer.pointer);
934 return ret;
938 * flat_state_cnt - the number of composite LPI states after the process of flattening
940 static int flat_state_cnt;
943 * combine_lpi_states - combine local and parent LPI states to form a composite LPI state
945 * @local: local LPI state
946 * @parent: parent LPI state
947 * @result: composite LPI state
949 static bool combine_lpi_states(struct acpi_lpi_state *local,
950 struct acpi_lpi_state *parent,
951 struct acpi_lpi_state *result)
953 if (parent->entry_method == ACPI_CSTATE_INTEGER) {
954 if (!parent->address) /* 0 means autopromotable */
955 return false;
956 result->address = local->address + parent->address;
957 } else {
958 result->address = parent->address;
961 result->min_residency = max(local->min_residency, parent->min_residency);
962 result->wake_latency = local->wake_latency + parent->wake_latency;
963 result->enable_parent_state = parent->enable_parent_state;
964 result->entry_method = local->entry_method;
966 result->flags = parent->flags;
967 result->arch_flags = parent->arch_flags;
968 result->index = parent->index;
970 strlcpy(result->desc, local->desc, ACPI_CX_DESC_LEN);
971 strlcat(result->desc, "+", ACPI_CX_DESC_LEN);
972 strlcat(result->desc, parent->desc, ACPI_CX_DESC_LEN);
973 return true;
976 #define ACPI_LPI_STATE_FLAGS_ENABLED BIT(0)
978 static void stash_composite_state(struct acpi_lpi_states_array *curr_level,
979 struct acpi_lpi_state *t)
981 curr_level->composite_states[curr_level->composite_states_size++] = t;
984 static int flatten_lpi_states(struct acpi_processor *pr,
985 struct acpi_lpi_states_array *curr_level,
986 struct acpi_lpi_states_array *prev_level)
988 int i, j, state_count = curr_level->size;
989 struct acpi_lpi_state *p, *t = curr_level->entries;
991 curr_level->composite_states_size = 0;
992 for (j = 0; j < state_count; j++, t++) {
993 struct acpi_lpi_state *flpi;
995 if (!(t->flags & ACPI_LPI_STATE_FLAGS_ENABLED))
996 continue;
998 if (flat_state_cnt >= ACPI_PROCESSOR_MAX_POWER) {
999 pr_warn("Limiting number of LPI states to max (%d)\n",
1000 ACPI_PROCESSOR_MAX_POWER);
1001 pr_warn("Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
1002 break;
1005 flpi = &pr->power.lpi_states[flat_state_cnt];
1007 if (!prev_level) { /* leaf/processor node */
1008 memcpy(flpi, t, sizeof(*t));
1009 stash_composite_state(curr_level, flpi);
1010 flat_state_cnt++;
1011 continue;
1014 for (i = 0; i < prev_level->composite_states_size; i++) {
1015 p = prev_level->composite_states[i];
1016 if (t->index <= p->enable_parent_state &&
1017 combine_lpi_states(p, t, flpi)) {
1018 stash_composite_state(curr_level, flpi);
1019 flat_state_cnt++;
1020 flpi++;
1025 kfree(curr_level->entries);
1026 return 0;
1029 static int acpi_processor_get_lpi_info(struct acpi_processor *pr)
1031 int ret, i;
1032 acpi_status status;
1033 acpi_handle handle = pr->handle, pr_ahandle;
1034 struct acpi_device *d = NULL;
1035 struct acpi_lpi_states_array info[2], *tmp, *prev, *curr;
1037 if (!osc_pc_lpi_support_confirmed)
1038 return -EOPNOTSUPP;
1040 if (!acpi_has_method(handle, "_LPI"))
1041 return -EINVAL;
1043 flat_state_cnt = 0;
1044 prev = &info[0];
1045 curr = &info[1];
1046 handle = pr->handle;
1047 ret = acpi_processor_evaluate_lpi(handle, prev);
1048 if (ret)
1049 return ret;
1050 flatten_lpi_states(pr, prev, NULL);
1052 status = acpi_get_parent(handle, &pr_ahandle);
1053 while (ACPI_SUCCESS(status)) {
1054 acpi_bus_get_device(pr_ahandle, &d);
1055 handle = pr_ahandle;
1057 if (strcmp(acpi_device_hid(d), ACPI_PROCESSOR_CONTAINER_HID))
1058 break;
1060 /* can be optional ? */
1061 if (!acpi_has_method(handle, "_LPI"))
1062 break;
1064 ret = acpi_processor_evaluate_lpi(handle, curr);
1065 if (ret)
1066 break;
1068 /* flatten all the LPI states in this level of hierarchy */
1069 flatten_lpi_states(pr, curr, prev);
1071 tmp = prev, prev = curr, curr = tmp;
1073 status = acpi_get_parent(handle, &pr_ahandle);
1076 pr->power.count = flat_state_cnt;
1077 /* reset the index after flattening */
1078 for (i = 0; i < pr->power.count; i++)
1079 pr->power.lpi_states[i].index = i;
1081 /* Tell driver that _LPI is supported. */
1082 pr->flags.has_lpi = 1;
1083 pr->flags.power = 1;
1085 return 0;
1088 int __weak acpi_processor_ffh_lpi_probe(unsigned int cpu)
1090 return -ENODEV;
1093 int __weak acpi_processor_ffh_lpi_enter(struct acpi_lpi_state *lpi)
1095 return -ENODEV;
1099 * acpi_idle_lpi_enter - enters an ACPI any LPI state
1100 * @dev: the target CPU
1101 * @drv: cpuidle driver containing cpuidle state info
1102 * @index: index of target state
1104 * Return: 0 for success or negative value for error
1106 static int acpi_idle_lpi_enter(struct cpuidle_device *dev,
1107 struct cpuidle_driver *drv, int index)
1109 struct acpi_processor *pr;
1110 struct acpi_lpi_state *lpi;
1112 pr = __this_cpu_read(processors);
1114 if (unlikely(!pr))
1115 return -EINVAL;
1117 lpi = &pr->power.lpi_states[index];
1118 if (lpi->entry_method == ACPI_CSTATE_FFH)
1119 return acpi_processor_ffh_lpi_enter(lpi);
1121 return -EINVAL;
1124 static int acpi_processor_setup_lpi_states(struct acpi_processor *pr)
1126 int i;
1127 struct acpi_lpi_state *lpi;
1128 struct cpuidle_state *state;
1129 struct cpuidle_driver *drv = &acpi_idle_driver;
1131 if (!pr->flags.has_lpi)
1132 return -EOPNOTSUPP;
1134 for (i = 0; i < pr->power.count && i < CPUIDLE_STATE_MAX; i++) {
1135 lpi = &pr->power.lpi_states[i];
1137 state = &drv->states[i];
1138 snprintf(state->name, CPUIDLE_NAME_LEN, "LPI-%d", i);
1139 strlcpy(state->desc, lpi->desc, CPUIDLE_DESC_LEN);
1140 state->exit_latency = lpi->wake_latency;
1141 state->target_residency = lpi->min_residency;
1142 if (lpi->arch_flags)
1143 state->flags |= CPUIDLE_FLAG_TIMER_STOP;
1144 state->enter = acpi_idle_lpi_enter;
1145 drv->safe_state_index = i;
1148 drv->state_count = i;
1150 return 0;
1154 * acpi_processor_setup_cpuidle_states- prepares and configures cpuidle
1155 * global state data i.e. idle routines
1157 * @pr: the ACPI processor
1159 static int acpi_processor_setup_cpuidle_states(struct acpi_processor *pr)
1161 int i;
1162 struct cpuidle_driver *drv = &acpi_idle_driver;
1164 if (!pr->flags.power_setup_done || !pr->flags.power)
1165 return -EINVAL;
1167 drv->safe_state_index = -1;
1168 for (i = ACPI_IDLE_STATE_START; i < CPUIDLE_STATE_MAX; i++) {
1169 drv->states[i].name[0] = '\0';
1170 drv->states[i].desc[0] = '\0';
1173 if (pr->flags.has_lpi)
1174 return acpi_processor_setup_lpi_states(pr);
1176 return acpi_processor_setup_cstates(pr);
1180 * acpi_processor_setup_cpuidle_dev - prepares and configures CPUIDLE
1181 * device i.e. per-cpu data
1183 * @pr: the ACPI processor
1184 * @dev : the cpuidle device
1186 static int acpi_processor_setup_cpuidle_dev(struct acpi_processor *pr,
1187 struct cpuidle_device *dev)
1189 if (!pr->flags.power_setup_done || !pr->flags.power || !dev)
1190 return -EINVAL;
1192 dev->cpu = pr->id;
1193 if (pr->flags.has_lpi)
1194 return acpi_processor_ffh_lpi_probe(pr->id);
1196 return acpi_processor_setup_cpuidle_cx(pr, dev);
1199 static int acpi_processor_get_power_info(struct acpi_processor *pr)
1201 int ret;
1203 ret = acpi_processor_get_lpi_info(pr);
1204 if (ret)
1205 ret = acpi_processor_get_cstate_info(pr);
1207 return ret;
1210 int acpi_processor_hotplug(struct acpi_processor *pr)
1212 int ret = 0;
1213 struct cpuidle_device *dev;
1215 if (disabled_by_idle_boot_param())
1216 return 0;
1218 if (!pr->flags.power_setup_done)
1219 return -ENODEV;
1221 dev = per_cpu(acpi_cpuidle_device, pr->id);
1222 cpuidle_pause_and_lock();
1223 cpuidle_disable_device(dev);
1224 ret = acpi_processor_get_power_info(pr);
1225 if (!ret && pr->flags.power) {
1226 acpi_processor_setup_cpuidle_dev(pr, dev);
1227 ret = cpuidle_enable_device(dev);
1229 cpuidle_resume_and_unlock();
1231 return ret;
1234 int acpi_processor_power_state_has_changed(struct acpi_processor *pr)
1236 int cpu;
1237 struct acpi_processor *_pr;
1238 struct cpuidle_device *dev;
1240 if (disabled_by_idle_boot_param())
1241 return 0;
1243 if (!pr->flags.power_setup_done)
1244 return -ENODEV;
1247 * FIXME: Design the ACPI notification to make it once per
1248 * system instead of once per-cpu. This condition is a hack
1249 * to make the code that updates C-States be called once.
1252 if (pr->id == 0 && cpuidle_get_driver() == &acpi_idle_driver) {
1254 /* Protect against cpu-hotplug */
1255 get_online_cpus();
1256 cpuidle_pause_and_lock();
1258 /* Disable all cpuidle devices */
1259 for_each_online_cpu(cpu) {
1260 _pr = per_cpu(processors, cpu);
1261 if (!_pr || !_pr->flags.power_setup_done)
1262 continue;
1263 dev = per_cpu(acpi_cpuidle_device, cpu);
1264 cpuidle_disable_device(dev);
1267 /* Populate Updated C-state information */
1268 acpi_processor_get_power_info(pr);
1269 acpi_processor_setup_cpuidle_states(pr);
1271 /* Enable all cpuidle devices */
1272 for_each_online_cpu(cpu) {
1273 _pr = per_cpu(processors, cpu);
1274 if (!_pr || !_pr->flags.power_setup_done)
1275 continue;
1276 acpi_processor_get_power_info(_pr);
1277 if (_pr->flags.power) {
1278 dev = per_cpu(acpi_cpuidle_device, cpu);
1279 acpi_processor_setup_cpuidle_dev(_pr, dev);
1280 cpuidle_enable_device(dev);
1283 cpuidle_resume_and_unlock();
1284 put_online_cpus();
1287 return 0;
1290 static int acpi_processor_registered;
1292 int acpi_processor_power_init(struct acpi_processor *pr)
1294 int retval;
1295 struct cpuidle_device *dev;
1297 if (disabled_by_idle_boot_param())
1298 return 0;
1300 acpi_processor_cstate_first_run_checks();
1302 if (!acpi_processor_get_power_info(pr))
1303 pr->flags.power_setup_done = 1;
1306 * Install the idle handler if processor power management is supported.
1307 * Note that we use previously set idle handler will be used on
1308 * platforms that only support C1.
1310 if (pr->flags.power) {
1311 /* Register acpi_idle_driver if not already registered */
1312 if (!acpi_processor_registered) {
1313 acpi_processor_setup_cpuidle_states(pr);
1314 retval = cpuidle_register_driver(&acpi_idle_driver);
1315 if (retval)
1316 return retval;
1317 pr_debug("%s registered with cpuidle\n",
1318 acpi_idle_driver.name);
1321 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1322 if (!dev)
1323 return -ENOMEM;
1324 per_cpu(acpi_cpuidle_device, pr->id) = dev;
1326 acpi_processor_setup_cpuidle_dev(pr, dev);
1328 /* Register per-cpu cpuidle_device. Cpuidle driver
1329 * must already be registered before registering device
1331 retval = cpuidle_register_device(dev);
1332 if (retval) {
1333 if (acpi_processor_registered == 0)
1334 cpuidle_unregister_driver(&acpi_idle_driver);
1335 return retval;
1337 acpi_processor_registered++;
1339 return 0;
1342 int acpi_processor_power_exit(struct acpi_processor *pr)
1344 struct cpuidle_device *dev = per_cpu(acpi_cpuidle_device, pr->id);
1346 if (disabled_by_idle_boot_param())
1347 return 0;
1349 if (pr->flags.power) {
1350 cpuidle_unregister_device(dev);
1351 acpi_processor_registered--;
1352 if (acpi_processor_registered == 0)
1353 cpuidle_unregister_driver(&acpi_idle_driver);
1356 pr->flags.power_setup_done = 0;
1357 return 0;