dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / atm / horizon.c
blobe5da51f907a25d1e733f8ab0ce4783f9bd1306f2
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Madge Horizon ATM Adapter driver.
4 Copyright (C) 1995-1999 Madge Networks Ltd.
6 */
8 /*
9 IMPORTANT NOTE: Madge Networks no longer makes the adapters
10 supported by this driver and makes no commitment to maintain it.
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/sched/signal.h>
16 #include <linux/mm.h>
17 #include <linux/pci.h>
18 #include <linux/errno.h>
19 #include <linux/atm.h>
20 #include <linux/atmdev.h>
21 #include <linux/sonet.h>
22 #include <linux/skbuff.h>
23 #include <linux/time.h>
24 #include <linux/delay.h>
25 #include <linux/uio.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/ioport.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
32 #include <asm/io.h>
33 #include <linux/atomic.h>
34 #include <linux/uaccess.h>
35 #include <asm/string.h>
36 #include <asm/byteorder.h>
38 #include "horizon.h"
40 #define maintainer_string "Giuliano Procida at Madge Networks <gprocida@madge.com>"
41 #define description_string "Madge ATM Horizon [Ultra] driver"
42 #define version_string "1.2.1"
44 static inline void __init show_version (void) {
45 printk ("%s version %s\n", description_string, version_string);
50 CREDITS
52 Driver and documentation by:
54 Chris Aston Madge Networks
55 Giuliano Procida Madge Networks
56 Simon Benham Madge Networks
57 Simon Johnson Madge Networks
58 Various Others Madge Networks
60 Some inspiration taken from other drivers by:
62 Alexandru Cucos UTBv
63 Kari Mettinen University of Helsinki
64 Werner Almesberger EPFL LRC
66 Theory of Operation
68 I Hardware, detection, initialisation and shutdown.
70 1. Supported Hardware
72 This driver should handle all variants of the PCI Madge ATM adapters
73 with the Horizon chipset. These are all PCI cards supporting PIO, BM
74 DMA and a form of MMIO (registers only, not internal RAM).
76 The driver is only known to work with SONET and UTP Horizon Ultra
77 cards at 155Mb/s. However, code is in place to deal with both the
78 original Horizon and 25Mb/s operation.
80 There are two revisions of the Horizon ASIC: the original and the
81 Ultra. Details of hardware bugs are in section III.
83 The ASIC version can be distinguished by chip markings but is NOT
84 indicated by the PCI revision (all adapters seem to have PCI rev 1).
86 I believe that:
88 Horizon => Collage 25 PCI Adapter (UTP and STP)
89 Horizon Ultra => Collage 155 PCI Client (UTP or SONET)
90 Ambassador x => Collage 155 PCI Server (completely different)
92 Horizon (25Mb/s) is fitted with UTP and STP connectors. It seems to
93 have a Madge B154 plus glue logic serializer. I have also found a
94 really ancient version of this with slightly different glue. It
95 comes with the revision 0 (140-025-01) ASIC.
97 Horizon Ultra (155Mb/s) is fitted with either a Pulse Medialink
98 output (UTP) or an HP HFBR 5205 output (SONET). It has either
99 Madge's SAMBA framer or a SUNI-lite device (early versions). It
100 comes with the revision 1 (140-027-01) ASIC.
102 2. Detection
104 All Horizon-based cards present with the same PCI Vendor and Device
105 IDs. The standard Linux 2.2 PCI API is used to locate any cards and
106 to enable bus-mastering (with appropriate latency).
108 ATM_LAYER_STATUS in the control register distinguishes between the
109 two possible physical layers (25 and 155). It is not clear whether
110 the 155 cards can also operate at 25Mbps. We rely on the fact that a
111 card operates at 155 if and only if it has the newer Horizon Ultra
112 ASIC.
114 For 155 cards the two possible framers are probed for and then set
115 up for loop-timing.
117 3. Initialisation
119 The card is reset and then put into a known state. The physical
120 layer is configured for normal operation at the appropriate speed;
121 in the case of the 155 cards, the framer is initialised with
122 line-based timing; the internal RAM is zeroed and the allocation of
123 buffers for RX and TX is made; the Burnt In Address is read and
124 copied to the ATM ESI; various policy settings for RX (VPI bits,
125 unknown VCs, oam cells) are made. Ideally all policy items should be
126 configurable at module load (if not actually on-demand), however,
127 only the vpi vs vci bit allocation can be specified at insmod.
129 4. Shutdown
131 This is in response to module_cleaup. No VCs are in use and the card
132 should be idle; it is reset.
134 II Driver software (as it should be)
136 0. Traffic Parameters
138 The traffic classes (not an enumeration) are currently: ATM_NONE (no
139 traffic), ATM_UBR, ATM_CBR, ATM_VBR and ATM_ABR, ATM_ANYCLASS
140 (compatible with everything). Together with (perhaps only some of)
141 the following items they make up the traffic specification.
143 struct atm_trafprm {
144 unsigned char traffic_class; traffic class (ATM_UBR, ...)
145 int max_pcr; maximum PCR in cells per second
146 int pcr; desired PCR in cells per second
147 int min_pcr; minimum PCR in cells per second
148 int max_cdv; maximum CDV in microseconds
149 int max_sdu; maximum SDU in bytes
152 Note that these denote bandwidth available not bandwidth used; the
153 possibilities according to ATMF are:
155 Real Time (cdv and max CDT given)
157 CBR(pcr) pcr bandwidth always available
158 rtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
160 Non Real Time
162 nrtVBR(pcr,scr,mbs) scr bandwidth always available, up to pcr at mbs too
163 UBR()
164 ABR(mcr,pcr) mcr bandwidth always available, up to pcr (depending) too
166 mbs is max burst size (bucket)
167 pcr and scr have associated cdvt values
168 mcr is like scr but has no cdtv
169 cdtv may differ at each hop
171 Some of the above items are qos items (as opposed to traffic
172 parameters). We have nothing to do with qos. All except ABR can have
173 their traffic parameters converted to GCRA parameters. The GCRA may
174 be implemented as a (real-number) leaky bucket. The GCRA can be used
175 in complicated ways by switches and in simpler ways by end-stations.
176 It can be used both to filter incoming cells and shape out-going
177 cells.
179 ATM Linux actually supports:
181 ATM_NONE() (no traffic in this direction)
182 ATM_UBR(max_frame_size)
183 ATM_CBR(max/min_pcr, max_cdv, max_frame_size)
185 0 or ATM_MAX_PCR are used to indicate maximum available PCR
187 A traffic specification consists of the AAL type and separate
188 traffic specifications for either direction. In ATM Linux it is:
190 struct atm_qos {
191 struct atm_trafprm txtp;
192 struct atm_trafprm rxtp;
193 unsigned char aal;
196 AAL types are:
198 ATM_NO_AAL AAL not specified
199 ATM_AAL0 "raw" ATM cells
200 ATM_AAL1 AAL1 (CBR)
201 ATM_AAL2 AAL2 (VBR)
202 ATM_AAL34 AAL3/4 (data)
203 ATM_AAL5 AAL5 (data)
204 ATM_SAAL signaling AAL
206 The Horizon has support for AAL frame types: 0, 3/4 and 5. However,
207 it does not implement AAL 3/4 SAR and it has a different notion of
208 "raw cell" to ATM Linux's (48 bytes vs. 52 bytes) so neither are
209 supported by this driver.
211 The Horizon has limited support for ABR (including UBR), VBR and
212 CBR. Each TX channel has a bucket (containing up to 31 cell units)
213 and two timers (PCR and SCR) associated with it that can be used to
214 govern cell emissions and host notification (in the case of ABR this
215 is presumably so that RM cells may be emitted at appropriate times).
216 The timers may either be disabled or may be set to any of 240 values
217 (determined by the clock crystal, a fixed (?) per-device divider, a
218 configurable divider and a configurable timer preload value).
220 At the moment only UBR and CBR are supported by the driver. VBR will
221 be supported as soon as ATM for Linux supports it. ABR support is
222 very unlikely as RM cell handling is completely up to the driver.
224 1. TX (TX channel setup and TX transfer)
226 The TX half of the driver owns the TX Horizon registers. The TX
227 component in the IRQ handler is the BM completion handler. This can
228 only be entered when tx_busy is true (enforced by hardware). The
229 other TX component can only be entered when tx_busy is false
230 (enforced by driver). So TX is single-threaded.
232 Apart from a minor optimisation to not re-select the last channel,
233 the TX send component works as follows:
235 Atomic test and set tx_busy until we succeed; we should implement
236 some sort of timeout so that tx_busy will never be stuck at true.
238 If no TX channel is set up for this VC we wait for an idle one (if
239 necessary) and set it up.
241 At this point we have a TX channel ready for use. We wait for enough
242 buffers to become available then start a TX transmit (set the TX
243 descriptor, schedule transfer, exit).
245 The IRQ component handles TX completion (stats, free buffer, tx_busy
246 unset, exit). We also re-schedule further transfers for the same
247 frame if needed.
249 TX setup in more detail:
251 TX open is a nop, the relevant information is held in the hrz_vcc
252 (vcc->dev_data) structure and is "cached" on the card.
254 TX close gets the TX lock and clears the channel from the "cache".
256 2. RX (Data Available and RX transfer)
258 The RX half of the driver owns the RX registers. There are two RX
259 components in the IRQ handler: the data available handler deals with
260 fresh data that has arrived on the card, the BM completion handler
261 is very similar to the TX completion handler. The data available
262 handler grabs the rx_lock and it is only released once the data has
263 been discarded or completely transferred to the host. The BM
264 completion handler only runs when the lock is held; the data
265 available handler is locked out over the same period.
267 Data available on the card triggers an interrupt. If the data is not
268 suitable for our existing RX channels or we cannot allocate a buffer
269 it is flushed. Otherwise an RX receive is scheduled. Multiple RX
270 transfers may be scheduled for the same frame.
272 RX setup in more detail:
274 RX open...
275 RX close...
277 III Hardware Bugs
279 0. Byte vs Word addressing of adapter RAM.
281 A design feature; see the .h file (especially the memory map).
283 1. Bus Master Data Transfers (original Horizon only, fixed in Ultra)
285 The host must not start a transmit direction transfer at a
286 non-four-byte boundary in host memory. Instead the host should
287 perform a byte, or a two byte, or one byte followed by two byte
288 transfer in order to start the rest of the transfer on a four byte
289 boundary. RX is OK.
291 Simultaneous transmit and receive direction bus master transfers are
292 not allowed.
294 The simplest solution to these two is to always do PIO (never DMA)
295 in the TX direction on the original Horizon. More complicated
296 solutions are likely to hurt my brain.
298 2. Loss of buffer on close VC
300 When a VC is being closed, the buffer associated with it is not
301 returned to the pool. The host must store the reference to this
302 buffer and when opening a new VC then give it to that new VC.
304 The host intervention currently consists of stacking such a buffer
305 pointer at VC close and checking the stack at VC open.
307 3. Failure to close a VC
309 If a VC is currently receiving a frame then closing the VC may fail
310 and the frame continues to be received.
312 The solution is to make sure any received frames are flushed when
313 ready. This is currently done just before the solution to 2.
315 4. PCI bus (original Horizon only, fixed in Ultra)
317 Reading from the data port prior to initialisation will hang the PCI
318 bus. Just don't do that then! We don't.
320 IV To Do List
322 . Timer code may be broken.
324 . Allow users to specify buffer allocation split for TX and RX.
326 . Deal once and for all with buggy VC close.
328 . Handle interrupted and/or non-blocking operations.
330 . Change some macros to functions and move from .h to .c.
332 . Try to limit the number of TX frames each VC may have queued, in
333 order to reduce the chances of TX buffer exhaustion.
335 . Implement VBR (bucket and timers not understood) and ABR (need to
336 do RM cells manually); also no Linux support for either.
338 . Implement QoS changes on open VCs (involves extracting parts of VC open
339 and close into separate functions and using them to make changes).
343 /********** globals **********/
345 static void do_housekeeping (struct timer_list *t);
347 static unsigned short debug = 0;
348 static unsigned short vpi_bits = 0;
349 static int max_tx_size = 9000;
350 static int max_rx_size = 9000;
351 static unsigned char pci_lat = 0;
353 /********** access functions **********/
355 /* Read / Write Horizon registers */
356 static inline void wr_regl (const hrz_dev * dev, unsigned char reg, u32 data) {
357 outl (cpu_to_le32 (data), dev->iobase + reg);
360 static inline u32 rd_regl (const hrz_dev * dev, unsigned char reg) {
361 return le32_to_cpu (inl (dev->iobase + reg));
364 static inline void wr_regw (const hrz_dev * dev, unsigned char reg, u16 data) {
365 outw (cpu_to_le16 (data), dev->iobase + reg);
368 static inline u16 rd_regw (const hrz_dev * dev, unsigned char reg) {
369 return le16_to_cpu (inw (dev->iobase + reg));
372 static inline void wrs_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
373 outsb (dev->iobase + reg, addr, len);
376 static inline void rds_regb (const hrz_dev * dev, unsigned char reg, void * addr, u32 len) {
377 insb (dev->iobase + reg, addr, len);
380 /* Read / Write to a given address in Horizon buffer memory.
381 Interrupts must be disabled between the address register and data
382 port accesses as these must form an atomic operation. */
383 static inline void wr_mem (const hrz_dev * dev, HDW * addr, u32 data) {
384 // wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr);
385 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
386 wr_regl (dev, MEMORY_PORT_OFF, data);
389 static inline u32 rd_mem (const hrz_dev * dev, HDW * addr) {
390 // wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr);
391 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (addr - (HDW *) 0) * sizeof(HDW));
392 return rd_regl (dev, MEMORY_PORT_OFF);
395 static inline void wr_framer (const hrz_dev * dev, u32 addr, u32 data) {
396 wr_regl (dev, MEM_WR_ADDR_REG_OFF, (u32) addr | 0x80000000);
397 wr_regl (dev, MEMORY_PORT_OFF, data);
400 static inline u32 rd_framer (const hrz_dev * dev, u32 addr) {
401 wr_regl (dev, MEM_RD_ADDR_REG_OFF, (u32) addr | 0x80000000);
402 return rd_regl (dev, MEMORY_PORT_OFF);
405 /********** specialised access functions **********/
407 /* RX */
409 static inline void FLUSH_RX_CHANNEL (hrz_dev * dev, u16 channel) {
410 wr_regw (dev, RX_CHANNEL_PORT_OFF, FLUSH_CHANNEL | channel);
411 return;
414 static void WAIT_FLUSH_RX_COMPLETE (hrz_dev * dev) {
415 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & FLUSH_CHANNEL)
417 return;
420 static inline void SELECT_RX_CHANNEL (hrz_dev * dev, u16 channel) {
421 wr_regw (dev, RX_CHANNEL_PORT_OFF, channel);
422 return;
425 static void WAIT_UPDATE_COMPLETE (hrz_dev * dev) {
426 while (rd_regw (dev, RX_CHANNEL_PORT_OFF) & RX_CHANNEL_UPDATE_IN_PROGRESS)
428 return;
431 /* TX */
433 static inline void SELECT_TX_CHANNEL (hrz_dev * dev, u16 tx_channel) {
434 wr_regl (dev, TX_CHANNEL_PORT_OFF, tx_channel);
435 return;
438 /* Update or query one configuration parameter of a particular channel. */
440 static inline void update_tx_channel_config (hrz_dev * dev, short chan, u8 mode, u16 value) {
441 wr_regw (dev, TX_CHANNEL_CONFIG_COMMAND_OFF,
442 chan * TX_CHANNEL_CONFIG_MULT | mode);
443 wr_regw (dev, TX_CHANNEL_CONFIG_DATA_OFF, value);
444 return;
447 /********** dump functions **********/
449 static inline void dump_skb (char * prefix, unsigned int vc, struct sk_buff * skb) {
450 #ifdef DEBUG_HORIZON
451 unsigned int i;
452 unsigned char * data = skb->data;
453 PRINTDB (DBG_DATA, "%s(%u) ", prefix, vc);
454 for (i=0; i<skb->len && i < 256;i++)
455 PRINTDM (DBG_DATA, "%02x ", data[i]);
456 PRINTDE (DBG_DATA,"");
457 #else
458 (void) prefix;
459 (void) vc;
460 (void) skb;
461 #endif
462 return;
465 static inline void dump_regs (hrz_dev * dev) {
466 #ifdef DEBUG_HORIZON
467 PRINTD (DBG_REGS, "CONTROL 0: %#x", rd_regl (dev, CONTROL_0_REG));
468 PRINTD (DBG_REGS, "RX CONFIG: %#x", rd_regw (dev, RX_CONFIG_OFF));
469 PRINTD (DBG_REGS, "TX CONFIG: %#x", rd_regw (dev, TX_CONFIG_OFF));
470 PRINTD (DBG_REGS, "TX STATUS: %#x", rd_regw (dev, TX_STATUS_OFF));
471 PRINTD (DBG_REGS, "IRQ ENBLE: %#x", rd_regl (dev, INT_ENABLE_REG_OFF));
472 PRINTD (DBG_REGS, "IRQ SORCE: %#x", rd_regl (dev, INT_SOURCE_REG_OFF));
473 #else
474 (void) dev;
475 #endif
476 return;
479 static inline void dump_framer (hrz_dev * dev) {
480 #ifdef DEBUG_HORIZON
481 unsigned int i;
482 PRINTDB (DBG_REGS, "framer registers:");
483 for (i = 0; i < 0x10; ++i)
484 PRINTDM (DBG_REGS, " %02x", rd_framer (dev, i));
485 PRINTDE (DBG_REGS,"");
486 #else
487 (void) dev;
488 #endif
489 return;
492 /********** VPI/VCI <-> (RX) channel conversions **********/
494 /* RX channels are 10 bit integers, these fns are quite paranoid */
496 static inline int vpivci_to_channel (u16 * channel, const short vpi, const int vci) {
497 unsigned short vci_bits = 10 - vpi_bits;
498 if (0 <= vpi && vpi < 1<<vpi_bits && 0 <= vci && vci < 1<<vci_bits) {
499 *channel = vpi<<vci_bits | vci;
500 return *channel ? 0 : -EINVAL;
502 return -EINVAL;
505 /********** decode RX queue entries **********/
507 static inline u16 rx_q_entry_to_length (u32 x) {
508 return x & RX_Q_ENTRY_LENGTH_MASK;
511 static inline u16 rx_q_entry_to_rx_channel (u32 x) {
512 return (x>>RX_Q_ENTRY_CHANNEL_SHIFT) & RX_CHANNEL_MASK;
515 /* Cell Transmit Rate Values
517 * the cell transmit rate (cells per sec) can be set to a variety of
518 * different values by specifying two parameters: a timer preload from
519 * 1 to 16 (stored as 0 to 15) and a clock divider (2 to the power of
520 * an exponent from 0 to 14; the special value 15 disables the timer).
522 * cellrate = baserate / (preload * 2^divider)
524 * The maximum cell rate that can be specified is therefore just the
525 * base rate. Halving the preload is equivalent to adding 1 to the
526 * divider and so values 1 to 8 of the preload are redundant except
527 * in the case of a maximal divider (14).
529 * Given a desired cell rate, an algorithm to determine the preload
530 * and divider is:
532 * a) x = baserate / cellrate, want p * 2^d = x (as far as possible)
533 * b) if x > 16 * 2^14 then set p = 16, d = 14 (min rate), done
534 * if x <= 16 then set p = x, d = 0 (high rates), done
535 * c) now have 16 < x <= 2^18, or 1 < x/16 <= 2^14 and we want to
536 * know n such that 2^(n-1) < x/16 <= 2^n, so slide a bit until
537 * we find the range (n will be between 1 and 14), set d = n
538 * d) Also have 8 < x/2^n <= 16, so set p nearest x/2^n
540 * The algorithm used below is a minor variant of the above.
542 * The base rate is derived from the oscillator frequency (Hz) using a
543 * fixed divider:
545 * baserate = freq / 32 in the case of some Unknown Card
546 * baserate = freq / 8 in the case of the Horizon 25
547 * baserate = freq / 8 in the case of the Horizon Ultra 155
549 * The Horizon cards have oscillators and base rates as follows:
551 * Card Oscillator Base Rate
552 * Unknown Card 33 MHz 1.03125 MHz (33 MHz = PCI freq)
553 * Horizon 25 32 MHz 4 MHz
554 * Horizon Ultra 155 40 MHz 5 MHz
556 * The following defines give the base rates in Hz. These were
557 * previously a factor of 100 larger, no doubt someone was using
558 * cps*100.
561 #define BR_UKN 1031250l
562 #define BR_HRZ 4000000l
563 #define BR_ULT 5000000l
565 // d is an exponent
566 #define CR_MIND 0
567 #define CR_MAXD 14
569 // p ranges from 1 to a power of 2
570 #define CR_MAXPEXP 4
572 static int make_rate (const hrz_dev * dev, u32 c, rounding r,
573 u16 * bits, unsigned int * actual)
575 // note: rounding the rate down means rounding 'p' up
576 const unsigned long br = test_bit(ultra, &dev->flags) ? BR_ULT : BR_HRZ;
578 u32 div = CR_MIND;
579 u32 pre;
581 // br_exp and br_man are used to avoid overflowing (c*maxp*2^d) in
582 // the tests below. We could think harder about exact possibilities
583 // of failure...
585 unsigned long br_man = br;
586 unsigned int br_exp = 0;
588 PRINTD (DBG_QOS|DBG_FLOW, "make_rate b=%lu, c=%u, %s", br, c,
589 r == round_up ? "up" : r == round_down ? "down" : "nearest");
591 // avoid div by zero
592 if (!c) {
593 PRINTD (DBG_QOS|DBG_ERR, "zero rate is not allowed!");
594 return -EINVAL;
597 while (br_exp < CR_MAXPEXP + CR_MIND && (br_man % 2 == 0)) {
598 br_man = br_man >> 1;
599 ++br_exp;
601 // (br >>br_exp) <<br_exp == br and
602 // br_exp <= CR_MAXPEXP+CR_MIND
604 if (br_man <= (c << (CR_MAXPEXP+CR_MIND-br_exp))) {
605 // Equivalent to: B <= (c << (MAXPEXP+MIND))
606 // take care of rounding
607 switch (r) {
608 case round_down:
609 pre = DIV_ROUND_UP(br, c<<div);
610 // but p must be non-zero
611 if (!pre)
612 pre = 1;
613 break;
614 case round_nearest:
615 pre = DIV_ROUND_CLOSEST(br, c<<div);
616 // but p must be non-zero
617 if (!pre)
618 pre = 1;
619 break;
620 default: /* round_up */
621 pre = br/(c<<div);
622 // but p must be non-zero
623 if (!pre)
624 return -EINVAL;
626 PRINTD (DBG_QOS, "A: p=%u, d=%u", pre, div);
627 goto got_it;
630 // at this point we have
631 // d == MIND and (c << (MAXPEXP+MIND)) < B
632 while (div < CR_MAXD) {
633 div++;
634 if (br_man <= (c << (CR_MAXPEXP+div-br_exp))) {
635 // Equivalent to: B <= (c << (MAXPEXP+d))
636 // c << (MAXPEXP+d-1) < B <= c << (MAXPEXP+d)
637 // 1 << (MAXPEXP-1) < B/2^d/c <= 1 << MAXPEXP
638 // MAXP/2 < B/c2^d <= MAXP
639 // take care of rounding
640 switch (r) {
641 case round_down:
642 pre = DIV_ROUND_UP(br, c<<div);
643 break;
644 case round_nearest:
645 pre = DIV_ROUND_CLOSEST(br, c<<div);
646 break;
647 default: /* round_up */
648 pre = br/(c<<div);
650 PRINTD (DBG_QOS, "B: p=%u, d=%u", pre, div);
651 goto got_it;
654 // at this point we have
655 // d == MAXD and (c << (MAXPEXP+MAXD)) < B
656 // but we cannot go any higher
657 // take care of rounding
658 if (r == round_down)
659 return -EINVAL;
660 pre = 1 << CR_MAXPEXP;
661 PRINTD (DBG_QOS, "C: p=%u, d=%u", pre, div);
662 got_it:
663 // paranoia
664 if (div > CR_MAXD || (!pre) || pre > 1<<CR_MAXPEXP) {
665 PRINTD (DBG_QOS, "set_cr internal failure: d=%u p=%u",
666 div, pre);
667 return -EINVAL;
668 } else {
669 if (bits)
670 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
671 if (actual) {
672 *actual = DIV_ROUND_UP(br, pre<<div);
673 PRINTD (DBG_QOS, "actual rate: %u", *actual);
675 return 0;
679 static int make_rate_with_tolerance (const hrz_dev * dev, u32 c, rounding r, unsigned int tol,
680 u16 * bit_pattern, unsigned int * actual) {
681 unsigned int my_actual;
683 PRINTD (DBG_QOS|DBG_FLOW, "make_rate_with_tolerance c=%u, %s, tol=%u",
684 c, (r == round_up) ? "up" : (r == round_down) ? "down" : "nearest", tol);
686 if (!actual)
687 // actual rate is not returned
688 actual = &my_actual;
690 if (make_rate (dev, c, round_nearest, bit_pattern, actual))
691 // should never happen as round_nearest always succeeds
692 return -1;
694 if (c - tol <= *actual && *actual <= c + tol)
695 // within tolerance
696 return 0;
697 else
698 // intolerant, try rounding instead
699 return make_rate (dev, c, r, bit_pattern, actual);
702 /********** Listen on a VC **********/
704 static int hrz_open_rx (hrz_dev * dev, u16 channel) {
705 // is there any guarantee that we don't get two simulataneous
706 // identical calls of this function from different processes? yes
707 // rate_lock
708 unsigned long flags;
709 u32 channel_type; // u16?
711 u16 buf_ptr = RX_CHANNEL_IDLE;
713 rx_ch_desc * rx_desc = &memmap->rx_descs[channel];
715 PRINTD (DBG_FLOW, "hrz_open_rx %x", channel);
717 spin_lock_irqsave (&dev->mem_lock, flags);
718 channel_type = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
719 spin_unlock_irqrestore (&dev->mem_lock, flags);
721 // very serious error, should never occur
722 if (channel_type != RX_CHANNEL_DISABLED) {
723 PRINTD (DBG_ERR|DBG_VCC, "RX channel for VC already open");
724 return -EBUSY; // clean up?
727 // Give back spare buffer
728 if (dev->noof_spare_buffers) {
729 buf_ptr = dev->spare_buffers[--dev->noof_spare_buffers];
730 PRINTD (DBG_VCC, "using a spare buffer: %u", buf_ptr);
731 // should never occur
732 if (buf_ptr == RX_CHANNEL_DISABLED || buf_ptr == RX_CHANNEL_IDLE) {
733 // but easy to recover from
734 PRINTD (DBG_ERR|DBG_VCC, "bad spare buffer pointer, using IDLE");
735 buf_ptr = RX_CHANNEL_IDLE;
737 } else {
738 PRINTD (DBG_VCC, "using IDLE buffer pointer");
741 // Channel is currently disabled so change its status to idle
743 // do we really need to save the flags again?
744 spin_lock_irqsave (&dev->mem_lock, flags);
746 wr_mem (dev, &rx_desc->wr_buf_type,
747 buf_ptr | CHANNEL_TYPE_AAL5 | FIRST_CELL_OF_AAL5_FRAME);
748 if (buf_ptr != RX_CHANNEL_IDLE)
749 wr_mem (dev, &rx_desc->rd_buf_type, buf_ptr);
751 spin_unlock_irqrestore (&dev->mem_lock, flags);
753 // rxer->rate = make_rate (qos->peak_cells);
755 PRINTD (DBG_FLOW, "hrz_open_rx ok");
757 return 0;
760 #if 0
761 /********** change vc rate for a given vc **********/
763 static void hrz_change_vc_qos (ATM_RXER * rxer, MAAL_QOS * qos) {
764 rxer->rate = make_rate (qos->peak_cells);
766 #endif
768 /********** free an skb (as per ATM device driver documentation) **********/
770 static void hrz_kfree_skb (struct sk_buff * skb) {
771 if (ATM_SKB(skb)->vcc->pop) {
772 ATM_SKB(skb)->vcc->pop (ATM_SKB(skb)->vcc, skb);
773 } else {
774 dev_kfree_skb_any (skb);
778 /********** cancel listen on a VC **********/
780 static void hrz_close_rx (hrz_dev * dev, u16 vc) {
781 unsigned long flags;
783 u32 value;
785 u32 r1, r2;
787 rx_ch_desc * rx_desc = &memmap->rx_descs[vc];
789 int was_idle = 0;
791 spin_lock_irqsave (&dev->mem_lock, flags);
792 value = rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK;
793 spin_unlock_irqrestore (&dev->mem_lock, flags);
795 if (value == RX_CHANNEL_DISABLED) {
796 // I suppose this could happen once we deal with _NONE traffic properly
797 PRINTD (DBG_VCC, "closing VC: RX channel %u already disabled", vc);
798 return;
800 if (value == RX_CHANNEL_IDLE)
801 was_idle = 1;
803 spin_lock_irqsave (&dev->mem_lock, flags);
805 for (;;) {
806 wr_mem (dev, &rx_desc->wr_buf_type, RX_CHANNEL_DISABLED);
808 if ((rd_mem (dev, &rx_desc->wr_buf_type) & BUFFER_PTR_MASK) == RX_CHANNEL_DISABLED)
809 break;
811 was_idle = 0;
814 if (was_idle) {
815 spin_unlock_irqrestore (&dev->mem_lock, flags);
816 return;
819 WAIT_FLUSH_RX_COMPLETE(dev);
821 // XXX Is this all really necessary? We can rely on the rx_data_av
822 // handler to discard frames that remain queued for delivery. If the
823 // worry is that immediately reopening the channel (perhaps by a
824 // different process) may cause some data to be mis-delivered then
825 // there may still be a simpler solution (such as busy-waiting on
826 // rx_busy once the channel is disabled or before a new one is
827 // opened - does this leave any holes?). Arguably setting up and
828 // tearing down the TX and RX halves of each virtual circuit could
829 // most safely be done within ?x_busy protected regions.
831 // OK, current changes are that Simon's marker is disabled and we DO
832 // look for NULL rxer elsewhere. The code here seems flush frames
833 // and then remember the last dead cell belonging to the channel
834 // just disabled - the cell gets relinked at the next vc_open.
835 // However, when all VCs are closed or only a few opened there are a
836 // handful of buffers that are unusable.
838 // Does anyone feel like documenting spare_buffers properly?
839 // Does anyone feel like fixing this in a nicer way?
841 // Flush any data which is left in the channel
842 for (;;) {
843 // Change the rx channel port to something different to the RX
844 // channel we are trying to close to force Horizon to flush the rx
845 // channel read and write pointers.
847 u16 other = vc^(RX_CHANS/2);
849 SELECT_RX_CHANNEL (dev, other);
850 WAIT_UPDATE_COMPLETE (dev);
852 r1 = rd_mem (dev, &rx_desc->rd_buf_type);
854 // Select this RX channel. Flush doesn't seem to work unless we
855 // select an RX channel before hand
857 SELECT_RX_CHANNEL (dev, vc);
858 WAIT_UPDATE_COMPLETE (dev);
860 // Attempt to flush a frame on this RX channel
862 FLUSH_RX_CHANNEL (dev, vc);
863 WAIT_FLUSH_RX_COMPLETE (dev);
865 // Force Horizon to flush rx channel read and write pointers as before
867 SELECT_RX_CHANNEL (dev, other);
868 WAIT_UPDATE_COMPLETE (dev);
870 r2 = rd_mem (dev, &rx_desc->rd_buf_type);
872 PRINTD (DBG_VCC|DBG_RX, "r1 = %u, r2 = %u", r1, r2);
874 if (r1 == r2) {
875 dev->spare_buffers[dev->noof_spare_buffers++] = (u16)r1;
876 break;
880 #if 0
882 rx_q_entry * wr_ptr = &memmap->rx_q_entries[rd_regw (dev, RX_QUEUE_WR_PTR_OFF)];
883 rx_q_entry * rd_ptr = dev->rx_q_entry;
885 PRINTD (DBG_VCC|DBG_RX, "rd_ptr = %u, wr_ptr = %u", rd_ptr, wr_ptr);
887 while (rd_ptr != wr_ptr) {
888 u32 x = rd_mem (dev, (HDW *) rd_ptr);
890 if (vc == rx_q_entry_to_rx_channel (x)) {
891 x |= SIMONS_DODGEY_MARKER;
893 PRINTD (DBG_RX|DBG_VCC|DBG_WARN, "marking a frame as dodgey");
895 wr_mem (dev, (HDW *) rd_ptr, x);
898 if (rd_ptr == dev->rx_q_wrap)
899 rd_ptr = dev->rx_q_reset;
900 else
901 rd_ptr++;
904 #endif
906 spin_unlock_irqrestore (&dev->mem_lock, flags);
908 return;
911 /********** schedule RX transfers **********/
913 // Note on tail recursion: a GCC developer said that it is not likely
914 // to be fixed soon, so do not define TAILRECUSRIONWORKS unless you
915 // are sure it does as you may otherwise overflow the kernel stack.
917 // giving this fn a return value would help GCC, allegedly
919 static void rx_schedule (hrz_dev * dev, int irq) {
920 unsigned int rx_bytes;
922 int pio_instead = 0;
923 #ifndef TAILRECURSIONWORKS
924 pio_instead = 1;
925 while (pio_instead) {
926 #endif
927 // bytes waiting for RX transfer
928 rx_bytes = dev->rx_bytes;
930 #if 0
931 spin_count = 0;
932 while (rd_regl (dev, MASTER_RX_COUNT_REG_OFF)) {
933 PRINTD (DBG_RX|DBG_WARN, "RX error: other PCI Bus Master RX still in progress!");
934 if (++spin_count > 10) {
935 PRINTD (DBG_RX|DBG_ERR, "spun out waiting PCI Bus Master RX completion");
936 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
937 clear_bit (rx_busy, &dev->flags);
938 hrz_kfree_skb (dev->rx_skb);
939 return;
942 #endif
944 // this code follows the TX code but (at the moment) there is only
945 // one region - the skb itself. I don't know if this will change,
946 // but it doesn't hurt to have the code here, disabled.
948 if (rx_bytes) {
949 // start next transfer within same region
950 if (rx_bytes <= MAX_PIO_COUNT) {
951 PRINTD (DBG_RX|DBG_BUS, "(pio)");
952 pio_instead = 1;
954 if (rx_bytes <= MAX_TRANSFER_COUNT) {
955 PRINTD (DBG_RX|DBG_BUS, "(simple or last multi)");
956 dev->rx_bytes = 0;
957 } else {
958 PRINTD (DBG_RX|DBG_BUS, "(continuing multi)");
959 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
960 rx_bytes = MAX_TRANSFER_COUNT;
962 } else {
963 // rx_bytes == 0 -- we're between regions
964 // regions remaining to transfer
965 #if 0
966 unsigned int rx_regions = dev->rx_regions;
967 #else
968 unsigned int rx_regions = 0;
969 #endif
971 if (rx_regions) {
972 #if 0
973 // start a new region
974 dev->rx_addr = dev->rx_iovec->iov_base;
975 rx_bytes = dev->rx_iovec->iov_len;
976 ++dev->rx_iovec;
977 dev->rx_regions = rx_regions - 1;
979 if (rx_bytes <= MAX_PIO_COUNT) {
980 PRINTD (DBG_RX|DBG_BUS, "(pio)");
981 pio_instead = 1;
983 if (rx_bytes <= MAX_TRANSFER_COUNT) {
984 PRINTD (DBG_RX|DBG_BUS, "(full region)");
985 dev->rx_bytes = 0;
986 } else {
987 PRINTD (DBG_RX|DBG_BUS, "(start multi region)");
988 dev->rx_bytes = rx_bytes - MAX_TRANSFER_COUNT;
989 rx_bytes = MAX_TRANSFER_COUNT;
991 #endif
992 } else {
993 // rx_regions == 0
994 // that's all folks - end of frame
995 struct sk_buff * skb = dev->rx_skb;
996 // dev->rx_iovec = 0;
998 FLUSH_RX_CHANNEL (dev, dev->rx_channel);
1000 dump_skb ("<<<", dev->rx_channel, skb);
1002 PRINTD (DBG_RX|DBG_SKB, "push %p %u", skb->data, skb->len);
1005 struct atm_vcc * vcc = ATM_SKB(skb)->vcc;
1006 // VC layer stats
1007 atomic_inc(&vcc->stats->rx);
1008 __net_timestamp(skb);
1009 // end of our responsibility
1010 vcc->push (vcc, skb);
1015 // note: writing RX_COUNT clears any interrupt condition
1016 if (rx_bytes) {
1017 if (pio_instead) {
1018 if (irq)
1019 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1020 rds_regb (dev, DATA_PORT_OFF, dev->rx_addr, rx_bytes);
1021 } else {
1022 wr_regl (dev, MASTER_RX_ADDR_REG_OFF, virt_to_bus (dev->rx_addr));
1023 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, rx_bytes);
1025 dev->rx_addr += rx_bytes;
1026 } else {
1027 if (irq)
1028 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1029 // allow another RX thread to start
1030 YELLOW_LED_ON(dev);
1031 clear_bit (rx_busy, &dev->flags);
1032 PRINTD (DBG_RX, "cleared rx_busy for dev %p", dev);
1035 #ifdef TAILRECURSIONWORKS
1036 // and we all bless optimised tail calls
1037 if (pio_instead)
1038 return rx_schedule (dev, 0);
1039 return;
1040 #else
1041 // grrrrrrr!
1042 irq = 0;
1044 return;
1045 #endif
1048 /********** handle RX bus master complete events **********/
1050 static void rx_bus_master_complete_handler (hrz_dev * dev) {
1051 if (test_bit (rx_busy, &dev->flags)) {
1052 rx_schedule (dev, 1);
1053 } else {
1054 PRINTD (DBG_RX|DBG_ERR, "unexpected RX bus master completion");
1055 // clear interrupt condition on adapter
1056 wr_regl (dev, MASTER_RX_COUNT_REG_OFF, 0);
1058 return;
1061 /********** (queue to) become the next TX thread **********/
1063 static int tx_hold (hrz_dev * dev) {
1064 PRINTD (DBG_TX, "sleeping at tx lock %p %lu", dev, dev->flags);
1065 wait_event_interruptible(dev->tx_queue, (!test_and_set_bit(tx_busy, &dev->flags)));
1066 PRINTD (DBG_TX, "woken at tx lock %p %lu", dev, dev->flags);
1067 if (signal_pending (current))
1068 return -1;
1069 PRINTD (DBG_TX, "set tx_busy for dev %p", dev);
1070 return 0;
1073 /********** allow another TX thread to start **********/
1075 static inline void tx_release (hrz_dev * dev) {
1076 clear_bit (tx_busy, &dev->flags);
1077 PRINTD (DBG_TX, "cleared tx_busy for dev %p", dev);
1078 wake_up_interruptible (&dev->tx_queue);
1081 /********** schedule TX transfers **********/
1083 static void tx_schedule (hrz_dev * const dev, int irq) {
1084 unsigned int tx_bytes;
1086 int append_desc = 0;
1088 int pio_instead = 0;
1089 #ifndef TAILRECURSIONWORKS
1090 pio_instead = 1;
1091 while (pio_instead) {
1092 #endif
1093 // bytes in current region waiting for TX transfer
1094 tx_bytes = dev->tx_bytes;
1096 #if 0
1097 spin_count = 0;
1098 while (rd_regl (dev, MASTER_TX_COUNT_REG_OFF)) {
1099 PRINTD (DBG_TX|DBG_WARN, "TX error: other PCI Bus Master TX still in progress!");
1100 if (++spin_count > 10) {
1101 PRINTD (DBG_TX|DBG_ERR, "spun out waiting PCI Bus Master TX completion");
1102 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1103 tx_release (dev);
1104 hrz_kfree_skb (dev->tx_skb);
1105 return;
1108 #endif
1110 if (tx_bytes) {
1111 // start next transfer within same region
1112 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1113 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1114 pio_instead = 1;
1116 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1117 PRINTD (DBG_TX|DBG_BUS, "(simple or last multi)");
1118 if (!dev->tx_iovec) {
1119 // end of last region
1120 append_desc = 1;
1122 dev->tx_bytes = 0;
1123 } else {
1124 PRINTD (DBG_TX|DBG_BUS, "(continuing multi)");
1125 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1126 tx_bytes = MAX_TRANSFER_COUNT;
1128 } else {
1129 // tx_bytes == 0 -- we're between regions
1130 // regions remaining to transfer
1131 unsigned int tx_regions = dev->tx_regions;
1133 if (tx_regions) {
1134 // start a new region
1135 dev->tx_addr = dev->tx_iovec->iov_base;
1136 tx_bytes = dev->tx_iovec->iov_len;
1137 ++dev->tx_iovec;
1138 dev->tx_regions = tx_regions - 1;
1140 if (!test_bit (ultra, &dev->flags) || tx_bytes <= MAX_PIO_COUNT) {
1141 PRINTD (DBG_TX|DBG_BUS, "(pio)");
1142 pio_instead = 1;
1144 if (tx_bytes <= MAX_TRANSFER_COUNT) {
1145 PRINTD (DBG_TX|DBG_BUS, "(full region)");
1146 dev->tx_bytes = 0;
1147 } else {
1148 PRINTD (DBG_TX|DBG_BUS, "(start multi region)");
1149 dev->tx_bytes = tx_bytes - MAX_TRANSFER_COUNT;
1150 tx_bytes = MAX_TRANSFER_COUNT;
1152 } else {
1153 // tx_regions == 0
1154 // that's all folks - end of frame
1155 struct sk_buff * skb = dev->tx_skb;
1156 dev->tx_iovec = NULL;
1158 // VC layer stats
1159 atomic_inc(&ATM_SKB(skb)->vcc->stats->tx);
1161 // free the skb
1162 hrz_kfree_skb (skb);
1166 // note: writing TX_COUNT clears any interrupt condition
1167 if (tx_bytes) {
1168 if (pio_instead) {
1169 if (irq)
1170 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1171 wrs_regb (dev, DATA_PORT_OFF, dev->tx_addr, tx_bytes);
1172 if (append_desc)
1173 wr_regl (dev, TX_DESCRIPTOR_PORT_OFF, cpu_to_be32 (dev->tx_skb->len));
1174 } else {
1175 wr_regl (dev, MASTER_TX_ADDR_REG_OFF, virt_to_bus (dev->tx_addr));
1176 if (append_desc)
1177 wr_regl (dev, TX_DESCRIPTOR_REG_OFF, cpu_to_be32 (dev->tx_skb->len));
1178 wr_regl (dev, MASTER_TX_COUNT_REG_OFF,
1179 append_desc
1180 ? tx_bytes | MASTER_TX_AUTO_APPEND_DESC
1181 : tx_bytes);
1183 dev->tx_addr += tx_bytes;
1184 } else {
1185 if (irq)
1186 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1187 YELLOW_LED_ON(dev);
1188 tx_release (dev);
1191 #ifdef TAILRECURSIONWORKS
1192 // and we all bless optimised tail calls
1193 if (pio_instead)
1194 return tx_schedule (dev, 0);
1195 return;
1196 #else
1197 // grrrrrrr!
1198 irq = 0;
1200 return;
1201 #endif
1204 /********** handle TX bus master complete events **********/
1206 static void tx_bus_master_complete_handler (hrz_dev * dev) {
1207 if (test_bit (tx_busy, &dev->flags)) {
1208 tx_schedule (dev, 1);
1209 } else {
1210 PRINTD (DBG_TX|DBG_ERR, "unexpected TX bus master completion");
1211 // clear interrupt condition on adapter
1212 wr_regl (dev, MASTER_TX_COUNT_REG_OFF, 0);
1214 return;
1217 /********** move RX Q pointer to next item in circular buffer **********/
1219 // called only from IRQ sub-handler
1220 static u32 rx_queue_entry_next (hrz_dev * dev) {
1221 u32 rx_queue_entry;
1222 spin_lock (&dev->mem_lock);
1223 rx_queue_entry = rd_mem (dev, &dev->rx_q_entry->entry);
1224 if (dev->rx_q_entry == dev->rx_q_wrap)
1225 dev->rx_q_entry = dev->rx_q_reset;
1226 else
1227 dev->rx_q_entry++;
1228 wr_regw (dev, RX_QUEUE_RD_PTR_OFF, dev->rx_q_entry - dev->rx_q_reset);
1229 spin_unlock (&dev->mem_lock);
1230 return rx_queue_entry;
1233 /********** handle RX data received by device **********/
1235 // called from IRQ handler
1236 static void rx_data_av_handler (hrz_dev * dev) {
1237 u32 rx_queue_entry;
1238 u32 rx_queue_entry_flags;
1239 u16 rx_len;
1240 u16 rx_channel;
1242 PRINTD (DBG_FLOW, "hrz_data_av_handler");
1244 // try to grab rx lock (not possible during RX bus mastering)
1245 if (test_and_set_bit (rx_busy, &dev->flags)) {
1246 PRINTD (DBG_RX, "locked out of rx lock");
1247 return;
1249 PRINTD (DBG_RX, "set rx_busy for dev %p", dev);
1250 // lock is cleared if we fail now, o/w after bus master completion
1252 YELLOW_LED_OFF(dev);
1254 rx_queue_entry = rx_queue_entry_next (dev);
1256 rx_len = rx_q_entry_to_length (rx_queue_entry);
1257 rx_channel = rx_q_entry_to_rx_channel (rx_queue_entry);
1259 WAIT_FLUSH_RX_COMPLETE (dev);
1261 SELECT_RX_CHANNEL (dev, rx_channel);
1263 PRINTD (DBG_RX, "rx_queue_entry is: %#x", rx_queue_entry);
1264 rx_queue_entry_flags = rx_queue_entry & (RX_CRC_32_OK|RX_COMPLETE_FRAME|SIMONS_DODGEY_MARKER);
1266 if (!rx_len) {
1267 // (at least) bus-mastering breaks if we try to handle a
1268 // zero-length frame, besides AAL5 does not support them
1269 PRINTK (KERN_ERR, "zero-length frame!");
1270 rx_queue_entry_flags &= ~RX_COMPLETE_FRAME;
1273 if (rx_queue_entry_flags & SIMONS_DODGEY_MARKER) {
1274 PRINTD (DBG_RX|DBG_ERR, "Simon's marker detected!");
1276 if (rx_queue_entry_flags == (RX_CRC_32_OK | RX_COMPLETE_FRAME)) {
1277 struct atm_vcc * atm_vcc;
1279 PRINTD (DBG_RX, "got a frame on rx_channel %x len %u", rx_channel, rx_len);
1281 atm_vcc = dev->rxer[rx_channel];
1282 // if no vcc is assigned to this channel, we should drop the frame
1283 // (is this what SIMONS etc. was trying to achieve?)
1285 if (atm_vcc) {
1287 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
1289 if (rx_len <= atm_vcc->qos.rxtp.max_sdu) {
1291 struct sk_buff * skb = atm_alloc_charge (atm_vcc, rx_len, GFP_ATOMIC);
1292 if (skb) {
1293 // remember this so we can push it later
1294 dev->rx_skb = skb;
1295 // remember this so we can flush it later
1296 dev->rx_channel = rx_channel;
1298 // prepare socket buffer
1299 skb_put (skb, rx_len);
1300 ATM_SKB(skb)->vcc = atm_vcc;
1302 // simple transfer
1303 // dev->rx_regions = 0;
1304 // dev->rx_iovec = 0;
1305 dev->rx_bytes = rx_len;
1306 dev->rx_addr = skb->data;
1307 PRINTD (DBG_RX, "RX start simple transfer (addr %p, len %d)",
1308 skb->data, rx_len);
1310 // do the business
1311 rx_schedule (dev, 0);
1312 return;
1314 } else {
1315 PRINTD (DBG_SKB|DBG_WARN, "failed to get skb");
1318 } else {
1319 PRINTK (KERN_INFO, "frame received on TX-only VC %x", rx_channel);
1320 // do we count this?
1323 } else {
1324 PRINTK (KERN_WARNING, "dropped over-size frame");
1325 // do we count this?
1328 } else {
1329 PRINTD (DBG_WARN|DBG_VCC|DBG_RX, "no VCC for this frame (VC closed)");
1330 // do we count this?
1333 } else {
1334 // Wait update complete ? SPONG
1337 // RX was aborted
1338 YELLOW_LED_ON(dev);
1340 FLUSH_RX_CHANNEL (dev,rx_channel);
1341 clear_bit (rx_busy, &dev->flags);
1343 return;
1346 /********** interrupt handler **********/
1348 static irqreturn_t interrupt_handler(int irq, void *dev_id)
1350 hrz_dev *dev = dev_id;
1351 u32 int_source;
1352 unsigned int irq_ok;
1354 PRINTD (DBG_FLOW, "interrupt_handler: %p", dev_id);
1356 // definitely for us
1357 irq_ok = 0;
1358 while ((int_source = rd_regl (dev, INT_SOURCE_REG_OFF)
1359 & INTERESTING_INTERRUPTS)) {
1360 // In the interests of fairness, the handlers below are
1361 // called in sequence and without immediate return to the head of
1362 // the while loop. This is only of issue for slow hosts (or when
1363 // debugging messages are on). Really slow hosts may find a fast
1364 // sender keeps them permanently in the IRQ handler. :(
1366 // (only an issue for slow hosts) RX completion goes before
1367 // rx_data_av as the former implies rx_busy and so the latter
1368 // would just abort. If it reschedules another transfer
1369 // (continuing the same frame) then it will not clear rx_busy.
1371 // (only an issue for slow hosts) TX completion goes before RX
1372 // data available as it is a much shorter routine - there is the
1373 // chance that any further transfers it schedules will be complete
1374 // by the time of the return to the head of the while loop
1376 if (int_source & RX_BUS_MASTER_COMPLETE) {
1377 ++irq_ok;
1378 PRINTD (DBG_IRQ|DBG_BUS|DBG_RX, "rx_bus_master_complete asserted");
1379 rx_bus_master_complete_handler (dev);
1381 if (int_source & TX_BUS_MASTER_COMPLETE) {
1382 ++irq_ok;
1383 PRINTD (DBG_IRQ|DBG_BUS|DBG_TX, "tx_bus_master_complete asserted");
1384 tx_bus_master_complete_handler (dev);
1386 if (int_source & RX_DATA_AV) {
1387 ++irq_ok;
1388 PRINTD (DBG_IRQ|DBG_RX, "rx_data_av asserted");
1389 rx_data_av_handler (dev);
1392 if (irq_ok) {
1393 PRINTD (DBG_IRQ, "work done: %u", irq_ok);
1394 } else {
1395 PRINTD (DBG_IRQ|DBG_WARN, "spurious interrupt source: %#x", int_source);
1398 PRINTD (DBG_IRQ|DBG_FLOW, "interrupt_handler done: %p", dev_id);
1399 if (irq_ok)
1400 return IRQ_HANDLED;
1401 return IRQ_NONE;
1404 /********** housekeeping **********/
1406 static void do_housekeeping (struct timer_list *t) {
1407 // just stats at the moment
1408 hrz_dev * dev = from_timer(dev, t, housekeeping);
1410 // collect device-specific (not driver/atm-linux) stats here
1411 dev->tx_cell_count += rd_regw (dev, TX_CELL_COUNT_OFF);
1412 dev->rx_cell_count += rd_regw (dev, RX_CELL_COUNT_OFF);
1413 dev->hec_error_count += rd_regw (dev, HEC_ERROR_COUNT_OFF);
1414 dev->unassigned_cell_count += rd_regw (dev, UNASSIGNED_CELL_COUNT_OFF);
1416 mod_timer (&dev->housekeeping, jiffies + HZ/10);
1418 return;
1421 /********** find an idle channel for TX and set it up **********/
1423 // called with tx_busy set
1424 static short setup_idle_tx_channel (hrz_dev * dev, hrz_vcc * vcc) {
1425 unsigned short idle_channels;
1426 short tx_channel = -1;
1427 unsigned int spin_count;
1428 PRINTD (DBG_FLOW|DBG_TX, "setup_idle_tx_channel %p", dev);
1430 // better would be to fail immediately, the caller can then decide whether
1431 // to wait or drop (depending on whether this is UBR etc.)
1432 spin_count = 0;
1433 while (!(idle_channels = rd_regw (dev, TX_STATUS_OFF) & IDLE_CHANNELS_MASK)) {
1434 PRINTD (DBG_TX|DBG_WARN, "waiting for idle TX channel");
1435 // delay a bit here
1436 if (++spin_count > 100) {
1437 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for idle TX channel");
1438 return -EBUSY;
1442 // got an idle channel
1444 // tx_idle ensures we look for idle channels in RR order
1445 int chan = dev->tx_idle;
1447 int keep_going = 1;
1448 while (keep_going) {
1449 if (idle_channels & (1<<chan)) {
1450 tx_channel = chan;
1451 keep_going = 0;
1453 ++chan;
1454 if (chan == TX_CHANS)
1455 chan = 0;
1458 dev->tx_idle = chan;
1461 // set up the channel we found
1463 // Initialise the cell header in the transmit channel descriptor
1464 // a.k.a. prepare the channel and remember that we have done so.
1466 tx_ch_desc * tx_desc = &memmap->tx_descs[tx_channel];
1467 u32 rd_ptr;
1468 u32 wr_ptr;
1469 u16 channel = vcc->channel;
1471 unsigned long flags;
1472 spin_lock_irqsave (&dev->mem_lock, flags);
1474 // Update the transmit channel record.
1475 dev->tx_channel_record[tx_channel] = channel;
1477 // xBR channel
1478 update_tx_channel_config (dev, tx_channel, RATE_TYPE_ACCESS,
1479 vcc->tx_xbr_bits);
1481 // Update the PCR counter preload value etc.
1482 update_tx_channel_config (dev, tx_channel, PCR_TIMER_ACCESS,
1483 vcc->tx_pcr_bits);
1485 #if 0
1486 if (vcc->tx_xbr_bits == VBR_RATE_TYPE) {
1487 // SCR timer
1488 update_tx_channel_config (dev, tx_channel, SCR_TIMER_ACCESS,
1489 vcc->tx_scr_bits);
1491 // Bucket size...
1492 update_tx_channel_config (dev, tx_channel, BUCKET_CAPACITY_ACCESS,
1493 vcc->tx_bucket_bits);
1495 // ... and fullness
1496 update_tx_channel_config (dev, tx_channel, BUCKET_FULLNESS_ACCESS,
1497 vcc->tx_bucket_bits);
1499 #endif
1501 // Initialise the read and write buffer pointers
1502 rd_ptr = rd_mem (dev, &tx_desc->rd_buf_type) & BUFFER_PTR_MASK;
1503 wr_ptr = rd_mem (dev, &tx_desc->wr_buf_type) & BUFFER_PTR_MASK;
1505 // idle TX channels should have identical pointers
1506 if (rd_ptr != wr_ptr) {
1507 PRINTD (DBG_TX|DBG_ERR, "TX buffer pointers are broken!");
1508 // spin_unlock... return -E...
1509 // I wonder if gcc would get rid of one of the pointer aliases
1511 PRINTD (DBG_TX, "TX buffer pointers are: rd %x, wr %x.",
1512 rd_ptr, wr_ptr);
1514 switch (vcc->aal) {
1515 case aal0:
1516 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal0");
1517 rd_ptr |= CHANNEL_TYPE_RAW_CELLS;
1518 wr_ptr |= CHANNEL_TYPE_RAW_CELLS;
1519 break;
1520 case aal34:
1521 PRINTD (DBG_QOS|DBG_TX, "tx_channel: aal34");
1522 rd_ptr |= CHANNEL_TYPE_AAL3_4;
1523 wr_ptr |= CHANNEL_TYPE_AAL3_4;
1524 break;
1525 case aal5:
1526 rd_ptr |= CHANNEL_TYPE_AAL5;
1527 wr_ptr |= CHANNEL_TYPE_AAL5;
1528 // Initialise the CRC
1529 wr_mem (dev, &tx_desc->partial_crc, INITIAL_CRC);
1530 break;
1533 wr_mem (dev, &tx_desc->rd_buf_type, rd_ptr);
1534 wr_mem (dev, &tx_desc->wr_buf_type, wr_ptr);
1536 // Write the Cell Header
1537 // Payload Type, CLP and GFC would go here if non-zero
1538 wr_mem (dev, &tx_desc->cell_header, channel);
1540 spin_unlock_irqrestore (&dev->mem_lock, flags);
1543 return tx_channel;
1546 /********** send a frame **********/
1548 static int hrz_send (struct atm_vcc * atm_vcc, struct sk_buff * skb) {
1549 unsigned int spin_count;
1550 int free_buffers;
1551 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
1552 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
1553 u16 channel = vcc->channel;
1555 u32 buffers_required;
1557 /* signed for error return */
1558 short tx_channel;
1560 PRINTD (DBG_FLOW|DBG_TX, "hrz_send vc %x data %p len %u",
1561 channel, skb->data, skb->len);
1563 dump_skb (">>>", channel, skb);
1565 if (atm_vcc->qos.txtp.traffic_class == ATM_NONE) {
1566 PRINTK (KERN_ERR, "attempt to send on RX-only VC %x", channel);
1567 hrz_kfree_skb (skb);
1568 return -EIO;
1571 // don't understand this
1572 ATM_SKB(skb)->vcc = atm_vcc;
1574 if (skb->len > atm_vcc->qos.txtp.max_sdu) {
1575 PRINTK (KERN_ERR, "sk_buff length greater than agreed max_sdu, dropping...");
1576 hrz_kfree_skb (skb);
1577 return -EIO;
1580 if (!channel) {
1581 PRINTD (DBG_ERR|DBG_TX, "attempt to transmit on zero (rx_)channel");
1582 hrz_kfree_skb (skb);
1583 return -EIO;
1586 #if 0
1588 // where would be a better place for this? housekeeping?
1589 u16 status;
1590 pci_read_config_word (dev->pci_dev, PCI_STATUS, &status);
1591 if (status & PCI_STATUS_REC_MASTER_ABORT) {
1592 PRINTD (DBG_BUS|DBG_ERR, "Clearing PCI Master Abort (and cleaning up)");
1593 status &= ~PCI_STATUS_REC_MASTER_ABORT;
1594 pci_write_config_word (dev->pci_dev, PCI_STATUS, status);
1595 if (test_bit (tx_busy, &dev->flags)) {
1596 hrz_kfree_skb (dev->tx_skb);
1597 tx_release (dev);
1601 #endif
1603 #ifdef DEBUG_HORIZON
1604 /* wey-hey! */
1605 if (channel == 1023) {
1606 unsigned int i;
1607 unsigned short d = 0;
1608 char * s = skb->data;
1609 if (*s++ == 'D') {
1610 for (i = 0; i < 4; ++i)
1611 d = (d << 4) | hex_to_bin(*s++);
1612 PRINTK (KERN_INFO, "debug bitmap is now %hx", debug = d);
1615 #endif
1617 // wait until TX is free and grab lock
1618 if (tx_hold (dev)) {
1619 hrz_kfree_skb (skb);
1620 return -ERESTARTSYS;
1623 // Wait for enough space to be available in transmit buffer memory.
1625 // should be number of cells needed + 2 (according to hardware docs)
1626 // = ((framelen+8)+47) / 48 + 2
1627 // = (framelen+7) / 48 + 3, hmm... faster to put addition inside XXX
1628 buffers_required = (skb->len+(ATM_AAL5_TRAILER-1)) / ATM_CELL_PAYLOAD + 3;
1630 // replace with timer and sleep, add dev->tx_buffers_queue (max 1 entry)
1631 spin_count = 0;
1632 while ((free_buffers = rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF)) < buffers_required) {
1633 PRINTD (DBG_TX, "waiting for free TX buffers, got %d of %d",
1634 free_buffers, buffers_required);
1635 // what is the appropriate delay? implement a timeout? (depending on line speed?)
1636 // mdelay (1);
1637 // what happens if we kill (current_pid, SIGKILL) ?
1638 schedule();
1639 if (++spin_count > 1000) {
1640 PRINTD (DBG_TX|DBG_ERR, "spun out waiting for tx buffers, got %d of %d",
1641 free_buffers, buffers_required);
1642 tx_release (dev);
1643 hrz_kfree_skb (skb);
1644 return -ERESTARTSYS;
1648 // Select a channel to transmit the frame on.
1649 if (channel == dev->last_vc) {
1650 PRINTD (DBG_TX, "last vc hack: hit");
1651 tx_channel = dev->tx_last;
1652 } else {
1653 PRINTD (DBG_TX, "last vc hack: miss");
1654 // Are we currently transmitting this VC on one of the channels?
1655 for (tx_channel = 0; tx_channel < TX_CHANS; ++tx_channel)
1656 if (dev->tx_channel_record[tx_channel] == channel) {
1657 PRINTD (DBG_TX, "vc already on channel: hit");
1658 break;
1660 if (tx_channel == TX_CHANS) {
1661 PRINTD (DBG_TX, "vc already on channel: miss");
1662 // Find and set up an idle channel.
1663 tx_channel = setup_idle_tx_channel (dev, vcc);
1664 if (tx_channel < 0) {
1665 PRINTD (DBG_TX|DBG_ERR, "failed to get channel");
1666 tx_release (dev);
1667 return tx_channel;
1671 PRINTD (DBG_TX, "got channel");
1672 SELECT_TX_CHANNEL(dev, tx_channel);
1674 dev->last_vc = channel;
1675 dev->tx_last = tx_channel;
1678 PRINTD (DBG_TX, "using channel %u", tx_channel);
1680 YELLOW_LED_OFF(dev);
1682 // TX start transfer
1685 unsigned int tx_len = skb->len;
1686 unsigned int tx_iovcnt = skb_shinfo(skb)->nr_frags;
1687 // remember this so we can free it later
1688 dev->tx_skb = skb;
1690 if (tx_iovcnt) {
1691 // scatter gather transfer
1692 dev->tx_regions = tx_iovcnt;
1693 dev->tx_iovec = NULL; /* @@@ needs rewritten */
1694 dev->tx_bytes = 0;
1695 PRINTD (DBG_TX|DBG_BUS, "TX start scatter-gather transfer (iovec %p, len %d)",
1696 skb->data, tx_len);
1697 tx_release (dev);
1698 hrz_kfree_skb (skb);
1699 return -EIO;
1700 } else {
1701 // simple transfer
1702 dev->tx_regions = 0;
1703 dev->tx_iovec = NULL;
1704 dev->tx_bytes = tx_len;
1705 dev->tx_addr = skb->data;
1706 PRINTD (DBG_TX|DBG_BUS, "TX start simple transfer (addr %p, len %d)",
1707 skb->data, tx_len);
1710 // and do the business
1711 tx_schedule (dev, 0);
1715 return 0;
1718 /********** reset a card **********/
1720 static void hrz_reset (const hrz_dev * dev) {
1721 u32 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1723 // why not set RESET_HORIZON to one and wait for the card to
1724 // reassert that bit as zero? Like so:
1725 control_0_reg = control_0_reg & RESET_HORIZON;
1726 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1727 while (control_0_reg & RESET_HORIZON)
1728 control_0_reg = rd_regl (dev, CONTROL_0_REG);
1730 // old reset code retained:
1731 wr_regl (dev, CONTROL_0_REG, control_0_reg |
1732 RESET_ATM | RESET_RX | RESET_TX | RESET_HOST);
1733 // just guessing here
1734 udelay (1000);
1736 wr_regl (dev, CONTROL_0_REG, control_0_reg);
1739 /********** read the burnt in address **********/
1741 static void WRITE_IT_WAIT (const hrz_dev *dev, u32 ctrl)
1743 wr_regl (dev, CONTROL_0_REG, ctrl);
1744 udelay (5);
1747 static void CLOCK_IT (const hrz_dev *dev, u32 ctrl)
1749 // DI must be valid around rising SK edge
1750 WRITE_IT_WAIT(dev, ctrl & ~SEEPROM_SK);
1751 WRITE_IT_WAIT(dev, ctrl | SEEPROM_SK);
1754 static u16 read_bia(const hrz_dev *dev, u16 addr)
1756 u32 ctrl = rd_regl (dev, CONTROL_0_REG);
1758 const unsigned int addr_bits = 6;
1759 const unsigned int data_bits = 16;
1761 unsigned int i;
1763 u16 res;
1765 ctrl &= ~(SEEPROM_CS | SEEPROM_SK | SEEPROM_DI);
1766 WRITE_IT_WAIT(dev, ctrl);
1768 // wake Serial EEPROM and send 110 (READ) command
1769 ctrl |= (SEEPROM_CS | SEEPROM_DI);
1770 CLOCK_IT(dev, ctrl);
1772 ctrl |= SEEPROM_DI;
1773 CLOCK_IT(dev, ctrl);
1775 ctrl &= ~SEEPROM_DI;
1776 CLOCK_IT(dev, ctrl);
1778 for (i=0; i<addr_bits; i++) {
1779 if (addr & (1 << (addr_bits-1)))
1780 ctrl |= SEEPROM_DI;
1781 else
1782 ctrl &= ~SEEPROM_DI;
1784 CLOCK_IT(dev, ctrl);
1786 addr = addr << 1;
1789 // we could check that we have DO = 0 here
1790 ctrl &= ~SEEPROM_DI;
1792 res = 0;
1793 for (i=0;i<data_bits;i++) {
1794 res = res >> 1;
1796 CLOCK_IT(dev, ctrl);
1798 if (rd_regl (dev, CONTROL_0_REG) & SEEPROM_DO)
1799 res |= (1 << (data_bits-1));
1802 ctrl &= ~(SEEPROM_SK | SEEPROM_CS);
1803 WRITE_IT_WAIT(dev, ctrl);
1805 return res;
1808 /********** initialise a card **********/
1810 static int hrz_init(hrz_dev *dev)
1812 int onefivefive;
1814 u16 chan;
1816 int buff_count;
1818 HDW * mem;
1820 cell_buf * tx_desc;
1821 cell_buf * rx_desc;
1823 u32 ctrl;
1825 ctrl = rd_regl (dev, CONTROL_0_REG);
1826 PRINTD (DBG_INFO, "ctrl0reg is %#x", ctrl);
1827 onefivefive = ctrl & ATM_LAYER_STATUS;
1829 if (onefivefive)
1830 printk (DEV_LABEL ": Horizon Ultra (at 155.52 MBps)");
1831 else
1832 printk (DEV_LABEL ": Horizon (at 25 MBps)");
1834 printk (":");
1835 // Reset the card to get everything in a known state
1837 printk (" reset");
1838 hrz_reset (dev);
1840 // Clear all the buffer memory
1842 printk (" clearing memory");
1844 for (mem = (HDW *) memmap; mem < (HDW *) (memmap + 1); ++mem)
1845 wr_mem (dev, mem, 0);
1847 printk (" tx channels");
1849 // All transmit eight channels are set up as AAL5 ABR channels with
1850 // a 16us cell spacing. Why?
1852 // Channel 0 gets the free buffer at 100h, channel 1 gets the free
1853 // buffer at 110h etc.
1855 for (chan = 0; chan < TX_CHANS; ++chan) {
1856 tx_ch_desc * tx_desc = &memmap->tx_descs[chan];
1857 cell_buf * buf = &memmap->inittxbufs[chan];
1859 // initialise the read and write buffer pointers
1860 wr_mem (dev, &tx_desc->rd_buf_type, BUF_PTR(buf));
1861 wr_mem (dev, &tx_desc->wr_buf_type, BUF_PTR(buf));
1863 // set the status of the initial buffers to empty
1864 wr_mem (dev, &buf->next, BUFF_STATUS_EMPTY);
1867 // Use space bufn3 at the moment for tx buffers
1869 printk (" tx buffers");
1871 tx_desc = memmap->bufn3;
1873 wr_mem (dev, &memmap->txfreebufstart.next, BUF_PTR(tx_desc) | BUFF_STATUS_EMPTY);
1875 for (buff_count = 0; buff_count < BUFN3_SIZE-1; buff_count++) {
1876 wr_mem (dev, &tx_desc->next, BUF_PTR(tx_desc+1) | BUFF_STATUS_EMPTY);
1877 tx_desc++;
1880 wr_mem (dev, &tx_desc->next, BUF_PTR(&memmap->txfreebufend) | BUFF_STATUS_EMPTY);
1882 // Initialise the transmit free buffer count
1883 wr_regw (dev, TX_FREE_BUFFER_COUNT_OFF, BUFN3_SIZE);
1885 printk (" rx channels");
1887 // Initialise all of the receive channels to be AAL5 disabled with
1888 // an interrupt threshold of 0
1890 for (chan = 0; chan < RX_CHANS; ++chan) {
1891 rx_ch_desc * rx_desc = &memmap->rx_descs[chan];
1893 wr_mem (dev, &rx_desc->wr_buf_type, CHANNEL_TYPE_AAL5 | RX_CHANNEL_DISABLED);
1896 printk (" rx buffers");
1898 // Use space bufn4 at the moment for rx buffers
1900 rx_desc = memmap->bufn4;
1902 wr_mem (dev, &memmap->rxfreebufstart.next, BUF_PTR(rx_desc) | BUFF_STATUS_EMPTY);
1904 for (buff_count = 0; buff_count < BUFN4_SIZE-1; buff_count++) {
1905 wr_mem (dev, &rx_desc->next, BUF_PTR(rx_desc+1) | BUFF_STATUS_EMPTY);
1907 rx_desc++;
1910 wr_mem (dev, &rx_desc->next, BUF_PTR(&memmap->rxfreebufend) | BUFF_STATUS_EMPTY);
1912 // Initialise the receive free buffer count
1913 wr_regw (dev, RX_FREE_BUFFER_COUNT_OFF, BUFN4_SIZE);
1915 // Initialize Horizons registers
1917 // TX config
1918 wr_regw (dev, TX_CONFIG_OFF,
1919 ABR_ROUND_ROBIN | TX_NORMAL_OPERATION | DRVR_DRVRBAR_ENABLE);
1921 // RX config. Use 10-x VC bits, x VP bits, non user cells in channel 0.
1922 wr_regw (dev, RX_CONFIG_OFF,
1923 DISCARD_UNUSED_VPI_VCI_BITS_SET | NON_USER_CELLS_IN_ONE_CHANNEL | vpi_bits);
1925 // RX line config
1926 wr_regw (dev, RX_LINE_CONFIG_OFF,
1927 LOCK_DETECT_ENABLE | FREQUENCY_DETECT_ENABLE | GXTALOUT_SELECT_DIV4);
1929 // Set the max AAL5 cell count to be just enough to contain the
1930 // largest AAL5 frame that the user wants to receive
1931 wr_regw (dev, MAX_AAL5_CELL_COUNT_OFF,
1932 DIV_ROUND_UP(max_rx_size + ATM_AAL5_TRAILER, ATM_CELL_PAYLOAD));
1934 // Enable receive
1935 wr_regw (dev, RX_CONFIG_OFF, rd_regw (dev, RX_CONFIG_OFF) | RX_ENABLE);
1937 printk (" control");
1939 // Drive the OE of the LEDs then turn the green LED on
1940 ctrl |= GREEN_LED_OE | YELLOW_LED_OE | GREEN_LED | YELLOW_LED;
1941 wr_regl (dev, CONTROL_0_REG, ctrl);
1943 // Test for a 155-capable card
1945 if (onefivefive) {
1946 // Select 155 mode... make this a choice (or: how do we detect
1947 // external line speed and switch?)
1948 ctrl |= ATM_LAYER_SELECT;
1949 wr_regl (dev, CONTROL_0_REG, ctrl);
1951 // test SUNI-lite vs SAMBA
1953 // Register 0x00 in the SUNI will have some of bits 3-7 set, and
1954 // they will always be zero for the SAMBA. Ha! Bloody hardware
1955 // engineers. It'll never work.
1957 if (rd_framer (dev, 0) & 0x00f0) {
1958 // SUNI
1959 printk (" SUNI");
1961 // Reset, just in case
1962 wr_framer (dev, 0x00, 0x0080);
1963 wr_framer (dev, 0x00, 0x0000);
1965 // Configure transmit FIFO
1966 wr_framer (dev, 0x63, rd_framer (dev, 0x63) | 0x0002);
1968 // Set line timed mode
1969 wr_framer (dev, 0x05, rd_framer (dev, 0x05) | 0x0001);
1970 } else {
1971 // SAMBA
1972 printk (" SAMBA");
1974 // Reset, just in case
1975 wr_framer (dev, 0, rd_framer (dev, 0) | 0x0001);
1976 wr_framer (dev, 0, rd_framer (dev, 0) &~ 0x0001);
1978 // Turn off diagnostic loopback and enable line-timed mode
1979 wr_framer (dev, 0, 0x0002);
1981 // Turn on transmit outputs
1982 wr_framer (dev, 2, 0x0B80);
1984 } else {
1985 // Select 25 mode
1986 ctrl &= ~ATM_LAYER_SELECT;
1988 // Madge B154 setup
1989 // none required?
1992 printk (" LEDs");
1994 GREEN_LED_ON(dev);
1995 YELLOW_LED_ON(dev);
1997 printk (" ESI=");
2000 u16 b = 0;
2001 int i;
2002 u8 * esi = dev->atm_dev->esi;
2004 // in the card I have, EEPROM
2005 // addresses 0, 1, 2 contain 0
2006 // addresess 5, 6 etc. contain ffff
2007 // NB: Madge prefix is 00 00 f6 (which is 00 00 6f in Ethernet bit order)
2008 // the read_bia routine gets the BIA in Ethernet bit order
2010 for (i=0; i < ESI_LEN; ++i) {
2011 if (i % 2 == 0)
2012 b = read_bia (dev, i/2 + 2);
2013 else
2014 b = b >> 8;
2015 esi[i] = b & 0xFF;
2016 printk ("%02x", esi[i]);
2020 // Enable RX_Q and ?X_COMPLETE interrupts only
2021 wr_regl (dev, INT_ENABLE_REG_OFF, INTERESTING_INTERRUPTS);
2022 printk (" IRQ on");
2024 printk (".\n");
2026 return onefivefive;
2029 /********** check max_sdu **********/
2031 static int check_max_sdu (hrz_aal aal, struct atm_trafprm * tp, unsigned int max_frame_size) {
2032 PRINTD (DBG_FLOW|DBG_QOS, "check_max_sdu");
2034 switch (aal) {
2035 case aal0:
2036 if (!(tp->max_sdu)) {
2037 PRINTD (DBG_QOS, "defaulting max_sdu");
2038 tp->max_sdu = ATM_AAL0_SDU;
2039 } else if (tp->max_sdu != ATM_AAL0_SDU) {
2040 PRINTD (DBG_QOS|DBG_ERR, "rejecting max_sdu");
2041 return -EINVAL;
2043 break;
2044 case aal34:
2045 if (tp->max_sdu == 0 || tp->max_sdu > ATM_MAX_AAL34_PDU) {
2046 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2047 tp->max_sdu = ATM_MAX_AAL34_PDU;
2049 break;
2050 case aal5:
2051 if (tp->max_sdu == 0 || tp->max_sdu > max_frame_size) {
2052 PRINTD (DBG_QOS, "%sing max_sdu", tp->max_sdu ? "capp" : "default");
2053 tp->max_sdu = max_frame_size;
2055 break;
2057 return 0;
2060 /********** check pcr **********/
2062 // something like this should be part of ATM Linux
2063 static int atm_pcr_check (struct atm_trafprm * tp, unsigned int pcr) {
2064 // we are assuming non-UBR, and non-special values of pcr
2065 if (tp->min_pcr == ATM_MAX_PCR)
2066 PRINTD (DBG_QOS, "luser gave min_pcr = ATM_MAX_PCR");
2067 else if (tp->min_pcr < 0)
2068 PRINTD (DBG_QOS, "luser gave negative min_pcr");
2069 else if (tp->min_pcr && tp->min_pcr > pcr)
2070 PRINTD (DBG_QOS, "pcr less than min_pcr");
2071 else
2072 // !! max_pcr = UNSPEC (0) is equivalent to max_pcr = MAX (-1)
2073 // easier to #define ATM_MAX_PCR 0 and have all rates unsigned?
2074 // [this would get rid of next two conditionals]
2075 if ((0) && tp->max_pcr == ATM_MAX_PCR)
2076 PRINTD (DBG_QOS, "luser gave max_pcr = ATM_MAX_PCR");
2077 else if ((tp->max_pcr != ATM_MAX_PCR) && tp->max_pcr < 0)
2078 PRINTD (DBG_QOS, "luser gave negative max_pcr");
2079 else if (tp->max_pcr && tp->max_pcr != ATM_MAX_PCR && tp->max_pcr < pcr)
2080 PRINTD (DBG_QOS, "pcr greater than max_pcr");
2081 else {
2082 // each limit unspecified or not violated
2083 PRINTD (DBG_QOS, "xBR(pcr) OK");
2084 return 0;
2086 PRINTD (DBG_QOS, "pcr=%u, tp: min_pcr=%d, pcr=%d, max_pcr=%d",
2087 pcr, tp->min_pcr, tp->pcr, tp->max_pcr);
2088 return -EINVAL;
2091 /********** open VC **********/
2093 static int hrz_open (struct atm_vcc *atm_vcc)
2095 int error;
2096 u16 channel;
2098 struct atm_qos * qos;
2099 struct atm_trafprm * txtp;
2100 struct atm_trafprm * rxtp;
2102 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2103 hrz_vcc vcc;
2104 hrz_vcc * vccp; // allocated late
2105 short vpi = atm_vcc->vpi;
2106 int vci = atm_vcc->vci;
2107 PRINTD (DBG_FLOW|DBG_VCC, "hrz_open %x %x", vpi, vci);
2109 #ifdef ATM_VPI_UNSPEC
2110 // UNSPEC is deprecated, remove this code eventually
2111 if (vpi == ATM_VPI_UNSPEC || vci == ATM_VCI_UNSPEC) {
2112 PRINTK (KERN_WARNING, "rejecting open with unspecified VPI/VCI (deprecated)");
2113 return -EINVAL;
2115 #endif
2117 error = vpivci_to_channel (&channel, vpi, vci);
2118 if (error) {
2119 PRINTD (DBG_WARN|DBG_VCC, "VPI/VCI out of range: %hd/%d", vpi, vci);
2120 return error;
2123 vcc.channel = channel;
2124 // max speed for the moment
2125 vcc.tx_rate = 0x0;
2127 qos = &atm_vcc->qos;
2129 // check AAL and remember it
2130 switch (qos->aal) {
2131 case ATM_AAL0:
2132 // we would if it were 48 bytes and not 52!
2133 PRINTD (DBG_QOS|DBG_VCC, "AAL0");
2134 vcc.aal = aal0;
2135 break;
2136 case ATM_AAL34:
2137 // we would if I knew how do the SAR!
2138 PRINTD (DBG_QOS|DBG_VCC, "AAL3/4");
2139 vcc.aal = aal34;
2140 break;
2141 case ATM_AAL5:
2142 PRINTD (DBG_QOS|DBG_VCC, "AAL5");
2143 vcc.aal = aal5;
2144 break;
2145 default:
2146 PRINTD (DBG_QOS|DBG_VCC, "Bad AAL!");
2147 return -EINVAL;
2150 // TX traffic parameters
2152 // there are two, interrelated problems here: 1. the reservation of
2153 // PCR is not a binary choice, we are given bounds and/or a
2154 // desirable value; 2. the device is only capable of certain values,
2155 // most of which are not integers. It is almost certainly acceptable
2156 // to be off by a maximum of 1 to 10 cps.
2158 // Pragmatic choice: always store an integral PCR as that which has
2159 // been allocated, even if we allocate a little (or a lot) less,
2160 // after rounding. The actual allocation depends on what we can
2161 // manage with our rate selection algorithm. The rate selection
2162 // algorithm is given an integral PCR and a tolerance and told
2163 // whether it should round the value up or down if the tolerance is
2164 // exceeded; it returns: a) the actual rate selected (rounded up to
2165 // the nearest integer), b) a bit pattern to feed to the timer
2166 // register, and c) a failure value if no applicable rate exists.
2168 // Part of the job is done by atm_pcr_goal which gives us a PCR
2169 // specification which says: EITHER grab the maximum available PCR
2170 // (and perhaps a lower bound which we musn't pass), OR grab this
2171 // amount, rounding down if you have to (and perhaps a lower bound
2172 // which we musn't pass) OR grab this amount, rounding up if you
2173 // have to (and perhaps an upper bound which we musn't pass). If any
2174 // bounds ARE passed we fail. Note that rounding is only rounding to
2175 // match device limitations, we do not round down to satisfy
2176 // bandwidth availability even if this would not violate any given
2177 // lower bound.
2179 // Note: telephony = 64kb/s = 48 byte cell payload @ 500/3 cells/s
2180 // (say) so this is not even a binary fixpoint cell rate (but this
2181 // device can do it). To avoid this sort of hassle we use a
2182 // tolerance parameter (currently fixed at 10 cps).
2184 PRINTD (DBG_QOS, "TX:");
2186 txtp = &qos->txtp;
2188 // set up defaults for no traffic
2189 vcc.tx_rate = 0;
2190 // who knows what would actually happen if you try and send on this?
2191 vcc.tx_xbr_bits = IDLE_RATE_TYPE;
2192 vcc.tx_pcr_bits = CLOCK_DISABLE;
2193 #if 0
2194 vcc.tx_scr_bits = CLOCK_DISABLE;
2195 vcc.tx_bucket_bits = 0;
2196 #endif
2198 if (txtp->traffic_class != ATM_NONE) {
2199 error = check_max_sdu (vcc.aal, txtp, max_tx_size);
2200 if (error) {
2201 PRINTD (DBG_QOS, "TX max_sdu check failed");
2202 return error;
2205 switch (txtp->traffic_class) {
2206 case ATM_UBR: {
2207 // we take "the PCR" as a rate-cap
2208 // not reserved
2209 vcc.tx_rate = 0;
2210 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, NULL);
2211 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2212 break;
2214 #if 0
2215 case ATM_ABR: {
2216 // reserve min, allow up to max
2217 vcc.tx_rate = 0; // ?
2218 make_rate (dev, 1<<30, round_nearest, &vcc.tx_pcr_bits, 0);
2219 vcc.tx_xbr_bits = ABR_RATE_TYPE;
2220 break;
2222 #endif
2223 case ATM_CBR: {
2224 int pcr = atm_pcr_goal (txtp);
2225 rounding r;
2226 if (!pcr) {
2227 // down vs. up, remaining bandwidth vs. unlimited bandwidth!!
2228 // should really have: once someone gets unlimited bandwidth
2229 // that no more non-UBR channels can be opened until the
2230 // unlimited one closes?? For the moment, round_down means
2231 // greedy people actually get something and not nothing
2232 r = round_down;
2233 // slight race (no locking) here so we may get -EAGAIN
2234 // later; the greedy bastards would deserve it :)
2235 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2236 pcr = dev->tx_avail;
2237 } else if (pcr < 0) {
2238 r = round_down;
2239 pcr = -pcr;
2240 } else {
2241 r = round_up;
2243 error = make_rate_with_tolerance (dev, pcr, r, 10,
2244 &vcc.tx_pcr_bits, &vcc.tx_rate);
2245 if (error) {
2246 PRINTD (DBG_QOS, "could not make rate from TX PCR");
2247 return error;
2249 // not really clear what further checking is needed
2250 error = atm_pcr_check (txtp, vcc.tx_rate);
2251 if (error) {
2252 PRINTD (DBG_QOS, "TX PCR failed consistency check");
2253 return error;
2255 vcc.tx_xbr_bits = CBR_RATE_TYPE;
2256 break;
2258 #if 0
2259 case ATM_VBR: {
2260 int pcr = atm_pcr_goal (txtp);
2261 // int scr = atm_scr_goal (txtp);
2262 int scr = pcr/2; // just for fun
2263 unsigned int mbs = 60; // just for fun
2264 rounding pr;
2265 rounding sr;
2266 unsigned int bucket;
2267 if (!pcr) {
2268 pr = round_nearest;
2269 pcr = 1<<30;
2270 } else if (pcr < 0) {
2271 pr = round_down;
2272 pcr = -pcr;
2273 } else {
2274 pr = round_up;
2276 error = make_rate_with_tolerance (dev, pcr, pr, 10,
2277 &vcc.tx_pcr_bits, 0);
2278 if (!scr) {
2279 // see comments for PCR with CBR above
2280 sr = round_down;
2281 // slight race (no locking) here so we may get -EAGAIN
2282 // later; the greedy bastards would deserve it :)
2283 PRINTD (DBG_QOS, "snatching all remaining TX bandwidth");
2284 scr = dev->tx_avail;
2285 } else if (scr < 0) {
2286 sr = round_down;
2287 scr = -scr;
2288 } else {
2289 sr = round_up;
2291 error = make_rate_with_tolerance (dev, scr, sr, 10,
2292 &vcc.tx_scr_bits, &vcc.tx_rate);
2293 if (error) {
2294 PRINTD (DBG_QOS, "could not make rate from TX SCR");
2295 return error;
2297 // not really clear what further checking is needed
2298 // error = atm_scr_check (txtp, vcc.tx_rate);
2299 if (error) {
2300 PRINTD (DBG_QOS, "TX SCR failed consistency check");
2301 return error;
2303 // bucket calculations (from a piece of paper...) cell bucket
2304 // capacity must be largest integer smaller than m(p-s)/p + 1
2305 // where m = max burst size, p = pcr, s = scr
2306 bucket = mbs*(pcr-scr)/pcr;
2307 if (bucket*pcr != mbs*(pcr-scr))
2308 bucket += 1;
2309 if (bucket > BUCKET_MAX_SIZE) {
2310 PRINTD (DBG_QOS, "shrinking bucket from %u to %u",
2311 bucket, BUCKET_MAX_SIZE);
2312 bucket = BUCKET_MAX_SIZE;
2314 vcc.tx_xbr_bits = VBR_RATE_TYPE;
2315 vcc.tx_bucket_bits = bucket;
2316 break;
2318 #endif
2319 default: {
2320 PRINTD (DBG_QOS, "unsupported TX traffic class");
2321 return -EINVAL;
2326 // RX traffic parameters
2328 PRINTD (DBG_QOS, "RX:");
2330 rxtp = &qos->rxtp;
2332 // set up defaults for no traffic
2333 vcc.rx_rate = 0;
2335 if (rxtp->traffic_class != ATM_NONE) {
2336 error = check_max_sdu (vcc.aal, rxtp, max_rx_size);
2337 if (error) {
2338 PRINTD (DBG_QOS, "RX max_sdu check failed");
2339 return error;
2341 switch (rxtp->traffic_class) {
2342 case ATM_UBR: {
2343 // not reserved
2344 break;
2346 #if 0
2347 case ATM_ABR: {
2348 // reserve min
2349 vcc.rx_rate = 0; // ?
2350 break;
2352 #endif
2353 case ATM_CBR: {
2354 int pcr = atm_pcr_goal (rxtp);
2355 if (!pcr) {
2356 // slight race (no locking) here so we may get -EAGAIN
2357 // later; the greedy bastards would deserve it :)
2358 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2359 pcr = dev->rx_avail;
2360 } else if (pcr < 0) {
2361 pcr = -pcr;
2363 vcc.rx_rate = pcr;
2364 // not really clear what further checking is needed
2365 error = atm_pcr_check (rxtp, vcc.rx_rate);
2366 if (error) {
2367 PRINTD (DBG_QOS, "RX PCR failed consistency check");
2368 return error;
2370 break;
2372 #if 0
2373 case ATM_VBR: {
2374 // int scr = atm_scr_goal (rxtp);
2375 int scr = 1<<16; // just for fun
2376 if (!scr) {
2377 // slight race (no locking) here so we may get -EAGAIN
2378 // later; the greedy bastards would deserve it :)
2379 PRINTD (DBG_QOS, "snatching all remaining RX bandwidth");
2380 scr = dev->rx_avail;
2381 } else if (scr < 0) {
2382 scr = -scr;
2384 vcc.rx_rate = scr;
2385 // not really clear what further checking is needed
2386 // error = atm_scr_check (rxtp, vcc.rx_rate);
2387 if (error) {
2388 PRINTD (DBG_QOS, "RX SCR failed consistency check");
2389 return error;
2391 break;
2393 #endif
2394 default: {
2395 PRINTD (DBG_QOS, "unsupported RX traffic class");
2396 return -EINVAL;
2402 // late abort useful for diagnostics
2403 if (vcc.aal != aal5) {
2404 PRINTD (DBG_QOS, "AAL not supported");
2405 return -EINVAL;
2408 // get space for our vcc stuff and copy parameters into it
2409 vccp = kmalloc (sizeof(hrz_vcc), GFP_KERNEL);
2410 if (!vccp) {
2411 PRINTK (KERN_ERR, "out of memory!");
2412 return -ENOMEM;
2414 *vccp = vcc;
2416 // clear error and grab cell rate resource lock
2417 error = 0;
2418 spin_lock (&dev->rate_lock);
2420 if (vcc.tx_rate > dev->tx_avail) {
2421 PRINTD (DBG_QOS, "not enough TX PCR left");
2422 error = -EAGAIN;
2425 if (vcc.rx_rate > dev->rx_avail) {
2426 PRINTD (DBG_QOS, "not enough RX PCR left");
2427 error = -EAGAIN;
2430 if (!error) {
2431 // really consume cell rates
2432 dev->tx_avail -= vcc.tx_rate;
2433 dev->rx_avail -= vcc.rx_rate;
2434 PRINTD (DBG_QOS|DBG_VCC, "reserving %u TX PCR and %u RX PCR",
2435 vcc.tx_rate, vcc.rx_rate);
2438 // release lock and exit on error
2439 spin_unlock (&dev->rate_lock);
2440 if (error) {
2441 PRINTD (DBG_QOS|DBG_VCC, "insufficient cell rate resources");
2442 kfree (vccp);
2443 return error;
2446 // this is "immediately before allocating the connection identifier
2447 // in hardware" - so long as the next call does not fail :)
2448 set_bit(ATM_VF_ADDR,&atm_vcc->flags);
2450 // any errors here are very serious and should never occur
2452 if (rxtp->traffic_class != ATM_NONE) {
2453 if (dev->rxer[channel]) {
2454 PRINTD (DBG_ERR|DBG_VCC, "VC already open for RX");
2455 error = -EBUSY;
2457 if (!error)
2458 error = hrz_open_rx (dev, channel);
2459 if (error) {
2460 kfree (vccp);
2461 return error;
2463 // this link allows RX frames through
2464 dev->rxer[channel] = atm_vcc;
2467 // success, set elements of atm_vcc
2468 atm_vcc->dev_data = (void *) vccp;
2470 // indicate readiness
2471 set_bit(ATM_VF_READY,&atm_vcc->flags);
2473 return 0;
2476 /********** close VC **********/
2478 static void hrz_close (struct atm_vcc * atm_vcc) {
2479 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2480 hrz_vcc * vcc = HRZ_VCC(atm_vcc);
2481 u16 channel = vcc->channel;
2482 PRINTD (DBG_VCC|DBG_FLOW, "hrz_close");
2484 // indicate unreadiness
2485 clear_bit(ATM_VF_READY,&atm_vcc->flags);
2487 if (atm_vcc->qos.txtp.traffic_class != ATM_NONE) {
2488 unsigned int i;
2490 // let any TX on this channel that has started complete
2491 // no restart, just keep trying
2492 while (tx_hold (dev))
2494 // remove record of any tx_channel having been setup for this channel
2495 for (i = 0; i < TX_CHANS; ++i)
2496 if (dev->tx_channel_record[i] == channel) {
2497 dev->tx_channel_record[i] = -1;
2498 break;
2500 if (dev->last_vc == channel)
2501 dev->tx_last = -1;
2502 tx_release (dev);
2505 if (atm_vcc->qos.rxtp.traffic_class != ATM_NONE) {
2506 // disable RXing - it tries quite hard
2507 hrz_close_rx (dev, channel);
2508 // forget the vcc - no more skbs will be pushed
2509 if (atm_vcc != dev->rxer[channel])
2510 PRINTK (KERN_ERR, "%s atm_vcc=%p rxer[channel]=%p",
2511 "arghhh! we're going to die!",
2512 atm_vcc, dev->rxer[channel]);
2513 dev->rxer[channel] = NULL;
2516 // atomically release our rate reservation
2517 spin_lock (&dev->rate_lock);
2518 PRINTD (DBG_QOS|DBG_VCC, "releasing %u TX PCR and %u RX PCR",
2519 vcc->tx_rate, vcc->rx_rate);
2520 dev->tx_avail += vcc->tx_rate;
2521 dev->rx_avail += vcc->rx_rate;
2522 spin_unlock (&dev->rate_lock);
2524 // free our structure
2525 kfree (vcc);
2526 // say the VPI/VCI is free again
2527 clear_bit(ATM_VF_ADDR,&atm_vcc->flags);
2530 #if 0
2531 static int hrz_getsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2532 void *optval, int optlen) {
2533 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2534 PRINTD (DBG_FLOW|DBG_VCC, "hrz_getsockopt");
2535 switch (level) {
2536 case SOL_SOCKET:
2537 switch (optname) {
2538 // case SO_BCTXOPT:
2539 // break;
2540 // case SO_BCRXOPT:
2541 // break;
2542 default:
2543 return -ENOPROTOOPT;
2545 break;
2547 return -EINVAL;
2550 static int hrz_setsockopt (struct atm_vcc * atm_vcc, int level, int optname,
2551 void *optval, unsigned int optlen) {
2552 hrz_dev * dev = HRZ_DEV(atm_vcc->dev);
2553 PRINTD (DBG_FLOW|DBG_VCC, "hrz_setsockopt");
2554 switch (level) {
2555 case SOL_SOCKET:
2556 switch (optname) {
2557 // case SO_BCTXOPT:
2558 // break;
2559 // case SO_BCRXOPT:
2560 // break;
2561 default:
2562 return -ENOPROTOOPT;
2564 break;
2566 return -EINVAL;
2568 #endif
2570 #if 0
2571 static int hrz_ioctl (struct atm_dev * atm_dev, unsigned int cmd, void *arg) {
2572 hrz_dev * dev = HRZ_DEV(atm_dev);
2573 PRINTD (DBG_FLOW, "hrz_ioctl");
2574 return -1;
2577 unsigned char hrz_phy_get (struct atm_dev * atm_dev, unsigned long addr) {
2578 hrz_dev * dev = HRZ_DEV(atm_dev);
2579 PRINTD (DBG_FLOW, "hrz_phy_get");
2580 return 0;
2583 static void hrz_phy_put (struct atm_dev * atm_dev, unsigned char value,
2584 unsigned long addr) {
2585 hrz_dev * dev = HRZ_DEV(atm_dev);
2586 PRINTD (DBG_FLOW, "hrz_phy_put");
2589 static int hrz_change_qos (struct atm_vcc * atm_vcc, struct atm_qos *qos, int flgs) {
2590 hrz_dev * dev = HRZ_DEV(vcc->dev);
2591 PRINTD (DBG_FLOW, "hrz_change_qos");
2592 return -1;
2594 #endif
2596 /********** proc file contents **********/
2598 static int hrz_proc_read (struct atm_dev * atm_dev, loff_t * pos, char * page) {
2599 hrz_dev * dev = HRZ_DEV(atm_dev);
2600 int left = *pos;
2601 PRINTD (DBG_FLOW, "hrz_proc_read");
2603 /* more diagnostics here? */
2605 #if 0
2606 if (!left--) {
2607 unsigned int count = sprintf (page, "vbr buckets:");
2608 unsigned int i;
2609 for (i = 0; i < TX_CHANS; ++i)
2610 count += sprintf (page, " %u/%u",
2611 query_tx_channel_config (dev, i, BUCKET_FULLNESS_ACCESS),
2612 query_tx_channel_config (dev, i, BUCKET_CAPACITY_ACCESS));
2613 count += sprintf (page+count, ".\n");
2614 return count;
2616 #endif
2618 if (!left--)
2619 return sprintf (page,
2620 "cells: TX %lu, RX %lu, HEC errors %lu, unassigned %lu.\n",
2621 dev->tx_cell_count, dev->rx_cell_count,
2622 dev->hec_error_count, dev->unassigned_cell_count);
2624 if (!left--)
2625 return sprintf (page,
2626 "free cell buffers: TX %hu, RX %hu+%hu.\n",
2627 rd_regw (dev, TX_FREE_BUFFER_COUNT_OFF),
2628 rd_regw (dev, RX_FREE_BUFFER_COUNT_OFF),
2629 dev->noof_spare_buffers);
2631 if (!left--)
2632 return sprintf (page,
2633 "cps remaining: TX %u, RX %u\n",
2634 dev->tx_avail, dev->rx_avail);
2636 return 0;
2639 static const struct atmdev_ops hrz_ops = {
2640 .open = hrz_open,
2641 .close = hrz_close,
2642 .send = hrz_send,
2643 .proc_read = hrz_proc_read,
2644 .owner = THIS_MODULE,
2647 static int hrz_probe(struct pci_dev *pci_dev,
2648 const struct pci_device_id *pci_ent)
2650 hrz_dev * dev;
2651 int err = 0;
2653 // adapter slot free, read resources from PCI configuration space
2654 u32 iobase = pci_resource_start (pci_dev, 0);
2655 u32 * membase = bus_to_virt (pci_resource_start (pci_dev, 1));
2656 unsigned int irq;
2657 unsigned char lat;
2659 PRINTD (DBG_FLOW, "hrz_probe");
2661 if (pci_enable_device(pci_dev))
2662 return -EINVAL;
2664 /* XXX DEV_LABEL is a guess */
2665 if (!request_region(iobase, HRZ_IO_EXTENT, DEV_LABEL)) {
2666 err = -EINVAL;
2667 goto out_disable;
2670 dev = kzalloc(sizeof(hrz_dev), GFP_KERNEL);
2671 if (!dev) {
2672 // perhaps we should be nice: deregister all adapters and abort?
2673 PRINTD(DBG_ERR, "out of memory");
2674 err = -ENOMEM;
2675 goto out_release;
2678 pci_set_drvdata(pci_dev, dev);
2680 // grab IRQ and install handler - move this someplace more sensible
2681 irq = pci_dev->irq;
2682 if (request_irq(irq,
2683 interrupt_handler,
2684 IRQF_SHARED, /* irqflags guess */
2685 DEV_LABEL, /* name guess */
2686 dev)) {
2687 PRINTD(DBG_WARN, "request IRQ failed!");
2688 err = -EINVAL;
2689 goto out_free;
2692 PRINTD(DBG_INFO, "found Madge ATM adapter (hrz) at: IO %x, IRQ %u, MEM %p",
2693 iobase, irq, membase);
2695 dev->atm_dev = atm_dev_register(DEV_LABEL, &pci_dev->dev, &hrz_ops, -1,
2696 NULL);
2697 if (!(dev->atm_dev)) {
2698 PRINTD(DBG_ERR, "failed to register Madge ATM adapter");
2699 err = -EINVAL;
2700 goto out_free_irq;
2703 PRINTD(DBG_INFO, "registered Madge ATM adapter (no. %d) (%p) at %p",
2704 dev->atm_dev->number, dev, dev->atm_dev);
2705 dev->atm_dev->dev_data = (void *) dev;
2706 dev->pci_dev = pci_dev;
2708 // enable bus master accesses
2709 pci_set_master(pci_dev);
2711 // frobnicate latency (upwards, usually)
2712 pci_read_config_byte(pci_dev, PCI_LATENCY_TIMER, &lat);
2713 if (pci_lat) {
2714 PRINTD(DBG_INFO, "%s PCI latency timer from %hu to %hu",
2715 "changing", lat, pci_lat);
2716 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, pci_lat);
2717 } else if (lat < MIN_PCI_LATENCY) {
2718 PRINTK(KERN_INFO, "%s PCI latency timer from %hu to %hu",
2719 "increasing", lat, MIN_PCI_LATENCY);
2720 pci_write_config_byte(pci_dev, PCI_LATENCY_TIMER, MIN_PCI_LATENCY);
2723 dev->iobase = iobase;
2724 dev->irq = irq;
2725 dev->membase = membase;
2727 dev->rx_q_entry = dev->rx_q_reset = &memmap->rx_q_entries[0];
2728 dev->rx_q_wrap = &memmap->rx_q_entries[RX_CHANS-1];
2730 // these next three are performance hacks
2731 dev->last_vc = -1;
2732 dev->tx_last = -1;
2733 dev->tx_idle = 0;
2735 dev->tx_regions = 0;
2736 dev->tx_bytes = 0;
2737 dev->tx_skb = NULL;
2738 dev->tx_iovec = NULL;
2740 dev->tx_cell_count = 0;
2741 dev->rx_cell_count = 0;
2742 dev->hec_error_count = 0;
2743 dev->unassigned_cell_count = 0;
2745 dev->noof_spare_buffers = 0;
2748 unsigned int i;
2749 for (i = 0; i < TX_CHANS; ++i)
2750 dev->tx_channel_record[i] = -1;
2753 dev->flags = 0;
2755 // Allocate cell rates and remember ASIC version
2756 // Fibre: ATM_OC3_PCR = 1555200000/8/270*260/53 - 29/53
2757 // Copper: (WRONG) we want 6 into the above, close to 25Mb/s
2758 // Copper: (plagarise!) 25600000/8/270*260/53 - n/53
2760 if (hrz_init(dev)) {
2761 // to be really pedantic, this should be ATM_OC3c_PCR
2762 dev->tx_avail = ATM_OC3_PCR;
2763 dev->rx_avail = ATM_OC3_PCR;
2764 set_bit(ultra, &dev->flags); // NOT "|= ultra" !
2765 } else {
2766 dev->tx_avail = ((25600000/8)*26)/(27*53);
2767 dev->rx_avail = ((25600000/8)*26)/(27*53);
2768 PRINTD(DBG_WARN, "Buggy ASIC: no TX bus-mastering.");
2771 // rate changes spinlock
2772 spin_lock_init(&dev->rate_lock);
2774 // on-board memory access spinlock; we want atomic reads and
2775 // writes to adapter memory (handles IRQ and SMP)
2776 spin_lock_init(&dev->mem_lock);
2778 init_waitqueue_head(&dev->tx_queue);
2780 // vpi in 0..4, vci in 6..10
2781 dev->atm_dev->ci_range.vpi_bits = vpi_bits;
2782 dev->atm_dev->ci_range.vci_bits = 10-vpi_bits;
2784 timer_setup(&dev->housekeeping, do_housekeeping, 0);
2785 mod_timer(&dev->housekeeping, jiffies);
2787 out:
2788 return err;
2790 out_free_irq:
2791 free_irq(irq, dev);
2792 out_free:
2793 kfree(dev);
2794 out_release:
2795 release_region(iobase, HRZ_IO_EXTENT);
2796 out_disable:
2797 pci_disable_device(pci_dev);
2798 goto out;
2801 static void hrz_remove_one(struct pci_dev *pci_dev)
2803 hrz_dev *dev;
2805 dev = pci_get_drvdata(pci_dev);
2807 PRINTD(DBG_INFO, "closing %p (atm_dev = %p)", dev, dev->atm_dev);
2808 del_timer_sync(&dev->housekeeping);
2809 hrz_reset(dev);
2810 atm_dev_deregister(dev->atm_dev);
2811 free_irq(dev->irq, dev);
2812 release_region(dev->iobase, HRZ_IO_EXTENT);
2813 kfree(dev);
2815 pci_disable_device(pci_dev);
2818 static void __init hrz_check_args (void) {
2819 #ifdef DEBUG_HORIZON
2820 PRINTK (KERN_NOTICE, "debug bitmap is %hx", debug &= DBG_MASK);
2821 #else
2822 if (debug)
2823 PRINTK (KERN_NOTICE, "no debug support in this image");
2824 #endif
2826 if (vpi_bits > HRZ_MAX_VPI)
2827 PRINTK (KERN_ERR, "vpi_bits has been limited to %hu",
2828 vpi_bits = HRZ_MAX_VPI);
2830 if (max_tx_size < 0 || max_tx_size > TX_AAL5_LIMIT)
2831 PRINTK (KERN_NOTICE, "max_tx_size has been limited to %hu",
2832 max_tx_size = TX_AAL5_LIMIT);
2834 if (max_rx_size < 0 || max_rx_size > RX_AAL5_LIMIT)
2835 PRINTK (KERN_NOTICE, "max_rx_size has been limited to %hu",
2836 max_rx_size = RX_AAL5_LIMIT);
2838 return;
2841 MODULE_AUTHOR(maintainer_string);
2842 MODULE_DESCRIPTION(description_string);
2843 MODULE_LICENSE("GPL");
2844 module_param(debug, ushort, 0644);
2845 module_param(vpi_bits, ushort, 0);
2846 module_param(max_tx_size, int, 0);
2847 module_param(max_rx_size, int, 0);
2848 module_param(pci_lat, byte, 0);
2849 MODULE_PARM_DESC(debug, "debug bitmap, see .h file");
2850 MODULE_PARM_DESC(vpi_bits, "number of bits (0..4) to allocate to VPIs");
2851 MODULE_PARM_DESC(max_tx_size, "maximum size of TX AAL5 frames");
2852 MODULE_PARM_DESC(max_rx_size, "maximum size of RX AAL5 frames");
2853 MODULE_PARM_DESC(pci_lat, "PCI latency in bus cycles");
2855 static const struct pci_device_id hrz_pci_tbl[] = {
2856 { PCI_VENDOR_ID_MADGE, PCI_DEVICE_ID_MADGE_HORIZON, PCI_ANY_ID, PCI_ANY_ID,
2857 0, 0, 0 },
2858 { 0, }
2861 MODULE_DEVICE_TABLE(pci, hrz_pci_tbl);
2863 static struct pci_driver hrz_driver = {
2864 .name = "horizon",
2865 .probe = hrz_probe,
2866 .remove = hrz_remove_one,
2867 .id_table = hrz_pci_tbl,
2870 /********** module entry **********/
2872 static int __init hrz_module_init (void) {
2873 BUILD_BUG_ON(sizeof(struct MEMMAP) != 128*1024/4);
2875 show_version();
2877 // check arguments
2878 hrz_check_args();
2880 // get the juice
2881 return pci_register_driver(&hrz_driver);
2884 /********** module exit **********/
2886 static void __exit hrz_module_exit (void) {
2887 PRINTD (DBG_FLOW, "cleanup_module");
2889 pci_unregister_driver(&hrz_driver);
2892 module_init(hrz_module_init);
2893 module_exit(hrz_module_exit);