dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / char / random.c
blob0d10e31fd342f52416a41953dcad209e77bdd8e6
1 /*
2 * random.c -- A strong random number generator
4 * Copyright (C) 2017 Jason A. Donenfeld <Jason@zx2c4.com>. All
5 * Rights Reserved.
7 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
9 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
10 * rights reserved.
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
15 * 1. Redistributions of source code must retain the above copyright
16 * notice, and the entire permission notice in its entirety,
17 * including the disclaimer of warranties.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. The name of the author may not be used to endorse or promote
22 * products derived from this software without specific prior
23 * written permission.
25 * ALTERNATIVELY, this product may be distributed under the terms of
26 * the GNU General Public License, in which case the provisions of the GPL are
27 * required INSTEAD OF the above restrictions. (This clause is
28 * necessary due to a potential bad interaction between the GPL and
29 * the restrictions contained in a BSD-style copyright.)
31 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
32 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
33 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
34 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
35 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
36 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
37 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
38 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
39 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
40 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
41 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
42 * DAMAGE.
46 * (now, with legal B.S. out of the way.....)
48 * This routine gathers environmental noise from device drivers, etc.,
49 * and returns good random numbers, suitable for cryptographic use.
50 * Besides the obvious cryptographic uses, these numbers are also good
51 * for seeding TCP sequence numbers, and other places where it is
52 * desirable to have numbers which are not only random, but hard to
53 * predict by an attacker.
55 * Theory of operation
56 * ===================
58 * Computers are very predictable devices. Hence it is extremely hard
59 * to produce truly random numbers on a computer --- as opposed to
60 * pseudo-random numbers, which can easily generated by using a
61 * algorithm. Unfortunately, it is very easy for attackers to guess
62 * the sequence of pseudo-random number generators, and for some
63 * applications this is not acceptable. So instead, we must try to
64 * gather "environmental noise" from the computer's environment, which
65 * must be hard for outside attackers to observe, and use that to
66 * generate random numbers. In a Unix environment, this is best done
67 * from inside the kernel.
69 * Sources of randomness from the environment include inter-keyboard
70 * timings, inter-interrupt timings from some interrupts, and other
71 * events which are both (a) non-deterministic and (b) hard for an
72 * outside observer to measure. Randomness from these sources are
73 * added to an "entropy pool", which is mixed using a CRC-like function.
74 * This is not cryptographically strong, but it is adequate assuming
75 * the randomness is not chosen maliciously, and it is fast enough that
76 * the overhead of doing it on every interrupt is very reasonable.
77 * As random bytes are mixed into the entropy pool, the routines keep
78 * an *estimate* of how many bits of randomness have been stored into
79 * the random number generator's internal state.
81 * When random bytes are desired, they are obtained by taking the SHA
82 * hash of the contents of the "entropy pool". The SHA hash avoids
83 * exposing the internal state of the entropy pool. It is believed to
84 * be computationally infeasible to derive any useful information
85 * about the input of SHA from its output. Even if it is possible to
86 * analyze SHA in some clever way, as long as the amount of data
87 * returned from the generator is less than the inherent entropy in
88 * the pool, the output data is totally unpredictable. For this
89 * reason, the routine decreases its internal estimate of how many
90 * bits of "true randomness" are contained in the entropy pool as it
91 * outputs random numbers.
93 * If this estimate goes to zero, the routine can still generate
94 * random numbers; however, an attacker may (at least in theory) be
95 * able to infer the future output of the generator from prior
96 * outputs. This requires successful cryptanalysis of SHA, which is
97 * not believed to be feasible, but there is a remote possibility.
98 * Nonetheless, these numbers should be useful for the vast majority
99 * of purposes.
101 * Exported interfaces ---- output
102 * ===============================
104 * There are four exported interfaces; two for use within the kernel,
105 * and two or use from userspace.
107 * Exported interfaces ---- userspace output
108 * -----------------------------------------
110 * The userspace interfaces are two character devices /dev/random and
111 * /dev/urandom. /dev/random is suitable for use when very high
112 * quality randomness is desired (for example, for key generation or
113 * one-time pads), as it will only return a maximum of the number of
114 * bits of randomness (as estimated by the random number generator)
115 * contained in the entropy pool.
117 * The /dev/urandom device does not have this limit, and will return
118 * as many bytes as are requested. As more and more random bytes are
119 * requested without giving time for the entropy pool to recharge,
120 * this will result in random numbers that are merely cryptographically
121 * strong. For many applications, however, this is acceptable.
123 * Exported interfaces ---- kernel output
124 * --------------------------------------
126 * The primary kernel interface is
128 * void get_random_bytes(void *buf, int nbytes);
130 * This interface will return the requested number of random bytes,
131 * and place it in the requested buffer. This is equivalent to a
132 * read from /dev/urandom.
134 * For less critical applications, there are the functions:
136 * u32 get_random_u32()
137 * u64 get_random_u64()
138 * unsigned int get_random_int()
139 * unsigned long get_random_long()
141 * These are produced by a cryptographic RNG seeded from get_random_bytes,
142 * and so do not deplete the entropy pool as much. These are recommended
143 * for most in-kernel operations *if the result is going to be stored in
144 * the kernel*.
146 * Specifically, the get_random_int() family do not attempt to do
147 * "anti-backtracking". If you capture the state of the kernel (e.g.
148 * by snapshotting the VM), you can figure out previous get_random_int()
149 * return values. But if the value is stored in the kernel anyway,
150 * this is not a problem.
152 * It *is* safe to expose get_random_int() output to attackers (e.g. as
153 * network cookies); given outputs 1..n, it's not feasible to predict
154 * outputs 0 or n+1. The only concern is an attacker who breaks into
155 * the kernel later; the get_random_int() engine is not reseeded as
156 * often as the get_random_bytes() one.
158 * get_random_bytes() is needed for keys that need to stay secret after
159 * they are erased from the kernel. For example, any key that will
160 * be wrapped and stored encrypted. And session encryption keys: we'd
161 * like to know that after the session is closed and the keys erased,
162 * the plaintext is unrecoverable to someone who recorded the ciphertext.
164 * But for network ports/cookies, stack canaries, PRNG seeds, address
165 * space layout randomization, session *authentication* keys, or other
166 * applications where the sensitive data is stored in the kernel in
167 * plaintext for as long as it's sensitive, the get_random_int() family
168 * is just fine.
170 * Consider ASLR. We want to keep the address space secret from an
171 * outside attacker while the process is running, but once the address
172 * space is torn down, it's of no use to an attacker any more. And it's
173 * stored in kernel data structures as long as it's alive, so worrying
174 * about an attacker's ability to extrapolate it from the get_random_int()
175 * CRNG is silly.
177 * Even some cryptographic keys are safe to generate with get_random_int().
178 * In particular, keys for SipHash are generally fine. Here, knowledge
179 * of the key authorizes you to do something to a kernel object (inject
180 * packets to a network connection, or flood a hash table), and the
181 * key is stored with the object being protected. Once it goes away,
182 * we no longer care if anyone knows the key.
184 * prandom_u32()
185 * -------------
187 * For even weaker applications, see the pseudorandom generator
188 * prandom_u32(), prandom_max(), and prandom_bytes(). If the random
189 * numbers aren't security-critical at all, these are *far* cheaper.
190 * Useful for self-tests, random error simulation, randomized backoffs,
191 * and any other application where you trust that nobody is trying to
192 * maliciously mess with you by guessing the "random" numbers.
194 * Exported interfaces ---- input
195 * ==============================
197 * The current exported interfaces for gathering environmental noise
198 * from the devices are:
200 * void add_device_randomness(const void *buf, unsigned int size);
201 * void add_input_randomness(unsigned int type, unsigned int code,
202 * unsigned int value);
203 * void add_interrupt_randomness(int irq, int irq_flags);
204 * void add_disk_randomness(struct gendisk *disk);
206 * add_device_randomness() is for adding data to the random pool that
207 * is likely to differ between two devices (or possibly even per boot).
208 * This would be things like MAC addresses or serial numbers, or the
209 * read-out of the RTC. This does *not* add any actual entropy to the
210 * pool, but it initializes the pool to different values for devices
211 * that might otherwise be identical and have very little entropy
212 * available to them (particularly common in the embedded world).
214 * add_input_randomness() uses the input layer interrupt timing, as well as
215 * the event type information from the hardware.
217 * add_interrupt_randomness() uses the interrupt timing as random
218 * inputs to the entropy pool. Using the cycle counters and the irq source
219 * as inputs, it feeds the randomness roughly once a second.
221 * add_disk_randomness() uses what amounts to the seek time of block
222 * layer request events, on a per-disk_devt basis, as input to the
223 * entropy pool. Note that high-speed solid state drives with very low
224 * seek times do not make for good sources of entropy, as their seek
225 * times are usually fairly consistent.
227 * All of these routines try to estimate how many bits of randomness a
228 * particular randomness source. They do this by keeping track of the
229 * first and second order deltas of the event timings.
231 * Ensuring unpredictability at system startup
232 * ============================================
234 * When any operating system starts up, it will go through a sequence
235 * of actions that are fairly predictable by an adversary, especially
236 * if the start-up does not involve interaction with a human operator.
237 * This reduces the actual number of bits of unpredictability in the
238 * entropy pool below the value in entropy_count. In order to
239 * counteract this effect, it helps to carry information in the
240 * entropy pool across shut-downs and start-ups. To do this, put the
241 * following lines an appropriate script which is run during the boot
242 * sequence:
244 * echo "Initializing random number generator..."
245 * random_seed=/var/run/random-seed
246 * # Carry a random seed from start-up to start-up
247 * # Load and then save the whole entropy pool
248 * if [ -f $random_seed ]; then
249 * cat $random_seed >/dev/urandom
250 * else
251 * touch $random_seed
252 * fi
253 * chmod 600 $random_seed
254 * dd if=/dev/urandom of=$random_seed count=1 bs=512
256 * and the following lines in an appropriate script which is run as
257 * the system is shutdown:
259 * # Carry a random seed from shut-down to start-up
260 * # Save the whole entropy pool
261 * echo "Saving random seed..."
262 * random_seed=/var/run/random-seed
263 * touch $random_seed
264 * chmod 600 $random_seed
265 * dd if=/dev/urandom of=$random_seed count=1 bs=512
267 * For example, on most modern systems using the System V init
268 * scripts, such code fragments would be found in
269 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
270 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
272 * Effectively, these commands cause the contents of the entropy pool
273 * to be saved at shut-down time and reloaded into the entropy pool at
274 * start-up. (The 'dd' in the addition to the bootup script is to
275 * make sure that /etc/random-seed is different for every start-up,
276 * even if the system crashes without executing rc.0.) Even with
277 * complete knowledge of the start-up activities, predicting the state
278 * of the entropy pool requires knowledge of the previous history of
279 * the system.
281 * Configuring the /dev/random driver under Linux
282 * ==============================================
284 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
285 * the /dev/mem major number (#1). So if your system does not have
286 * /dev/random and /dev/urandom created already, they can be created
287 * by using the commands:
289 * mknod /dev/random c 1 8
290 * mknod /dev/urandom c 1 9
292 * Acknowledgements:
293 * =================
295 * Ideas for constructing this random number generator were derived
296 * from Pretty Good Privacy's random number generator, and from private
297 * discussions with Phil Karn. Colin Plumb provided a faster random
298 * number generator, which speed up the mixing function of the entropy
299 * pool, taken from PGPfone. Dale Worley has also contributed many
300 * useful ideas and suggestions to improve this driver.
302 * Any flaws in the design are solely my responsibility, and should
303 * not be attributed to the Phil, Colin, or any of authors of PGP.
305 * Further background information on this topic may be obtained from
306 * RFC 1750, "Randomness Recommendations for Security", by Donald
307 * Eastlake, Steve Crocker, and Jeff Schiller.
310 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
312 #include <linux/utsname.h>
313 #include <linux/module.h>
314 #include <linux/kernel.h>
315 #include <linux/major.h>
316 #include <linux/string.h>
317 #include <linux/fcntl.h>
318 #include <linux/slab.h>
319 #include <linux/random.h>
320 #include <linux/poll.h>
321 #include <linux/init.h>
322 #include <linux/fs.h>
323 #include <linux/genhd.h>
324 #include <linux/interrupt.h>
325 #include <linux/mm.h>
326 #include <linux/nodemask.h>
327 #include <linux/spinlock.h>
328 #include <linux/kthread.h>
329 #include <linux/percpu.h>
330 #include <linux/cryptohash.h>
331 #include <linux/fips.h>
332 #include <linux/ptrace.h>
333 #include <linux/workqueue.h>
334 #include <linux/irq.h>
335 #include <linux/ratelimit.h>
336 #include <linux/syscalls.h>
337 #include <linux/completion.h>
338 #include <linux/uuid.h>
339 #include <crypto/chacha.h>
341 #include <asm/processor.h>
342 #include <linux/uaccess.h>
343 #include <asm/irq.h>
344 #include <asm/irq_regs.h>
345 #include <asm/io.h>
347 #define CREATE_TRACE_POINTS
348 #include <trace/events/random.h>
350 /* #define ADD_INTERRUPT_BENCH */
353 * Configuration information
355 #define INPUT_POOL_SHIFT 12
356 #define INPUT_POOL_WORDS (1 << (INPUT_POOL_SHIFT-5))
357 #define OUTPUT_POOL_SHIFT 10
358 #define OUTPUT_POOL_WORDS (1 << (OUTPUT_POOL_SHIFT-5))
359 #define EXTRACT_SIZE 10
362 #define LONGS(x) (((x) + sizeof(unsigned long) - 1)/sizeof(unsigned long))
365 * To allow fractional bits to be tracked, the entropy_count field is
366 * denominated in units of 1/8th bits.
368 * 2*(ENTROPY_SHIFT + poolbitshift) must <= 31, or the multiply in
369 * credit_entropy_bits() needs to be 64 bits wide.
371 #define ENTROPY_SHIFT 3
372 #define ENTROPY_BITS(r) ((r)->entropy_count >> ENTROPY_SHIFT)
375 * If the entropy count falls under this number of bits, then we
376 * should wake up processes which are selecting or polling on write
377 * access to /dev/random.
379 static int random_write_wakeup_bits = 28 * OUTPUT_POOL_WORDS;
382 * Originally, we used a primitive polynomial of degree .poolwords
383 * over GF(2). The taps for various sizes are defined below. They
384 * were chosen to be evenly spaced except for the last tap, which is 1
385 * to get the twisting happening as fast as possible.
387 * For the purposes of better mixing, we use the CRC-32 polynomial as
388 * well to make a (modified) twisted Generalized Feedback Shift
389 * Register. (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR
390 * generators. ACM Transactions on Modeling and Computer Simulation
391 * 2(3):179-194. Also see M. Matsumoto & Y. Kurita, 1994. Twisted
392 * GFSR generators II. ACM Transactions on Modeling and Computer
393 * Simulation 4:254-266)
395 * Thanks to Colin Plumb for suggesting this.
397 * The mixing operation is much less sensitive than the output hash,
398 * where we use SHA-1. All that we want of mixing operation is that
399 * it be a good non-cryptographic hash; i.e. it not produce collisions
400 * when fed "random" data of the sort we expect to see. As long as
401 * the pool state differs for different inputs, we have preserved the
402 * input entropy and done a good job. The fact that an intelligent
403 * attacker can construct inputs that will produce controlled
404 * alterations to the pool's state is not important because we don't
405 * consider such inputs to contribute any randomness. The only
406 * property we need with respect to them is that the attacker can't
407 * increase his/her knowledge of the pool's state. Since all
408 * additions are reversible (knowing the final state and the input,
409 * you can reconstruct the initial state), if an attacker has any
410 * uncertainty about the initial state, he/she can only shuffle that
411 * uncertainty about, but never cause any collisions (which would
412 * decrease the uncertainty).
414 * Our mixing functions were analyzed by Lacharme, Roeck, Strubel, and
415 * Videau in their paper, "The Linux Pseudorandom Number Generator
416 * Revisited" (see: http://eprint.iacr.org/2012/251.pdf). In their
417 * paper, they point out that we are not using a true Twisted GFSR,
418 * since Matsumoto & Kurita used a trinomial feedback polynomial (that
419 * is, with only three taps, instead of the six that we are using).
420 * As a result, the resulting polynomial is neither primitive nor
421 * irreducible, and hence does not have a maximal period over
422 * GF(2**32). They suggest a slight change to the generator
423 * polynomial which improves the resulting TGFSR polynomial to be
424 * irreducible, which we have made here.
426 static const struct poolinfo {
427 int poolbitshift, poolwords, poolbytes, poolfracbits;
428 #define S(x) ilog2(x)+5, (x), (x)*4, (x) << (ENTROPY_SHIFT+5)
429 int tap1, tap2, tap3, tap4, tap5;
430 } poolinfo_table[] = {
431 /* was: x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 */
432 /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
433 { S(128), 104, 76, 51, 25, 1 },
437 * Static global variables
439 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
440 static struct fasync_struct *fasync;
442 static DEFINE_SPINLOCK(random_ready_list_lock);
443 static LIST_HEAD(random_ready_list);
445 struct crng_state {
446 __u32 state[16];
447 unsigned long init_time;
448 spinlock_t lock;
451 static struct crng_state primary_crng = {
452 .lock = __SPIN_LOCK_UNLOCKED(primary_crng.lock),
456 * crng_init = 0 --> Uninitialized
457 * 1 --> Initialized
458 * 2 --> Initialized from input_pool
460 * crng_init is protected by primary_crng->lock, and only increases
461 * its value (from 0->1->2).
463 static int crng_init = 0;
464 #define crng_ready() (likely(crng_init > 1))
465 static int crng_init_cnt = 0;
466 static unsigned long crng_global_init_time = 0;
467 #define CRNG_INIT_CNT_THRESH (2*CHACHA_KEY_SIZE)
468 static void _extract_crng(struct crng_state *crng, __u8 out[CHACHA_BLOCK_SIZE]);
469 static void _crng_backtrack_protect(struct crng_state *crng,
470 __u8 tmp[CHACHA_BLOCK_SIZE], int used);
471 static void process_random_ready_list(void);
472 static void _get_random_bytes(void *buf, int nbytes);
474 static struct ratelimit_state unseeded_warning =
475 RATELIMIT_STATE_INIT("warn_unseeded_randomness", HZ, 3);
476 static struct ratelimit_state urandom_warning =
477 RATELIMIT_STATE_INIT("warn_urandom_randomness", HZ, 3);
479 static int ratelimit_disable __read_mostly;
481 module_param_named(ratelimit_disable, ratelimit_disable, int, 0644);
482 MODULE_PARM_DESC(ratelimit_disable, "Disable random ratelimit suppression");
484 /**********************************************************************
486 * OS independent entropy store. Here are the functions which handle
487 * storing entropy in an entropy pool.
489 **********************************************************************/
491 struct entropy_store;
492 struct entropy_store {
493 /* read-only data: */
494 const struct poolinfo *poolinfo;
495 __u32 *pool;
496 const char *name;
498 /* read-write data: */
499 spinlock_t lock;
500 unsigned short add_ptr;
501 unsigned short input_rotate;
502 int entropy_count;
503 unsigned int initialized:1;
504 unsigned int last_data_init:1;
505 __u8 last_data[EXTRACT_SIZE];
508 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
509 size_t nbytes, int min, int rsvd);
510 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
511 size_t nbytes, int fips);
513 static void crng_reseed(struct crng_state *crng, struct entropy_store *r);
514 static __u32 input_pool_data[INPUT_POOL_WORDS] __latent_entropy;
516 static struct entropy_store input_pool = {
517 .poolinfo = &poolinfo_table[0],
518 .name = "input",
519 .lock = __SPIN_LOCK_UNLOCKED(input_pool.lock),
520 .pool = input_pool_data
523 static __u32 const twist_table[8] = {
524 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
525 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
528 * This function adds bytes into the entropy "pool". It does not
529 * update the entropy estimate. The caller should call
530 * credit_entropy_bits if this is appropriate.
532 * The pool is stirred with a primitive polynomial of the appropriate
533 * degree, and then twisted. We twist by three bits at a time because
534 * it's cheap to do so and helps slightly in the expected case where
535 * the entropy is concentrated in the low-order bits.
537 static void _mix_pool_bytes(struct entropy_store *r, const void *in,
538 int nbytes)
540 unsigned long i, tap1, tap2, tap3, tap4, tap5;
541 int input_rotate;
542 int wordmask = r->poolinfo->poolwords - 1;
543 const char *bytes = in;
544 __u32 w;
546 tap1 = r->poolinfo->tap1;
547 tap2 = r->poolinfo->tap2;
548 tap3 = r->poolinfo->tap3;
549 tap4 = r->poolinfo->tap4;
550 tap5 = r->poolinfo->tap5;
552 input_rotate = r->input_rotate;
553 i = r->add_ptr;
555 /* mix one byte at a time to simplify size handling and churn faster */
556 while (nbytes--) {
557 w = rol32(*bytes++, input_rotate);
558 i = (i - 1) & wordmask;
560 /* XOR in the various taps */
561 w ^= r->pool[i];
562 w ^= r->pool[(i + tap1) & wordmask];
563 w ^= r->pool[(i + tap2) & wordmask];
564 w ^= r->pool[(i + tap3) & wordmask];
565 w ^= r->pool[(i + tap4) & wordmask];
566 w ^= r->pool[(i + tap5) & wordmask];
568 /* Mix the result back in with a twist */
569 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
572 * Normally, we add 7 bits of rotation to the pool.
573 * At the beginning of the pool, add an extra 7 bits
574 * rotation, so that successive passes spread the
575 * input bits across the pool evenly.
577 input_rotate = (input_rotate + (i ? 7 : 14)) & 31;
580 r->input_rotate = input_rotate;
581 r->add_ptr = i;
584 static void __mix_pool_bytes(struct entropy_store *r, const void *in,
585 int nbytes)
587 trace_mix_pool_bytes_nolock(r->name, nbytes, _RET_IP_);
588 _mix_pool_bytes(r, in, nbytes);
591 static void mix_pool_bytes(struct entropy_store *r, const void *in,
592 int nbytes)
594 unsigned long flags;
596 trace_mix_pool_bytes(r->name, nbytes, _RET_IP_);
597 spin_lock_irqsave(&r->lock, flags);
598 _mix_pool_bytes(r, in, nbytes);
599 spin_unlock_irqrestore(&r->lock, flags);
602 struct fast_pool {
603 __u32 pool[4];
604 unsigned long last;
605 unsigned short reg_idx;
606 unsigned char count;
610 * This is a fast mixing routine used by the interrupt randomness
611 * collector. It's hardcoded for an 128 bit pool and assumes that any
612 * locks that might be needed are taken by the caller.
614 static void fast_mix(struct fast_pool *f)
616 __u32 a = f->pool[0], b = f->pool[1];
617 __u32 c = f->pool[2], d = f->pool[3];
619 a += b; c += d;
620 b = rol32(b, 6); d = rol32(d, 27);
621 d ^= a; b ^= c;
623 a += b; c += d;
624 b = rol32(b, 16); d = rol32(d, 14);
625 d ^= a; b ^= c;
627 a += b; c += d;
628 b = rol32(b, 6); d = rol32(d, 27);
629 d ^= a; b ^= c;
631 a += b; c += d;
632 b = rol32(b, 16); d = rol32(d, 14);
633 d ^= a; b ^= c;
635 f->pool[0] = a; f->pool[1] = b;
636 f->pool[2] = c; f->pool[3] = d;
637 f->count++;
640 static void process_random_ready_list(void)
642 unsigned long flags;
643 struct random_ready_callback *rdy, *tmp;
645 spin_lock_irqsave(&random_ready_list_lock, flags);
646 list_for_each_entry_safe(rdy, tmp, &random_ready_list, list) {
647 struct module *owner = rdy->owner;
649 list_del_init(&rdy->list);
650 rdy->func(rdy);
651 module_put(owner);
653 spin_unlock_irqrestore(&random_ready_list_lock, flags);
657 * Credit (or debit) the entropy store with n bits of entropy.
658 * Use credit_entropy_bits_safe() if the value comes from userspace
659 * or otherwise should be checked for extreme values.
661 static void credit_entropy_bits(struct entropy_store *r, int nbits)
663 int entropy_count, orig, has_initialized = 0;
664 const int pool_size = r->poolinfo->poolfracbits;
665 int nfrac = nbits << ENTROPY_SHIFT;
667 if (!nbits)
668 return;
670 retry:
671 entropy_count = orig = READ_ONCE(r->entropy_count);
672 if (nfrac < 0) {
673 /* Debit */
674 entropy_count += nfrac;
675 } else {
677 * Credit: we have to account for the possibility of
678 * overwriting already present entropy. Even in the
679 * ideal case of pure Shannon entropy, new contributions
680 * approach the full value asymptotically:
682 * entropy <- entropy + (pool_size - entropy) *
683 * (1 - exp(-add_entropy/pool_size))
685 * For add_entropy <= pool_size/2 then
686 * (1 - exp(-add_entropy/pool_size)) >=
687 * (add_entropy/pool_size)*0.7869...
688 * so we can approximate the exponential with
689 * 3/4*add_entropy/pool_size and still be on the
690 * safe side by adding at most pool_size/2 at a time.
692 * The use of pool_size-2 in the while statement is to
693 * prevent rounding artifacts from making the loop
694 * arbitrarily long; this limits the loop to log2(pool_size)*2
695 * turns no matter how large nbits is.
697 int pnfrac = nfrac;
698 const int s = r->poolinfo->poolbitshift + ENTROPY_SHIFT + 2;
699 /* The +2 corresponds to the /4 in the denominator */
701 do {
702 unsigned int anfrac = min(pnfrac, pool_size/2);
703 unsigned int add =
704 ((pool_size - entropy_count)*anfrac*3) >> s;
706 entropy_count += add;
707 pnfrac -= anfrac;
708 } while (unlikely(entropy_count < pool_size-2 && pnfrac));
711 if (WARN_ON(entropy_count < 0)) {
712 pr_warn("negative entropy/overflow: pool %s count %d\n",
713 r->name, entropy_count);
714 entropy_count = 0;
715 } else if (entropy_count > pool_size)
716 entropy_count = pool_size;
717 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
718 goto retry;
720 if (has_initialized) {
721 r->initialized = 1;
722 kill_fasync(&fasync, SIGIO, POLL_IN);
725 trace_credit_entropy_bits(r->name, nbits,
726 entropy_count >> ENTROPY_SHIFT, _RET_IP_);
728 if (r == &input_pool) {
729 int entropy_bits = entropy_count >> ENTROPY_SHIFT;
731 if (crng_init < 2) {
732 if (entropy_bits < 128)
733 return;
734 crng_reseed(&primary_crng, r);
735 entropy_bits = ENTROPY_BITS(r);
740 static int credit_entropy_bits_safe(struct entropy_store *r, int nbits)
742 const int nbits_max = r->poolinfo->poolwords * 32;
744 if (nbits < 0)
745 return -EINVAL;
747 /* Cap the value to avoid overflows */
748 nbits = min(nbits, nbits_max);
750 credit_entropy_bits(r, nbits);
751 return 0;
754 /*********************************************************************
756 * CRNG using CHACHA20
758 *********************************************************************/
760 #define CRNG_RESEED_INTERVAL (300*HZ)
762 static DECLARE_WAIT_QUEUE_HEAD(crng_init_wait);
764 #ifdef CONFIG_NUMA
766 * Hack to deal with crazy userspace progams when they are all trying
767 * to access /dev/urandom in parallel. The programs are almost
768 * certainly doing something terribly wrong, but we'll work around
769 * their brain damage.
771 static struct crng_state **crng_node_pool __read_mostly;
772 #endif
774 static void invalidate_batched_entropy(void);
775 static void numa_crng_init(void);
777 static bool trust_cpu __ro_after_init = IS_ENABLED(CONFIG_RANDOM_TRUST_CPU);
778 static int __init parse_trust_cpu(char *arg)
780 return kstrtobool(arg, &trust_cpu);
782 early_param("random.trust_cpu", parse_trust_cpu);
784 static bool crng_init_try_arch(struct crng_state *crng)
786 int i;
787 bool arch_init = true;
788 unsigned long rv;
790 for (i = 4; i < 16; i++) {
791 if (!arch_get_random_seed_long(&rv) &&
792 !arch_get_random_long(&rv)) {
793 rv = random_get_entropy();
794 arch_init = false;
796 crng->state[i] ^= rv;
799 return arch_init;
802 static bool __init crng_init_try_arch_early(struct crng_state *crng)
804 int i;
805 bool arch_init = true;
806 unsigned long rv;
808 for (i = 4; i < 16; i++) {
809 if (!arch_get_random_seed_long_early(&rv) &&
810 !arch_get_random_long_early(&rv)) {
811 rv = random_get_entropy();
812 arch_init = false;
814 crng->state[i] ^= rv;
817 return arch_init;
820 static void __maybe_unused crng_initialize_secondary(struct crng_state *crng)
822 memcpy(&crng->state[0], "expand 32-byte k", 16);
823 _get_random_bytes(&crng->state[4], sizeof(__u32) * 12);
824 crng_init_try_arch(crng);
825 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
828 static void __init crng_initialize_primary(struct crng_state *crng)
830 memcpy(&crng->state[0], "expand 32-byte k", 16);
831 _extract_entropy(&input_pool, &crng->state[4], sizeof(__u32) * 12, 0);
832 if (crng_init_try_arch_early(crng) && trust_cpu) {
833 invalidate_batched_entropy();
834 numa_crng_init();
835 crng_init = 2;
836 pr_notice("crng done (trusting CPU's manufacturer)\n");
838 crng->init_time = jiffies - CRNG_RESEED_INTERVAL - 1;
841 #ifdef CONFIG_NUMA
842 static void do_numa_crng_init(struct work_struct *work)
844 int i;
845 struct crng_state *crng;
846 struct crng_state **pool;
848 pool = kcalloc(nr_node_ids, sizeof(*pool), GFP_KERNEL|__GFP_NOFAIL);
849 for_each_online_node(i) {
850 crng = kmalloc_node(sizeof(struct crng_state),
851 GFP_KERNEL | __GFP_NOFAIL, i);
852 spin_lock_init(&crng->lock);
853 crng_initialize_secondary(crng);
854 pool[i] = crng;
856 mb();
857 if (cmpxchg(&crng_node_pool, NULL, pool)) {
858 for_each_node(i)
859 kfree(pool[i]);
860 kfree(pool);
864 static DECLARE_WORK(numa_crng_init_work, do_numa_crng_init);
866 static void numa_crng_init(void)
868 schedule_work(&numa_crng_init_work);
870 #else
871 static void numa_crng_init(void) {}
872 #endif
875 * crng_fast_load() can be called by code in the interrupt service
876 * path. So we can't afford to dilly-dally.
878 static int crng_fast_load(const char *cp, size_t len)
880 unsigned long flags;
881 char *p;
883 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
884 return 0;
885 if (crng_init != 0) {
886 spin_unlock_irqrestore(&primary_crng.lock, flags);
887 return 0;
889 p = (unsigned char *) &primary_crng.state[4];
890 while (len > 0 && crng_init_cnt < CRNG_INIT_CNT_THRESH) {
891 p[crng_init_cnt % CHACHA_KEY_SIZE] ^= *cp;
892 cp++; crng_init_cnt++; len--;
894 spin_unlock_irqrestore(&primary_crng.lock, flags);
895 if (crng_init_cnt >= CRNG_INIT_CNT_THRESH) {
896 invalidate_batched_entropy();
897 crng_init = 1;
898 pr_notice("fast init done\n");
900 return 1;
904 * crng_slow_load() is called by add_device_randomness, which has two
905 * attributes. (1) We can't trust the buffer passed to it is
906 * guaranteed to be unpredictable (so it might not have any entropy at
907 * all), and (2) it doesn't have the performance constraints of
908 * crng_fast_load().
910 * So we do something more comprehensive which is guaranteed to touch
911 * all of the primary_crng's state, and which uses a LFSR with a
912 * period of 255 as part of the mixing algorithm. Finally, we do
913 * *not* advance crng_init_cnt since buffer we may get may be something
914 * like a fixed DMI table (for example), which might very well be
915 * unique to the machine, but is otherwise unvarying.
917 static int crng_slow_load(const char *cp, size_t len)
919 unsigned long flags;
920 static unsigned char lfsr = 1;
921 unsigned char tmp;
922 unsigned i, max = CHACHA_KEY_SIZE;
923 const char * src_buf = cp;
924 char * dest_buf = (char *) &primary_crng.state[4];
926 if (!spin_trylock_irqsave(&primary_crng.lock, flags))
927 return 0;
928 if (crng_init != 0) {
929 spin_unlock_irqrestore(&primary_crng.lock, flags);
930 return 0;
932 if (len > max)
933 max = len;
935 for (i = 0; i < max ; i++) {
936 tmp = lfsr;
937 lfsr >>= 1;
938 if (tmp & 1)
939 lfsr ^= 0xE1;
940 tmp = dest_buf[i % CHACHA_KEY_SIZE];
941 dest_buf[i % CHACHA_KEY_SIZE] ^= src_buf[i % len] ^ lfsr;
942 lfsr += (tmp << 3) | (tmp >> 5);
944 spin_unlock_irqrestore(&primary_crng.lock, flags);
945 return 1;
948 static void crng_reseed(struct crng_state *crng, struct entropy_store *r)
950 unsigned long flags;
951 int i, num;
952 union {
953 __u8 block[CHACHA_BLOCK_SIZE];
954 __u32 key[8];
955 } buf;
957 if (r) {
958 num = extract_entropy(r, &buf, 32, 16, 0);
959 if (num == 0)
960 return;
961 } else {
962 _extract_crng(&primary_crng, buf.block);
963 _crng_backtrack_protect(&primary_crng, buf.block,
964 CHACHA_KEY_SIZE);
966 spin_lock_irqsave(&crng->lock, flags);
967 for (i = 0; i < 8; i++) {
968 unsigned long rv;
969 if (!arch_get_random_seed_long(&rv) &&
970 !arch_get_random_long(&rv))
971 rv = random_get_entropy();
972 crng->state[i+4] ^= buf.key[i] ^ rv;
974 memzero_explicit(&buf, sizeof(buf));
975 crng->init_time = jiffies;
976 spin_unlock_irqrestore(&crng->lock, flags);
977 if (crng == &primary_crng && crng_init < 2) {
978 invalidate_batched_entropy();
979 numa_crng_init();
980 crng_init = 2;
981 process_random_ready_list();
982 wake_up_interruptible(&crng_init_wait);
983 kill_fasync(&fasync, SIGIO, POLL_IN);
984 pr_notice("crng init done\n");
985 if (unseeded_warning.missed) {
986 pr_notice("%d get_random_xx warning(s) missed due to ratelimiting\n",
987 unseeded_warning.missed);
988 unseeded_warning.missed = 0;
990 if (urandom_warning.missed) {
991 pr_notice("%d urandom warning(s) missed due to ratelimiting\n",
992 urandom_warning.missed);
993 urandom_warning.missed = 0;
998 static void _extract_crng(struct crng_state *crng,
999 __u8 out[CHACHA_BLOCK_SIZE])
1001 unsigned long v, flags;
1003 if (crng_ready() &&
1004 (time_after(crng_global_init_time, crng->init_time) ||
1005 time_after(jiffies, crng->init_time + CRNG_RESEED_INTERVAL)))
1006 crng_reseed(crng, crng == &primary_crng ? &input_pool : NULL);
1007 spin_lock_irqsave(&crng->lock, flags);
1008 if (arch_get_random_long(&v))
1009 crng->state[14] ^= v;
1010 chacha20_block(&crng->state[0], out);
1011 if (crng->state[12] == 0)
1012 crng->state[13]++;
1013 spin_unlock_irqrestore(&crng->lock, flags);
1016 static void extract_crng(__u8 out[CHACHA_BLOCK_SIZE])
1018 struct crng_state *crng = NULL;
1020 #ifdef CONFIG_NUMA
1021 if (crng_node_pool)
1022 crng = crng_node_pool[numa_node_id()];
1023 if (crng == NULL)
1024 #endif
1025 crng = &primary_crng;
1026 _extract_crng(crng, out);
1030 * Use the leftover bytes from the CRNG block output (if there is
1031 * enough) to mutate the CRNG key to provide backtracking protection.
1033 static void _crng_backtrack_protect(struct crng_state *crng,
1034 __u8 tmp[CHACHA_BLOCK_SIZE], int used)
1036 unsigned long flags;
1037 __u32 *s, *d;
1038 int i;
1040 used = round_up(used, sizeof(__u32));
1041 if (used + CHACHA_KEY_SIZE > CHACHA_BLOCK_SIZE) {
1042 extract_crng(tmp);
1043 used = 0;
1045 spin_lock_irqsave(&crng->lock, flags);
1046 s = (__u32 *) &tmp[used];
1047 d = &crng->state[4];
1048 for (i=0; i < 8; i++)
1049 *d++ ^= *s++;
1050 spin_unlock_irqrestore(&crng->lock, flags);
1053 static void crng_backtrack_protect(__u8 tmp[CHACHA_BLOCK_SIZE], int used)
1055 struct crng_state *crng = NULL;
1057 #ifdef CONFIG_NUMA
1058 if (crng_node_pool)
1059 crng = crng_node_pool[numa_node_id()];
1060 if (crng == NULL)
1061 #endif
1062 crng = &primary_crng;
1063 _crng_backtrack_protect(crng, tmp, used);
1066 static ssize_t extract_crng_user(void __user *buf, size_t nbytes)
1068 ssize_t ret = 0, i = CHACHA_BLOCK_SIZE;
1069 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1070 int large_request = (nbytes > 256);
1072 while (nbytes) {
1073 if (large_request && need_resched()) {
1074 if (signal_pending(current)) {
1075 if (ret == 0)
1076 ret = -ERESTARTSYS;
1077 break;
1079 schedule();
1082 extract_crng(tmp);
1083 i = min_t(int, nbytes, CHACHA_BLOCK_SIZE);
1084 if (copy_to_user(buf, tmp, i)) {
1085 ret = -EFAULT;
1086 break;
1089 nbytes -= i;
1090 buf += i;
1091 ret += i;
1093 crng_backtrack_protect(tmp, i);
1095 /* Wipe data just written to memory */
1096 memzero_explicit(tmp, sizeof(tmp));
1098 return ret;
1102 /*********************************************************************
1104 * Entropy input management
1106 *********************************************************************/
1108 /* There is one of these per entropy source */
1109 struct timer_rand_state {
1110 cycles_t last_time;
1111 long last_delta, last_delta2;
1114 #define INIT_TIMER_RAND_STATE { INITIAL_JIFFIES, };
1117 * Add device- or boot-specific data to the input pool to help
1118 * initialize it.
1120 * None of this adds any entropy; it is meant to avoid the problem of
1121 * the entropy pool having similar initial state across largely
1122 * identical devices.
1124 void add_device_randomness(const void *buf, unsigned int size)
1126 unsigned long time = random_get_entropy() ^ jiffies;
1127 unsigned long flags;
1129 if (!crng_ready() && size)
1130 crng_slow_load(buf, size);
1132 trace_add_device_randomness(size, _RET_IP_);
1133 spin_lock_irqsave(&input_pool.lock, flags);
1134 _mix_pool_bytes(&input_pool, buf, size);
1135 _mix_pool_bytes(&input_pool, &time, sizeof(time));
1136 spin_unlock_irqrestore(&input_pool.lock, flags);
1138 EXPORT_SYMBOL(add_device_randomness);
1140 static struct timer_rand_state input_timer_state = INIT_TIMER_RAND_STATE;
1143 * This function adds entropy to the entropy "pool" by using timing
1144 * delays. It uses the timer_rand_state structure to make an estimate
1145 * of how many bits of entropy this call has added to the pool.
1147 * The number "num" is also added to the pool - it should somehow describe
1148 * the type of event which just happened. This is currently 0-255 for
1149 * keyboard scan codes, and 256 upwards for interrupts.
1152 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
1154 struct entropy_store *r;
1155 struct {
1156 long jiffies;
1157 unsigned cycles;
1158 unsigned num;
1159 } sample;
1160 long delta, delta2, delta3;
1162 sample.jiffies = jiffies;
1163 sample.cycles = random_get_entropy();
1164 sample.num = num;
1165 r = &input_pool;
1166 mix_pool_bytes(r, &sample, sizeof(sample));
1169 * Calculate number of bits of randomness we probably added.
1170 * We take into account the first, second and third-order deltas
1171 * in order to make our estimate.
1173 delta = sample.jiffies - READ_ONCE(state->last_time);
1174 WRITE_ONCE(state->last_time, sample.jiffies);
1176 delta2 = delta - READ_ONCE(state->last_delta);
1177 WRITE_ONCE(state->last_delta, delta);
1179 delta3 = delta2 - READ_ONCE(state->last_delta2);
1180 WRITE_ONCE(state->last_delta2, delta2);
1182 if (delta < 0)
1183 delta = -delta;
1184 if (delta2 < 0)
1185 delta2 = -delta2;
1186 if (delta3 < 0)
1187 delta3 = -delta3;
1188 if (delta > delta2)
1189 delta = delta2;
1190 if (delta > delta3)
1191 delta = delta3;
1194 * delta is now minimum absolute delta.
1195 * Round down by 1 bit on general principles,
1196 * and limit entropy estimate to 12 bits.
1198 credit_entropy_bits(r, min_t(int, fls(delta>>1), 11));
1201 void add_input_randomness(unsigned int type, unsigned int code,
1202 unsigned int value)
1204 static unsigned char last_value;
1206 /* ignore autorepeat and the like */
1207 if (value == last_value)
1208 return;
1210 last_value = value;
1211 add_timer_randomness(&input_timer_state,
1212 (type << 4) ^ code ^ (code >> 4) ^ value);
1213 trace_add_input_randomness(ENTROPY_BITS(&input_pool));
1215 EXPORT_SYMBOL_GPL(add_input_randomness);
1217 static DEFINE_PER_CPU(struct fast_pool, irq_randomness);
1219 #ifdef ADD_INTERRUPT_BENCH
1220 static unsigned long avg_cycles, avg_deviation;
1222 #define AVG_SHIFT 8 /* Exponential average factor k=1/256 */
1223 #define FIXED_1_2 (1 << (AVG_SHIFT-1))
1225 static void add_interrupt_bench(cycles_t start)
1227 long delta = random_get_entropy() - start;
1229 /* Use a weighted moving average */
1230 delta = delta - ((avg_cycles + FIXED_1_2) >> AVG_SHIFT);
1231 avg_cycles += delta;
1232 /* And average deviation */
1233 delta = abs(delta) - ((avg_deviation + FIXED_1_2) >> AVG_SHIFT);
1234 avg_deviation += delta;
1236 #else
1237 #define add_interrupt_bench(x)
1238 #endif
1240 static __u32 get_reg(struct fast_pool *f, struct pt_regs *regs)
1242 __u32 *ptr = (__u32 *) regs;
1243 unsigned int idx;
1245 if (regs == NULL)
1246 return 0;
1247 idx = READ_ONCE(f->reg_idx);
1248 if (idx >= sizeof(struct pt_regs) / sizeof(__u32))
1249 idx = 0;
1250 ptr += idx++;
1251 WRITE_ONCE(f->reg_idx, idx);
1252 return *ptr;
1255 void add_interrupt_randomness(int irq, int irq_flags)
1257 struct entropy_store *r;
1258 struct fast_pool *fast_pool = this_cpu_ptr(&irq_randomness);
1259 struct pt_regs *regs = get_irq_regs();
1260 unsigned long now = jiffies;
1261 cycles_t cycles = random_get_entropy();
1262 __u32 c_high, j_high;
1263 __u64 ip;
1264 unsigned long seed;
1265 int credit = 0;
1267 if (cycles == 0)
1268 cycles = get_reg(fast_pool, regs);
1269 c_high = (sizeof(cycles) > 4) ? cycles >> 32 : 0;
1270 j_high = (sizeof(now) > 4) ? now >> 32 : 0;
1271 fast_pool->pool[0] ^= cycles ^ j_high ^ irq;
1272 fast_pool->pool[1] ^= now ^ c_high;
1273 ip = regs ? instruction_pointer(regs) : _RET_IP_;
1274 fast_pool->pool[2] ^= ip;
1275 fast_pool->pool[3] ^= (sizeof(ip) > 4) ? ip >> 32 :
1276 get_reg(fast_pool, regs);
1278 fast_mix(fast_pool);
1279 add_interrupt_bench(cycles);
1281 if (unlikely(crng_init == 0)) {
1282 if ((fast_pool->count >= 64) &&
1283 crng_fast_load((char *) fast_pool->pool,
1284 sizeof(fast_pool->pool))) {
1285 fast_pool->count = 0;
1286 fast_pool->last = now;
1288 return;
1291 if ((fast_pool->count < 64) &&
1292 !time_after(now, fast_pool->last + HZ))
1293 return;
1295 r = &input_pool;
1296 if (!spin_trylock(&r->lock))
1297 return;
1299 fast_pool->last = now;
1300 __mix_pool_bytes(r, &fast_pool->pool, sizeof(fast_pool->pool));
1303 * If we have architectural seed generator, produce a seed and
1304 * add it to the pool. For the sake of paranoia don't let the
1305 * architectural seed generator dominate the input from the
1306 * interrupt noise.
1308 if (arch_get_random_seed_long(&seed)) {
1309 __mix_pool_bytes(r, &seed, sizeof(seed));
1310 credit = 1;
1312 spin_unlock(&r->lock);
1314 fast_pool->count = 0;
1316 /* award one bit for the contents of the fast pool */
1317 credit_entropy_bits(r, credit + 1);
1319 EXPORT_SYMBOL_GPL(add_interrupt_randomness);
1321 #ifdef CONFIG_BLOCK
1322 void add_disk_randomness(struct gendisk *disk)
1324 if (!disk || !disk->random)
1325 return;
1326 /* first major is 1, so we get >= 0x200 here */
1327 add_timer_randomness(disk->random, 0x100 + disk_devt(disk));
1328 trace_add_disk_randomness(disk_devt(disk), ENTROPY_BITS(&input_pool));
1330 EXPORT_SYMBOL_GPL(add_disk_randomness);
1331 #endif
1333 /*********************************************************************
1335 * Entropy extraction routines
1337 *********************************************************************/
1340 * This function decides how many bytes to actually take from the
1341 * given pool, and also debits the entropy count accordingly.
1343 static size_t account(struct entropy_store *r, size_t nbytes, int min,
1344 int reserved)
1346 int entropy_count, orig, have_bytes;
1347 size_t ibytes, nfrac;
1349 BUG_ON(r->entropy_count > r->poolinfo->poolfracbits);
1351 /* Can we pull enough? */
1352 retry:
1353 entropy_count = orig = READ_ONCE(r->entropy_count);
1354 ibytes = nbytes;
1355 /* never pull more than available */
1356 have_bytes = entropy_count >> (ENTROPY_SHIFT + 3);
1358 if ((have_bytes -= reserved) < 0)
1359 have_bytes = 0;
1360 ibytes = min_t(size_t, ibytes, have_bytes);
1361 if (ibytes < min)
1362 ibytes = 0;
1364 if (WARN_ON(entropy_count < 0)) {
1365 pr_warn("negative entropy count: pool %s count %d\n",
1366 r->name, entropy_count);
1367 entropy_count = 0;
1369 nfrac = ibytes << (ENTROPY_SHIFT + 3);
1370 if ((size_t) entropy_count > nfrac)
1371 entropy_count -= nfrac;
1372 else
1373 entropy_count = 0;
1375 if (cmpxchg(&r->entropy_count, orig, entropy_count) != orig)
1376 goto retry;
1378 trace_debit_entropy(r->name, 8 * ibytes);
1379 if (ibytes && ENTROPY_BITS(r) < random_write_wakeup_bits) {
1380 wake_up_interruptible(&random_write_wait);
1381 kill_fasync(&fasync, SIGIO, POLL_OUT);
1384 return ibytes;
1388 * This function does the actual extraction for extract_entropy and
1389 * extract_entropy_user.
1391 * Note: we assume that .poolwords is a multiple of 16 words.
1393 static void extract_buf(struct entropy_store *r, __u8 *out)
1395 int i;
1396 union {
1397 __u32 w[5];
1398 unsigned long l[LONGS(20)];
1399 } hash;
1400 __u32 workspace[SHA_WORKSPACE_WORDS];
1401 unsigned long flags;
1404 * If we have an architectural hardware random number
1405 * generator, use it for SHA's initial vector
1407 sha_init(hash.w);
1408 for (i = 0; i < LONGS(20); i++) {
1409 unsigned long v;
1410 if (!arch_get_random_long(&v))
1411 break;
1412 hash.l[i] = v;
1415 /* Generate a hash across the pool, 16 words (512 bits) at a time */
1416 spin_lock_irqsave(&r->lock, flags);
1417 for (i = 0; i < r->poolinfo->poolwords; i += 16)
1418 sha_transform(hash.w, (__u8 *)(r->pool + i), workspace);
1421 * We mix the hash back into the pool to prevent backtracking
1422 * attacks (where the attacker knows the state of the pool
1423 * plus the current outputs, and attempts to find previous
1424 * ouputs), unless the hash function can be inverted. By
1425 * mixing at least a SHA1 worth of hash data back, we make
1426 * brute-forcing the feedback as hard as brute-forcing the
1427 * hash.
1429 __mix_pool_bytes(r, hash.w, sizeof(hash.w));
1430 spin_unlock_irqrestore(&r->lock, flags);
1432 memzero_explicit(workspace, sizeof(workspace));
1435 * In case the hash function has some recognizable output
1436 * pattern, we fold it in half. Thus, we always feed back
1437 * twice as much data as we output.
1439 hash.w[0] ^= hash.w[3];
1440 hash.w[1] ^= hash.w[4];
1441 hash.w[2] ^= rol32(hash.w[2], 16);
1443 memcpy(out, &hash, EXTRACT_SIZE);
1444 memzero_explicit(&hash, sizeof(hash));
1447 static ssize_t _extract_entropy(struct entropy_store *r, void *buf,
1448 size_t nbytes, int fips)
1450 ssize_t ret = 0, i;
1451 __u8 tmp[EXTRACT_SIZE];
1452 unsigned long flags;
1454 while (nbytes) {
1455 extract_buf(r, tmp);
1457 if (fips) {
1458 spin_lock_irqsave(&r->lock, flags);
1459 if (!memcmp(tmp, r->last_data, EXTRACT_SIZE))
1460 panic("Hardware RNG duplicated output!\n");
1461 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1462 spin_unlock_irqrestore(&r->lock, flags);
1464 i = min_t(int, nbytes, EXTRACT_SIZE);
1465 memcpy(buf, tmp, i);
1466 nbytes -= i;
1467 buf += i;
1468 ret += i;
1471 /* Wipe data just returned from memory */
1472 memzero_explicit(tmp, sizeof(tmp));
1474 return ret;
1478 * This function extracts randomness from the "entropy pool", and
1479 * returns it in a buffer.
1481 * The min parameter specifies the minimum amount we can pull before
1482 * failing to avoid races that defeat catastrophic reseeding while the
1483 * reserved parameter indicates how much entropy we must leave in the
1484 * pool after each pull to avoid starving other readers.
1486 static ssize_t extract_entropy(struct entropy_store *r, void *buf,
1487 size_t nbytes, int min, int reserved)
1489 __u8 tmp[EXTRACT_SIZE];
1490 unsigned long flags;
1492 /* if last_data isn't primed, we need EXTRACT_SIZE extra bytes */
1493 if (fips_enabled) {
1494 spin_lock_irqsave(&r->lock, flags);
1495 if (!r->last_data_init) {
1496 r->last_data_init = 1;
1497 spin_unlock_irqrestore(&r->lock, flags);
1498 trace_extract_entropy(r->name, EXTRACT_SIZE,
1499 ENTROPY_BITS(r), _RET_IP_);
1500 extract_buf(r, tmp);
1501 spin_lock_irqsave(&r->lock, flags);
1502 memcpy(r->last_data, tmp, EXTRACT_SIZE);
1504 spin_unlock_irqrestore(&r->lock, flags);
1507 trace_extract_entropy(r->name, nbytes, ENTROPY_BITS(r), _RET_IP_);
1508 nbytes = account(r, nbytes, min, reserved);
1510 return _extract_entropy(r, buf, nbytes, fips_enabled);
1513 #define warn_unseeded_randomness(previous) \
1514 _warn_unseeded_randomness(__func__, (void *) _RET_IP_, (previous))
1516 static void _warn_unseeded_randomness(const char *func_name, void *caller,
1517 void **previous)
1519 #ifdef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1520 const bool print_once = false;
1521 #else
1522 static bool print_once __read_mostly;
1523 #endif
1525 if (print_once ||
1526 crng_ready() ||
1527 (previous && (caller == READ_ONCE(*previous))))
1528 return;
1529 WRITE_ONCE(*previous, caller);
1530 #ifndef CONFIG_WARN_ALL_UNSEEDED_RANDOM
1531 print_once = true;
1532 #endif
1533 if (__ratelimit(&unseeded_warning))
1534 printk_deferred(KERN_NOTICE "random: %s called from %pS "
1535 "with crng_init=%d\n", func_name, caller,
1536 crng_init);
1540 * This function is the exported kernel interface. It returns some
1541 * number of good random numbers, suitable for key generation, seeding
1542 * TCP sequence numbers, etc. It does not rely on the hardware random
1543 * number generator. For random bytes direct from the hardware RNG
1544 * (when available), use get_random_bytes_arch(). In order to ensure
1545 * that the randomness provided by this function is okay, the function
1546 * wait_for_random_bytes() should be called and return 0 at least once
1547 * at any point prior.
1549 static void _get_random_bytes(void *buf, int nbytes)
1551 __u8 tmp[CHACHA_BLOCK_SIZE] __aligned(4);
1553 trace_get_random_bytes(nbytes, _RET_IP_);
1555 while (nbytes >= CHACHA_BLOCK_SIZE) {
1556 extract_crng(buf);
1557 buf += CHACHA_BLOCK_SIZE;
1558 nbytes -= CHACHA_BLOCK_SIZE;
1561 if (nbytes > 0) {
1562 extract_crng(tmp);
1563 memcpy(buf, tmp, nbytes);
1564 crng_backtrack_protect(tmp, nbytes);
1565 } else
1566 crng_backtrack_protect(tmp, CHACHA_BLOCK_SIZE);
1567 memzero_explicit(tmp, sizeof(tmp));
1570 void get_random_bytes(void *buf, int nbytes)
1572 static void *previous;
1574 warn_unseeded_randomness(&previous);
1575 _get_random_bytes(buf, nbytes);
1577 EXPORT_SYMBOL(get_random_bytes);
1581 * Each time the timer fires, we expect that we got an unpredictable
1582 * jump in the cycle counter. Even if the timer is running on another
1583 * CPU, the timer activity will be touching the stack of the CPU that is
1584 * generating entropy..
1586 * Note that we don't re-arm the timer in the timer itself - we are
1587 * happy to be scheduled away, since that just makes the load more
1588 * complex, but we do not want the timer to keep ticking unless the
1589 * entropy loop is running.
1591 * So the re-arming always happens in the entropy loop itself.
1593 static void entropy_timer(struct timer_list *t)
1595 credit_entropy_bits(&input_pool, 1);
1599 * If we have an actual cycle counter, see if we can
1600 * generate enough entropy with timing noise
1602 static void try_to_generate_entropy(void)
1604 struct {
1605 unsigned long now;
1606 struct timer_list timer;
1607 } stack;
1609 stack.now = random_get_entropy();
1611 /* Slow counter - or none. Don't even bother */
1612 if (stack.now == random_get_entropy())
1613 return;
1615 timer_setup_on_stack(&stack.timer, entropy_timer, 0);
1616 while (!crng_ready()) {
1617 if (!timer_pending(&stack.timer))
1618 mod_timer(&stack.timer, jiffies+1);
1619 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1620 schedule();
1621 stack.now = random_get_entropy();
1624 del_timer_sync(&stack.timer);
1625 destroy_timer_on_stack(&stack.timer);
1626 mix_pool_bytes(&input_pool, &stack.now, sizeof(stack.now));
1630 * Wait for the urandom pool to be seeded and thus guaranteed to supply
1631 * cryptographically secure random numbers. This applies to: the /dev/urandom
1632 * device, the get_random_bytes function, and the get_random_{u32,u64,int,long}
1633 * family of functions. Using any of these functions without first calling
1634 * this function forfeits the guarantee of security.
1636 * Returns: 0 if the urandom pool has been seeded.
1637 * -ERESTARTSYS if the function was interrupted by a signal.
1639 int wait_for_random_bytes(void)
1641 if (likely(crng_ready()))
1642 return 0;
1644 do {
1645 int ret;
1646 ret = wait_event_interruptible_timeout(crng_init_wait, crng_ready(), HZ);
1647 if (ret)
1648 return ret > 0 ? 0 : ret;
1650 try_to_generate_entropy();
1651 } while (!crng_ready());
1653 return 0;
1655 EXPORT_SYMBOL(wait_for_random_bytes);
1658 * Returns whether or not the urandom pool has been seeded and thus guaranteed
1659 * to supply cryptographically secure random numbers. This applies to: the
1660 * /dev/urandom device, the get_random_bytes function, and the get_random_{u32,
1661 * ,u64,int,long} family of functions.
1663 * Returns: true if the urandom pool has been seeded.
1664 * false if the urandom pool has not been seeded.
1666 bool rng_is_initialized(void)
1668 return crng_ready();
1670 EXPORT_SYMBOL(rng_is_initialized);
1673 * Add a callback function that will be invoked when the nonblocking
1674 * pool is initialised.
1676 * returns: 0 if callback is successfully added
1677 * -EALREADY if pool is already initialised (callback not called)
1678 * -ENOENT if module for callback is not alive
1680 int add_random_ready_callback(struct random_ready_callback *rdy)
1682 struct module *owner;
1683 unsigned long flags;
1684 int err = -EALREADY;
1686 if (crng_ready())
1687 return err;
1689 owner = rdy->owner;
1690 if (!try_module_get(owner))
1691 return -ENOENT;
1693 spin_lock_irqsave(&random_ready_list_lock, flags);
1694 if (crng_ready())
1695 goto out;
1697 owner = NULL;
1699 list_add(&rdy->list, &random_ready_list);
1700 err = 0;
1702 out:
1703 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1705 module_put(owner);
1707 return err;
1709 EXPORT_SYMBOL(add_random_ready_callback);
1712 * Delete a previously registered readiness callback function.
1714 void del_random_ready_callback(struct random_ready_callback *rdy)
1716 unsigned long flags;
1717 struct module *owner = NULL;
1719 spin_lock_irqsave(&random_ready_list_lock, flags);
1720 if (!list_empty(&rdy->list)) {
1721 list_del_init(&rdy->list);
1722 owner = rdy->owner;
1724 spin_unlock_irqrestore(&random_ready_list_lock, flags);
1726 module_put(owner);
1728 EXPORT_SYMBOL(del_random_ready_callback);
1731 * This function will use the architecture-specific hardware random
1732 * number generator if it is available. The arch-specific hw RNG will
1733 * almost certainly be faster than what we can do in software, but it
1734 * is impossible to verify that it is implemented securely (as
1735 * opposed, to, say, the AES encryption of a sequence number using a
1736 * key known by the NSA). So it's useful if we need the speed, but
1737 * only if we're willing to trust the hardware manufacturer not to
1738 * have put in a back door.
1740 * Return number of bytes filled in.
1742 int __must_check get_random_bytes_arch(void *buf, int nbytes)
1744 int left = nbytes;
1745 char *p = buf;
1747 trace_get_random_bytes_arch(left, _RET_IP_);
1748 while (left) {
1749 unsigned long v;
1750 int chunk = min_t(int, left, sizeof(unsigned long));
1752 if (!arch_get_random_long(&v))
1753 break;
1755 memcpy(p, &v, chunk);
1756 p += chunk;
1757 left -= chunk;
1760 return nbytes - left;
1762 EXPORT_SYMBOL(get_random_bytes_arch);
1765 * init_std_data - initialize pool with system data
1767 * @r: pool to initialize
1769 * This function clears the pool's entropy count and mixes some system
1770 * data into the pool to prepare it for use. The pool is not cleared
1771 * as that can only decrease the entropy in the pool.
1773 static void __init init_std_data(struct entropy_store *r)
1775 int i;
1776 ktime_t now = ktime_get_real();
1777 unsigned long rv;
1779 mix_pool_bytes(r, &now, sizeof(now));
1780 for (i = r->poolinfo->poolbytes; i > 0; i -= sizeof(rv)) {
1781 if (!arch_get_random_seed_long(&rv) &&
1782 !arch_get_random_long(&rv))
1783 rv = random_get_entropy();
1784 mix_pool_bytes(r, &rv, sizeof(rv));
1786 mix_pool_bytes(r, utsname(), sizeof(*(utsname())));
1790 * Note that setup_arch() may call add_device_randomness()
1791 * long before we get here. This allows seeding of the pools
1792 * with some platform dependent data very early in the boot
1793 * process. But it limits our options here. We must use
1794 * statically allocated structures that already have all
1795 * initializations complete at compile time. We should also
1796 * take care not to overwrite the precious per platform data
1797 * we were given.
1799 int __init rand_initialize(void)
1801 init_std_data(&input_pool);
1802 crng_initialize_primary(&primary_crng);
1803 crng_global_init_time = jiffies;
1804 if (ratelimit_disable) {
1805 urandom_warning.interval = 0;
1806 unseeded_warning.interval = 0;
1808 return 0;
1811 #ifdef CONFIG_BLOCK
1812 void rand_initialize_disk(struct gendisk *disk)
1814 struct timer_rand_state *state;
1817 * If kzalloc returns null, we just won't use that entropy
1818 * source.
1820 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
1821 if (state) {
1822 state->last_time = INITIAL_JIFFIES;
1823 disk->random = state;
1826 #endif
1828 static ssize_t
1829 urandom_read_nowarn(struct file *file, char __user *buf, size_t nbytes,
1830 loff_t *ppos)
1832 int ret;
1834 nbytes = min_t(size_t, nbytes, INT_MAX >> (ENTROPY_SHIFT + 3));
1835 ret = extract_crng_user(buf, nbytes);
1836 trace_urandom_read(8 * nbytes, 0, ENTROPY_BITS(&input_pool));
1837 return ret;
1840 static ssize_t
1841 urandom_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1843 unsigned long flags;
1844 static int maxwarn = 10;
1846 if (!crng_ready() && maxwarn > 0) {
1847 maxwarn--;
1848 if (__ratelimit(&urandom_warning))
1849 pr_notice("%s: uninitialized urandom read (%zd bytes read)\n",
1850 current->comm, nbytes);
1851 spin_lock_irqsave(&primary_crng.lock, flags);
1852 crng_init_cnt = 0;
1853 spin_unlock_irqrestore(&primary_crng.lock, flags);
1856 return urandom_read_nowarn(file, buf, nbytes, ppos);
1859 static ssize_t
1860 random_read(struct file *file, char __user *buf, size_t nbytes, loff_t *ppos)
1862 int ret;
1864 ret = wait_for_random_bytes();
1865 if (ret != 0)
1866 return ret;
1867 return urandom_read_nowarn(file, buf, nbytes, ppos);
1870 static __poll_t
1871 random_poll(struct file *file, poll_table * wait)
1873 __poll_t mask;
1875 poll_wait(file, &crng_init_wait, wait);
1876 poll_wait(file, &random_write_wait, wait);
1877 mask = 0;
1878 if (crng_ready())
1879 mask |= EPOLLIN | EPOLLRDNORM;
1880 if (ENTROPY_BITS(&input_pool) < random_write_wakeup_bits)
1881 mask |= EPOLLOUT | EPOLLWRNORM;
1882 return mask;
1885 static int
1886 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1888 size_t bytes;
1889 __u32 t, buf[16];
1890 const char __user *p = buffer;
1892 while (count > 0) {
1893 int b, i = 0;
1895 bytes = min(count, sizeof(buf));
1896 if (copy_from_user(&buf, p, bytes))
1897 return -EFAULT;
1899 for (b = bytes ; b > 0 ; b -= sizeof(__u32), i++) {
1900 if (!arch_get_random_int(&t))
1901 break;
1902 buf[i] ^= t;
1905 count -= bytes;
1906 p += bytes;
1908 mix_pool_bytes(r, buf, bytes);
1909 cond_resched();
1912 return 0;
1915 static ssize_t random_write(struct file *file, const char __user *buffer,
1916 size_t count, loff_t *ppos)
1918 size_t ret;
1920 ret = write_pool(&input_pool, buffer, count);
1921 if (ret)
1922 return ret;
1924 return (ssize_t)count;
1927 static long random_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1929 int size, ent_count;
1930 int __user *p = (int __user *)arg;
1931 int retval;
1933 switch (cmd) {
1934 case RNDGETENTCNT:
1935 /* inherently racy, no point locking */
1936 ent_count = ENTROPY_BITS(&input_pool);
1937 if (put_user(ent_count, p))
1938 return -EFAULT;
1939 return 0;
1940 case RNDADDTOENTCNT:
1941 if (!capable(CAP_SYS_ADMIN))
1942 return -EPERM;
1943 if (get_user(ent_count, p))
1944 return -EFAULT;
1945 return credit_entropy_bits_safe(&input_pool, ent_count);
1946 case RNDADDENTROPY:
1947 if (!capable(CAP_SYS_ADMIN))
1948 return -EPERM;
1949 if (get_user(ent_count, p++))
1950 return -EFAULT;
1951 if (ent_count < 0)
1952 return -EINVAL;
1953 if (get_user(size, p++))
1954 return -EFAULT;
1955 retval = write_pool(&input_pool, (const char __user *)p,
1956 size);
1957 if (retval < 0)
1958 return retval;
1959 return credit_entropy_bits_safe(&input_pool, ent_count);
1960 case RNDZAPENTCNT:
1961 case RNDCLEARPOOL:
1963 * Clear the entropy pool counters. We no longer clear
1964 * the entropy pool, as that's silly.
1966 if (!capable(CAP_SYS_ADMIN))
1967 return -EPERM;
1968 input_pool.entropy_count = 0;
1969 return 0;
1970 case RNDRESEEDCRNG:
1971 if (!capable(CAP_SYS_ADMIN))
1972 return -EPERM;
1973 if (crng_init < 2)
1974 return -ENODATA;
1975 crng_reseed(&primary_crng, NULL);
1976 crng_global_init_time = jiffies - 1;
1977 return 0;
1978 default:
1979 return -EINVAL;
1983 static int random_fasync(int fd, struct file *filp, int on)
1985 return fasync_helper(fd, filp, on, &fasync);
1988 const struct file_operations random_fops = {
1989 .read = random_read,
1990 .write = random_write,
1991 .poll = random_poll,
1992 .unlocked_ioctl = random_ioctl,
1993 .compat_ioctl = compat_ptr_ioctl,
1994 .fasync = random_fasync,
1995 .llseek = noop_llseek,
1998 const struct file_operations urandom_fops = {
1999 .read = urandom_read,
2000 .write = random_write,
2001 .unlocked_ioctl = random_ioctl,
2002 .compat_ioctl = compat_ptr_ioctl,
2003 .fasync = random_fasync,
2004 .llseek = noop_llseek,
2007 SYSCALL_DEFINE3(getrandom, char __user *, buf, size_t, count,
2008 unsigned int, flags)
2010 int ret;
2012 if (flags & ~(GRND_NONBLOCK|GRND_RANDOM|GRND_INSECURE))
2013 return -EINVAL;
2016 * Requesting insecure and blocking randomness at the same time makes
2017 * no sense.
2019 if ((flags & (GRND_INSECURE|GRND_RANDOM)) == (GRND_INSECURE|GRND_RANDOM))
2020 return -EINVAL;
2022 if (count > INT_MAX)
2023 count = INT_MAX;
2025 if (!(flags & GRND_INSECURE) && !crng_ready()) {
2026 if (flags & GRND_NONBLOCK)
2027 return -EAGAIN;
2028 ret = wait_for_random_bytes();
2029 if (unlikely(ret))
2030 return ret;
2032 return urandom_read_nowarn(NULL, buf, count, NULL);
2035 /********************************************************************
2037 * Sysctl interface
2039 ********************************************************************/
2041 #ifdef CONFIG_SYSCTL
2043 #include <linux/sysctl.h>
2045 static int min_write_thresh;
2046 static int max_write_thresh = INPUT_POOL_WORDS * 32;
2047 static int random_min_urandom_seed = 60;
2048 static char sysctl_bootid[16];
2051 * This function is used to return both the bootid UUID, and random
2052 * UUID. The difference is in whether table->data is NULL; if it is,
2053 * then a new UUID is generated and returned to the user.
2055 * If the user accesses this via the proc interface, the UUID will be
2056 * returned as an ASCII string in the standard UUID format; if via the
2057 * sysctl system call, as 16 bytes of binary data.
2059 static int proc_do_uuid(struct ctl_table *table, int write,
2060 void __user *buffer, size_t *lenp, loff_t *ppos)
2062 struct ctl_table fake_table;
2063 unsigned char buf[64], tmp_uuid[16], *uuid;
2065 uuid = table->data;
2066 if (!uuid) {
2067 uuid = tmp_uuid;
2068 generate_random_uuid(uuid);
2069 } else {
2070 static DEFINE_SPINLOCK(bootid_spinlock);
2072 spin_lock(&bootid_spinlock);
2073 if (!uuid[8])
2074 generate_random_uuid(uuid);
2075 spin_unlock(&bootid_spinlock);
2078 sprintf(buf, "%pU", uuid);
2080 fake_table.data = buf;
2081 fake_table.maxlen = sizeof(buf);
2083 return proc_dostring(&fake_table, write, buffer, lenp, ppos);
2087 * Return entropy available scaled to integral bits
2089 static int proc_do_entropy(struct ctl_table *table, int write,
2090 void __user *buffer, size_t *lenp, loff_t *ppos)
2092 struct ctl_table fake_table;
2093 int entropy_count;
2095 entropy_count = *(int *)table->data >> ENTROPY_SHIFT;
2097 fake_table.data = &entropy_count;
2098 fake_table.maxlen = sizeof(entropy_count);
2100 return proc_dointvec(&fake_table, write, buffer, lenp, ppos);
2103 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
2104 extern struct ctl_table random_table[];
2105 struct ctl_table random_table[] = {
2107 .procname = "poolsize",
2108 .data = &sysctl_poolsize,
2109 .maxlen = sizeof(int),
2110 .mode = 0444,
2111 .proc_handler = proc_dointvec,
2114 .procname = "entropy_avail",
2115 .maxlen = sizeof(int),
2116 .mode = 0444,
2117 .proc_handler = proc_do_entropy,
2118 .data = &input_pool.entropy_count,
2121 .procname = "write_wakeup_threshold",
2122 .data = &random_write_wakeup_bits,
2123 .maxlen = sizeof(int),
2124 .mode = 0644,
2125 .proc_handler = proc_dointvec_minmax,
2126 .extra1 = &min_write_thresh,
2127 .extra2 = &max_write_thresh,
2130 .procname = "urandom_min_reseed_secs",
2131 .data = &random_min_urandom_seed,
2132 .maxlen = sizeof(int),
2133 .mode = 0644,
2134 .proc_handler = proc_dointvec,
2137 .procname = "boot_id",
2138 .data = &sysctl_bootid,
2139 .maxlen = 16,
2140 .mode = 0444,
2141 .proc_handler = proc_do_uuid,
2144 .procname = "uuid",
2145 .maxlen = 16,
2146 .mode = 0444,
2147 .proc_handler = proc_do_uuid,
2149 #ifdef ADD_INTERRUPT_BENCH
2151 .procname = "add_interrupt_avg_cycles",
2152 .data = &avg_cycles,
2153 .maxlen = sizeof(avg_cycles),
2154 .mode = 0444,
2155 .proc_handler = proc_doulongvec_minmax,
2158 .procname = "add_interrupt_avg_deviation",
2159 .data = &avg_deviation,
2160 .maxlen = sizeof(avg_deviation),
2161 .mode = 0444,
2162 .proc_handler = proc_doulongvec_minmax,
2164 #endif
2167 #endif /* CONFIG_SYSCTL */
2169 struct batched_entropy {
2170 union {
2171 u64 entropy_u64[CHACHA_BLOCK_SIZE / sizeof(u64)];
2172 u32 entropy_u32[CHACHA_BLOCK_SIZE / sizeof(u32)];
2174 unsigned int position;
2175 spinlock_t batch_lock;
2179 * Get a random word for internal kernel use only. The quality of the random
2180 * number is good as /dev/urandom, but there is no backtrack protection, with
2181 * the goal of being quite fast and not depleting entropy. In order to ensure
2182 * that the randomness provided by this function is okay, the function
2183 * wait_for_random_bytes() should be called and return 0 at least once at any
2184 * point prior.
2186 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u64) = {
2187 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u64.lock),
2190 u64 get_random_u64(void)
2192 u64 ret;
2193 unsigned long flags;
2194 struct batched_entropy *batch;
2195 static void *previous;
2197 warn_unseeded_randomness(&previous);
2199 batch = raw_cpu_ptr(&batched_entropy_u64);
2200 spin_lock_irqsave(&batch->batch_lock, flags);
2201 if (batch->position % ARRAY_SIZE(batch->entropy_u64) == 0) {
2202 extract_crng((u8 *)batch->entropy_u64);
2203 batch->position = 0;
2205 ret = batch->entropy_u64[batch->position++];
2206 spin_unlock_irqrestore(&batch->batch_lock, flags);
2207 return ret;
2209 EXPORT_SYMBOL(get_random_u64);
2211 static DEFINE_PER_CPU(struct batched_entropy, batched_entropy_u32) = {
2212 .batch_lock = __SPIN_LOCK_UNLOCKED(batched_entropy_u32.lock),
2214 u32 get_random_u32(void)
2216 u32 ret;
2217 unsigned long flags;
2218 struct batched_entropy *batch;
2219 static void *previous;
2221 warn_unseeded_randomness(&previous);
2223 batch = raw_cpu_ptr(&batched_entropy_u32);
2224 spin_lock_irqsave(&batch->batch_lock, flags);
2225 if (batch->position % ARRAY_SIZE(batch->entropy_u32) == 0) {
2226 extract_crng((u8 *)batch->entropy_u32);
2227 batch->position = 0;
2229 ret = batch->entropy_u32[batch->position++];
2230 spin_unlock_irqrestore(&batch->batch_lock, flags);
2231 return ret;
2233 EXPORT_SYMBOL(get_random_u32);
2235 /* It's important to invalidate all potential batched entropy that might
2236 * be stored before the crng is initialized, which we can do lazily by
2237 * simply resetting the counter to zero so that it's re-extracted on the
2238 * next usage. */
2239 static void invalidate_batched_entropy(void)
2241 int cpu;
2242 unsigned long flags;
2244 for_each_possible_cpu (cpu) {
2245 struct batched_entropy *batched_entropy;
2247 batched_entropy = per_cpu_ptr(&batched_entropy_u32, cpu);
2248 spin_lock_irqsave(&batched_entropy->batch_lock, flags);
2249 batched_entropy->position = 0;
2250 spin_unlock(&batched_entropy->batch_lock);
2252 batched_entropy = per_cpu_ptr(&batched_entropy_u64, cpu);
2253 spin_lock(&batched_entropy->batch_lock);
2254 batched_entropy->position = 0;
2255 spin_unlock_irqrestore(&batched_entropy->batch_lock, flags);
2260 * randomize_page - Generate a random, page aligned address
2261 * @start: The smallest acceptable address the caller will take.
2262 * @range: The size of the area, starting at @start, within which the
2263 * random address must fall.
2265 * If @start + @range would overflow, @range is capped.
2267 * NOTE: Historical use of randomize_range, which this replaces, presumed that
2268 * @start was already page aligned. We now align it regardless.
2270 * Return: A page aligned address within [start, start + range). On error,
2271 * @start is returned.
2273 unsigned long
2274 randomize_page(unsigned long start, unsigned long range)
2276 if (!PAGE_ALIGNED(start)) {
2277 range -= PAGE_ALIGN(start) - start;
2278 start = PAGE_ALIGN(start);
2281 if (start > ULONG_MAX - range)
2282 range = ULONG_MAX - start;
2284 range >>= PAGE_SHIFT;
2286 if (range == 0)
2287 return start;
2289 return start + (get_random_long() % range << PAGE_SHIFT);
2292 /* Interface for in-kernel drivers of true hardware RNGs.
2293 * Those devices may produce endless random bits and will be throttled
2294 * when our pool is full.
2296 void add_hwgenerator_randomness(const char *buffer, size_t count,
2297 size_t entropy)
2299 struct entropy_store *poolp = &input_pool;
2301 if (unlikely(crng_init == 0)) {
2302 crng_fast_load(buffer, count);
2303 return;
2306 /* Suspend writing if we're above the trickle threshold.
2307 * We'll be woken up again once below random_write_wakeup_thresh,
2308 * or when the calling thread is about to terminate.
2310 wait_event_interruptible(random_write_wait, kthread_should_stop() ||
2311 ENTROPY_BITS(&input_pool) <= random_write_wakeup_bits);
2312 mix_pool_bytes(poolp, buffer, count);
2313 credit_entropy_bits(poolp, entropy);
2315 EXPORT_SYMBOL_GPL(add_hwgenerator_randomness);
2317 /* Handle random seed passed by bootloader.
2318 * If the seed is trustworthy, it would be regarded as hardware RNGs. Otherwise
2319 * it would be regarded as device data.
2320 * The decision is controlled by CONFIG_RANDOM_TRUST_BOOTLOADER.
2322 void add_bootloader_randomness(const void *buf, unsigned int size)
2324 if (IS_ENABLED(CONFIG_RANDOM_TRUST_BOOTLOADER))
2325 add_hwgenerator_randomness(buf, size, size * 8);
2326 else
2327 add_device_randomness(buf, size);
2329 EXPORT_SYMBOL_GPL(add_bootloader_randomness);