dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / base / core.c
blob213106ed8a56008ee7e2af896be9218aa3a612cc
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * drivers/base/core.c - core driver model code (device registration, etc)
5 * Copyright (c) 2002-3 Patrick Mochel
6 * Copyright (c) 2002-3 Open Source Development Labs
7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
8 * Copyright (c) 2006 Novell, Inc.
9 */
11 #include <linux/acpi.h>
12 #include <linux/cpufreq.h>
13 #include <linux/device.h>
14 #include <linux/err.h>
15 #include <linux/fwnode.h>
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/string.h>
20 #include <linux/kdev_t.h>
21 #include <linux/notifier.h>
22 #include <linux/of.h>
23 #include <linux/of_device.h>
24 #include <linux/genhd.h>
25 #include <linux/mutex.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/netdevice.h>
28 #include <linux/sched/signal.h>
29 #include <linux/sysfs.h>
31 #include "base.h"
32 #include "power/power.h"
34 #ifdef CONFIG_SYSFS_DEPRECATED
35 #ifdef CONFIG_SYSFS_DEPRECATED_V2
36 long sysfs_deprecated = 1;
37 #else
38 long sysfs_deprecated = 0;
39 #endif
40 static int __init sysfs_deprecated_setup(char *arg)
42 return kstrtol(arg, 10, &sysfs_deprecated);
44 early_param("sysfs.deprecated", sysfs_deprecated_setup);
45 #endif
47 /* Device links support. */
48 static LIST_HEAD(wait_for_suppliers);
49 static DEFINE_MUTEX(wfs_lock);
50 static LIST_HEAD(deferred_sync);
51 static unsigned int defer_sync_state_count = 1;
53 #ifdef CONFIG_SRCU
54 static DEFINE_MUTEX(device_links_lock);
55 DEFINE_STATIC_SRCU(device_links_srcu);
57 static inline void device_links_write_lock(void)
59 mutex_lock(&device_links_lock);
62 static inline void device_links_write_unlock(void)
64 mutex_unlock(&device_links_lock);
67 int device_links_read_lock(void) __acquires(&device_links_srcu)
69 return srcu_read_lock(&device_links_srcu);
72 void device_links_read_unlock(int idx) __releases(&device_links_srcu)
74 srcu_read_unlock(&device_links_srcu, idx);
77 int device_links_read_lock_held(void)
79 return srcu_read_lock_held(&device_links_srcu);
81 #else /* !CONFIG_SRCU */
82 static DECLARE_RWSEM(device_links_lock);
84 static inline void device_links_write_lock(void)
86 down_write(&device_links_lock);
89 static inline void device_links_write_unlock(void)
91 up_write(&device_links_lock);
94 int device_links_read_lock(void)
96 down_read(&device_links_lock);
97 return 0;
100 void device_links_read_unlock(int not_used)
102 up_read(&device_links_lock);
105 #ifdef CONFIG_DEBUG_LOCK_ALLOC
106 int device_links_read_lock_held(void)
108 return lockdep_is_held(&device_links_lock);
110 #endif
111 #endif /* !CONFIG_SRCU */
114 * device_is_dependent - Check if one device depends on another one
115 * @dev: Device to check dependencies for.
116 * @target: Device to check against.
118 * Check if @target depends on @dev or any device dependent on it (its child or
119 * its consumer etc). Return 1 if that is the case or 0 otherwise.
121 static int device_is_dependent(struct device *dev, void *target)
123 struct device_link *link;
124 int ret;
126 if (dev == target)
127 return 1;
129 ret = device_for_each_child(dev, target, device_is_dependent);
130 if (ret)
131 return ret;
133 list_for_each_entry(link, &dev->links.consumers, s_node) {
134 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
135 continue;
137 if (link->consumer == target)
138 return 1;
140 ret = device_is_dependent(link->consumer, target);
141 if (ret)
142 break;
144 return ret;
147 static void device_link_init_status(struct device_link *link,
148 struct device *consumer,
149 struct device *supplier)
151 switch (supplier->links.status) {
152 case DL_DEV_PROBING:
153 switch (consumer->links.status) {
154 case DL_DEV_PROBING:
156 * A consumer driver can create a link to a supplier
157 * that has not completed its probing yet as long as it
158 * knows that the supplier is already functional (for
159 * example, it has just acquired some resources from the
160 * supplier).
162 link->status = DL_STATE_CONSUMER_PROBE;
163 break;
164 default:
165 link->status = DL_STATE_DORMANT;
166 break;
168 break;
169 case DL_DEV_DRIVER_BOUND:
170 switch (consumer->links.status) {
171 case DL_DEV_PROBING:
172 link->status = DL_STATE_CONSUMER_PROBE;
173 break;
174 case DL_DEV_DRIVER_BOUND:
175 link->status = DL_STATE_ACTIVE;
176 break;
177 default:
178 link->status = DL_STATE_AVAILABLE;
179 break;
181 break;
182 case DL_DEV_UNBINDING:
183 link->status = DL_STATE_SUPPLIER_UNBIND;
184 break;
185 default:
186 link->status = DL_STATE_DORMANT;
187 break;
191 static int device_reorder_to_tail(struct device *dev, void *not_used)
193 struct device_link *link;
196 * Devices that have not been registered yet will be put to the ends
197 * of the lists during the registration, so skip them here.
199 if (device_is_registered(dev))
200 devices_kset_move_last(dev);
202 if (device_pm_initialized(dev))
203 device_pm_move_last(dev);
205 device_for_each_child(dev, NULL, device_reorder_to_tail);
206 list_for_each_entry(link, &dev->links.consumers, s_node) {
207 if (link->flags == (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
208 continue;
209 device_reorder_to_tail(link->consumer, NULL);
212 return 0;
216 * device_pm_move_to_tail - Move set of devices to the end of device lists
217 * @dev: Device to move
219 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
221 * It moves the @dev along with all of its children and all of its consumers
222 * to the ends of the device_kset and dpm_list, recursively.
224 void device_pm_move_to_tail(struct device *dev)
226 int idx;
228 idx = device_links_read_lock();
229 device_pm_lock();
230 device_reorder_to_tail(dev, NULL);
231 device_pm_unlock();
232 device_links_read_unlock(idx);
235 #define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
236 DL_FLAG_AUTOREMOVE_SUPPLIER | \
237 DL_FLAG_AUTOPROBE_CONSUMER | \
238 DL_FLAG_SYNC_STATE_ONLY)
240 #define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
241 DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
244 * device_link_add - Create a link between two devices.
245 * @consumer: Consumer end of the link.
246 * @supplier: Supplier end of the link.
247 * @flags: Link flags.
249 * The caller is responsible for the proper synchronization of the link creation
250 * with runtime PM. First, setting the DL_FLAG_PM_RUNTIME flag will cause the
251 * runtime PM framework to take the link into account. Second, if the
252 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
253 * be forced into the active metastate and reference-counted upon the creation
254 * of the link. If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
255 * ignored.
257 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
258 * expected to release the link returned by it directly with the help of either
259 * device_link_del() or device_link_remove().
261 * If that flag is not set, however, the caller of this function is handing the
262 * management of the link over to the driver core entirely and its return value
263 * can only be used to check whether or not the link is present. In that case,
264 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
265 * flags can be used to indicate to the driver core when the link can be safely
266 * deleted. Namely, setting one of them in @flags indicates to the driver core
267 * that the link is not going to be used (by the given caller of this function)
268 * after unbinding the consumer or supplier driver, respectively, from its
269 * device, so the link can be deleted at that point. If none of them is set,
270 * the link will be maintained until one of the devices pointed to by it (either
271 * the consumer or the supplier) is unregistered.
273 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
274 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
275 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
276 * be used to request the driver core to automaticall probe for a consmer
277 * driver after successfully binding a driver to the supplier device.
279 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
280 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
281 * the same time is invalid and will cause NULL to be returned upfront.
282 * However, if a device link between the given @consumer and @supplier pair
283 * exists already when this function is called for them, the existing link will
284 * be returned regardless of its current type and status (the link's flags may
285 * be modified then). The caller of this function is then expected to treat
286 * the link as though it has just been created, so (in particular) if
287 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
288 * explicitly when not needed any more (as stated above).
290 * A side effect of the link creation is re-ordering of dpm_list and the
291 * devices_kset list by moving the consumer device and all devices depending
292 * on it to the ends of these lists (that does not happen to devices that have
293 * not been registered when this function is called).
295 * The supplier device is required to be registered when this function is called
296 * and NULL will be returned if that is not the case. The consumer device need
297 * not be registered, however.
299 struct device_link *device_link_add(struct device *consumer,
300 struct device *supplier, u32 flags)
302 struct device_link *link;
304 if (!consumer || !supplier || flags & ~DL_ADD_VALID_FLAGS ||
305 (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
306 (flags & DL_FLAG_SYNC_STATE_ONLY &&
307 flags != DL_FLAG_SYNC_STATE_ONLY) ||
308 (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
309 flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
310 DL_FLAG_AUTOREMOVE_SUPPLIER)))
311 return NULL;
313 if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
314 if (pm_runtime_get_sync(supplier) < 0) {
315 pm_runtime_put_noidle(supplier);
316 return NULL;
320 if (!(flags & DL_FLAG_STATELESS))
321 flags |= DL_FLAG_MANAGED;
323 device_links_write_lock();
324 device_pm_lock();
327 * If the supplier has not been fully registered yet or there is a
328 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
329 * the supplier already in the graph, return NULL. If the link is a
330 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
331 * because it only affects sync_state() callbacks.
333 if (!device_pm_initialized(supplier)
334 || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
335 device_is_dependent(consumer, supplier))) {
336 link = NULL;
337 goto out;
341 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
342 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
343 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
345 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
346 flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
348 list_for_each_entry(link, &supplier->links.consumers, s_node) {
349 if (link->consumer != consumer)
350 continue;
352 if (flags & DL_FLAG_PM_RUNTIME) {
353 if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
354 pm_runtime_new_link(consumer);
355 link->flags |= DL_FLAG_PM_RUNTIME;
357 if (flags & DL_FLAG_RPM_ACTIVE)
358 refcount_inc(&link->rpm_active);
361 if (flags & DL_FLAG_STATELESS) {
362 kref_get(&link->kref);
363 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
364 !(link->flags & DL_FLAG_STATELESS)) {
365 link->flags |= DL_FLAG_STATELESS;
366 goto reorder;
367 } else {
368 link->flags |= DL_FLAG_STATELESS;
369 goto out;
374 * If the life time of the link following from the new flags is
375 * longer than indicated by the flags of the existing link,
376 * update the existing link to stay around longer.
378 if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
379 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
380 link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
381 link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
383 } else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
384 link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
385 DL_FLAG_AUTOREMOVE_SUPPLIER);
387 if (!(link->flags & DL_FLAG_MANAGED)) {
388 kref_get(&link->kref);
389 link->flags |= DL_FLAG_MANAGED;
390 device_link_init_status(link, consumer, supplier);
392 if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
393 !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
394 link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
395 goto reorder;
398 goto out;
401 link = kzalloc(sizeof(*link), GFP_KERNEL);
402 if (!link)
403 goto out;
405 refcount_set(&link->rpm_active, 1);
407 if (flags & DL_FLAG_PM_RUNTIME) {
408 if (flags & DL_FLAG_RPM_ACTIVE)
409 refcount_inc(&link->rpm_active);
411 pm_runtime_new_link(consumer);
414 get_device(supplier);
415 link->supplier = supplier;
416 INIT_LIST_HEAD(&link->s_node);
417 get_device(consumer);
418 link->consumer = consumer;
419 INIT_LIST_HEAD(&link->c_node);
420 link->flags = flags;
421 kref_init(&link->kref);
423 /* Determine the initial link state. */
424 if (flags & DL_FLAG_STATELESS)
425 link->status = DL_STATE_NONE;
426 else
427 device_link_init_status(link, consumer, supplier);
430 * Some callers expect the link creation during consumer driver probe to
431 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
433 if (link->status == DL_STATE_CONSUMER_PROBE &&
434 flags & DL_FLAG_PM_RUNTIME)
435 pm_runtime_resume(supplier);
437 list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
438 list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
440 if (flags & DL_FLAG_SYNC_STATE_ONLY) {
441 dev_dbg(consumer,
442 "Linked as a sync state only consumer to %s\n",
443 dev_name(supplier));
444 goto out;
447 reorder:
449 * Move the consumer and all of the devices depending on it to the end
450 * of dpm_list and the devices_kset list.
452 * It is necessary to hold dpm_list locked throughout all that or else
453 * we may end up suspending with a wrong ordering of it.
455 device_reorder_to_tail(consumer, NULL);
457 dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
459 out:
460 device_pm_unlock();
461 device_links_write_unlock();
463 if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
464 pm_runtime_put(supplier);
466 return link;
468 EXPORT_SYMBOL_GPL(device_link_add);
471 * device_link_wait_for_supplier - Add device to wait_for_suppliers list
472 * @consumer: Consumer device
474 * Marks the @consumer device as waiting for suppliers to become available by
475 * adding it to the wait_for_suppliers list. The consumer device will never be
476 * probed until it's removed from the wait_for_suppliers list.
478 * The caller is responsible for adding the links to the supplier devices once
479 * they are available and removing the @consumer device from the
480 * wait_for_suppliers list once links to all the suppliers have been created.
482 * This function is NOT meant to be called from the probe function of the
483 * consumer but rather from code that creates/adds the consumer device.
485 static void device_link_wait_for_supplier(struct device *consumer,
486 bool need_for_probe)
488 mutex_lock(&wfs_lock);
489 list_add_tail(&consumer->links.needs_suppliers, &wait_for_suppliers);
490 consumer->links.need_for_probe = need_for_probe;
491 mutex_unlock(&wfs_lock);
494 static void device_link_wait_for_mandatory_supplier(struct device *consumer)
496 device_link_wait_for_supplier(consumer, true);
499 static void device_link_wait_for_optional_supplier(struct device *consumer)
501 device_link_wait_for_supplier(consumer, false);
505 * device_link_add_missing_supplier_links - Add links from consumer devices to
506 * supplier devices, leaving any
507 * consumer with inactive suppliers on
508 * the wait_for_suppliers list
510 * Loops through all consumers waiting on suppliers and tries to add all their
511 * supplier links. If that succeeds, the consumer device is removed from
512 * wait_for_suppliers list. Otherwise, they are left in the wait_for_suppliers
513 * list. Devices left on the wait_for_suppliers list will not be probed.
515 * The fwnode add_links callback is expected to return 0 if it has found and
516 * added all the supplier links for the consumer device. It should return an
517 * error if it isn't able to do so.
519 * The caller of device_link_wait_for_supplier() is expected to call this once
520 * it's aware of potential suppliers becoming available.
522 static void device_link_add_missing_supplier_links(void)
524 struct device *dev, *tmp;
526 mutex_lock(&wfs_lock);
527 list_for_each_entry_safe(dev, tmp, &wait_for_suppliers,
528 links.needs_suppliers) {
529 int ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
530 if (!ret)
531 list_del_init(&dev->links.needs_suppliers);
532 else if (ret != -ENODEV)
533 dev->links.need_for_probe = false;
535 mutex_unlock(&wfs_lock);
538 static void device_link_free(struct device_link *link)
540 while (refcount_dec_not_one(&link->rpm_active))
541 pm_runtime_put(link->supplier);
543 put_device(link->consumer);
544 put_device(link->supplier);
545 kfree(link);
548 #ifdef CONFIG_SRCU
549 static void __device_link_free_srcu(struct rcu_head *rhead)
551 device_link_free(container_of(rhead, struct device_link, rcu_head));
554 static void __device_link_del(struct kref *kref)
556 struct device_link *link = container_of(kref, struct device_link, kref);
558 dev_dbg(link->consumer, "Dropping the link to %s\n",
559 dev_name(link->supplier));
561 if (link->flags & DL_FLAG_PM_RUNTIME)
562 pm_runtime_drop_link(link->consumer);
564 list_del_rcu(&link->s_node);
565 list_del_rcu(&link->c_node);
566 call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
568 #else /* !CONFIG_SRCU */
569 static void __device_link_del(struct kref *kref)
571 struct device_link *link = container_of(kref, struct device_link, kref);
573 dev_info(link->consumer, "Dropping the link to %s\n",
574 dev_name(link->supplier));
576 if (link->flags & DL_FLAG_PM_RUNTIME)
577 pm_runtime_drop_link(link->consumer);
579 list_del(&link->s_node);
580 list_del(&link->c_node);
581 device_link_free(link);
583 #endif /* !CONFIG_SRCU */
585 static void device_link_put_kref(struct device_link *link)
587 if (link->flags & DL_FLAG_STATELESS)
588 kref_put(&link->kref, __device_link_del);
589 else
590 WARN(1, "Unable to drop a managed device link reference\n");
594 * device_link_del - Delete a stateless link between two devices.
595 * @link: Device link to delete.
597 * The caller must ensure proper synchronization of this function with runtime
598 * PM. If the link was added multiple times, it needs to be deleted as often.
599 * Care is required for hotplugged devices: Their links are purged on removal
600 * and calling device_link_del() is then no longer allowed.
602 void device_link_del(struct device_link *link)
604 device_links_write_lock();
605 device_pm_lock();
606 device_link_put_kref(link);
607 device_pm_unlock();
608 device_links_write_unlock();
610 EXPORT_SYMBOL_GPL(device_link_del);
613 * device_link_remove - Delete a stateless link between two devices.
614 * @consumer: Consumer end of the link.
615 * @supplier: Supplier end of the link.
617 * The caller must ensure proper synchronization of this function with runtime
618 * PM.
620 void device_link_remove(void *consumer, struct device *supplier)
622 struct device_link *link;
624 if (WARN_ON(consumer == supplier))
625 return;
627 device_links_write_lock();
628 device_pm_lock();
630 list_for_each_entry(link, &supplier->links.consumers, s_node) {
631 if (link->consumer == consumer) {
632 device_link_put_kref(link);
633 break;
637 device_pm_unlock();
638 device_links_write_unlock();
640 EXPORT_SYMBOL_GPL(device_link_remove);
642 static void device_links_missing_supplier(struct device *dev)
644 struct device_link *link;
646 list_for_each_entry(link, &dev->links.suppliers, c_node) {
647 if (link->status != DL_STATE_CONSUMER_PROBE)
648 continue;
650 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
651 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
652 } else {
653 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
654 WRITE_ONCE(link->status, DL_STATE_DORMANT);
660 * device_links_check_suppliers - Check presence of supplier drivers.
661 * @dev: Consumer device.
663 * Check links from this device to any suppliers. Walk the list of the device's
664 * links to suppliers and see if all of them are available. If not, simply
665 * return -EPROBE_DEFER.
667 * We need to guarantee that the supplier will not go away after the check has
668 * been positive here. It only can go away in __device_release_driver() and
669 * that function checks the device's links to consumers. This means we need to
670 * mark the link as "consumer probe in progress" to make the supplier removal
671 * wait for us to complete (or bad things may happen).
673 * Links without the DL_FLAG_MANAGED flag set are ignored.
675 int device_links_check_suppliers(struct device *dev)
677 struct device_link *link;
678 int ret = 0;
681 * Device waiting for supplier to become available is not allowed to
682 * probe.
684 mutex_lock(&wfs_lock);
685 if (!list_empty(&dev->links.needs_suppliers) &&
686 dev->links.need_for_probe) {
687 mutex_unlock(&wfs_lock);
688 return -EPROBE_DEFER;
690 mutex_unlock(&wfs_lock);
692 device_links_write_lock();
694 list_for_each_entry(link, &dev->links.suppliers, c_node) {
695 if (!(link->flags & DL_FLAG_MANAGED))
696 continue;
698 if (link->status != DL_STATE_AVAILABLE &&
699 !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
700 device_links_missing_supplier(dev);
701 ret = -EPROBE_DEFER;
702 break;
704 WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
706 dev->links.status = DL_DEV_PROBING;
708 device_links_write_unlock();
709 return ret;
713 * __device_links_queue_sync_state - Queue a device for sync_state() callback
714 * @dev: Device to call sync_state() on
715 * @list: List head to queue the @dev on
717 * Queues a device for a sync_state() callback when the device links write lock
718 * isn't held. This allows the sync_state() execution flow to use device links
719 * APIs. The caller must ensure this function is called with
720 * device_links_write_lock() held.
722 * This function does a get_device() to make sure the device is not freed while
723 * on this list.
725 * So the caller must also ensure that device_links_flush_sync_list() is called
726 * as soon as the caller releases device_links_write_lock(). This is necessary
727 * to make sure the sync_state() is called in a timely fashion and the
728 * put_device() is called on this device.
730 static void __device_links_queue_sync_state(struct device *dev,
731 struct list_head *list)
733 struct device_link *link;
735 if (!dev_has_sync_state(dev))
736 return;
737 if (dev->state_synced)
738 return;
740 list_for_each_entry(link, &dev->links.consumers, s_node) {
741 if (!(link->flags & DL_FLAG_MANAGED))
742 continue;
743 if (link->status != DL_STATE_ACTIVE)
744 return;
748 * Set the flag here to avoid adding the same device to a list more
749 * than once. This can happen if new consumers get added to the device
750 * and probed before the list is flushed.
752 dev->state_synced = true;
754 if (WARN_ON(!list_empty(&dev->links.defer_sync)))
755 return;
757 get_device(dev);
758 list_add_tail(&dev->links.defer_sync, list);
762 * device_links_flush_sync_list - Call sync_state() on a list of devices
763 * @list: List of devices to call sync_state() on
764 * @dont_lock_dev: Device for which lock is already held by the caller
766 * Calls sync_state() on all the devices that have been queued for it. This
767 * function is used in conjunction with __device_links_queue_sync_state(). The
768 * @dont_lock_dev parameter is useful when this function is called from a
769 * context where a device lock is already held.
771 static void device_links_flush_sync_list(struct list_head *list,
772 struct device *dont_lock_dev)
774 struct device *dev, *tmp;
776 list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
777 list_del_init(&dev->links.defer_sync);
779 if (dev != dont_lock_dev)
780 device_lock(dev);
782 if (dev->bus->sync_state)
783 dev->bus->sync_state(dev);
784 else if (dev->driver && dev->driver->sync_state)
785 dev->driver->sync_state(dev);
787 if (dev != dont_lock_dev)
788 device_unlock(dev);
790 put_device(dev);
794 void device_links_supplier_sync_state_pause(void)
796 device_links_write_lock();
797 defer_sync_state_count++;
798 device_links_write_unlock();
801 void device_links_supplier_sync_state_resume(void)
803 struct device *dev, *tmp;
804 LIST_HEAD(sync_list);
806 device_links_write_lock();
807 if (!defer_sync_state_count) {
808 WARN(true, "Unmatched sync_state pause/resume!");
809 goto out;
811 defer_sync_state_count--;
812 if (defer_sync_state_count)
813 goto out;
815 list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
817 * Delete from deferred_sync list before queuing it to
818 * sync_list because defer_sync is used for both lists.
820 list_del_init(&dev->links.defer_sync);
821 __device_links_queue_sync_state(dev, &sync_list);
823 out:
824 device_links_write_unlock();
826 device_links_flush_sync_list(&sync_list, NULL);
829 static int sync_state_resume_initcall(void)
831 device_links_supplier_sync_state_resume();
832 return 0;
834 late_initcall(sync_state_resume_initcall);
836 static void __device_links_supplier_defer_sync(struct device *sup)
838 if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
839 list_add_tail(&sup->links.defer_sync, &deferred_sync);
842 static void device_link_drop_managed(struct device_link *link)
844 link->flags &= ~DL_FLAG_MANAGED;
845 WRITE_ONCE(link->status, DL_STATE_NONE);
846 kref_put(&link->kref, __device_link_del);
850 * device_links_driver_bound - Update device links after probing its driver.
851 * @dev: Device to update the links for.
853 * The probe has been successful, so update links from this device to any
854 * consumers by changing their status to "available".
856 * Also change the status of @dev's links to suppliers to "active".
858 * Links without the DL_FLAG_MANAGED flag set are ignored.
860 void device_links_driver_bound(struct device *dev)
862 struct device_link *link, *ln;
863 LIST_HEAD(sync_list);
866 * If a device probes successfully, it's expected to have created all
867 * the device links it needs to or make new device links as it needs
868 * them. So, it no longer needs to wait on any suppliers.
870 mutex_lock(&wfs_lock);
871 list_del_init(&dev->links.needs_suppliers);
872 mutex_unlock(&wfs_lock);
874 device_links_write_lock();
876 list_for_each_entry(link, &dev->links.consumers, s_node) {
877 if (!(link->flags & DL_FLAG_MANAGED))
878 continue;
881 * Links created during consumer probe may be in the "consumer
882 * probe" state to start with if the supplier is still probing
883 * when they are created and they may become "active" if the
884 * consumer probe returns first. Skip them here.
886 if (link->status == DL_STATE_CONSUMER_PROBE ||
887 link->status == DL_STATE_ACTIVE)
888 continue;
890 WARN_ON(link->status != DL_STATE_DORMANT);
891 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
893 if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
894 driver_deferred_probe_add(link->consumer);
897 if (defer_sync_state_count)
898 __device_links_supplier_defer_sync(dev);
899 else
900 __device_links_queue_sync_state(dev, &sync_list);
902 list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
903 struct device *supplier;
905 if (!(link->flags & DL_FLAG_MANAGED))
906 continue;
908 supplier = link->supplier;
909 if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
911 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
912 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
913 * save to drop the managed link completely.
915 device_link_drop_managed(link);
916 } else {
917 WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
918 WRITE_ONCE(link->status, DL_STATE_ACTIVE);
922 * This needs to be done even for the deleted
923 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
924 * device link that was preventing the supplier from getting a
925 * sync_state() call.
927 if (defer_sync_state_count)
928 __device_links_supplier_defer_sync(supplier);
929 else
930 __device_links_queue_sync_state(supplier, &sync_list);
933 dev->links.status = DL_DEV_DRIVER_BOUND;
935 device_links_write_unlock();
937 device_links_flush_sync_list(&sync_list, dev);
941 * __device_links_no_driver - Update links of a device without a driver.
942 * @dev: Device without a drvier.
944 * Delete all non-persistent links from this device to any suppliers.
946 * Persistent links stay around, but their status is changed to "available",
947 * unless they already are in the "supplier unbind in progress" state in which
948 * case they need not be updated.
950 * Links without the DL_FLAG_MANAGED flag set are ignored.
952 static void __device_links_no_driver(struct device *dev)
954 struct device_link *link, *ln;
956 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
957 if (!(link->flags & DL_FLAG_MANAGED))
958 continue;
960 if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
961 device_link_drop_managed(link);
962 continue;
965 if (link->status != DL_STATE_CONSUMER_PROBE &&
966 link->status != DL_STATE_ACTIVE)
967 continue;
969 if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
970 WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
971 } else {
972 WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
973 WRITE_ONCE(link->status, DL_STATE_DORMANT);
977 dev->links.status = DL_DEV_NO_DRIVER;
981 * device_links_no_driver - Update links after failing driver probe.
982 * @dev: Device whose driver has just failed to probe.
984 * Clean up leftover links to consumers for @dev and invoke
985 * %__device_links_no_driver() to update links to suppliers for it as
986 * appropriate.
988 * Links without the DL_FLAG_MANAGED flag set are ignored.
990 void device_links_no_driver(struct device *dev)
992 struct device_link *link;
994 device_links_write_lock();
996 list_for_each_entry(link, &dev->links.consumers, s_node) {
997 if (!(link->flags & DL_FLAG_MANAGED))
998 continue;
1001 * The probe has failed, so if the status of the link is
1002 * "consumer probe" or "active", it must have been added by
1003 * a probing consumer while this device was still probing.
1004 * Change its state to "dormant", as it represents a valid
1005 * relationship, but it is not functionally meaningful.
1007 if (link->status == DL_STATE_CONSUMER_PROBE ||
1008 link->status == DL_STATE_ACTIVE)
1009 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1012 __device_links_no_driver(dev);
1014 device_links_write_unlock();
1018 * device_links_driver_cleanup - Update links after driver removal.
1019 * @dev: Device whose driver has just gone away.
1021 * Update links to consumers for @dev by changing their status to "dormant" and
1022 * invoke %__device_links_no_driver() to update links to suppliers for it as
1023 * appropriate.
1025 * Links without the DL_FLAG_MANAGED flag set are ignored.
1027 void device_links_driver_cleanup(struct device *dev)
1029 struct device_link *link, *ln;
1031 device_links_write_lock();
1033 list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1034 if (!(link->flags & DL_FLAG_MANAGED))
1035 continue;
1037 WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1038 WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1041 * autoremove the links between this @dev and its consumer
1042 * devices that are not active, i.e. where the link state
1043 * has moved to DL_STATE_SUPPLIER_UNBIND.
1045 if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1046 link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1047 device_link_drop_managed(link);
1049 WRITE_ONCE(link->status, DL_STATE_DORMANT);
1052 list_del_init(&dev->links.defer_sync);
1053 __device_links_no_driver(dev);
1055 device_links_write_unlock();
1059 * device_links_busy - Check if there are any busy links to consumers.
1060 * @dev: Device to check.
1062 * Check each consumer of the device and return 'true' if its link's status
1063 * is one of "consumer probe" or "active" (meaning that the given consumer is
1064 * probing right now or its driver is present). Otherwise, change the link
1065 * state to "supplier unbind" to prevent the consumer from being probed
1066 * successfully going forward.
1068 * Return 'false' if there are no probing or active consumers.
1070 * Links without the DL_FLAG_MANAGED flag set are ignored.
1072 bool device_links_busy(struct device *dev)
1074 struct device_link *link;
1075 bool ret = false;
1077 device_links_write_lock();
1079 list_for_each_entry(link, &dev->links.consumers, s_node) {
1080 if (!(link->flags & DL_FLAG_MANAGED))
1081 continue;
1083 if (link->status == DL_STATE_CONSUMER_PROBE
1084 || link->status == DL_STATE_ACTIVE) {
1085 ret = true;
1086 break;
1088 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1091 dev->links.status = DL_DEV_UNBINDING;
1093 device_links_write_unlock();
1094 return ret;
1098 * device_links_unbind_consumers - Force unbind consumers of the given device.
1099 * @dev: Device to unbind the consumers of.
1101 * Walk the list of links to consumers for @dev and if any of them is in the
1102 * "consumer probe" state, wait for all device probes in progress to complete
1103 * and start over.
1105 * If that's not the case, change the status of the link to "supplier unbind"
1106 * and check if the link was in the "active" state. If so, force the consumer
1107 * driver to unbind and start over (the consumer will not re-probe as we have
1108 * changed the state of the link already).
1110 * Links without the DL_FLAG_MANAGED flag set are ignored.
1112 void device_links_unbind_consumers(struct device *dev)
1114 struct device_link *link;
1116 start:
1117 device_links_write_lock();
1119 list_for_each_entry(link, &dev->links.consumers, s_node) {
1120 enum device_link_state status;
1122 if (!(link->flags & DL_FLAG_MANAGED) ||
1123 link->flags & DL_FLAG_SYNC_STATE_ONLY)
1124 continue;
1126 status = link->status;
1127 if (status == DL_STATE_CONSUMER_PROBE) {
1128 device_links_write_unlock();
1130 wait_for_device_probe();
1131 goto start;
1133 WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1134 if (status == DL_STATE_ACTIVE) {
1135 struct device *consumer = link->consumer;
1137 get_device(consumer);
1139 device_links_write_unlock();
1141 device_release_driver_internal(consumer, NULL,
1142 consumer->parent);
1143 put_device(consumer);
1144 goto start;
1148 device_links_write_unlock();
1152 * device_links_purge - Delete existing links to other devices.
1153 * @dev: Target device.
1155 static void device_links_purge(struct device *dev)
1157 struct device_link *link, *ln;
1159 mutex_lock(&wfs_lock);
1160 list_del(&dev->links.needs_suppliers);
1161 mutex_unlock(&wfs_lock);
1164 * Delete all of the remaining links from this device to any other
1165 * devices (either consumers or suppliers).
1167 device_links_write_lock();
1169 list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1170 WARN_ON(link->status == DL_STATE_ACTIVE);
1171 __device_link_del(&link->kref);
1174 list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1175 WARN_ON(link->status != DL_STATE_DORMANT &&
1176 link->status != DL_STATE_NONE);
1177 __device_link_del(&link->kref);
1180 device_links_write_unlock();
1183 /* Device links support end. */
1185 int (*platform_notify)(struct device *dev) = NULL;
1186 int (*platform_notify_remove)(struct device *dev) = NULL;
1187 static struct kobject *dev_kobj;
1188 struct kobject *sysfs_dev_char_kobj;
1189 struct kobject *sysfs_dev_block_kobj;
1191 static DEFINE_MUTEX(device_hotplug_lock);
1193 void lock_device_hotplug(void)
1195 mutex_lock(&device_hotplug_lock);
1198 void unlock_device_hotplug(void)
1200 mutex_unlock(&device_hotplug_lock);
1203 int lock_device_hotplug_sysfs(void)
1205 if (mutex_trylock(&device_hotplug_lock))
1206 return 0;
1208 /* Avoid busy looping (5 ms of sleep should do). */
1209 msleep(5);
1210 return restart_syscall();
1213 #ifdef CONFIG_BLOCK
1214 static inline int device_is_not_partition(struct device *dev)
1216 return !(dev->type == &part_type);
1218 #else
1219 static inline int device_is_not_partition(struct device *dev)
1221 return 1;
1223 #endif
1225 static int
1226 device_platform_notify(struct device *dev, enum kobject_action action)
1228 int ret;
1230 ret = acpi_platform_notify(dev, action);
1231 if (ret)
1232 return ret;
1234 ret = software_node_notify(dev, action);
1235 if (ret)
1236 return ret;
1238 if (platform_notify && action == KOBJ_ADD)
1239 platform_notify(dev);
1240 else if (platform_notify_remove && action == KOBJ_REMOVE)
1241 platform_notify_remove(dev);
1242 return 0;
1246 * dev_driver_string - Return a device's driver name, if at all possible
1247 * @dev: struct device to get the name of
1249 * Will return the device's driver's name if it is bound to a device. If
1250 * the device is not bound to a driver, it will return the name of the bus
1251 * it is attached to. If it is not attached to a bus either, an empty
1252 * string will be returned.
1254 const char *dev_driver_string(const struct device *dev)
1256 struct device_driver *drv;
1258 /* dev->driver can change to NULL underneath us because of unbinding,
1259 * so be careful about accessing it. dev->bus and dev->class should
1260 * never change once they are set, so they don't need special care.
1262 drv = READ_ONCE(dev->driver);
1263 return drv ? drv->name :
1264 (dev->bus ? dev->bus->name :
1265 (dev->class ? dev->class->name : ""));
1267 EXPORT_SYMBOL(dev_driver_string);
1269 #define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
1271 static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
1272 char *buf)
1274 struct device_attribute *dev_attr = to_dev_attr(attr);
1275 struct device *dev = kobj_to_dev(kobj);
1276 ssize_t ret = -EIO;
1278 if (dev_attr->show)
1279 ret = dev_attr->show(dev, dev_attr, buf);
1280 if (ret >= (ssize_t)PAGE_SIZE) {
1281 printk("dev_attr_show: %pS returned bad count\n",
1282 dev_attr->show);
1284 return ret;
1287 static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
1288 const char *buf, size_t count)
1290 struct device_attribute *dev_attr = to_dev_attr(attr);
1291 struct device *dev = kobj_to_dev(kobj);
1292 ssize_t ret = -EIO;
1294 if (dev_attr->store)
1295 ret = dev_attr->store(dev, dev_attr, buf, count);
1296 return ret;
1299 static const struct sysfs_ops dev_sysfs_ops = {
1300 .show = dev_attr_show,
1301 .store = dev_attr_store,
1304 #define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
1306 ssize_t device_store_ulong(struct device *dev,
1307 struct device_attribute *attr,
1308 const char *buf, size_t size)
1310 struct dev_ext_attribute *ea = to_ext_attr(attr);
1311 int ret;
1312 unsigned long new;
1314 ret = kstrtoul(buf, 0, &new);
1315 if (ret)
1316 return ret;
1317 *(unsigned long *)(ea->var) = new;
1318 /* Always return full write size even if we didn't consume all */
1319 return size;
1321 EXPORT_SYMBOL_GPL(device_store_ulong);
1323 ssize_t device_show_ulong(struct device *dev,
1324 struct device_attribute *attr,
1325 char *buf)
1327 struct dev_ext_attribute *ea = to_ext_attr(attr);
1328 return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
1330 EXPORT_SYMBOL_GPL(device_show_ulong);
1332 ssize_t device_store_int(struct device *dev,
1333 struct device_attribute *attr,
1334 const char *buf, size_t size)
1336 struct dev_ext_attribute *ea = to_ext_attr(attr);
1337 int ret;
1338 long new;
1340 ret = kstrtol(buf, 0, &new);
1341 if (ret)
1342 return ret;
1344 if (new > INT_MAX || new < INT_MIN)
1345 return -EINVAL;
1346 *(int *)(ea->var) = new;
1347 /* Always return full write size even if we didn't consume all */
1348 return size;
1350 EXPORT_SYMBOL_GPL(device_store_int);
1352 ssize_t device_show_int(struct device *dev,
1353 struct device_attribute *attr,
1354 char *buf)
1356 struct dev_ext_attribute *ea = to_ext_attr(attr);
1358 return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
1360 EXPORT_SYMBOL_GPL(device_show_int);
1362 ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
1363 const char *buf, size_t size)
1365 struct dev_ext_attribute *ea = to_ext_attr(attr);
1367 if (strtobool(buf, ea->var) < 0)
1368 return -EINVAL;
1370 return size;
1372 EXPORT_SYMBOL_GPL(device_store_bool);
1374 ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
1375 char *buf)
1377 struct dev_ext_attribute *ea = to_ext_attr(attr);
1379 return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
1381 EXPORT_SYMBOL_GPL(device_show_bool);
1384 * device_release - free device structure.
1385 * @kobj: device's kobject.
1387 * This is called once the reference count for the object
1388 * reaches 0. We forward the call to the device's release
1389 * method, which should handle actually freeing the structure.
1391 static void device_release(struct kobject *kobj)
1393 struct device *dev = kobj_to_dev(kobj);
1394 struct device_private *p = dev->p;
1397 * Some platform devices are driven without driver attached
1398 * and managed resources may have been acquired. Make sure
1399 * all resources are released.
1401 * Drivers still can add resources into device after device
1402 * is deleted but alive, so release devres here to avoid
1403 * possible memory leak.
1405 devres_release_all(dev);
1407 if (dev->release)
1408 dev->release(dev);
1409 else if (dev->type && dev->type->release)
1410 dev->type->release(dev);
1411 else if (dev->class && dev->class->dev_release)
1412 dev->class->dev_release(dev);
1413 else
1414 WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/kobject.txt.\n",
1415 dev_name(dev));
1416 kfree(p);
1419 static const void *device_namespace(struct kobject *kobj)
1421 struct device *dev = kobj_to_dev(kobj);
1422 const void *ns = NULL;
1424 if (dev->class && dev->class->ns_type)
1425 ns = dev->class->namespace(dev);
1427 return ns;
1430 static void device_get_ownership(struct kobject *kobj, kuid_t *uid, kgid_t *gid)
1432 struct device *dev = kobj_to_dev(kobj);
1434 if (dev->class && dev->class->get_ownership)
1435 dev->class->get_ownership(dev, uid, gid);
1438 static struct kobj_type device_ktype = {
1439 .release = device_release,
1440 .sysfs_ops = &dev_sysfs_ops,
1441 .namespace = device_namespace,
1442 .get_ownership = device_get_ownership,
1446 static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
1448 struct kobj_type *ktype = get_ktype(kobj);
1450 if (ktype == &device_ktype) {
1451 struct device *dev = kobj_to_dev(kobj);
1452 if (dev->bus)
1453 return 1;
1454 if (dev->class)
1455 return 1;
1457 return 0;
1460 static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
1462 struct device *dev = kobj_to_dev(kobj);
1464 if (dev->bus)
1465 return dev->bus->name;
1466 if (dev->class)
1467 return dev->class->name;
1468 return NULL;
1471 static int dev_uevent(struct kset *kset, struct kobject *kobj,
1472 struct kobj_uevent_env *env)
1474 struct device *dev = kobj_to_dev(kobj);
1475 int retval = 0;
1477 /* add device node properties if present */
1478 if (MAJOR(dev->devt)) {
1479 const char *tmp;
1480 const char *name;
1481 umode_t mode = 0;
1482 kuid_t uid = GLOBAL_ROOT_UID;
1483 kgid_t gid = GLOBAL_ROOT_GID;
1485 add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
1486 add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
1487 name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
1488 if (name) {
1489 add_uevent_var(env, "DEVNAME=%s", name);
1490 if (mode)
1491 add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
1492 if (!uid_eq(uid, GLOBAL_ROOT_UID))
1493 add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
1494 if (!gid_eq(gid, GLOBAL_ROOT_GID))
1495 add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
1496 kfree(tmp);
1500 if (dev->type && dev->type->name)
1501 add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
1503 if (dev->driver)
1504 add_uevent_var(env, "DRIVER=%s", dev->driver->name);
1506 /* Add common DT information about the device */
1507 of_device_uevent(dev, env);
1509 /* have the bus specific function add its stuff */
1510 if (dev->bus && dev->bus->uevent) {
1511 retval = dev->bus->uevent(dev, env);
1512 if (retval)
1513 pr_debug("device: '%s': %s: bus uevent() returned %d\n",
1514 dev_name(dev), __func__, retval);
1517 /* have the class specific function add its stuff */
1518 if (dev->class && dev->class->dev_uevent) {
1519 retval = dev->class->dev_uevent(dev, env);
1520 if (retval)
1521 pr_debug("device: '%s': %s: class uevent() "
1522 "returned %d\n", dev_name(dev),
1523 __func__, retval);
1526 /* have the device type specific function add its stuff */
1527 if (dev->type && dev->type->uevent) {
1528 retval = dev->type->uevent(dev, env);
1529 if (retval)
1530 pr_debug("device: '%s': %s: dev_type uevent() "
1531 "returned %d\n", dev_name(dev),
1532 __func__, retval);
1535 return retval;
1538 static const struct kset_uevent_ops device_uevent_ops = {
1539 .filter = dev_uevent_filter,
1540 .name = dev_uevent_name,
1541 .uevent = dev_uevent,
1544 static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
1545 char *buf)
1547 struct kobject *top_kobj;
1548 struct kset *kset;
1549 struct kobj_uevent_env *env = NULL;
1550 int i;
1551 size_t count = 0;
1552 int retval;
1554 /* search the kset, the device belongs to */
1555 top_kobj = &dev->kobj;
1556 while (!top_kobj->kset && top_kobj->parent)
1557 top_kobj = top_kobj->parent;
1558 if (!top_kobj->kset)
1559 goto out;
1561 kset = top_kobj->kset;
1562 if (!kset->uevent_ops || !kset->uevent_ops->uevent)
1563 goto out;
1565 /* respect filter */
1566 if (kset->uevent_ops && kset->uevent_ops->filter)
1567 if (!kset->uevent_ops->filter(kset, &dev->kobj))
1568 goto out;
1570 env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
1571 if (!env)
1572 return -ENOMEM;
1574 /* let the kset specific function add its keys */
1575 retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
1576 if (retval)
1577 goto out;
1579 /* copy keys to file */
1580 for (i = 0; i < env->envp_idx; i++)
1581 count += sprintf(&buf[count], "%s\n", env->envp[i]);
1582 out:
1583 kfree(env);
1584 return count;
1587 static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
1588 const char *buf, size_t count)
1590 int rc;
1592 rc = kobject_synth_uevent(&dev->kobj, buf, count);
1594 if (rc) {
1595 dev_err(dev, "uevent: failed to send synthetic uevent\n");
1596 return rc;
1599 return count;
1601 static DEVICE_ATTR_RW(uevent);
1603 static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1604 char *buf)
1606 bool val;
1608 device_lock(dev);
1609 val = !dev->offline;
1610 device_unlock(dev);
1611 return sprintf(buf, "%u\n", val);
1614 static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1615 const char *buf, size_t count)
1617 bool val;
1618 int ret;
1620 ret = strtobool(buf, &val);
1621 if (ret < 0)
1622 return ret;
1624 ret = lock_device_hotplug_sysfs();
1625 if (ret)
1626 return ret;
1628 ret = val ? device_online(dev) : device_offline(dev);
1629 unlock_device_hotplug();
1630 return ret < 0 ? ret : count;
1632 static DEVICE_ATTR_RW(online);
1634 int device_add_groups(struct device *dev, const struct attribute_group **groups)
1636 return sysfs_create_groups(&dev->kobj, groups);
1638 EXPORT_SYMBOL_GPL(device_add_groups);
1640 void device_remove_groups(struct device *dev,
1641 const struct attribute_group **groups)
1643 sysfs_remove_groups(&dev->kobj, groups);
1645 EXPORT_SYMBOL_GPL(device_remove_groups);
1647 union device_attr_group_devres {
1648 const struct attribute_group *group;
1649 const struct attribute_group **groups;
1652 static int devm_attr_group_match(struct device *dev, void *res, void *data)
1654 return ((union device_attr_group_devres *)res)->group == data;
1657 static void devm_attr_group_remove(struct device *dev, void *res)
1659 union device_attr_group_devres *devres = res;
1660 const struct attribute_group *group = devres->group;
1662 dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1663 sysfs_remove_group(&dev->kobj, group);
1666 static void devm_attr_groups_remove(struct device *dev, void *res)
1668 union device_attr_group_devres *devres = res;
1669 const struct attribute_group **groups = devres->groups;
1671 dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1672 sysfs_remove_groups(&dev->kobj, groups);
1676 * devm_device_add_group - given a device, create a managed attribute group
1677 * @dev: The device to create the group for
1678 * @grp: The attribute group to create
1680 * This function creates a group for the first time. It will explicitly
1681 * warn and error if any of the attribute files being created already exist.
1683 * Returns 0 on success or error code on failure.
1685 int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1687 union device_attr_group_devres *devres;
1688 int error;
1690 devres = devres_alloc(devm_attr_group_remove,
1691 sizeof(*devres), GFP_KERNEL);
1692 if (!devres)
1693 return -ENOMEM;
1695 error = sysfs_create_group(&dev->kobj, grp);
1696 if (error) {
1697 devres_free(devres);
1698 return error;
1701 devres->group = grp;
1702 devres_add(dev, devres);
1703 return 0;
1705 EXPORT_SYMBOL_GPL(devm_device_add_group);
1708 * devm_device_remove_group: remove a managed group from a device
1709 * @dev: device to remove the group from
1710 * @grp: group to remove
1712 * This function removes a group of attributes from a device. The attributes
1713 * previously have to have been created for this group, otherwise it will fail.
1715 void devm_device_remove_group(struct device *dev,
1716 const struct attribute_group *grp)
1718 WARN_ON(devres_release(dev, devm_attr_group_remove,
1719 devm_attr_group_match,
1720 /* cast away const */ (void *)grp));
1722 EXPORT_SYMBOL_GPL(devm_device_remove_group);
1725 * devm_device_add_groups - create a bunch of managed attribute groups
1726 * @dev: The device to create the group for
1727 * @groups: The attribute groups to create, NULL terminated
1729 * This function creates a bunch of managed attribute groups. If an error
1730 * occurs when creating a group, all previously created groups will be
1731 * removed, unwinding everything back to the original state when this
1732 * function was called. It will explicitly warn and error if any of the
1733 * attribute files being created already exist.
1735 * Returns 0 on success or error code from sysfs_create_group on failure.
1737 int devm_device_add_groups(struct device *dev,
1738 const struct attribute_group **groups)
1740 union device_attr_group_devres *devres;
1741 int error;
1743 devres = devres_alloc(devm_attr_groups_remove,
1744 sizeof(*devres), GFP_KERNEL);
1745 if (!devres)
1746 return -ENOMEM;
1748 error = sysfs_create_groups(&dev->kobj, groups);
1749 if (error) {
1750 devres_free(devres);
1751 return error;
1754 devres->groups = groups;
1755 devres_add(dev, devres);
1756 return 0;
1758 EXPORT_SYMBOL_GPL(devm_device_add_groups);
1761 * devm_device_remove_groups - remove a list of managed groups
1763 * @dev: The device for the groups to be removed from
1764 * @groups: NULL terminated list of groups to be removed
1766 * If groups is not NULL, remove the specified groups from the device.
1768 void devm_device_remove_groups(struct device *dev,
1769 const struct attribute_group **groups)
1771 WARN_ON(devres_release(dev, devm_attr_groups_remove,
1772 devm_attr_group_match,
1773 /* cast away const */ (void *)groups));
1775 EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1777 static int device_add_attrs(struct device *dev)
1779 struct class *class = dev->class;
1780 const struct device_type *type = dev->type;
1781 int error;
1783 if (class) {
1784 error = device_add_groups(dev, class->dev_groups);
1785 if (error)
1786 return error;
1789 if (type) {
1790 error = device_add_groups(dev, type->groups);
1791 if (error)
1792 goto err_remove_class_groups;
1795 error = device_add_groups(dev, dev->groups);
1796 if (error)
1797 goto err_remove_type_groups;
1799 if (device_supports_offline(dev) && !dev->offline_disabled) {
1800 error = device_create_file(dev, &dev_attr_online);
1801 if (error)
1802 goto err_remove_dev_groups;
1805 return 0;
1807 err_remove_dev_groups:
1808 device_remove_groups(dev, dev->groups);
1809 err_remove_type_groups:
1810 if (type)
1811 device_remove_groups(dev, type->groups);
1812 err_remove_class_groups:
1813 if (class)
1814 device_remove_groups(dev, class->dev_groups);
1816 return error;
1819 static void device_remove_attrs(struct device *dev)
1821 struct class *class = dev->class;
1822 const struct device_type *type = dev->type;
1824 device_remove_file(dev, &dev_attr_online);
1825 device_remove_groups(dev, dev->groups);
1827 if (type)
1828 device_remove_groups(dev, type->groups);
1830 if (class)
1831 device_remove_groups(dev, class->dev_groups);
1834 static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1835 char *buf)
1837 return print_dev_t(buf, dev->devt);
1839 static DEVICE_ATTR_RO(dev);
1841 /* /sys/devices/ */
1842 struct kset *devices_kset;
1845 * devices_kset_move_before - Move device in the devices_kset's list.
1846 * @deva: Device to move.
1847 * @devb: Device @deva should come before.
1849 static void devices_kset_move_before(struct device *deva, struct device *devb)
1851 if (!devices_kset)
1852 return;
1853 pr_debug("devices_kset: Moving %s before %s\n",
1854 dev_name(deva), dev_name(devb));
1855 spin_lock(&devices_kset->list_lock);
1856 list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1857 spin_unlock(&devices_kset->list_lock);
1861 * devices_kset_move_after - Move device in the devices_kset's list.
1862 * @deva: Device to move
1863 * @devb: Device @deva should come after.
1865 static void devices_kset_move_after(struct device *deva, struct device *devb)
1867 if (!devices_kset)
1868 return;
1869 pr_debug("devices_kset: Moving %s after %s\n",
1870 dev_name(deva), dev_name(devb));
1871 spin_lock(&devices_kset->list_lock);
1872 list_move(&deva->kobj.entry, &devb->kobj.entry);
1873 spin_unlock(&devices_kset->list_lock);
1877 * devices_kset_move_last - move the device to the end of devices_kset's list.
1878 * @dev: device to move
1880 void devices_kset_move_last(struct device *dev)
1882 if (!devices_kset)
1883 return;
1884 pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1885 spin_lock(&devices_kset->list_lock);
1886 list_move_tail(&dev->kobj.entry, &devices_kset->list);
1887 spin_unlock(&devices_kset->list_lock);
1891 * device_create_file - create sysfs attribute file for device.
1892 * @dev: device.
1893 * @attr: device attribute descriptor.
1895 int device_create_file(struct device *dev,
1896 const struct device_attribute *attr)
1898 int error = 0;
1900 if (dev) {
1901 WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1902 "Attribute %s: write permission without 'store'\n",
1903 attr->attr.name);
1904 WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1905 "Attribute %s: read permission without 'show'\n",
1906 attr->attr.name);
1907 error = sysfs_create_file(&dev->kobj, &attr->attr);
1910 return error;
1912 EXPORT_SYMBOL_GPL(device_create_file);
1915 * device_remove_file - remove sysfs attribute file.
1916 * @dev: device.
1917 * @attr: device attribute descriptor.
1919 void device_remove_file(struct device *dev,
1920 const struct device_attribute *attr)
1922 if (dev)
1923 sysfs_remove_file(&dev->kobj, &attr->attr);
1925 EXPORT_SYMBOL_GPL(device_remove_file);
1928 * device_remove_file_self - remove sysfs attribute file from its own method.
1929 * @dev: device.
1930 * @attr: device attribute descriptor.
1932 * See kernfs_remove_self() for details.
1934 bool device_remove_file_self(struct device *dev,
1935 const struct device_attribute *attr)
1937 if (dev)
1938 return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1939 else
1940 return false;
1942 EXPORT_SYMBOL_GPL(device_remove_file_self);
1945 * device_create_bin_file - create sysfs binary attribute file for device.
1946 * @dev: device.
1947 * @attr: device binary attribute descriptor.
1949 int device_create_bin_file(struct device *dev,
1950 const struct bin_attribute *attr)
1952 int error = -EINVAL;
1953 if (dev)
1954 error = sysfs_create_bin_file(&dev->kobj, attr);
1955 return error;
1957 EXPORT_SYMBOL_GPL(device_create_bin_file);
1960 * device_remove_bin_file - remove sysfs binary attribute file
1961 * @dev: device.
1962 * @attr: device binary attribute descriptor.
1964 void device_remove_bin_file(struct device *dev,
1965 const struct bin_attribute *attr)
1967 if (dev)
1968 sysfs_remove_bin_file(&dev->kobj, attr);
1970 EXPORT_SYMBOL_GPL(device_remove_bin_file);
1972 static void klist_children_get(struct klist_node *n)
1974 struct device_private *p = to_device_private_parent(n);
1975 struct device *dev = p->device;
1977 get_device(dev);
1980 static void klist_children_put(struct klist_node *n)
1982 struct device_private *p = to_device_private_parent(n);
1983 struct device *dev = p->device;
1985 put_device(dev);
1989 * device_initialize - init device structure.
1990 * @dev: device.
1992 * This prepares the device for use by other layers by initializing
1993 * its fields.
1994 * It is the first half of device_register(), if called by
1995 * that function, though it can also be called separately, so one
1996 * may use @dev's fields. In particular, get_device()/put_device()
1997 * may be used for reference counting of @dev after calling this
1998 * function.
2000 * All fields in @dev must be initialized by the caller to 0, except
2001 * for those explicitly set to some other value. The simplest
2002 * approach is to use kzalloc() to allocate the structure containing
2003 * @dev.
2005 * NOTE: Use put_device() to give up your reference instead of freeing
2006 * @dev directly once you have called this function.
2008 void device_initialize(struct device *dev)
2010 dev->kobj.kset = devices_kset;
2011 kobject_init(&dev->kobj, &device_ktype);
2012 INIT_LIST_HEAD(&dev->dma_pools);
2013 mutex_init(&dev->mutex);
2014 #ifdef CONFIG_PROVE_LOCKING
2015 mutex_init(&dev->lockdep_mutex);
2016 #endif
2017 lockdep_set_novalidate_class(&dev->mutex);
2018 spin_lock_init(&dev->devres_lock);
2019 INIT_LIST_HEAD(&dev->devres_head);
2020 device_pm_init(dev);
2021 set_dev_node(dev, -1);
2022 #ifdef CONFIG_GENERIC_MSI_IRQ
2023 INIT_LIST_HEAD(&dev->msi_list);
2024 #endif
2025 INIT_LIST_HEAD(&dev->links.consumers);
2026 INIT_LIST_HEAD(&dev->links.suppliers);
2027 INIT_LIST_HEAD(&dev->links.needs_suppliers);
2028 INIT_LIST_HEAD(&dev->links.defer_sync);
2029 dev->links.status = DL_DEV_NO_DRIVER;
2031 EXPORT_SYMBOL_GPL(device_initialize);
2033 struct kobject *virtual_device_parent(struct device *dev)
2035 static struct kobject *virtual_dir = NULL;
2037 if (!virtual_dir)
2038 virtual_dir = kobject_create_and_add("virtual",
2039 &devices_kset->kobj);
2041 return virtual_dir;
2044 struct class_dir {
2045 struct kobject kobj;
2046 struct class *class;
2049 #define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2051 static void class_dir_release(struct kobject *kobj)
2053 struct class_dir *dir = to_class_dir(kobj);
2054 kfree(dir);
2057 static const
2058 struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
2060 struct class_dir *dir = to_class_dir(kobj);
2061 return dir->class->ns_type;
2064 static struct kobj_type class_dir_ktype = {
2065 .release = class_dir_release,
2066 .sysfs_ops = &kobj_sysfs_ops,
2067 .child_ns_type = class_dir_child_ns_type
2070 static struct kobject *
2071 class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
2073 struct class_dir *dir;
2074 int retval;
2076 dir = kzalloc(sizeof(*dir), GFP_KERNEL);
2077 if (!dir)
2078 return ERR_PTR(-ENOMEM);
2080 dir->class = class;
2081 kobject_init(&dir->kobj, &class_dir_ktype);
2083 dir->kobj.kset = &class->p->glue_dirs;
2085 retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
2086 if (retval < 0) {
2087 kobject_put(&dir->kobj);
2088 return ERR_PTR(retval);
2090 return &dir->kobj;
2093 static DEFINE_MUTEX(gdp_mutex);
2095 static struct kobject *get_device_parent(struct device *dev,
2096 struct device *parent)
2098 if (dev->class) {
2099 struct kobject *kobj = NULL;
2100 struct kobject *parent_kobj;
2101 struct kobject *k;
2103 #ifdef CONFIG_BLOCK
2104 /* block disks show up in /sys/block */
2105 if (sysfs_deprecated && dev->class == &block_class) {
2106 if (parent && parent->class == &block_class)
2107 return &parent->kobj;
2108 return &block_class.p->subsys.kobj;
2110 #endif
2113 * If we have no parent, we live in "virtual".
2114 * Class-devices with a non class-device as parent, live
2115 * in a "glue" directory to prevent namespace collisions.
2117 if (parent == NULL)
2118 parent_kobj = virtual_device_parent(dev);
2119 else if (parent->class && !dev->class->ns_type)
2120 return &parent->kobj;
2121 else
2122 parent_kobj = &parent->kobj;
2124 mutex_lock(&gdp_mutex);
2126 /* find our class-directory at the parent and reference it */
2127 spin_lock(&dev->class->p->glue_dirs.list_lock);
2128 list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
2129 if (k->parent == parent_kobj) {
2130 kobj = kobject_get(k);
2131 break;
2133 spin_unlock(&dev->class->p->glue_dirs.list_lock);
2134 if (kobj) {
2135 mutex_unlock(&gdp_mutex);
2136 return kobj;
2139 /* or create a new class-directory at the parent device */
2140 k = class_dir_create_and_add(dev->class, parent_kobj);
2141 /* do not emit an uevent for this simple "glue" directory */
2142 mutex_unlock(&gdp_mutex);
2143 return k;
2146 /* subsystems can specify a default root directory for their devices */
2147 if (!parent && dev->bus && dev->bus->dev_root)
2148 return &dev->bus->dev_root->kobj;
2150 if (parent)
2151 return &parent->kobj;
2152 return NULL;
2155 static inline bool live_in_glue_dir(struct kobject *kobj,
2156 struct device *dev)
2158 if (!kobj || !dev->class ||
2159 kobj->kset != &dev->class->p->glue_dirs)
2160 return false;
2161 return true;
2164 static inline struct kobject *get_glue_dir(struct device *dev)
2166 return dev->kobj.parent;
2170 * make sure cleaning up dir as the last step, we need to make
2171 * sure .release handler of kobject is run with holding the
2172 * global lock
2174 static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
2176 unsigned int ref;
2178 /* see if we live in a "glue" directory */
2179 if (!live_in_glue_dir(glue_dir, dev))
2180 return;
2182 mutex_lock(&gdp_mutex);
2184 * There is a race condition between removing glue directory
2185 * and adding a new device under the glue directory.
2187 * CPU1: CPU2:
2189 * device_add()
2190 * get_device_parent()
2191 * class_dir_create_and_add()
2192 * kobject_add_internal()
2193 * create_dir() // create glue_dir
2195 * device_add()
2196 * get_device_parent()
2197 * kobject_get() // get glue_dir
2199 * device_del()
2200 * cleanup_glue_dir()
2201 * kobject_del(glue_dir)
2203 * kobject_add()
2204 * kobject_add_internal()
2205 * create_dir() // in glue_dir
2206 * sysfs_create_dir_ns()
2207 * kernfs_create_dir_ns(sd)
2209 * sysfs_remove_dir() // glue_dir->sd=NULL
2210 * sysfs_put() // free glue_dir->sd
2212 * // sd is freed
2213 * kernfs_new_node(sd)
2214 * kernfs_get(glue_dir)
2215 * kernfs_add_one()
2216 * kernfs_put()
2218 * Before CPU1 remove last child device under glue dir, if CPU2 add
2219 * a new device under glue dir, the glue_dir kobject reference count
2220 * will be increase to 2 in kobject_get(k). And CPU2 has been called
2221 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
2222 * and sysfs_put(). This result in glue_dir->sd is freed.
2224 * Then the CPU2 will see a stale "empty" but still potentially used
2225 * glue dir around in kernfs_new_node().
2227 * In order to avoid this happening, we also should make sure that
2228 * kernfs_node for glue_dir is released in CPU1 only when refcount
2229 * for glue_dir kobj is 1.
2231 ref = kref_read(&glue_dir->kref);
2232 if (!kobject_has_children(glue_dir) && !--ref)
2233 kobject_del(glue_dir);
2234 kobject_put(glue_dir);
2235 mutex_unlock(&gdp_mutex);
2238 static int device_add_class_symlinks(struct device *dev)
2240 struct device_node *of_node = dev_of_node(dev);
2241 int error;
2243 if (of_node) {
2244 error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
2245 if (error)
2246 dev_warn(dev, "Error %d creating of_node link\n",error);
2247 /* An error here doesn't warrant bringing down the device */
2250 if (!dev->class)
2251 return 0;
2253 error = sysfs_create_link(&dev->kobj,
2254 &dev->class->p->subsys.kobj,
2255 "subsystem");
2256 if (error)
2257 goto out_devnode;
2259 if (dev->parent && device_is_not_partition(dev)) {
2260 error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
2261 "device");
2262 if (error)
2263 goto out_subsys;
2266 #ifdef CONFIG_BLOCK
2267 /* /sys/block has directories and does not need symlinks */
2268 if (sysfs_deprecated && dev->class == &block_class)
2269 return 0;
2270 #endif
2272 /* link in the class directory pointing to the device */
2273 error = sysfs_create_link(&dev->class->p->subsys.kobj,
2274 &dev->kobj, dev_name(dev));
2275 if (error)
2276 goto out_device;
2278 return 0;
2280 out_device:
2281 sysfs_remove_link(&dev->kobj, "device");
2283 out_subsys:
2284 sysfs_remove_link(&dev->kobj, "subsystem");
2285 out_devnode:
2286 sysfs_remove_link(&dev->kobj, "of_node");
2287 return error;
2290 static void device_remove_class_symlinks(struct device *dev)
2292 if (dev_of_node(dev))
2293 sysfs_remove_link(&dev->kobj, "of_node");
2295 if (!dev->class)
2296 return;
2298 if (dev->parent && device_is_not_partition(dev))
2299 sysfs_remove_link(&dev->kobj, "device");
2300 sysfs_remove_link(&dev->kobj, "subsystem");
2301 #ifdef CONFIG_BLOCK
2302 if (sysfs_deprecated && dev->class == &block_class)
2303 return;
2304 #endif
2305 sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
2309 * dev_set_name - set a device name
2310 * @dev: device
2311 * @fmt: format string for the device's name
2313 int dev_set_name(struct device *dev, const char *fmt, ...)
2315 va_list vargs;
2316 int err;
2318 va_start(vargs, fmt);
2319 err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
2320 va_end(vargs);
2321 return err;
2323 EXPORT_SYMBOL_GPL(dev_set_name);
2326 * device_to_dev_kobj - select a /sys/dev/ directory for the device
2327 * @dev: device
2329 * By default we select char/ for new entries. Setting class->dev_obj
2330 * to NULL prevents an entry from being created. class->dev_kobj must
2331 * be set (or cleared) before any devices are registered to the class
2332 * otherwise device_create_sys_dev_entry() and
2333 * device_remove_sys_dev_entry() will disagree about the presence of
2334 * the link.
2336 static struct kobject *device_to_dev_kobj(struct device *dev)
2338 struct kobject *kobj;
2340 if (dev->class)
2341 kobj = dev->class->dev_kobj;
2342 else
2343 kobj = sysfs_dev_char_kobj;
2345 return kobj;
2348 static int device_create_sys_dev_entry(struct device *dev)
2350 struct kobject *kobj = device_to_dev_kobj(dev);
2351 int error = 0;
2352 char devt_str[15];
2354 if (kobj) {
2355 format_dev_t(devt_str, dev->devt);
2356 error = sysfs_create_link(kobj, &dev->kobj, devt_str);
2359 return error;
2362 static void device_remove_sys_dev_entry(struct device *dev)
2364 struct kobject *kobj = device_to_dev_kobj(dev);
2365 char devt_str[15];
2367 if (kobj) {
2368 format_dev_t(devt_str, dev->devt);
2369 sysfs_remove_link(kobj, devt_str);
2373 static int device_private_init(struct device *dev)
2375 dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
2376 if (!dev->p)
2377 return -ENOMEM;
2378 dev->p->device = dev;
2379 klist_init(&dev->p->klist_children, klist_children_get,
2380 klist_children_put);
2381 INIT_LIST_HEAD(&dev->p->deferred_probe);
2382 return 0;
2385 static u32 fw_devlink_flags;
2386 static int __init fw_devlink_setup(char *arg)
2388 if (!arg)
2389 return -EINVAL;
2391 if (strcmp(arg, "off") == 0) {
2392 fw_devlink_flags = 0;
2393 } else if (strcmp(arg, "permissive") == 0) {
2394 fw_devlink_flags = DL_FLAG_SYNC_STATE_ONLY;
2395 } else if (strcmp(arg, "on") == 0) {
2396 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER;
2397 } else if (strcmp(arg, "rpm") == 0) {
2398 fw_devlink_flags = DL_FLAG_AUTOPROBE_CONSUMER |
2399 DL_FLAG_PM_RUNTIME;
2401 return 0;
2403 early_param("fw_devlink", fw_devlink_setup);
2405 u32 fw_devlink_get_flags(void)
2407 return fw_devlink_flags;
2410 static bool fw_devlink_is_permissive(void)
2412 return fw_devlink_flags == DL_FLAG_SYNC_STATE_ONLY;
2416 * device_add - add device to device hierarchy.
2417 * @dev: device.
2419 * This is part 2 of device_register(), though may be called
2420 * separately _iff_ device_initialize() has been called separately.
2422 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
2423 * to the global and sibling lists for the device, then
2424 * adds it to the other relevant subsystems of the driver model.
2426 * Do not call this routine or device_register() more than once for
2427 * any device structure. The driver model core is not designed to work
2428 * with devices that get unregistered and then spring back to life.
2429 * (Among other things, it's very hard to guarantee that all references
2430 * to the previous incarnation of @dev have been dropped.) Allocate
2431 * and register a fresh new struct device instead.
2433 * NOTE: _Never_ directly free @dev after calling this function, even
2434 * if it returned an error! Always use put_device() to give up your
2435 * reference instead.
2437 * Rule of thumb is: if device_add() succeeds, you should call
2438 * device_del() when you want to get rid of it. If device_add() has
2439 * *not* succeeded, use *only* put_device() to drop the reference
2440 * count.
2442 int device_add(struct device *dev)
2444 struct device *parent;
2445 struct kobject *kobj;
2446 struct class_interface *class_intf;
2447 int error = -EINVAL, fw_ret;
2448 struct kobject *glue_dir = NULL;
2449 bool is_fwnode_dev = false;
2451 dev = get_device(dev);
2452 if (!dev)
2453 goto done;
2455 if (!dev->p) {
2456 error = device_private_init(dev);
2457 if (error)
2458 goto done;
2462 * for statically allocated devices, which should all be converted
2463 * some day, we need to initialize the name. We prevent reading back
2464 * the name, and force the use of dev_name()
2466 if (dev->init_name) {
2467 dev_set_name(dev, "%s", dev->init_name);
2468 dev->init_name = NULL;
2471 /* subsystems can specify simple device enumeration */
2472 if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
2473 dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
2475 if (!dev_name(dev)) {
2476 error = -EINVAL;
2477 goto name_error;
2480 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2482 parent = get_device(dev->parent);
2483 kobj = get_device_parent(dev, parent);
2484 if (IS_ERR(kobj)) {
2485 error = PTR_ERR(kobj);
2486 goto parent_error;
2488 if (kobj)
2489 dev->kobj.parent = kobj;
2491 /* use parent numa_node */
2492 if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
2493 set_dev_node(dev, dev_to_node(parent));
2495 /* first, register with generic layer. */
2496 /* we require the name to be set before, and pass NULL */
2497 error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
2498 if (error) {
2499 glue_dir = get_glue_dir(dev);
2500 goto Error;
2503 /* notify platform of device entry */
2504 error = device_platform_notify(dev, KOBJ_ADD);
2505 if (error)
2506 goto platform_error;
2508 error = device_create_file(dev, &dev_attr_uevent);
2509 if (error)
2510 goto attrError;
2512 error = device_add_class_symlinks(dev);
2513 if (error)
2514 goto SymlinkError;
2515 error = device_add_attrs(dev);
2516 if (error)
2517 goto AttrsError;
2518 error = bus_add_device(dev);
2519 if (error)
2520 goto BusError;
2521 error = dpm_sysfs_add(dev);
2522 if (error)
2523 goto DPMError;
2524 device_pm_add(dev);
2526 if (MAJOR(dev->devt)) {
2527 error = device_create_file(dev, &dev_attr_dev);
2528 if (error)
2529 goto DevAttrError;
2531 error = device_create_sys_dev_entry(dev);
2532 if (error)
2533 goto SysEntryError;
2535 devtmpfs_create_node(dev);
2538 /* Notify clients of device addition. This call must come
2539 * after dpm_sysfs_add() and before kobject_uevent().
2541 if (dev->bus)
2542 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2543 BUS_NOTIFY_ADD_DEVICE, dev);
2545 kobject_uevent(&dev->kobj, KOBJ_ADD);
2547 if (dev->fwnode && !dev->fwnode->dev) {
2548 dev->fwnode->dev = dev;
2549 is_fwnode_dev = true;
2553 * Check if any of the other devices (consumers) have been waiting for
2554 * this device (supplier) to be added so that they can create a device
2555 * link to it.
2557 * This needs to happen after device_pm_add() because device_link_add()
2558 * requires the supplier be registered before it's called.
2560 * But this also needs to happe before bus_probe_device() to make sure
2561 * waiting consumers can link to it before the driver is bound to the
2562 * device and the driver sync_state callback is called for this device.
2564 device_link_add_missing_supplier_links();
2566 if (fw_devlink_flags && is_fwnode_dev &&
2567 fwnode_has_op(dev->fwnode, add_links)) {
2568 fw_ret = fwnode_call_int_op(dev->fwnode, add_links, dev);
2569 if (fw_ret == -ENODEV && !fw_devlink_is_permissive())
2570 device_link_wait_for_mandatory_supplier(dev);
2571 else if (fw_ret)
2572 device_link_wait_for_optional_supplier(dev);
2575 bus_probe_device(dev);
2576 if (parent)
2577 klist_add_tail(&dev->p->knode_parent,
2578 &parent->p->klist_children);
2580 if (dev->class) {
2581 mutex_lock(&dev->class->p->mutex);
2582 /* tie the class to the device */
2583 klist_add_tail(&dev->p->knode_class,
2584 &dev->class->p->klist_devices);
2586 /* notify any interfaces that the device is here */
2587 list_for_each_entry(class_intf,
2588 &dev->class->p->interfaces, node)
2589 if (class_intf->add_dev)
2590 class_intf->add_dev(dev, class_intf);
2591 mutex_unlock(&dev->class->p->mutex);
2593 done:
2594 put_device(dev);
2595 return error;
2596 SysEntryError:
2597 if (MAJOR(dev->devt))
2598 device_remove_file(dev, &dev_attr_dev);
2599 DevAttrError:
2600 device_pm_remove(dev);
2601 dpm_sysfs_remove(dev);
2602 DPMError:
2603 bus_remove_device(dev);
2604 BusError:
2605 device_remove_attrs(dev);
2606 AttrsError:
2607 device_remove_class_symlinks(dev);
2608 SymlinkError:
2609 device_remove_file(dev, &dev_attr_uevent);
2610 attrError:
2611 device_platform_notify(dev, KOBJ_REMOVE);
2612 platform_error:
2613 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2614 glue_dir = get_glue_dir(dev);
2615 kobject_del(&dev->kobj);
2616 Error:
2617 cleanup_glue_dir(dev, glue_dir);
2618 parent_error:
2619 put_device(parent);
2620 name_error:
2621 kfree(dev->p);
2622 dev->p = NULL;
2623 goto done;
2625 EXPORT_SYMBOL_GPL(device_add);
2628 * device_register - register a device with the system.
2629 * @dev: pointer to the device structure
2631 * This happens in two clean steps - initialize the device
2632 * and add it to the system. The two steps can be called
2633 * separately, but this is the easiest and most common.
2634 * I.e. you should only call the two helpers separately if
2635 * have a clearly defined need to use and refcount the device
2636 * before it is added to the hierarchy.
2638 * For more information, see the kerneldoc for device_initialize()
2639 * and device_add().
2641 * NOTE: _Never_ directly free @dev after calling this function, even
2642 * if it returned an error! Always use put_device() to give up the
2643 * reference initialized in this function instead.
2645 int device_register(struct device *dev)
2647 device_initialize(dev);
2648 return device_add(dev);
2650 EXPORT_SYMBOL_GPL(device_register);
2653 * get_device - increment reference count for device.
2654 * @dev: device.
2656 * This simply forwards the call to kobject_get(), though
2657 * we do take care to provide for the case that we get a NULL
2658 * pointer passed in.
2660 struct device *get_device(struct device *dev)
2662 return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
2664 EXPORT_SYMBOL_GPL(get_device);
2667 * put_device - decrement reference count.
2668 * @dev: device in question.
2670 void put_device(struct device *dev)
2672 /* might_sleep(); */
2673 if (dev)
2674 kobject_put(&dev->kobj);
2676 EXPORT_SYMBOL_GPL(put_device);
2678 bool kill_device(struct device *dev)
2681 * Require the device lock and set the "dead" flag to guarantee that
2682 * the update behavior is consistent with the other bitfields near
2683 * it and that we cannot have an asynchronous probe routine trying
2684 * to run while we are tearing out the bus/class/sysfs from
2685 * underneath the device.
2687 lockdep_assert_held(&dev->mutex);
2689 if (dev->p->dead)
2690 return false;
2691 dev->p->dead = true;
2692 return true;
2694 EXPORT_SYMBOL_GPL(kill_device);
2697 * device_del - delete device from system.
2698 * @dev: device.
2700 * This is the first part of the device unregistration
2701 * sequence. This removes the device from the lists we control
2702 * from here, has it removed from the other driver model
2703 * subsystems it was added to in device_add(), and removes it
2704 * from the kobject hierarchy.
2706 * NOTE: this should be called manually _iff_ device_add() was
2707 * also called manually.
2709 void device_del(struct device *dev)
2711 struct device *parent = dev->parent;
2712 struct kobject *glue_dir = NULL;
2713 struct class_interface *class_intf;
2715 device_lock(dev);
2716 kill_device(dev);
2717 device_unlock(dev);
2719 if (dev->fwnode && dev->fwnode->dev == dev)
2720 dev->fwnode->dev = NULL;
2722 /* Notify clients of device removal. This call must come
2723 * before dpm_sysfs_remove().
2725 if (dev->bus)
2726 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2727 BUS_NOTIFY_DEL_DEVICE, dev);
2729 dpm_sysfs_remove(dev);
2730 if (parent)
2731 klist_del(&dev->p->knode_parent);
2732 if (MAJOR(dev->devt)) {
2733 devtmpfs_delete_node(dev);
2734 device_remove_sys_dev_entry(dev);
2735 device_remove_file(dev, &dev_attr_dev);
2737 if (dev->class) {
2738 device_remove_class_symlinks(dev);
2740 mutex_lock(&dev->class->p->mutex);
2741 /* notify any interfaces that the device is now gone */
2742 list_for_each_entry(class_intf,
2743 &dev->class->p->interfaces, node)
2744 if (class_intf->remove_dev)
2745 class_intf->remove_dev(dev, class_intf);
2746 /* remove the device from the class list */
2747 klist_del(&dev->p->knode_class);
2748 mutex_unlock(&dev->class->p->mutex);
2750 device_remove_file(dev, &dev_attr_uevent);
2751 device_remove_attrs(dev);
2752 bus_remove_device(dev);
2753 device_pm_remove(dev);
2754 driver_deferred_probe_del(dev);
2755 device_platform_notify(dev, KOBJ_REMOVE);
2756 device_remove_properties(dev);
2757 device_links_purge(dev);
2759 if (dev->bus)
2760 blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2761 BUS_NOTIFY_REMOVED_DEVICE, dev);
2762 kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2763 glue_dir = get_glue_dir(dev);
2764 kobject_del(&dev->kobj);
2765 cleanup_glue_dir(dev, glue_dir);
2766 put_device(parent);
2768 EXPORT_SYMBOL_GPL(device_del);
2771 * device_unregister - unregister device from system.
2772 * @dev: device going away.
2774 * We do this in two parts, like we do device_register(). First,
2775 * we remove it from all the subsystems with device_del(), then
2776 * we decrement the reference count via put_device(). If that
2777 * is the final reference count, the device will be cleaned up
2778 * via device_release() above. Otherwise, the structure will
2779 * stick around until the final reference to the device is dropped.
2781 void device_unregister(struct device *dev)
2783 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2784 device_del(dev);
2785 put_device(dev);
2787 EXPORT_SYMBOL_GPL(device_unregister);
2789 static struct device *prev_device(struct klist_iter *i)
2791 struct klist_node *n = klist_prev(i);
2792 struct device *dev = NULL;
2793 struct device_private *p;
2795 if (n) {
2796 p = to_device_private_parent(n);
2797 dev = p->device;
2799 return dev;
2802 static struct device *next_device(struct klist_iter *i)
2804 struct klist_node *n = klist_next(i);
2805 struct device *dev = NULL;
2806 struct device_private *p;
2808 if (n) {
2809 p = to_device_private_parent(n);
2810 dev = p->device;
2812 return dev;
2816 * device_get_devnode - path of device node file
2817 * @dev: device
2818 * @mode: returned file access mode
2819 * @uid: returned file owner
2820 * @gid: returned file group
2821 * @tmp: possibly allocated string
2823 * Return the relative path of a possible device node.
2824 * Non-default names may need to allocate a memory to compose
2825 * a name. This memory is returned in tmp and needs to be
2826 * freed by the caller.
2828 const char *device_get_devnode(struct device *dev,
2829 umode_t *mode, kuid_t *uid, kgid_t *gid,
2830 const char **tmp)
2832 char *s;
2834 *tmp = NULL;
2836 /* the device type may provide a specific name */
2837 if (dev->type && dev->type->devnode)
2838 *tmp = dev->type->devnode(dev, mode, uid, gid);
2839 if (*tmp)
2840 return *tmp;
2842 /* the class may provide a specific name */
2843 if (dev->class && dev->class->devnode)
2844 *tmp = dev->class->devnode(dev, mode);
2845 if (*tmp)
2846 return *tmp;
2848 /* return name without allocation, tmp == NULL */
2849 if (strchr(dev_name(dev), '!') == NULL)
2850 return dev_name(dev);
2852 /* replace '!' in the name with '/' */
2853 s = kstrdup(dev_name(dev), GFP_KERNEL);
2854 if (!s)
2855 return NULL;
2856 strreplace(s, '!', '/');
2857 return *tmp = s;
2861 * device_for_each_child - device child iterator.
2862 * @parent: parent struct device.
2863 * @fn: function to be called for each device.
2864 * @data: data for the callback.
2866 * Iterate over @parent's child devices, and call @fn for each,
2867 * passing it @data.
2869 * We check the return of @fn each time. If it returns anything
2870 * other than 0, we break out and return that value.
2872 int device_for_each_child(struct device *parent, void *data,
2873 int (*fn)(struct device *dev, void *data))
2875 struct klist_iter i;
2876 struct device *child;
2877 int error = 0;
2879 if (!parent->p)
2880 return 0;
2882 klist_iter_init(&parent->p->klist_children, &i);
2883 while (!error && (child = next_device(&i)))
2884 error = fn(child, data);
2885 klist_iter_exit(&i);
2886 return error;
2888 EXPORT_SYMBOL_GPL(device_for_each_child);
2891 * device_for_each_child_reverse - device child iterator in reversed order.
2892 * @parent: parent struct device.
2893 * @fn: function to be called for each device.
2894 * @data: data for the callback.
2896 * Iterate over @parent's child devices, and call @fn for each,
2897 * passing it @data.
2899 * We check the return of @fn each time. If it returns anything
2900 * other than 0, we break out and return that value.
2902 int device_for_each_child_reverse(struct device *parent, void *data,
2903 int (*fn)(struct device *dev, void *data))
2905 struct klist_iter i;
2906 struct device *child;
2907 int error = 0;
2909 if (!parent->p)
2910 return 0;
2912 klist_iter_init(&parent->p->klist_children, &i);
2913 while ((child = prev_device(&i)) && !error)
2914 error = fn(child, data);
2915 klist_iter_exit(&i);
2916 return error;
2918 EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2921 * device_find_child - device iterator for locating a particular device.
2922 * @parent: parent struct device
2923 * @match: Callback function to check device
2924 * @data: Data to pass to match function
2926 * This is similar to the device_for_each_child() function above, but it
2927 * returns a reference to a device that is 'found' for later use, as
2928 * determined by the @match callback.
2930 * The callback should return 0 if the device doesn't match and non-zero
2931 * if it does. If the callback returns non-zero and a reference to the
2932 * current device can be obtained, this function will return to the caller
2933 * and not iterate over any more devices.
2935 * NOTE: you will need to drop the reference with put_device() after use.
2937 struct device *device_find_child(struct device *parent, void *data,
2938 int (*match)(struct device *dev, void *data))
2940 struct klist_iter i;
2941 struct device *child;
2943 if (!parent)
2944 return NULL;
2946 klist_iter_init(&parent->p->klist_children, &i);
2947 while ((child = next_device(&i)))
2948 if (match(child, data) && get_device(child))
2949 break;
2950 klist_iter_exit(&i);
2951 return child;
2953 EXPORT_SYMBOL_GPL(device_find_child);
2956 * device_find_child_by_name - device iterator for locating a child device.
2957 * @parent: parent struct device
2958 * @name: name of the child device
2960 * This is similar to the device_find_child() function above, but it
2961 * returns a reference to a device that has the name @name.
2963 * NOTE: you will need to drop the reference with put_device() after use.
2965 struct device *device_find_child_by_name(struct device *parent,
2966 const char *name)
2968 struct klist_iter i;
2969 struct device *child;
2971 if (!parent)
2972 return NULL;
2974 klist_iter_init(&parent->p->klist_children, &i);
2975 while ((child = next_device(&i)))
2976 if (!strcmp(dev_name(child), name) && get_device(child))
2977 break;
2978 klist_iter_exit(&i);
2979 return child;
2981 EXPORT_SYMBOL_GPL(device_find_child_by_name);
2983 int __init devices_init(void)
2985 devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2986 if (!devices_kset)
2987 return -ENOMEM;
2988 dev_kobj = kobject_create_and_add("dev", NULL);
2989 if (!dev_kobj)
2990 goto dev_kobj_err;
2991 sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2992 if (!sysfs_dev_block_kobj)
2993 goto block_kobj_err;
2994 sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2995 if (!sysfs_dev_char_kobj)
2996 goto char_kobj_err;
2998 return 0;
3000 char_kobj_err:
3001 kobject_put(sysfs_dev_block_kobj);
3002 block_kobj_err:
3003 kobject_put(dev_kobj);
3004 dev_kobj_err:
3005 kset_unregister(devices_kset);
3006 return -ENOMEM;
3009 static int device_check_offline(struct device *dev, void *not_used)
3011 int ret;
3013 ret = device_for_each_child(dev, NULL, device_check_offline);
3014 if (ret)
3015 return ret;
3017 return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3021 * device_offline - Prepare the device for hot-removal.
3022 * @dev: Device to be put offline.
3024 * Execute the device bus type's .offline() callback, if present, to prepare
3025 * the device for a subsequent hot-removal. If that succeeds, the device must
3026 * not be used until either it is removed or its bus type's .online() callback
3027 * is executed.
3029 * Call under device_hotplug_lock.
3031 int device_offline(struct device *dev)
3033 int ret;
3035 if (dev->offline_disabled)
3036 return -EPERM;
3038 ret = device_for_each_child(dev, NULL, device_check_offline);
3039 if (ret)
3040 return ret;
3042 device_lock(dev);
3043 if (device_supports_offline(dev)) {
3044 if (dev->offline) {
3045 ret = 1;
3046 } else {
3047 ret = dev->bus->offline(dev);
3048 if (!ret) {
3049 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3050 dev->offline = true;
3054 device_unlock(dev);
3056 return ret;
3060 * device_online - Put the device back online after successful device_offline().
3061 * @dev: Device to be put back online.
3063 * If device_offline() has been successfully executed for @dev, but the device
3064 * has not been removed subsequently, execute its bus type's .online() callback
3065 * to indicate that the device can be used again.
3067 * Call under device_hotplug_lock.
3069 int device_online(struct device *dev)
3071 int ret = 0;
3073 device_lock(dev);
3074 if (device_supports_offline(dev)) {
3075 if (dev->offline) {
3076 ret = dev->bus->online(dev);
3077 if (!ret) {
3078 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
3079 dev->offline = false;
3081 } else {
3082 ret = 1;
3085 device_unlock(dev);
3087 return ret;
3090 struct root_device {
3091 struct device dev;
3092 struct module *owner;
3095 static inline struct root_device *to_root_device(struct device *d)
3097 return container_of(d, struct root_device, dev);
3100 static void root_device_release(struct device *dev)
3102 kfree(to_root_device(dev));
3106 * __root_device_register - allocate and register a root device
3107 * @name: root device name
3108 * @owner: owner module of the root device, usually THIS_MODULE
3110 * This function allocates a root device and registers it
3111 * using device_register(). In order to free the returned
3112 * device, use root_device_unregister().
3114 * Root devices are dummy devices which allow other devices
3115 * to be grouped under /sys/devices. Use this function to
3116 * allocate a root device and then use it as the parent of
3117 * any device which should appear under /sys/devices/{name}
3119 * The /sys/devices/{name} directory will also contain a
3120 * 'module' symlink which points to the @owner directory
3121 * in sysfs.
3123 * Returns &struct device pointer on success, or ERR_PTR() on error.
3125 * Note: You probably want to use root_device_register().
3127 struct device *__root_device_register(const char *name, struct module *owner)
3129 struct root_device *root;
3130 int err = -ENOMEM;
3132 root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
3133 if (!root)
3134 return ERR_PTR(err);
3136 err = dev_set_name(&root->dev, "%s", name);
3137 if (err) {
3138 kfree(root);
3139 return ERR_PTR(err);
3142 root->dev.release = root_device_release;
3144 err = device_register(&root->dev);
3145 if (err) {
3146 put_device(&root->dev);
3147 return ERR_PTR(err);
3150 #ifdef CONFIG_MODULES /* gotta find a "cleaner" way to do this */
3151 if (owner) {
3152 struct module_kobject *mk = &owner->mkobj;
3154 err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
3155 if (err) {
3156 device_unregister(&root->dev);
3157 return ERR_PTR(err);
3159 root->owner = owner;
3161 #endif
3163 return &root->dev;
3165 EXPORT_SYMBOL_GPL(__root_device_register);
3168 * root_device_unregister - unregister and free a root device
3169 * @dev: device going away
3171 * This function unregisters and cleans up a device that was created by
3172 * root_device_register().
3174 void root_device_unregister(struct device *dev)
3176 struct root_device *root = to_root_device(dev);
3178 if (root->owner)
3179 sysfs_remove_link(&root->dev.kobj, "module");
3181 device_unregister(dev);
3183 EXPORT_SYMBOL_GPL(root_device_unregister);
3186 static void device_create_release(struct device *dev)
3188 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3189 kfree(dev);
3192 static __printf(6, 0) struct device *
3193 device_create_groups_vargs(struct class *class, struct device *parent,
3194 dev_t devt, void *drvdata,
3195 const struct attribute_group **groups,
3196 const char *fmt, va_list args)
3198 struct device *dev = NULL;
3199 int retval = -ENODEV;
3201 if (class == NULL || IS_ERR(class))
3202 goto error;
3204 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3205 if (!dev) {
3206 retval = -ENOMEM;
3207 goto error;
3210 device_initialize(dev);
3211 dev->devt = devt;
3212 dev->class = class;
3213 dev->parent = parent;
3214 dev->groups = groups;
3215 dev->release = device_create_release;
3216 dev_set_drvdata(dev, drvdata);
3218 retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
3219 if (retval)
3220 goto error;
3222 retval = device_add(dev);
3223 if (retval)
3224 goto error;
3226 return dev;
3228 error:
3229 put_device(dev);
3230 return ERR_PTR(retval);
3234 * device_create_vargs - creates a device and registers it with sysfs
3235 * @class: pointer to the struct class that this device should be registered to
3236 * @parent: pointer to the parent struct device of this new device, if any
3237 * @devt: the dev_t for the char device to be added
3238 * @drvdata: the data to be added to the device for callbacks
3239 * @fmt: string for the device's name
3240 * @args: va_list for the device's name
3242 * This function can be used by char device classes. A struct device
3243 * will be created in sysfs, registered to the specified class.
3245 * A "dev" file will be created, showing the dev_t for the device, if
3246 * the dev_t is not 0,0.
3247 * If a pointer to a parent struct device is passed in, the newly created
3248 * struct device will be a child of that device in sysfs.
3249 * The pointer to the struct device will be returned from the call.
3250 * Any further sysfs files that might be required can be created using this
3251 * pointer.
3253 * Returns &struct device pointer on success, or ERR_PTR() on error.
3255 * Note: the struct class passed to this function must have previously
3256 * been created with a call to class_create().
3258 struct device *device_create_vargs(struct class *class, struct device *parent,
3259 dev_t devt, void *drvdata, const char *fmt,
3260 va_list args)
3262 return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
3263 fmt, args);
3265 EXPORT_SYMBOL_GPL(device_create_vargs);
3268 * device_create - creates a device and registers it with sysfs
3269 * @class: pointer to the struct class that this device should be registered to
3270 * @parent: pointer to the parent struct device of this new device, if any
3271 * @devt: the dev_t for the char device to be added
3272 * @drvdata: the data to be added to the device for callbacks
3273 * @fmt: string for the device's name
3275 * This function can be used by char device classes. A struct device
3276 * will be created in sysfs, registered to the specified class.
3278 * A "dev" file will be created, showing the dev_t for the device, if
3279 * the dev_t is not 0,0.
3280 * If a pointer to a parent struct device is passed in, the newly created
3281 * struct device will be a child of that device in sysfs.
3282 * The pointer to the struct device will be returned from the call.
3283 * Any further sysfs files that might be required can be created using this
3284 * pointer.
3286 * Returns &struct device pointer on success, or ERR_PTR() on error.
3288 * Note: the struct class passed to this function must have previously
3289 * been created with a call to class_create().
3291 struct device *device_create(struct class *class, struct device *parent,
3292 dev_t devt, void *drvdata, const char *fmt, ...)
3294 va_list vargs;
3295 struct device *dev;
3297 va_start(vargs, fmt);
3298 dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
3299 va_end(vargs);
3300 return dev;
3302 EXPORT_SYMBOL_GPL(device_create);
3305 * device_create_with_groups - creates a device and registers it with sysfs
3306 * @class: pointer to the struct class that this device should be registered to
3307 * @parent: pointer to the parent struct device of this new device, if any
3308 * @devt: the dev_t for the char device to be added
3309 * @drvdata: the data to be added to the device for callbacks
3310 * @groups: NULL-terminated list of attribute groups to be created
3311 * @fmt: string for the device's name
3313 * This function can be used by char device classes. A struct device
3314 * will be created in sysfs, registered to the specified class.
3315 * Additional attributes specified in the groups parameter will also
3316 * be created automatically.
3318 * A "dev" file will be created, showing the dev_t for the device, if
3319 * the dev_t is not 0,0.
3320 * If a pointer to a parent struct device is passed in, the newly created
3321 * struct device will be a child of that device in sysfs.
3322 * The pointer to the struct device will be returned from the call.
3323 * Any further sysfs files that might be required can be created using this
3324 * pointer.
3326 * Returns &struct device pointer on success, or ERR_PTR() on error.
3328 * Note: the struct class passed to this function must have previously
3329 * been created with a call to class_create().
3331 struct device *device_create_with_groups(struct class *class,
3332 struct device *parent, dev_t devt,
3333 void *drvdata,
3334 const struct attribute_group **groups,
3335 const char *fmt, ...)
3337 va_list vargs;
3338 struct device *dev;
3340 va_start(vargs, fmt);
3341 dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
3342 fmt, vargs);
3343 va_end(vargs);
3344 return dev;
3346 EXPORT_SYMBOL_GPL(device_create_with_groups);
3349 * device_destroy - removes a device that was created with device_create()
3350 * @class: pointer to the struct class that this device was registered with
3351 * @devt: the dev_t of the device that was previously registered
3353 * This call unregisters and cleans up a device that was created with a
3354 * call to device_create().
3356 void device_destroy(struct class *class, dev_t devt)
3358 struct device *dev;
3360 dev = class_find_device_by_devt(class, devt);
3361 if (dev) {
3362 put_device(dev);
3363 device_unregister(dev);
3366 EXPORT_SYMBOL_GPL(device_destroy);
3369 * device_rename - renames a device
3370 * @dev: the pointer to the struct device to be renamed
3371 * @new_name: the new name of the device
3373 * It is the responsibility of the caller to provide mutual
3374 * exclusion between two different calls of device_rename
3375 * on the same device to ensure that new_name is valid and
3376 * won't conflict with other devices.
3378 * Note: Don't call this function. Currently, the networking layer calls this
3379 * function, but that will change. The following text from Kay Sievers offers
3380 * some insight:
3382 * Renaming devices is racy at many levels, symlinks and other stuff are not
3383 * replaced atomically, and you get a "move" uevent, but it's not easy to
3384 * connect the event to the old and new device. Device nodes are not renamed at
3385 * all, there isn't even support for that in the kernel now.
3387 * In the meantime, during renaming, your target name might be taken by another
3388 * driver, creating conflicts. Or the old name is taken directly after you
3389 * renamed it -- then you get events for the same DEVPATH, before you even see
3390 * the "move" event. It's just a mess, and nothing new should ever rely on
3391 * kernel device renaming. Besides that, it's not even implemented now for
3392 * other things than (driver-core wise very simple) network devices.
3394 * We are currently about to change network renaming in udev to completely
3395 * disallow renaming of devices in the same namespace as the kernel uses,
3396 * because we can't solve the problems properly, that arise with swapping names
3397 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
3398 * be allowed to some other name than eth[0-9]*, for the aforementioned
3399 * reasons.
3401 * Make up a "real" name in the driver before you register anything, or add
3402 * some other attributes for userspace to find the device, or use udev to add
3403 * symlinks -- but never rename kernel devices later, it's a complete mess. We
3404 * don't even want to get into that and try to implement the missing pieces in
3405 * the core. We really have other pieces to fix in the driver core mess. :)
3407 int device_rename(struct device *dev, const char *new_name)
3409 struct kobject *kobj = &dev->kobj;
3410 char *old_device_name = NULL;
3411 int error;
3413 dev = get_device(dev);
3414 if (!dev)
3415 return -EINVAL;
3417 dev_dbg(dev, "renaming to %s\n", new_name);
3419 old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
3420 if (!old_device_name) {
3421 error = -ENOMEM;
3422 goto out;
3425 if (dev->class) {
3426 error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
3427 kobj, old_device_name,
3428 new_name, kobject_namespace(kobj));
3429 if (error)
3430 goto out;
3433 error = kobject_rename(kobj, new_name);
3434 if (error)
3435 goto out;
3437 out:
3438 put_device(dev);
3440 kfree(old_device_name);
3442 return error;
3444 EXPORT_SYMBOL_GPL(device_rename);
3446 static int device_move_class_links(struct device *dev,
3447 struct device *old_parent,
3448 struct device *new_parent)
3450 int error = 0;
3452 if (old_parent)
3453 sysfs_remove_link(&dev->kobj, "device");
3454 if (new_parent)
3455 error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
3456 "device");
3457 return error;
3461 * device_move - moves a device to a new parent
3462 * @dev: the pointer to the struct device to be moved
3463 * @new_parent: the new parent of the device (can be NULL)
3464 * @dpm_order: how to reorder the dpm_list
3466 int device_move(struct device *dev, struct device *new_parent,
3467 enum dpm_order dpm_order)
3469 int error;
3470 struct device *old_parent;
3471 struct kobject *new_parent_kobj;
3473 dev = get_device(dev);
3474 if (!dev)
3475 return -EINVAL;
3477 device_pm_lock();
3478 new_parent = get_device(new_parent);
3479 new_parent_kobj = get_device_parent(dev, new_parent);
3480 if (IS_ERR(new_parent_kobj)) {
3481 error = PTR_ERR(new_parent_kobj);
3482 put_device(new_parent);
3483 goto out;
3486 pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
3487 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
3488 error = kobject_move(&dev->kobj, new_parent_kobj);
3489 if (error) {
3490 cleanup_glue_dir(dev, new_parent_kobj);
3491 put_device(new_parent);
3492 goto out;
3494 old_parent = dev->parent;
3495 dev->parent = new_parent;
3496 if (old_parent)
3497 klist_remove(&dev->p->knode_parent);
3498 if (new_parent) {
3499 klist_add_tail(&dev->p->knode_parent,
3500 &new_parent->p->klist_children);
3501 set_dev_node(dev, dev_to_node(new_parent));
3504 if (dev->class) {
3505 error = device_move_class_links(dev, old_parent, new_parent);
3506 if (error) {
3507 /* We ignore errors on cleanup since we're hosed anyway... */
3508 device_move_class_links(dev, new_parent, old_parent);
3509 if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
3510 if (new_parent)
3511 klist_remove(&dev->p->knode_parent);
3512 dev->parent = old_parent;
3513 if (old_parent) {
3514 klist_add_tail(&dev->p->knode_parent,
3515 &old_parent->p->klist_children);
3516 set_dev_node(dev, dev_to_node(old_parent));
3519 cleanup_glue_dir(dev, new_parent_kobj);
3520 put_device(new_parent);
3521 goto out;
3524 switch (dpm_order) {
3525 case DPM_ORDER_NONE:
3526 break;
3527 case DPM_ORDER_DEV_AFTER_PARENT:
3528 device_pm_move_after(dev, new_parent);
3529 devices_kset_move_after(dev, new_parent);
3530 break;
3531 case DPM_ORDER_PARENT_BEFORE_DEV:
3532 device_pm_move_before(new_parent, dev);
3533 devices_kset_move_before(new_parent, dev);
3534 break;
3535 case DPM_ORDER_DEV_LAST:
3536 device_pm_move_last(dev);
3537 devices_kset_move_last(dev);
3538 break;
3541 put_device(old_parent);
3542 out:
3543 device_pm_unlock();
3544 put_device(dev);
3545 return error;
3547 EXPORT_SYMBOL_GPL(device_move);
3549 static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
3550 kgid_t kgid)
3552 struct kobject *kobj = &dev->kobj;
3553 struct class *class = dev->class;
3554 const struct device_type *type = dev->type;
3555 int error;
3557 if (class) {
3559 * Change the device groups of the device class for @dev to
3560 * @kuid/@kgid.
3562 error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
3563 kgid);
3564 if (error)
3565 return error;
3568 if (type) {
3570 * Change the device groups of the device type for @dev to
3571 * @kuid/@kgid.
3573 error = sysfs_groups_change_owner(kobj, type->groups, kuid,
3574 kgid);
3575 if (error)
3576 return error;
3579 /* Change the device groups of @dev to @kuid/@kgid. */
3580 error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
3581 if (error)
3582 return error;
3584 if (device_supports_offline(dev) && !dev->offline_disabled) {
3585 /* Change online device attributes of @dev to @kuid/@kgid. */
3586 error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
3587 kuid, kgid);
3588 if (error)
3589 return error;
3592 return 0;
3596 * device_change_owner - change the owner of an existing device.
3597 * @dev: device.
3598 * @kuid: new owner's kuid
3599 * @kgid: new owner's kgid
3601 * This changes the owner of @dev and its corresponding sysfs entries to
3602 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
3603 * core.
3605 * Returns 0 on success or error code on failure.
3607 int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
3609 int error;
3610 struct kobject *kobj = &dev->kobj;
3612 dev = get_device(dev);
3613 if (!dev)
3614 return -EINVAL;
3617 * Change the kobject and the default attributes and groups of the
3618 * ktype associated with it to @kuid/@kgid.
3620 error = sysfs_change_owner(kobj, kuid, kgid);
3621 if (error)
3622 goto out;
3625 * Change the uevent file for @dev to the new owner. The uevent file
3626 * was created in a separate step when @dev got added and we mirror
3627 * that step here.
3629 error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
3630 kgid);
3631 if (error)
3632 goto out;
3635 * Change the device groups, the device groups associated with the
3636 * device class, and the groups associated with the device type of @dev
3637 * to @kuid/@kgid.
3639 error = device_attrs_change_owner(dev, kuid, kgid);
3640 if (error)
3641 goto out;
3643 error = dpm_sysfs_change_owner(dev, kuid, kgid);
3644 if (error)
3645 goto out;
3647 #ifdef CONFIG_BLOCK
3648 if (sysfs_deprecated && dev->class == &block_class)
3649 goto out;
3650 #endif
3653 * Change the owner of the symlink located in the class directory of
3654 * the device class associated with @dev which points to the actual
3655 * directory entry for @dev to @kuid/@kgid. This ensures that the
3656 * symlink shows the same permissions as its target.
3658 error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
3659 dev_name(dev), kuid, kgid);
3660 if (error)
3661 goto out;
3663 out:
3664 put_device(dev);
3665 return error;
3667 EXPORT_SYMBOL_GPL(device_change_owner);
3670 * device_shutdown - call ->shutdown() on each device to shutdown.
3672 void device_shutdown(void)
3674 struct device *dev, *parent;
3676 wait_for_device_probe();
3677 device_block_probing();
3679 cpufreq_suspend();
3681 spin_lock(&devices_kset->list_lock);
3683 * Walk the devices list backward, shutting down each in turn.
3684 * Beware that device unplug events may also start pulling
3685 * devices offline, even as the system is shutting down.
3687 while (!list_empty(&devices_kset->list)) {
3688 dev = list_entry(devices_kset->list.prev, struct device,
3689 kobj.entry);
3692 * hold reference count of device's parent to
3693 * prevent it from being freed because parent's
3694 * lock is to be held
3696 parent = get_device(dev->parent);
3697 get_device(dev);
3699 * Make sure the device is off the kset list, in the
3700 * event that dev->*->shutdown() doesn't remove it.
3702 list_del_init(&dev->kobj.entry);
3703 spin_unlock(&devices_kset->list_lock);
3705 /* hold lock to avoid race with probe/release */
3706 if (parent)
3707 device_lock(parent);
3708 device_lock(dev);
3710 /* Don't allow any more runtime suspends */
3711 pm_runtime_get_noresume(dev);
3712 pm_runtime_barrier(dev);
3714 if (dev->class && dev->class->shutdown_pre) {
3715 if (initcall_debug)
3716 dev_info(dev, "shutdown_pre\n");
3717 dev->class->shutdown_pre(dev);
3719 if (dev->bus && dev->bus->shutdown) {
3720 if (initcall_debug)
3721 dev_info(dev, "shutdown\n");
3722 dev->bus->shutdown(dev);
3723 } else if (dev->driver && dev->driver->shutdown) {
3724 if (initcall_debug)
3725 dev_info(dev, "shutdown\n");
3726 dev->driver->shutdown(dev);
3729 device_unlock(dev);
3730 if (parent)
3731 device_unlock(parent);
3733 put_device(dev);
3734 put_device(parent);
3736 spin_lock(&devices_kset->list_lock);
3738 spin_unlock(&devices_kset->list_lock);
3742 * Device logging functions
3745 #ifdef CONFIG_PRINTK
3746 static int
3747 create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
3749 const char *subsys;
3750 size_t pos = 0;
3752 if (dev->class)
3753 subsys = dev->class->name;
3754 else if (dev->bus)
3755 subsys = dev->bus->name;
3756 else
3757 return 0;
3759 pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
3760 if (pos >= hdrlen)
3761 goto overflow;
3764 * Add device identifier DEVICE=:
3765 * b12:8 block dev_t
3766 * c127:3 char dev_t
3767 * n8 netdev ifindex
3768 * +sound:card0 subsystem:devname
3770 if (MAJOR(dev->devt)) {
3771 char c;
3773 if (strcmp(subsys, "block") == 0)
3774 c = 'b';
3775 else
3776 c = 'c';
3777 pos++;
3778 pos += snprintf(hdr + pos, hdrlen - pos,
3779 "DEVICE=%c%u:%u",
3780 c, MAJOR(dev->devt), MINOR(dev->devt));
3781 } else if (strcmp(subsys, "net") == 0) {
3782 struct net_device *net = to_net_dev(dev);
3784 pos++;
3785 pos += snprintf(hdr + pos, hdrlen - pos,
3786 "DEVICE=n%u", net->ifindex);
3787 } else {
3788 pos++;
3789 pos += snprintf(hdr + pos, hdrlen - pos,
3790 "DEVICE=+%s:%s", subsys, dev_name(dev));
3793 if (pos >= hdrlen)
3794 goto overflow;
3796 return pos;
3798 overflow:
3799 dev_WARN(dev, "device/subsystem name too long");
3800 return 0;
3803 int dev_vprintk_emit(int level, const struct device *dev,
3804 const char *fmt, va_list args)
3806 char hdr[128];
3807 size_t hdrlen;
3809 hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
3811 return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
3813 EXPORT_SYMBOL(dev_vprintk_emit);
3815 int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
3817 va_list args;
3818 int r;
3820 va_start(args, fmt);
3822 r = dev_vprintk_emit(level, dev, fmt, args);
3824 va_end(args);
3826 return r;
3828 EXPORT_SYMBOL(dev_printk_emit);
3830 static void __dev_printk(const char *level, const struct device *dev,
3831 struct va_format *vaf)
3833 if (dev)
3834 dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
3835 dev_driver_string(dev), dev_name(dev), vaf);
3836 else
3837 printk("%s(NULL device *): %pV", level, vaf);
3840 void dev_printk(const char *level, const struct device *dev,
3841 const char *fmt, ...)
3843 struct va_format vaf;
3844 va_list args;
3846 va_start(args, fmt);
3848 vaf.fmt = fmt;
3849 vaf.va = &args;
3851 __dev_printk(level, dev, &vaf);
3853 va_end(args);
3855 EXPORT_SYMBOL(dev_printk);
3857 #define define_dev_printk_level(func, kern_level) \
3858 void func(const struct device *dev, const char *fmt, ...) \
3860 struct va_format vaf; \
3861 va_list args; \
3863 va_start(args, fmt); \
3865 vaf.fmt = fmt; \
3866 vaf.va = &args; \
3868 __dev_printk(kern_level, dev, &vaf); \
3870 va_end(args); \
3872 EXPORT_SYMBOL(func);
3874 define_dev_printk_level(_dev_emerg, KERN_EMERG);
3875 define_dev_printk_level(_dev_alert, KERN_ALERT);
3876 define_dev_printk_level(_dev_crit, KERN_CRIT);
3877 define_dev_printk_level(_dev_err, KERN_ERR);
3878 define_dev_printk_level(_dev_warn, KERN_WARNING);
3879 define_dev_printk_level(_dev_notice, KERN_NOTICE);
3880 define_dev_printk_level(_dev_info, KERN_INFO);
3882 #endif
3884 static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
3886 return fwnode && !IS_ERR(fwnode->secondary);
3890 * set_primary_fwnode - Change the primary firmware node of a given device.
3891 * @dev: Device to handle.
3892 * @fwnode: New primary firmware node of the device.
3894 * Set the device's firmware node pointer to @fwnode, but if a secondary
3895 * firmware node of the device is present, preserve it.
3897 void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3899 if (fwnode) {
3900 struct fwnode_handle *fn = dev->fwnode;
3902 if (fwnode_is_primary(fn))
3903 fn = fn->secondary;
3905 if (fn) {
3906 WARN_ON(fwnode->secondary);
3907 fwnode->secondary = fn;
3909 dev->fwnode = fwnode;
3910 } else {
3911 dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3912 dev->fwnode->secondary : NULL;
3915 EXPORT_SYMBOL_GPL(set_primary_fwnode);
3918 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3919 * @dev: Device to handle.
3920 * @fwnode: New secondary firmware node of the device.
3922 * If a primary firmware node of the device is present, set its secondary
3923 * pointer to @fwnode. Otherwise, set the device's firmware node pointer to
3924 * @fwnode.
3926 void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3928 if (fwnode)
3929 fwnode->secondary = ERR_PTR(-ENODEV);
3931 if (fwnode_is_primary(dev->fwnode))
3932 dev->fwnode->secondary = fwnode;
3933 else
3934 dev->fwnode = fwnode;
3938 * device_set_of_node_from_dev - reuse device-tree node of another device
3939 * @dev: device whose device-tree node is being set
3940 * @dev2: device whose device-tree node is being reused
3942 * Takes another reference to the new device-tree node after first dropping
3943 * any reference held to the old node.
3945 void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3947 of_node_put(dev->of_node);
3948 dev->of_node = of_node_get(dev2->of_node);
3949 dev->of_node_reused = true;
3951 EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
3953 int device_match_name(struct device *dev, const void *name)
3955 return sysfs_streq(dev_name(dev), name);
3957 EXPORT_SYMBOL_GPL(device_match_name);
3959 int device_match_of_node(struct device *dev, const void *np)
3961 return dev->of_node == np;
3963 EXPORT_SYMBOL_GPL(device_match_of_node);
3965 int device_match_fwnode(struct device *dev, const void *fwnode)
3967 return dev_fwnode(dev) == fwnode;
3969 EXPORT_SYMBOL_GPL(device_match_fwnode);
3971 int device_match_devt(struct device *dev, const void *pdevt)
3973 return dev->devt == *(dev_t *)pdevt;
3975 EXPORT_SYMBOL_GPL(device_match_devt);
3977 int device_match_acpi_dev(struct device *dev, const void *adev)
3979 return ACPI_COMPANION(dev) == adev;
3981 EXPORT_SYMBOL(device_match_acpi_dev);
3983 int device_match_any(struct device *dev, const void *unused)
3985 return 1;
3987 EXPORT_SYMBOL_GPL(device_match_any);