dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / crypto / ccp / ccp-ops.c
blob422193690fd47bb454d6d57b8158fdcf269e073d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * AMD Cryptographic Coprocessor (CCP) driver
5 * Copyright (C) 2013-2019 Advanced Micro Devices, Inc.
7 * Author: Tom Lendacky <thomas.lendacky@amd.com>
8 * Author: Gary R Hook <gary.hook@amd.com>
9 */
11 #include <linux/module.h>
12 #include <linux/kernel.h>
13 #include <linux/interrupt.h>
14 #include <crypto/scatterwalk.h>
15 #include <crypto/des.h>
16 #include <linux/ccp.h>
18 #include "ccp-dev.h"
20 /* SHA initial context values */
21 static const __be32 ccp_sha1_init[SHA1_DIGEST_SIZE / sizeof(__be32)] = {
22 cpu_to_be32(SHA1_H0), cpu_to_be32(SHA1_H1),
23 cpu_to_be32(SHA1_H2), cpu_to_be32(SHA1_H3),
24 cpu_to_be32(SHA1_H4),
27 static const __be32 ccp_sha224_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
28 cpu_to_be32(SHA224_H0), cpu_to_be32(SHA224_H1),
29 cpu_to_be32(SHA224_H2), cpu_to_be32(SHA224_H3),
30 cpu_to_be32(SHA224_H4), cpu_to_be32(SHA224_H5),
31 cpu_to_be32(SHA224_H6), cpu_to_be32(SHA224_H7),
34 static const __be32 ccp_sha256_init[SHA256_DIGEST_SIZE / sizeof(__be32)] = {
35 cpu_to_be32(SHA256_H0), cpu_to_be32(SHA256_H1),
36 cpu_to_be32(SHA256_H2), cpu_to_be32(SHA256_H3),
37 cpu_to_be32(SHA256_H4), cpu_to_be32(SHA256_H5),
38 cpu_to_be32(SHA256_H6), cpu_to_be32(SHA256_H7),
41 static const __be64 ccp_sha384_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
42 cpu_to_be64(SHA384_H0), cpu_to_be64(SHA384_H1),
43 cpu_to_be64(SHA384_H2), cpu_to_be64(SHA384_H3),
44 cpu_to_be64(SHA384_H4), cpu_to_be64(SHA384_H5),
45 cpu_to_be64(SHA384_H6), cpu_to_be64(SHA384_H7),
48 static const __be64 ccp_sha512_init[SHA512_DIGEST_SIZE / sizeof(__be64)] = {
49 cpu_to_be64(SHA512_H0), cpu_to_be64(SHA512_H1),
50 cpu_to_be64(SHA512_H2), cpu_to_be64(SHA512_H3),
51 cpu_to_be64(SHA512_H4), cpu_to_be64(SHA512_H5),
52 cpu_to_be64(SHA512_H6), cpu_to_be64(SHA512_H7),
55 #define CCP_NEW_JOBID(ccp) ((ccp->vdata->version == CCP_VERSION(3, 0)) ? \
56 ccp_gen_jobid(ccp) : 0)
58 static u32 ccp_gen_jobid(struct ccp_device *ccp)
60 return atomic_inc_return(&ccp->current_id) & CCP_JOBID_MASK;
63 static void ccp_sg_free(struct ccp_sg_workarea *wa)
65 if (wa->dma_count)
66 dma_unmap_sg(wa->dma_dev, wa->dma_sg, wa->nents, wa->dma_dir);
68 wa->dma_count = 0;
71 static int ccp_init_sg_workarea(struct ccp_sg_workarea *wa, struct device *dev,
72 struct scatterlist *sg, u64 len,
73 enum dma_data_direction dma_dir)
75 memset(wa, 0, sizeof(*wa));
77 wa->sg = sg;
78 if (!sg)
79 return 0;
81 wa->nents = sg_nents_for_len(sg, len);
82 if (wa->nents < 0)
83 return wa->nents;
85 wa->bytes_left = len;
86 wa->sg_used = 0;
88 if (len == 0)
89 return 0;
91 if (dma_dir == DMA_NONE)
92 return 0;
94 wa->dma_sg = sg;
95 wa->dma_dev = dev;
96 wa->dma_dir = dma_dir;
97 wa->dma_count = dma_map_sg(dev, sg, wa->nents, dma_dir);
98 if (!wa->dma_count)
99 return -ENOMEM;
101 return 0;
104 static void ccp_update_sg_workarea(struct ccp_sg_workarea *wa, unsigned int len)
106 unsigned int nbytes = min_t(u64, len, wa->bytes_left);
108 if (!wa->sg)
109 return;
111 wa->sg_used += nbytes;
112 wa->bytes_left -= nbytes;
113 if (wa->sg_used == wa->sg->length) {
114 wa->sg = sg_next(wa->sg);
115 wa->sg_used = 0;
119 static void ccp_dm_free(struct ccp_dm_workarea *wa)
121 if (wa->length <= CCP_DMAPOOL_MAX_SIZE) {
122 if (wa->address)
123 dma_pool_free(wa->dma_pool, wa->address,
124 wa->dma.address);
125 } else {
126 if (wa->dma.address)
127 dma_unmap_single(wa->dev, wa->dma.address, wa->length,
128 wa->dma.dir);
129 kfree(wa->address);
132 wa->address = NULL;
133 wa->dma.address = 0;
136 static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
137 struct ccp_cmd_queue *cmd_q,
138 unsigned int len,
139 enum dma_data_direction dir)
141 memset(wa, 0, sizeof(*wa));
143 if (!len)
144 return 0;
146 wa->dev = cmd_q->ccp->dev;
147 wa->length = len;
149 if (len <= CCP_DMAPOOL_MAX_SIZE) {
150 wa->dma_pool = cmd_q->dma_pool;
152 wa->address = dma_pool_zalloc(wa->dma_pool, GFP_KERNEL,
153 &wa->dma.address);
154 if (!wa->address)
155 return -ENOMEM;
157 wa->dma.length = CCP_DMAPOOL_MAX_SIZE;
159 } else {
160 wa->address = kzalloc(len, GFP_KERNEL);
161 if (!wa->address)
162 return -ENOMEM;
164 wa->dma.address = dma_map_single(wa->dev, wa->address, len,
165 dir);
166 if (dma_mapping_error(wa->dev, wa->dma.address))
167 return -ENOMEM;
169 wa->dma.length = len;
171 wa->dma.dir = dir;
173 return 0;
176 static int ccp_set_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
177 struct scatterlist *sg, unsigned int sg_offset,
178 unsigned int len)
180 WARN_ON(!wa->address);
182 if (len > (wa->length - wa_offset))
183 return -EINVAL;
185 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
187 return 0;
190 static void ccp_get_dm_area(struct ccp_dm_workarea *wa, unsigned int wa_offset,
191 struct scatterlist *sg, unsigned int sg_offset,
192 unsigned int len)
194 WARN_ON(!wa->address);
196 scatterwalk_map_and_copy(wa->address + wa_offset, sg, sg_offset, len,
200 static int ccp_reverse_set_dm_area(struct ccp_dm_workarea *wa,
201 unsigned int wa_offset,
202 struct scatterlist *sg,
203 unsigned int sg_offset,
204 unsigned int len)
206 u8 *p, *q;
207 int rc;
209 rc = ccp_set_dm_area(wa, wa_offset, sg, sg_offset, len);
210 if (rc)
211 return rc;
213 p = wa->address + wa_offset;
214 q = p + len - 1;
215 while (p < q) {
216 *p = *p ^ *q;
217 *q = *p ^ *q;
218 *p = *p ^ *q;
219 p++;
220 q--;
222 return 0;
225 static void ccp_reverse_get_dm_area(struct ccp_dm_workarea *wa,
226 unsigned int wa_offset,
227 struct scatterlist *sg,
228 unsigned int sg_offset,
229 unsigned int len)
231 u8 *p, *q;
233 p = wa->address + wa_offset;
234 q = p + len - 1;
235 while (p < q) {
236 *p = *p ^ *q;
237 *q = *p ^ *q;
238 *p = *p ^ *q;
239 p++;
240 q--;
243 ccp_get_dm_area(wa, wa_offset, sg, sg_offset, len);
246 static void ccp_free_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q)
248 ccp_dm_free(&data->dm_wa);
249 ccp_sg_free(&data->sg_wa);
252 static int ccp_init_data(struct ccp_data *data, struct ccp_cmd_queue *cmd_q,
253 struct scatterlist *sg, u64 sg_len,
254 unsigned int dm_len,
255 enum dma_data_direction dir)
257 int ret;
259 memset(data, 0, sizeof(*data));
261 ret = ccp_init_sg_workarea(&data->sg_wa, cmd_q->ccp->dev, sg, sg_len,
262 dir);
263 if (ret)
264 goto e_err;
266 ret = ccp_init_dm_workarea(&data->dm_wa, cmd_q, dm_len, dir);
267 if (ret)
268 goto e_err;
270 return 0;
272 e_err:
273 ccp_free_data(data, cmd_q);
275 return ret;
278 static unsigned int ccp_queue_buf(struct ccp_data *data, unsigned int from)
280 struct ccp_sg_workarea *sg_wa = &data->sg_wa;
281 struct ccp_dm_workarea *dm_wa = &data->dm_wa;
282 unsigned int buf_count, nbytes;
284 /* Clear the buffer if setting it */
285 if (!from)
286 memset(dm_wa->address, 0, dm_wa->length);
288 if (!sg_wa->sg)
289 return 0;
291 /* Perform the copy operation
292 * nbytes will always be <= UINT_MAX because dm_wa->length is
293 * an unsigned int
295 nbytes = min_t(u64, sg_wa->bytes_left, dm_wa->length);
296 scatterwalk_map_and_copy(dm_wa->address, sg_wa->sg, sg_wa->sg_used,
297 nbytes, from);
299 /* Update the structures and generate the count */
300 buf_count = 0;
301 while (sg_wa->bytes_left && (buf_count < dm_wa->length)) {
302 nbytes = min(sg_wa->sg->length - sg_wa->sg_used,
303 dm_wa->length - buf_count);
304 nbytes = min_t(u64, sg_wa->bytes_left, nbytes);
306 buf_count += nbytes;
307 ccp_update_sg_workarea(sg_wa, nbytes);
310 return buf_count;
313 static unsigned int ccp_fill_queue_buf(struct ccp_data *data)
315 return ccp_queue_buf(data, 0);
318 static unsigned int ccp_empty_queue_buf(struct ccp_data *data)
320 return ccp_queue_buf(data, 1);
323 static void ccp_prepare_data(struct ccp_data *src, struct ccp_data *dst,
324 struct ccp_op *op, unsigned int block_size,
325 bool blocksize_op)
327 unsigned int sg_src_len, sg_dst_len, op_len;
329 /* The CCP can only DMA from/to one address each per operation. This
330 * requires that we find the smallest DMA area between the source
331 * and destination. The resulting len values will always be <= UINT_MAX
332 * because the dma length is an unsigned int.
334 sg_src_len = sg_dma_len(src->sg_wa.sg) - src->sg_wa.sg_used;
335 sg_src_len = min_t(u64, src->sg_wa.bytes_left, sg_src_len);
337 if (dst) {
338 sg_dst_len = sg_dma_len(dst->sg_wa.sg) - dst->sg_wa.sg_used;
339 sg_dst_len = min_t(u64, src->sg_wa.bytes_left, sg_dst_len);
340 op_len = min(sg_src_len, sg_dst_len);
341 } else {
342 op_len = sg_src_len;
345 /* The data operation length will be at least block_size in length
346 * or the smaller of available sg room remaining for the source or
347 * the destination
349 op_len = max(op_len, block_size);
351 /* Unless we have to buffer data, there's no reason to wait */
352 op->soc = 0;
354 if (sg_src_len < block_size) {
355 /* Not enough data in the sg element, so it
356 * needs to be buffered into a blocksize chunk
358 int cp_len = ccp_fill_queue_buf(src);
360 op->soc = 1;
361 op->src.u.dma.address = src->dm_wa.dma.address;
362 op->src.u.dma.offset = 0;
363 op->src.u.dma.length = (blocksize_op) ? block_size : cp_len;
364 } else {
365 /* Enough data in the sg element, but we need to
366 * adjust for any previously copied data
368 op->src.u.dma.address = sg_dma_address(src->sg_wa.sg);
369 op->src.u.dma.offset = src->sg_wa.sg_used;
370 op->src.u.dma.length = op_len & ~(block_size - 1);
372 ccp_update_sg_workarea(&src->sg_wa, op->src.u.dma.length);
375 if (dst) {
376 if (sg_dst_len < block_size) {
377 /* Not enough room in the sg element or we're on the
378 * last piece of data (when using padding), so the
379 * output needs to be buffered into a blocksize chunk
381 op->soc = 1;
382 op->dst.u.dma.address = dst->dm_wa.dma.address;
383 op->dst.u.dma.offset = 0;
384 op->dst.u.dma.length = op->src.u.dma.length;
385 } else {
386 /* Enough room in the sg element, but we need to
387 * adjust for any previously used area
389 op->dst.u.dma.address = sg_dma_address(dst->sg_wa.sg);
390 op->dst.u.dma.offset = dst->sg_wa.sg_used;
391 op->dst.u.dma.length = op->src.u.dma.length;
396 static void ccp_process_data(struct ccp_data *src, struct ccp_data *dst,
397 struct ccp_op *op)
399 op->init = 0;
401 if (dst) {
402 if (op->dst.u.dma.address == dst->dm_wa.dma.address)
403 ccp_empty_queue_buf(dst);
404 else
405 ccp_update_sg_workarea(&dst->sg_wa,
406 op->dst.u.dma.length);
410 static int ccp_copy_to_from_sb(struct ccp_cmd_queue *cmd_q,
411 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
412 u32 byte_swap, bool from)
414 struct ccp_op op;
416 memset(&op, 0, sizeof(op));
418 op.cmd_q = cmd_q;
419 op.jobid = jobid;
420 op.eom = 1;
422 if (from) {
423 op.soc = 1;
424 op.src.type = CCP_MEMTYPE_SB;
425 op.src.u.sb = sb;
426 op.dst.type = CCP_MEMTYPE_SYSTEM;
427 op.dst.u.dma.address = wa->dma.address;
428 op.dst.u.dma.length = wa->length;
429 } else {
430 op.src.type = CCP_MEMTYPE_SYSTEM;
431 op.src.u.dma.address = wa->dma.address;
432 op.src.u.dma.length = wa->length;
433 op.dst.type = CCP_MEMTYPE_SB;
434 op.dst.u.sb = sb;
437 op.u.passthru.byte_swap = byte_swap;
439 return cmd_q->ccp->vdata->perform->passthru(&op);
442 static int ccp_copy_to_sb(struct ccp_cmd_queue *cmd_q,
443 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
444 u32 byte_swap)
446 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, false);
449 static int ccp_copy_from_sb(struct ccp_cmd_queue *cmd_q,
450 struct ccp_dm_workarea *wa, u32 jobid, u32 sb,
451 u32 byte_swap)
453 return ccp_copy_to_from_sb(cmd_q, wa, jobid, sb, byte_swap, true);
456 static noinline_for_stack int
457 ccp_run_aes_cmac_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
459 struct ccp_aes_engine *aes = &cmd->u.aes;
460 struct ccp_dm_workarea key, ctx;
461 struct ccp_data src;
462 struct ccp_op op;
463 unsigned int dm_offset;
464 int ret;
466 if (!((aes->key_len == AES_KEYSIZE_128) ||
467 (aes->key_len == AES_KEYSIZE_192) ||
468 (aes->key_len == AES_KEYSIZE_256)))
469 return -EINVAL;
471 if (aes->src_len & (AES_BLOCK_SIZE - 1))
472 return -EINVAL;
474 if (aes->iv_len != AES_BLOCK_SIZE)
475 return -EINVAL;
477 if (!aes->key || !aes->iv || !aes->src)
478 return -EINVAL;
480 if (aes->cmac_final) {
481 if (aes->cmac_key_len != AES_BLOCK_SIZE)
482 return -EINVAL;
484 if (!aes->cmac_key)
485 return -EINVAL;
488 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
489 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
491 ret = -EIO;
492 memset(&op, 0, sizeof(op));
493 op.cmd_q = cmd_q;
494 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
495 op.sb_key = cmd_q->sb_key;
496 op.sb_ctx = cmd_q->sb_ctx;
497 op.init = 1;
498 op.u.aes.type = aes->type;
499 op.u.aes.mode = aes->mode;
500 op.u.aes.action = aes->action;
502 /* All supported key sizes fit in a single (32-byte) SB entry
503 * and must be in little endian format. Use the 256-bit byte
504 * swap passthru option to convert from big endian to little
505 * endian.
507 ret = ccp_init_dm_workarea(&key, cmd_q,
508 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
509 DMA_TO_DEVICE);
510 if (ret)
511 return ret;
513 dm_offset = CCP_SB_BYTES - aes->key_len;
514 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
515 if (ret)
516 goto e_key;
517 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
518 CCP_PASSTHRU_BYTESWAP_256BIT);
519 if (ret) {
520 cmd->engine_error = cmd_q->cmd_error;
521 goto e_key;
524 /* The AES context fits in a single (32-byte) SB entry and
525 * must be in little endian format. Use the 256-bit byte swap
526 * passthru option to convert from big endian to little endian.
528 ret = ccp_init_dm_workarea(&ctx, cmd_q,
529 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
530 DMA_BIDIRECTIONAL);
531 if (ret)
532 goto e_key;
534 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
535 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
536 if (ret)
537 goto e_ctx;
538 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
539 CCP_PASSTHRU_BYTESWAP_256BIT);
540 if (ret) {
541 cmd->engine_error = cmd_q->cmd_error;
542 goto e_ctx;
545 /* Send data to the CCP AES engine */
546 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
547 AES_BLOCK_SIZE, DMA_TO_DEVICE);
548 if (ret)
549 goto e_ctx;
551 while (src.sg_wa.bytes_left) {
552 ccp_prepare_data(&src, NULL, &op, AES_BLOCK_SIZE, true);
553 if (aes->cmac_final && !src.sg_wa.bytes_left) {
554 op.eom = 1;
556 /* Push the K1/K2 key to the CCP now */
557 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid,
558 op.sb_ctx,
559 CCP_PASSTHRU_BYTESWAP_256BIT);
560 if (ret) {
561 cmd->engine_error = cmd_q->cmd_error;
562 goto e_src;
565 ret = ccp_set_dm_area(&ctx, 0, aes->cmac_key, 0,
566 aes->cmac_key_len);
567 if (ret)
568 goto e_src;
569 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
570 CCP_PASSTHRU_BYTESWAP_256BIT);
571 if (ret) {
572 cmd->engine_error = cmd_q->cmd_error;
573 goto e_src;
577 ret = cmd_q->ccp->vdata->perform->aes(&op);
578 if (ret) {
579 cmd->engine_error = cmd_q->cmd_error;
580 goto e_src;
583 ccp_process_data(&src, NULL, &op);
586 /* Retrieve the AES context - convert from LE to BE using
587 * 32-byte (256-bit) byteswapping
589 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
590 CCP_PASSTHRU_BYTESWAP_256BIT);
591 if (ret) {
592 cmd->engine_error = cmd_q->cmd_error;
593 goto e_src;
596 /* ...but we only need AES_BLOCK_SIZE bytes */
597 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
598 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
600 e_src:
601 ccp_free_data(&src, cmd_q);
603 e_ctx:
604 ccp_dm_free(&ctx);
606 e_key:
607 ccp_dm_free(&key);
609 return ret;
612 static noinline_for_stack int
613 ccp_run_aes_gcm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
615 struct ccp_aes_engine *aes = &cmd->u.aes;
616 struct ccp_dm_workarea key, ctx, final_wa, tag;
617 struct ccp_data src, dst;
618 struct ccp_data aad;
619 struct ccp_op op;
621 unsigned long long *final;
622 unsigned int dm_offset;
623 unsigned int authsize;
624 unsigned int jobid;
625 unsigned int ilen;
626 bool in_place = true; /* Default value */
627 int ret;
629 struct scatterlist *p_inp, sg_inp[2];
630 struct scatterlist *p_tag, sg_tag[2];
631 struct scatterlist *p_outp, sg_outp[2];
632 struct scatterlist *p_aad;
634 if (!aes->iv)
635 return -EINVAL;
637 if (!((aes->key_len == AES_KEYSIZE_128) ||
638 (aes->key_len == AES_KEYSIZE_192) ||
639 (aes->key_len == AES_KEYSIZE_256)))
640 return -EINVAL;
642 if (!aes->key) /* Gotta have a key SGL */
643 return -EINVAL;
645 /* Zero defaults to 16 bytes, the maximum size */
646 authsize = aes->authsize ? aes->authsize : AES_BLOCK_SIZE;
647 switch (authsize) {
648 case 16:
649 case 15:
650 case 14:
651 case 13:
652 case 12:
653 case 8:
654 case 4:
655 break;
656 default:
657 return -EINVAL;
660 /* First, decompose the source buffer into AAD & PT,
661 * and the destination buffer into AAD, CT & tag, or
662 * the input into CT & tag.
663 * It is expected that the input and output SGs will
664 * be valid, even if the AAD and input lengths are 0.
666 p_aad = aes->src;
667 p_inp = scatterwalk_ffwd(sg_inp, aes->src, aes->aad_len);
668 p_outp = scatterwalk_ffwd(sg_outp, aes->dst, aes->aad_len);
669 if (aes->action == CCP_AES_ACTION_ENCRYPT) {
670 ilen = aes->src_len;
671 p_tag = scatterwalk_ffwd(sg_tag, p_outp, ilen);
672 } else {
673 /* Input length for decryption includes tag */
674 ilen = aes->src_len - authsize;
675 p_tag = scatterwalk_ffwd(sg_tag, p_inp, ilen);
678 jobid = CCP_NEW_JOBID(cmd_q->ccp);
680 memset(&op, 0, sizeof(op));
681 op.cmd_q = cmd_q;
682 op.jobid = jobid;
683 op.sb_key = cmd_q->sb_key; /* Pre-allocated */
684 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
685 op.init = 1;
686 op.u.aes.type = aes->type;
688 /* Copy the key to the LSB */
689 ret = ccp_init_dm_workarea(&key, cmd_q,
690 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
691 DMA_TO_DEVICE);
692 if (ret)
693 return ret;
695 dm_offset = CCP_SB_BYTES - aes->key_len;
696 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
697 if (ret)
698 goto e_key;
699 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
700 CCP_PASSTHRU_BYTESWAP_256BIT);
701 if (ret) {
702 cmd->engine_error = cmd_q->cmd_error;
703 goto e_key;
706 /* Copy the context (IV) to the LSB.
707 * There is an assumption here that the IV is 96 bits in length, plus
708 * a nonce of 32 bits. If no IV is present, use a zeroed buffer.
710 ret = ccp_init_dm_workarea(&ctx, cmd_q,
711 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
712 DMA_BIDIRECTIONAL);
713 if (ret)
714 goto e_key;
716 dm_offset = CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES - aes->iv_len;
717 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
718 if (ret)
719 goto e_ctx;
721 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
722 CCP_PASSTHRU_BYTESWAP_256BIT);
723 if (ret) {
724 cmd->engine_error = cmd_q->cmd_error;
725 goto e_ctx;
728 op.init = 1;
729 if (aes->aad_len > 0) {
730 /* Step 1: Run a GHASH over the Additional Authenticated Data */
731 ret = ccp_init_data(&aad, cmd_q, p_aad, aes->aad_len,
732 AES_BLOCK_SIZE,
733 DMA_TO_DEVICE);
734 if (ret)
735 goto e_ctx;
737 op.u.aes.mode = CCP_AES_MODE_GHASH;
738 op.u.aes.action = CCP_AES_GHASHAAD;
740 while (aad.sg_wa.bytes_left) {
741 ccp_prepare_data(&aad, NULL, &op, AES_BLOCK_SIZE, true);
743 ret = cmd_q->ccp->vdata->perform->aes(&op);
744 if (ret) {
745 cmd->engine_error = cmd_q->cmd_error;
746 goto e_aad;
749 ccp_process_data(&aad, NULL, &op);
750 op.init = 0;
754 op.u.aes.mode = CCP_AES_MODE_GCTR;
755 op.u.aes.action = aes->action;
757 if (ilen > 0) {
758 /* Step 2: Run a GCTR over the plaintext */
759 in_place = (sg_virt(p_inp) == sg_virt(p_outp)) ? true : false;
761 ret = ccp_init_data(&src, cmd_q, p_inp, ilen,
762 AES_BLOCK_SIZE,
763 in_place ? DMA_BIDIRECTIONAL
764 : DMA_TO_DEVICE);
765 if (ret)
766 goto e_ctx;
768 if (in_place) {
769 dst = src;
770 } else {
771 ret = ccp_init_data(&dst, cmd_q, p_outp, ilen,
772 AES_BLOCK_SIZE, DMA_FROM_DEVICE);
773 if (ret)
774 goto e_src;
777 op.soc = 0;
778 op.eom = 0;
779 op.init = 1;
780 while (src.sg_wa.bytes_left) {
781 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
782 if (!src.sg_wa.bytes_left) {
783 unsigned int nbytes = ilen % AES_BLOCK_SIZE;
785 if (nbytes) {
786 op.eom = 1;
787 op.u.aes.size = (nbytes * 8) - 1;
791 ret = cmd_q->ccp->vdata->perform->aes(&op);
792 if (ret) {
793 cmd->engine_error = cmd_q->cmd_error;
794 goto e_dst;
797 ccp_process_data(&src, &dst, &op);
798 op.init = 0;
802 /* Step 3: Update the IV portion of the context with the original IV */
803 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
804 CCP_PASSTHRU_BYTESWAP_256BIT);
805 if (ret) {
806 cmd->engine_error = cmd_q->cmd_error;
807 goto e_dst;
810 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
811 if (ret)
812 goto e_dst;
814 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
815 CCP_PASSTHRU_BYTESWAP_256BIT);
816 if (ret) {
817 cmd->engine_error = cmd_q->cmd_error;
818 goto e_dst;
821 /* Step 4: Concatenate the lengths of the AAD and source, and
822 * hash that 16 byte buffer.
824 ret = ccp_init_dm_workarea(&final_wa, cmd_q, AES_BLOCK_SIZE,
825 DMA_BIDIRECTIONAL);
826 if (ret)
827 goto e_dst;
828 final = (unsigned long long *) final_wa.address;
829 final[0] = cpu_to_be64(aes->aad_len * 8);
830 final[1] = cpu_to_be64(ilen * 8);
832 memset(&op, 0, sizeof(op));
833 op.cmd_q = cmd_q;
834 op.jobid = jobid;
835 op.sb_key = cmd_q->sb_key; /* Pre-allocated */
836 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
837 op.init = 1;
838 op.u.aes.type = aes->type;
839 op.u.aes.mode = CCP_AES_MODE_GHASH;
840 op.u.aes.action = CCP_AES_GHASHFINAL;
841 op.src.type = CCP_MEMTYPE_SYSTEM;
842 op.src.u.dma.address = final_wa.dma.address;
843 op.src.u.dma.length = AES_BLOCK_SIZE;
844 op.dst.type = CCP_MEMTYPE_SYSTEM;
845 op.dst.u.dma.address = final_wa.dma.address;
846 op.dst.u.dma.length = AES_BLOCK_SIZE;
847 op.eom = 1;
848 op.u.aes.size = 0;
849 ret = cmd_q->ccp->vdata->perform->aes(&op);
850 if (ret)
851 goto e_dst;
853 if (aes->action == CCP_AES_ACTION_ENCRYPT) {
854 /* Put the ciphered tag after the ciphertext. */
855 ccp_get_dm_area(&final_wa, 0, p_tag, 0, authsize);
856 } else {
857 /* Does this ciphered tag match the input? */
858 ret = ccp_init_dm_workarea(&tag, cmd_q, authsize,
859 DMA_BIDIRECTIONAL);
860 if (ret)
861 goto e_tag;
862 ret = ccp_set_dm_area(&tag, 0, p_tag, 0, authsize);
863 if (ret)
864 goto e_tag;
866 ret = crypto_memneq(tag.address, final_wa.address,
867 authsize) ? -EBADMSG : 0;
868 ccp_dm_free(&tag);
871 e_tag:
872 ccp_dm_free(&final_wa);
874 e_dst:
875 if (ilen > 0 && !in_place)
876 ccp_free_data(&dst, cmd_q);
878 e_src:
879 if (ilen > 0)
880 ccp_free_data(&src, cmd_q);
882 e_aad:
883 if (aes->aad_len)
884 ccp_free_data(&aad, cmd_q);
886 e_ctx:
887 ccp_dm_free(&ctx);
889 e_key:
890 ccp_dm_free(&key);
892 return ret;
895 static noinline_for_stack int
896 ccp_run_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
898 struct ccp_aes_engine *aes = &cmd->u.aes;
899 struct ccp_dm_workarea key, ctx;
900 struct ccp_data src, dst;
901 struct ccp_op op;
902 unsigned int dm_offset;
903 bool in_place = false;
904 int ret;
906 if (!((aes->key_len == AES_KEYSIZE_128) ||
907 (aes->key_len == AES_KEYSIZE_192) ||
908 (aes->key_len == AES_KEYSIZE_256)))
909 return -EINVAL;
911 if (((aes->mode == CCP_AES_MODE_ECB) ||
912 (aes->mode == CCP_AES_MODE_CBC)) &&
913 (aes->src_len & (AES_BLOCK_SIZE - 1)))
914 return -EINVAL;
916 if (!aes->key || !aes->src || !aes->dst)
917 return -EINVAL;
919 if (aes->mode != CCP_AES_MODE_ECB) {
920 if (aes->iv_len != AES_BLOCK_SIZE)
921 return -EINVAL;
923 if (!aes->iv)
924 return -EINVAL;
927 BUILD_BUG_ON(CCP_AES_KEY_SB_COUNT != 1);
928 BUILD_BUG_ON(CCP_AES_CTX_SB_COUNT != 1);
930 ret = -EIO;
931 memset(&op, 0, sizeof(op));
932 op.cmd_q = cmd_q;
933 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
934 op.sb_key = cmd_q->sb_key;
935 op.sb_ctx = cmd_q->sb_ctx;
936 op.init = (aes->mode == CCP_AES_MODE_ECB) ? 0 : 1;
937 op.u.aes.type = aes->type;
938 op.u.aes.mode = aes->mode;
939 op.u.aes.action = aes->action;
941 /* All supported key sizes fit in a single (32-byte) SB entry
942 * and must be in little endian format. Use the 256-bit byte
943 * swap passthru option to convert from big endian to little
944 * endian.
946 ret = ccp_init_dm_workarea(&key, cmd_q,
947 CCP_AES_KEY_SB_COUNT * CCP_SB_BYTES,
948 DMA_TO_DEVICE);
949 if (ret)
950 return ret;
952 dm_offset = CCP_SB_BYTES - aes->key_len;
953 ret = ccp_set_dm_area(&key, dm_offset, aes->key, 0, aes->key_len);
954 if (ret)
955 goto e_key;
956 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
957 CCP_PASSTHRU_BYTESWAP_256BIT);
958 if (ret) {
959 cmd->engine_error = cmd_q->cmd_error;
960 goto e_key;
963 /* The AES context fits in a single (32-byte) SB entry and
964 * must be in little endian format. Use the 256-bit byte swap
965 * passthru option to convert from big endian to little endian.
967 ret = ccp_init_dm_workarea(&ctx, cmd_q,
968 CCP_AES_CTX_SB_COUNT * CCP_SB_BYTES,
969 DMA_BIDIRECTIONAL);
970 if (ret)
971 goto e_key;
973 if (aes->mode != CCP_AES_MODE_ECB) {
974 /* Load the AES context - convert to LE */
975 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
976 ret = ccp_set_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
977 if (ret)
978 goto e_ctx;
979 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
980 CCP_PASSTHRU_BYTESWAP_256BIT);
981 if (ret) {
982 cmd->engine_error = cmd_q->cmd_error;
983 goto e_ctx;
986 switch (aes->mode) {
987 case CCP_AES_MODE_CFB: /* CFB128 only */
988 case CCP_AES_MODE_CTR:
989 op.u.aes.size = AES_BLOCK_SIZE * BITS_PER_BYTE - 1;
990 break;
991 default:
992 op.u.aes.size = 0;
995 /* Prepare the input and output data workareas. For in-place
996 * operations we need to set the dma direction to BIDIRECTIONAL
997 * and copy the src workarea to the dst workarea.
999 if (sg_virt(aes->src) == sg_virt(aes->dst))
1000 in_place = true;
1002 ret = ccp_init_data(&src, cmd_q, aes->src, aes->src_len,
1003 AES_BLOCK_SIZE,
1004 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1005 if (ret)
1006 goto e_ctx;
1008 if (in_place) {
1009 dst = src;
1010 } else {
1011 ret = ccp_init_data(&dst, cmd_q, aes->dst, aes->src_len,
1012 AES_BLOCK_SIZE, DMA_FROM_DEVICE);
1013 if (ret)
1014 goto e_src;
1017 /* Send data to the CCP AES engine */
1018 while (src.sg_wa.bytes_left) {
1019 ccp_prepare_data(&src, &dst, &op, AES_BLOCK_SIZE, true);
1020 if (!src.sg_wa.bytes_left) {
1021 op.eom = 1;
1023 /* Since we don't retrieve the AES context in ECB
1024 * mode we have to wait for the operation to complete
1025 * on the last piece of data
1027 if (aes->mode == CCP_AES_MODE_ECB)
1028 op.soc = 1;
1031 ret = cmd_q->ccp->vdata->perform->aes(&op);
1032 if (ret) {
1033 cmd->engine_error = cmd_q->cmd_error;
1034 goto e_dst;
1037 ccp_process_data(&src, &dst, &op);
1040 if (aes->mode != CCP_AES_MODE_ECB) {
1041 /* Retrieve the AES context - convert from LE to BE using
1042 * 32-byte (256-bit) byteswapping
1044 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1045 CCP_PASSTHRU_BYTESWAP_256BIT);
1046 if (ret) {
1047 cmd->engine_error = cmd_q->cmd_error;
1048 goto e_dst;
1051 /* ...but we only need AES_BLOCK_SIZE bytes */
1052 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1053 ccp_get_dm_area(&ctx, dm_offset, aes->iv, 0, aes->iv_len);
1056 e_dst:
1057 if (!in_place)
1058 ccp_free_data(&dst, cmd_q);
1060 e_src:
1061 ccp_free_data(&src, cmd_q);
1063 e_ctx:
1064 ccp_dm_free(&ctx);
1066 e_key:
1067 ccp_dm_free(&key);
1069 return ret;
1072 static noinline_for_stack int
1073 ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1075 struct ccp_xts_aes_engine *xts = &cmd->u.xts;
1076 struct ccp_dm_workarea key, ctx;
1077 struct ccp_data src, dst;
1078 struct ccp_op op;
1079 unsigned int unit_size, dm_offset;
1080 bool in_place = false;
1081 unsigned int sb_count;
1082 enum ccp_aes_type aestype;
1083 int ret;
1085 switch (xts->unit_size) {
1086 case CCP_XTS_AES_UNIT_SIZE_16:
1087 unit_size = 16;
1088 break;
1089 case CCP_XTS_AES_UNIT_SIZE_512:
1090 unit_size = 512;
1091 break;
1092 case CCP_XTS_AES_UNIT_SIZE_1024:
1093 unit_size = 1024;
1094 break;
1095 case CCP_XTS_AES_UNIT_SIZE_2048:
1096 unit_size = 2048;
1097 break;
1098 case CCP_XTS_AES_UNIT_SIZE_4096:
1099 unit_size = 4096;
1100 break;
1102 default:
1103 return -EINVAL;
1106 if (xts->key_len == AES_KEYSIZE_128)
1107 aestype = CCP_AES_TYPE_128;
1108 else if (xts->key_len == AES_KEYSIZE_256)
1109 aestype = CCP_AES_TYPE_256;
1110 else
1111 return -EINVAL;
1113 if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
1114 return -EINVAL;
1116 if (xts->iv_len != AES_BLOCK_SIZE)
1117 return -EINVAL;
1119 if (!xts->key || !xts->iv || !xts->src || !xts->dst)
1120 return -EINVAL;
1122 BUILD_BUG_ON(CCP_XTS_AES_KEY_SB_COUNT != 1);
1123 BUILD_BUG_ON(CCP_XTS_AES_CTX_SB_COUNT != 1);
1125 ret = -EIO;
1126 memset(&op, 0, sizeof(op));
1127 op.cmd_q = cmd_q;
1128 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1129 op.sb_key = cmd_q->sb_key;
1130 op.sb_ctx = cmd_q->sb_ctx;
1131 op.init = 1;
1132 op.u.xts.type = aestype;
1133 op.u.xts.action = xts->action;
1134 op.u.xts.unit_size = xts->unit_size;
1136 /* A version 3 device only supports 128-bit keys, which fits into a
1137 * single SB entry. A version 5 device uses a 512-bit vector, so two
1138 * SB entries.
1140 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
1141 sb_count = CCP_XTS_AES_KEY_SB_COUNT;
1142 else
1143 sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
1144 ret = ccp_init_dm_workarea(&key, cmd_q,
1145 sb_count * CCP_SB_BYTES,
1146 DMA_TO_DEVICE);
1147 if (ret)
1148 return ret;
1150 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1151 /* All supported key sizes must be in little endian format.
1152 * Use the 256-bit byte swap passthru option to convert from
1153 * big endian to little endian.
1155 dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
1156 ret = ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
1157 if (ret)
1158 goto e_key;
1159 ret = ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
1160 if (ret)
1161 goto e_key;
1162 } else {
1163 /* Version 5 CCPs use a 512-bit space for the key: each portion
1164 * occupies 256 bits, or one entire slot, and is zero-padded.
1166 unsigned int pad;
1168 dm_offset = CCP_SB_BYTES;
1169 pad = dm_offset - xts->key_len;
1170 ret = ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
1171 if (ret)
1172 goto e_key;
1173 ret = ccp_set_dm_area(&key, dm_offset + pad, xts->key,
1174 xts->key_len, xts->key_len);
1175 if (ret)
1176 goto e_key;
1178 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1179 CCP_PASSTHRU_BYTESWAP_256BIT);
1180 if (ret) {
1181 cmd->engine_error = cmd_q->cmd_error;
1182 goto e_key;
1185 /* The AES context fits in a single (32-byte) SB entry and
1186 * for XTS is already in little endian format so no byte swapping
1187 * is needed.
1189 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1190 CCP_XTS_AES_CTX_SB_COUNT * CCP_SB_BYTES,
1191 DMA_BIDIRECTIONAL);
1192 if (ret)
1193 goto e_key;
1195 ret = ccp_set_dm_area(&ctx, 0, xts->iv, 0, xts->iv_len);
1196 if (ret)
1197 goto e_ctx;
1198 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1199 CCP_PASSTHRU_BYTESWAP_NOOP);
1200 if (ret) {
1201 cmd->engine_error = cmd_q->cmd_error;
1202 goto e_ctx;
1205 /* Prepare the input and output data workareas. For in-place
1206 * operations we need to set the dma direction to BIDIRECTIONAL
1207 * and copy the src workarea to the dst workarea.
1209 if (sg_virt(xts->src) == sg_virt(xts->dst))
1210 in_place = true;
1212 ret = ccp_init_data(&src, cmd_q, xts->src, xts->src_len,
1213 unit_size,
1214 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1215 if (ret)
1216 goto e_ctx;
1218 if (in_place) {
1219 dst = src;
1220 } else {
1221 ret = ccp_init_data(&dst, cmd_q, xts->dst, xts->src_len,
1222 unit_size, DMA_FROM_DEVICE);
1223 if (ret)
1224 goto e_src;
1227 /* Send data to the CCP AES engine */
1228 while (src.sg_wa.bytes_left) {
1229 ccp_prepare_data(&src, &dst, &op, unit_size, true);
1230 if (!src.sg_wa.bytes_left)
1231 op.eom = 1;
1233 ret = cmd_q->ccp->vdata->perform->xts_aes(&op);
1234 if (ret) {
1235 cmd->engine_error = cmd_q->cmd_error;
1236 goto e_dst;
1239 ccp_process_data(&src, &dst, &op);
1242 /* Retrieve the AES context - convert from LE to BE using
1243 * 32-byte (256-bit) byteswapping
1245 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1246 CCP_PASSTHRU_BYTESWAP_256BIT);
1247 if (ret) {
1248 cmd->engine_error = cmd_q->cmd_error;
1249 goto e_dst;
1252 /* ...but we only need AES_BLOCK_SIZE bytes */
1253 dm_offset = CCP_SB_BYTES - AES_BLOCK_SIZE;
1254 ccp_get_dm_area(&ctx, dm_offset, xts->iv, 0, xts->iv_len);
1256 e_dst:
1257 if (!in_place)
1258 ccp_free_data(&dst, cmd_q);
1260 e_src:
1261 ccp_free_data(&src, cmd_q);
1263 e_ctx:
1264 ccp_dm_free(&ctx);
1266 e_key:
1267 ccp_dm_free(&key);
1269 return ret;
1272 static noinline_for_stack int
1273 ccp_run_des3_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1275 struct ccp_des3_engine *des3 = &cmd->u.des3;
1277 struct ccp_dm_workarea key, ctx;
1278 struct ccp_data src, dst;
1279 struct ccp_op op;
1280 unsigned int dm_offset;
1281 unsigned int len_singlekey;
1282 bool in_place = false;
1283 int ret;
1285 /* Error checks */
1286 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0))
1287 return -EINVAL;
1289 if (!cmd_q->ccp->vdata->perform->des3)
1290 return -EINVAL;
1292 if (des3->key_len != DES3_EDE_KEY_SIZE)
1293 return -EINVAL;
1295 if (((des3->mode == CCP_DES3_MODE_ECB) ||
1296 (des3->mode == CCP_DES3_MODE_CBC)) &&
1297 (des3->src_len & (DES3_EDE_BLOCK_SIZE - 1)))
1298 return -EINVAL;
1300 if (!des3->key || !des3->src || !des3->dst)
1301 return -EINVAL;
1303 if (des3->mode != CCP_DES3_MODE_ECB) {
1304 if (des3->iv_len != DES3_EDE_BLOCK_SIZE)
1305 return -EINVAL;
1307 if (!des3->iv)
1308 return -EINVAL;
1311 ret = -EIO;
1312 /* Zero out all the fields of the command desc */
1313 memset(&op, 0, sizeof(op));
1315 /* Set up the Function field */
1316 op.cmd_q = cmd_q;
1317 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1318 op.sb_key = cmd_q->sb_key;
1320 op.init = (des3->mode == CCP_DES3_MODE_ECB) ? 0 : 1;
1321 op.u.des3.type = des3->type;
1322 op.u.des3.mode = des3->mode;
1323 op.u.des3.action = des3->action;
1326 * All supported key sizes fit in a single (32-byte) KSB entry and
1327 * (like AES) must be in little endian format. Use the 256-bit byte
1328 * swap passthru option to convert from big endian to little endian.
1330 ret = ccp_init_dm_workarea(&key, cmd_q,
1331 CCP_DES3_KEY_SB_COUNT * CCP_SB_BYTES,
1332 DMA_TO_DEVICE);
1333 if (ret)
1334 return ret;
1337 * The contents of the key triplet are in the reverse order of what
1338 * is required by the engine. Copy the 3 pieces individually to put
1339 * them where they belong.
1341 dm_offset = CCP_SB_BYTES - des3->key_len; /* Basic offset */
1343 len_singlekey = des3->key_len / 3;
1344 ret = ccp_set_dm_area(&key, dm_offset + 2 * len_singlekey,
1345 des3->key, 0, len_singlekey);
1346 if (ret)
1347 goto e_key;
1348 ret = ccp_set_dm_area(&key, dm_offset + len_singlekey,
1349 des3->key, len_singlekey, len_singlekey);
1350 if (ret)
1351 goto e_key;
1352 ret = ccp_set_dm_area(&key, dm_offset,
1353 des3->key, 2 * len_singlekey, len_singlekey);
1354 if (ret)
1355 goto e_key;
1357 /* Copy the key to the SB */
1358 ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
1359 CCP_PASSTHRU_BYTESWAP_256BIT);
1360 if (ret) {
1361 cmd->engine_error = cmd_q->cmd_error;
1362 goto e_key;
1366 * The DES3 context fits in a single (32-byte) KSB entry and
1367 * must be in little endian format. Use the 256-bit byte swap
1368 * passthru option to convert from big endian to little endian.
1370 if (des3->mode != CCP_DES3_MODE_ECB) {
1371 op.sb_ctx = cmd_q->sb_ctx;
1373 ret = ccp_init_dm_workarea(&ctx, cmd_q,
1374 CCP_DES3_CTX_SB_COUNT * CCP_SB_BYTES,
1375 DMA_BIDIRECTIONAL);
1376 if (ret)
1377 goto e_key;
1379 /* Load the context into the LSB */
1380 dm_offset = CCP_SB_BYTES - des3->iv_len;
1381 ret = ccp_set_dm_area(&ctx, dm_offset, des3->iv, 0,
1382 des3->iv_len);
1383 if (ret)
1384 goto e_ctx;
1386 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1387 CCP_PASSTHRU_BYTESWAP_256BIT);
1388 if (ret) {
1389 cmd->engine_error = cmd_q->cmd_error;
1390 goto e_ctx;
1395 * Prepare the input and output data workareas. For in-place
1396 * operations we need to set the dma direction to BIDIRECTIONAL
1397 * and copy the src workarea to the dst workarea.
1399 if (sg_virt(des3->src) == sg_virt(des3->dst))
1400 in_place = true;
1402 ret = ccp_init_data(&src, cmd_q, des3->src, des3->src_len,
1403 DES3_EDE_BLOCK_SIZE,
1404 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
1405 if (ret)
1406 goto e_ctx;
1408 if (in_place)
1409 dst = src;
1410 else {
1411 ret = ccp_init_data(&dst, cmd_q, des3->dst, des3->src_len,
1412 DES3_EDE_BLOCK_SIZE, DMA_FROM_DEVICE);
1413 if (ret)
1414 goto e_src;
1417 /* Send data to the CCP DES3 engine */
1418 while (src.sg_wa.bytes_left) {
1419 ccp_prepare_data(&src, &dst, &op, DES3_EDE_BLOCK_SIZE, true);
1420 if (!src.sg_wa.bytes_left) {
1421 op.eom = 1;
1423 /* Since we don't retrieve the context in ECB mode
1424 * we have to wait for the operation to complete
1425 * on the last piece of data
1427 op.soc = 0;
1430 ret = cmd_q->ccp->vdata->perform->des3(&op);
1431 if (ret) {
1432 cmd->engine_error = cmd_q->cmd_error;
1433 goto e_dst;
1436 ccp_process_data(&src, &dst, &op);
1439 if (des3->mode != CCP_DES3_MODE_ECB) {
1440 /* Retrieve the context and make BE */
1441 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1442 CCP_PASSTHRU_BYTESWAP_256BIT);
1443 if (ret) {
1444 cmd->engine_error = cmd_q->cmd_error;
1445 goto e_dst;
1448 /* ...but we only need the last DES3_EDE_BLOCK_SIZE bytes */
1449 ccp_get_dm_area(&ctx, dm_offset, des3->iv, 0,
1450 DES3_EDE_BLOCK_SIZE);
1452 e_dst:
1453 if (!in_place)
1454 ccp_free_data(&dst, cmd_q);
1456 e_src:
1457 ccp_free_data(&src, cmd_q);
1459 e_ctx:
1460 if (des3->mode != CCP_DES3_MODE_ECB)
1461 ccp_dm_free(&ctx);
1463 e_key:
1464 ccp_dm_free(&key);
1466 return ret;
1469 static noinline_for_stack int
1470 ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1472 struct ccp_sha_engine *sha = &cmd->u.sha;
1473 struct ccp_dm_workarea ctx;
1474 struct ccp_data src;
1475 struct ccp_op op;
1476 unsigned int ioffset, ooffset;
1477 unsigned int digest_size;
1478 int sb_count;
1479 const void *init;
1480 u64 block_size;
1481 int ctx_size;
1482 int ret;
1484 switch (sha->type) {
1485 case CCP_SHA_TYPE_1:
1486 if (sha->ctx_len < SHA1_DIGEST_SIZE)
1487 return -EINVAL;
1488 block_size = SHA1_BLOCK_SIZE;
1489 break;
1490 case CCP_SHA_TYPE_224:
1491 if (sha->ctx_len < SHA224_DIGEST_SIZE)
1492 return -EINVAL;
1493 block_size = SHA224_BLOCK_SIZE;
1494 break;
1495 case CCP_SHA_TYPE_256:
1496 if (sha->ctx_len < SHA256_DIGEST_SIZE)
1497 return -EINVAL;
1498 block_size = SHA256_BLOCK_SIZE;
1499 break;
1500 case CCP_SHA_TYPE_384:
1501 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1502 || sha->ctx_len < SHA384_DIGEST_SIZE)
1503 return -EINVAL;
1504 block_size = SHA384_BLOCK_SIZE;
1505 break;
1506 case CCP_SHA_TYPE_512:
1507 if (cmd_q->ccp->vdata->version < CCP_VERSION(4, 0)
1508 || sha->ctx_len < SHA512_DIGEST_SIZE)
1509 return -EINVAL;
1510 block_size = SHA512_BLOCK_SIZE;
1511 break;
1512 default:
1513 return -EINVAL;
1516 if (!sha->ctx)
1517 return -EINVAL;
1519 if (!sha->final && (sha->src_len & (block_size - 1)))
1520 return -EINVAL;
1522 /* The version 3 device can't handle zero-length input */
1523 if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
1525 if (!sha->src_len) {
1526 unsigned int digest_len;
1527 const u8 *sha_zero;
1529 /* Not final, just return */
1530 if (!sha->final)
1531 return 0;
1533 /* CCP can't do a zero length sha operation so the
1534 * caller must buffer the data.
1536 if (sha->msg_bits)
1537 return -EINVAL;
1539 /* The CCP cannot perform zero-length sha operations
1540 * so the caller is required to buffer data for the
1541 * final operation. However, a sha operation for a
1542 * message with a total length of zero is valid so
1543 * known values are required to supply the result.
1545 switch (sha->type) {
1546 case CCP_SHA_TYPE_1:
1547 sha_zero = sha1_zero_message_hash;
1548 digest_len = SHA1_DIGEST_SIZE;
1549 break;
1550 case CCP_SHA_TYPE_224:
1551 sha_zero = sha224_zero_message_hash;
1552 digest_len = SHA224_DIGEST_SIZE;
1553 break;
1554 case CCP_SHA_TYPE_256:
1555 sha_zero = sha256_zero_message_hash;
1556 digest_len = SHA256_DIGEST_SIZE;
1557 break;
1558 default:
1559 return -EINVAL;
1562 scatterwalk_map_and_copy((void *)sha_zero, sha->ctx, 0,
1563 digest_len, 1);
1565 return 0;
1569 /* Set variables used throughout */
1570 switch (sha->type) {
1571 case CCP_SHA_TYPE_1:
1572 digest_size = SHA1_DIGEST_SIZE;
1573 init = (void *) ccp_sha1_init;
1574 ctx_size = SHA1_DIGEST_SIZE;
1575 sb_count = 1;
1576 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1577 ooffset = ioffset = CCP_SB_BYTES - SHA1_DIGEST_SIZE;
1578 else
1579 ooffset = ioffset = 0;
1580 break;
1581 case CCP_SHA_TYPE_224:
1582 digest_size = SHA224_DIGEST_SIZE;
1583 init = (void *) ccp_sha224_init;
1584 ctx_size = SHA256_DIGEST_SIZE;
1585 sb_count = 1;
1586 ioffset = 0;
1587 if (cmd_q->ccp->vdata->version != CCP_VERSION(3, 0))
1588 ooffset = CCP_SB_BYTES - SHA224_DIGEST_SIZE;
1589 else
1590 ooffset = 0;
1591 break;
1592 case CCP_SHA_TYPE_256:
1593 digest_size = SHA256_DIGEST_SIZE;
1594 init = (void *) ccp_sha256_init;
1595 ctx_size = SHA256_DIGEST_SIZE;
1596 sb_count = 1;
1597 ooffset = ioffset = 0;
1598 break;
1599 case CCP_SHA_TYPE_384:
1600 digest_size = SHA384_DIGEST_SIZE;
1601 init = (void *) ccp_sha384_init;
1602 ctx_size = SHA512_DIGEST_SIZE;
1603 sb_count = 2;
1604 ioffset = 0;
1605 ooffset = 2 * CCP_SB_BYTES - SHA384_DIGEST_SIZE;
1606 break;
1607 case CCP_SHA_TYPE_512:
1608 digest_size = SHA512_DIGEST_SIZE;
1609 init = (void *) ccp_sha512_init;
1610 ctx_size = SHA512_DIGEST_SIZE;
1611 sb_count = 2;
1612 ooffset = ioffset = 0;
1613 break;
1614 default:
1615 ret = -EINVAL;
1616 goto e_data;
1619 /* For zero-length plaintext the src pointer is ignored;
1620 * otherwise both parts must be valid
1622 if (sha->src_len && !sha->src)
1623 return -EINVAL;
1625 memset(&op, 0, sizeof(op));
1626 op.cmd_q = cmd_q;
1627 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1628 op.sb_ctx = cmd_q->sb_ctx; /* Pre-allocated */
1629 op.u.sha.type = sha->type;
1630 op.u.sha.msg_bits = sha->msg_bits;
1632 /* For SHA1/224/256 the context fits in a single (32-byte) SB entry;
1633 * SHA384/512 require 2 adjacent SB slots, with the right half in the
1634 * first slot, and the left half in the second. Each portion must then
1635 * be in little endian format: use the 256-bit byte swap option.
1637 ret = ccp_init_dm_workarea(&ctx, cmd_q, sb_count * CCP_SB_BYTES,
1638 DMA_BIDIRECTIONAL);
1639 if (ret)
1640 return ret;
1641 if (sha->first) {
1642 switch (sha->type) {
1643 case CCP_SHA_TYPE_1:
1644 case CCP_SHA_TYPE_224:
1645 case CCP_SHA_TYPE_256:
1646 memcpy(ctx.address + ioffset, init, ctx_size);
1647 break;
1648 case CCP_SHA_TYPE_384:
1649 case CCP_SHA_TYPE_512:
1650 memcpy(ctx.address + ctx_size / 2, init,
1651 ctx_size / 2);
1652 memcpy(ctx.address, init + ctx_size / 2,
1653 ctx_size / 2);
1654 break;
1655 default:
1656 ret = -EINVAL;
1657 goto e_ctx;
1659 } else {
1660 /* Restore the context */
1661 ret = ccp_set_dm_area(&ctx, 0, sha->ctx, 0,
1662 sb_count * CCP_SB_BYTES);
1663 if (ret)
1664 goto e_ctx;
1667 ret = ccp_copy_to_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1668 CCP_PASSTHRU_BYTESWAP_256BIT);
1669 if (ret) {
1670 cmd->engine_error = cmd_q->cmd_error;
1671 goto e_ctx;
1674 if (sha->src) {
1675 /* Send data to the CCP SHA engine; block_size is set above */
1676 ret = ccp_init_data(&src, cmd_q, sha->src, sha->src_len,
1677 block_size, DMA_TO_DEVICE);
1678 if (ret)
1679 goto e_ctx;
1681 while (src.sg_wa.bytes_left) {
1682 ccp_prepare_data(&src, NULL, &op, block_size, false);
1683 if (sha->final && !src.sg_wa.bytes_left)
1684 op.eom = 1;
1686 ret = cmd_q->ccp->vdata->perform->sha(&op);
1687 if (ret) {
1688 cmd->engine_error = cmd_q->cmd_error;
1689 goto e_data;
1692 ccp_process_data(&src, NULL, &op);
1694 } else {
1695 op.eom = 1;
1696 ret = cmd_q->ccp->vdata->perform->sha(&op);
1697 if (ret) {
1698 cmd->engine_error = cmd_q->cmd_error;
1699 goto e_data;
1703 /* Retrieve the SHA context - convert from LE to BE using
1704 * 32-byte (256-bit) byteswapping to BE
1706 ret = ccp_copy_from_sb(cmd_q, &ctx, op.jobid, op.sb_ctx,
1707 CCP_PASSTHRU_BYTESWAP_256BIT);
1708 if (ret) {
1709 cmd->engine_error = cmd_q->cmd_error;
1710 goto e_data;
1713 if (sha->final) {
1714 /* Finishing up, so get the digest */
1715 switch (sha->type) {
1716 case CCP_SHA_TYPE_1:
1717 case CCP_SHA_TYPE_224:
1718 case CCP_SHA_TYPE_256:
1719 ccp_get_dm_area(&ctx, ooffset,
1720 sha->ctx, 0,
1721 digest_size);
1722 break;
1723 case CCP_SHA_TYPE_384:
1724 case CCP_SHA_TYPE_512:
1725 ccp_get_dm_area(&ctx, 0,
1726 sha->ctx, LSB_ITEM_SIZE - ooffset,
1727 LSB_ITEM_SIZE);
1728 ccp_get_dm_area(&ctx, LSB_ITEM_SIZE + ooffset,
1729 sha->ctx, 0,
1730 LSB_ITEM_SIZE - ooffset);
1731 break;
1732 default:
1733 ret = -EINVAL;
1734 goto e_ctx;
1736 } else {
1737 /* Stash the context */
1738 ccp_get_dm_area(&ctx, 0, sha->ctx, 0,
1739 sb_count * CCP_SB_BYTES);
1742 if (sha->final && sha->opad) {
1743 /* HMAC operation, recursively perform final SHA */
1744 struct ccp_cmd hmac_cmd;
1745 struct scatterlist sg;
1746 u8 *hmac_buf;
1748 if (sha->opad_len != block_size) {
1749 ret = -EINVAL;
1750 goto e_data;
1753 hmac_buf = kmalloc(block_size + digest_size, GFP_KERNEL);
1754 if (!hmac_buf) {
1755 ret = -ENOMEM;
1756 goto e_data;
1758 sg_init_one(&sg, hmac_buf, block_size + digest_size);
1760 scatterwalk_map_and_copy(hmac_buf, sha->opad, 0, block_size, 0);
1761 switch (sha->type) {
1762 case CCP_SHA_TYPE_1:
1763 case CCP_SHA_TYPE_224:
1764 case CCP_SHA_TYPE_256:
1765 memcpy(hmac_buf + block_size,
1766 ctx.address + ooffset,
1767 digest_size);
1768 break;
1769 case CCP_SHA_TYPE_384:
1770 case CCP_SHA_TYPE_512:
1771 memcpy(hmac_buf + block_size,
1772 ctx.address + LSB_ITEM_SIZE + ooffset,
1773 LSB_ITEM_SIZE);
1774 memcpy(hmac_buf + block_size +
1775 (LSB_ITEM_SIZE - ooffset),
1776 ctx.address,
1777 LSB_ITEM_SIZE);
1778 break;
1779 default:
1780 kfree(hmac_buf);
1781 ret = -EINVAL;
1782 goto e_data;
1785 memset(&hmac_cmd, 0, sizeof(hmac_cmd));
1786 hmac_cmd.engine = CCP_ENGINE_SHA;
1787 hmac_cmd.u.sha.type = sha->type;
1788 hmac_cmd.u.sha.ctx = sha->ctx;
1789 hmac_cmd.u.sha.ctx_len = sha->ctx_len;
1790 hmac_cmd.u.sha.src = &sg;
1791 hmac_cmd.u.sha.src_len = block_size + digest_size;
1792 hmac_cmd.u.sha.opad = NULL;
1793 hmac_cmd.u.sha.opad_len = 0;
1794 hmac_cmd.u.sha.first = 1;
1795 hmac_cmd.u.sha.final = 1;
1796 hmac_cmd.u.sha.msg_bits = (block_size + digest_size) << 3;
1798 ret = ccp_run_sha_cmd(cmd_q, &hmac_cmd);
1799 if (ret)
1800 cmd->engine_error = hmac_cmd.engine_error;
1802 kfree(hmac_buf);
1805 e_data:
1806 if (sha->src)
1807 ccp_free_data(&src, cmd_q);
1809 e_ctx:
1810 ccp_dm_free(&ctx);
1812 return ret;
1815 static noinline_for_stack int
1816 ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1818 struct ccp_rsa_engine *rsa = &cmd->u.rsa;
1819 struct ccp_dm_workarea exp, src, dst;
1820 struct ccp_op op;
1821 unsigned int sb_count, i_len, o_len;
1822 int ret;
1824 /* Check against the maximum allowable size, in bits */
1825 if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
1826 return -EINVAL;
1828 if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
1829 return -EINVAL;
1831 memset(&op, 0, sizeof(op));
1832 op.cmd_q = cmd_q;
1833 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1835 /* The RSA modulus must precede the message being acted upon, so
1836 * it must be copied to a DMA area where the message and the
1837 * modulus can be concatenated. Therefore the input buffer
1838 * length required is twice the output buffer length (which
1839 * must be a multiple of 256-bits). Compute o_len, i_len in bytes.
1840 * Buffer sizes must be a multiple of 32 bytes; rounding up may be
1841 * required.
1843 o_len = 32 * ((rsa->key_size + 255) / 256);
1844 i_len = o_len * 2;
1846 sb_count = 0;
1847 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1848 /* sb_count is the number of storage block slots required
1849 * for the modulus.
1851 sb_count = o_len / CCP_SB_BYTES;
1852 op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
1853 sb_count);
1854 if (!op.sb_key)
1855 return -EIO;
1856 } else {
1857 /* A version 5 device allows a modulus size that will not fit
1858 * in the LSB, so the command will transfer it from memory.
1859 * Set the sb key to the default, even though it's not used.
1861 op.sb_key = cmd_q->sb_key;
1864 /* The RSA exponent must be in little endian format. Reverse its
1865 * byte order.
1867 ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
1868 if (ret)
1869 goto e_sb;
1871 ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
1872 if (ret)
1873 goto e_exp;
1875 if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
1876 /* Copy the exponent to the local storage block, using
1877 * as many 32-byte blocks as were allocated above. It's
1878 * already little endian, so no further change is required.
1880 ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
1881 CCP_PASSTHRU_BYTESWAP_NOOP);
1882 if (ret) {
1883 cmd->engine_error = cmd_q->cmd_error;
1884 goto e_exp;
1886 } else {
1887 /* The exponent can be retrieved from memory via DMA. */
1888 op.exp.u.dma.address = exp.dma.address;
1889 op.exp.u.dma.offset = 0;
1892 /* Concatenate the modulus and the message. Both the modulus and
1893 * the operands must be in little endian format. Since the input
1894 * is in big endian format it must be converted.
1896 ret = ccp_init_dm_workarea(&src, cmd_q, i_len, DMA_TO_DEVICE);
1897 if (ret)
1898 goto e_exp;
1900 ret = ccp_reverse_set_dm_area(&src, 0, rsa->mod, 0, rsa->mod_len);
1901 if (ret)
1902 goto e_src;
1903 ret = ccp_reverse_set_dm_area(&src, o_len, rsa->src, 0, rsa->src_len);
1904 if (ret)
1905 goto e_src;
1907 /* Prepare the output area for the operation */
1908 ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
1909 if (ret)
1910 goto e_src;
1912 op.soc = 1;
1913 op.src.u.dma.address = src.dma.address;
1914 op.src.u.dma.offset = 0;
1915 op.src.u.dma.length = i_len;
1916 op.dst.u.dma.address = dst.dma.address;
1917 op.dst.u.dma.offset = 0;
1918 op.dst.u.dma.length = o_len;
1920 op.u.rsa.mod_size = rsa->key_size;
1921 op.u.rsa.input_len = i_len;
1923 ret = cmd_q->ccp->vdata->perform->rsa(&op);
1924 if (ret) {
1925 cmd->engine_error = cmd_q->cmd_error;
1926 goto e_dst;
1929 ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
1931 e_dst:
1932 ccp_dm_free(&dst);
1934 e_src:
1935 ccp_dm_free(&src);
1937 e_exp:
1938 ccp_dm_free(&exp);
1940 e_sb:
1941 if (sb_count)
1942 cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
1944 return ret;
1947 static noinline_for_stack int
1948 ccp_run_passthru_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
1950 struct ccp_passthru_engine *pt = &cmd->u.passthru;
1951 struct ccp_dm_workarea mask;
1952 struct ccp_data src, dst;
1953 struct ccp_op op;
1954 bool in_place = false;
1955 unsigned int i;
1956 int ret = 0;
1958 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
1959 return -EINVAL;
1961 if (!pt->src || !pt->dst)
1962 return -EINVAL;
1964 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1965 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
1966 return -EINVAL;
1967 if (!pt->mask)
1968 return -EINVAL;
1971 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
1973 memset(&op, 0, sizeof(op));
1974 op.cmd_q = cmd_q;
1975 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
1977 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
1978 /* Load the mask */
1979 op.sb_key = cmd_q->sb_key;
1981 ret = ccp_init_dm_workarea(&mask, cmd_q,
1982 CCP_PASSTHRU_SB_COUNT *
1983 CCP_SB_BYTES,
1984 DMA_TO_DEVICE);
1985 if (ret)
1986 return ret;
1988 ret = ccp_set_dm_area(&mask, 0, pt->mask, 0, pt->mask_len);
1989 if (ret)
1990 goto e_mask;
1991 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
1992 CCP_PASSTHRU_BYTESWAP_NOOP);
1993 if (ret) {
1994 cmd->engine_error = cmd_q->cmd_error;
1995 goto e_mask;
1999 /* Prepare the input and output data workareas. For in-place
2000 * operations we need to set the dma direction to BIDIRECTIONAL
2001 * and copy the src workarea to the dst workarea.
2003 if (sg_virt(pt->src) == sg_virt(pt->dst))
2004 in_place = true;
2006 ret = ccp_init_data(&src, cmd_q, pt->src, pt->src_len,
2007 CCP_PASSTHRU_MASKSIZE,
2008 in_place ? DMA_BIDIRECTIONAL : DMA_TO_DEVICE);
2009 if (ret)
2010 goto e_mask;
2012 if (in_place) {
2013 dst = src;
2014 } else {
2015 ret = ccp_init_data(&dst, cmd_q, pt->dst, pt->src_len,
2016 CCP_PASSTHRU_MASKSIZE, DMA_FROM_DEVICE);
2017 if (ret)
2018 goto e_src;
2021 /* Send data to the CCP Passthru engine
2022 * Because the CCP engine works on a single source and destination
2023 * dma address at a time, each entry in the source scatterlist
2024 * (after the dma_map_sg call) must be less than or equal to the
2025 * (remaining) length in the destination scatterlist entry and the
2026 * length must be a multiple of CCP_PASSTHRU_BLOCKSIZE
2028 dst.sg_wa.sg_used = 0;
2029 for (i = 1; i <= src.sg_wa.dma_count; i++) {
2030 if (!dst.sg_wa.sg ||
2031 (dst.sg_wa.sg->length < src.sg_wa.sg->length)) {
2032 ret = -EINVAL;
2033 goto e_dst;
2036 if (i == src.sg_wa.dma_count) {
2037 op.eom = 1;
2038 op.soc = 1;
2041 op.src.type = CCP_MEMTYPE_SYSTEM;
2042 op.src.u.dma.address = sg_dma_address(src.sg_wa.sg);
2043 op.src.u.dma.offset = 0;
2044 op.src.u.dma.length = sg_dma_len(src.sg_wa.sg);
2046 op.dst.type = CCP_MEMTYPE_SYSTEM;
2047 op.dst.u.dma.address = sg_dma_address(dst.sg_wa.sg);
2048 op.dst.u.dma.offset = dst.sg_wa.sg_used;
2049 op.dst.u.dma.length = op.src.u.dma.length;
2051 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2052 if (ret) {
2053 cmd->engine_error = cmd_q->cmd_error;
2054 goto e_dst;
2057 dst.sg_wa.sg_used += src.sg_wa.sg->length;
2058 if (dst.sg_wa.sg_used == dst.sg_wa.sg->length) {
2059 dst.sg_wa.sg = sg_next(dst.sg_wa.sg);
2060 dst.sg_wa.sg_used = 0;
2062 src.sg_wa.sg = sg_next(src.sg_wa.sg);
2065 e_dst:
2066 if (!in_place)
2067 ccp_free_data(&dst, cmd_q);
2069 e_src:
2070 ccp_free_data(&src, cmd_q);
2072 e_mask:
2073 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP)
2074 ccp_dm_free(&mask);
2076 return ret;
2079 static noinline_for_stack int
2080 ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
2081 struct ccp_cmd *cmd)
2083 struct ccp_passthru_nomap_engine *pt = &cmd->u.passthru_nomap;
2084 struct ccp_dm_workarea mask;
2085 struct ccp_op op;
2086 int ret;
2088 if (!pt->final && (pt->src_len & (CCP_PASSTHRU_BLOCKSIZE - 1)))
2089 return -EINVAL;
2091 if (!pt->src_dma || !pt->dst_dma)
2092 return -EINVAL;
2094 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2095 if (pt->mask_len != CCP_PASSTHRU_MASKSIZE)
2096 return -EINVAL;
2097 if (!pt->mask)
2098 return -EINVAL;
2101 BUILD_BUG_ON(CCP_PASSTHRU_SB_COUNT != 1);
2103 memset(&op, 0, sizeof(op));
2104 op.cmd_q = cmd_q;
2105 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2107 if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
2108 /* Load the mask */
2109 op.sb_key = cmd_q->sb_key;
2111 mask.length = pt->mask_len;
2112 mask.dma.address = pt->mask;
2113 mask.dma.length = pt->mask_len;
2115 ret = ccp_copy_to_sb(cmd_q, &mask, op.jobid, op.sb_key,
2116 CCP_PASSTHRU_BYTESWAP_NOOP);
2117 if (ret) {
2118 cmd->engine_error = cmd_q->cmd_error;
2119 return ret;
2123 /* Send data to the CCP Passthru engine */
2124 op.eom = 1;
2125 op.soc = 1;
2127 op.src.type = CCP_MEMTYPE_SYSTEM;
2128 op.src.u.dma.address = pt->src_dma;
2129 op.src.u.dma.offset = 0;
2130 op.src.u.dma.length = pt->src_len;
2132 op.dst.type = CCP_MEMTYPE_SYSTEM;
2133 op.dst.u.dma.address = pt->dst_dma;
2134 op.dst.u.dma.offset = 0;
2135 op.dst.u.dma.length = pt->src_len;
2137 ret = cmd_q->ccp->vdata->perform->passthru(&op);
2138 if (ret)
2139 cmd->engine_error = cmd_q->cmd_error;
2141 return ret;
2144 static int ccp_run_ecc_mm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2146 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2147 struct ccp_dm_workarea src, dst;
2148 struct ccp_op op;
2149 int ret;
2150 u8 *save;
2152 if (!ecc->u.mm.operand_1 ||
2153 (ecc->u.mm.operand_1_len > CCP_ECC_MODULUS_BYTES))
2154 return -EINVAL;
2156 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT)
2157 if (!ecc->u.mm.operand_2 ||
2158 (ecc->u.mm.operand_2_len > CCP_ECC_MODULUS_BYTES))
2159 return -EINVAL;
2161 if (!ecc->u.mm.result ||
2162 (ecc->u.mm.result_len < CCP_ECC_MODULUS_BYTES))
2163 return -EINVAL;
2165 memset(&op, 0, sizeof(op));
2166 op.cmd_q = cmd_q;
2167 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2169 /* Concatenate the modulus and the operands. Both the modulus and
2170 * the operands must be in little endian format. Since the input
2171 * is in big endian format it must be converted and placed in a
2172 * fixed length buffer.
2174 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2175 DMA_TO_DEVICE);
2176 if (ret)
2177 return ret;
2179 /* Save the workarea address since it is updated in order to perform
2180 * the concatenation
2182 save = src.address;
2184 /* Copy the ECC modulus */
2185 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2186 if (ret)
2187 goto e_src;
2188 src.address += CCP_ECC_OPERAND_SIZE;
2190 /* Copy the first operand */
2191 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_1, 0,
2192 ecc->u.mm.operand_1_len);
2193 if (ret)
2194 goto e_src;
2195 src.address += CCP_ECC_OPERAND_SIZE;
2197 if (ecc->function != CCP_ECC_FUNCTION_MINV_384BIT) {
2198 /* Copy the second operand */
2199 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.mm.operand_2, 0,
2200 ecc->u.mm.operand_2_len);
2201 if (ret)
2202 goto e_src;
2203 src.address += CCP_ECC_OPERAND_SIZE;
2206 /* Restore the workarea address */
2207 src.address = save;
2209 /* Prepare the output area for the operation */
2210 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2211 DMA_FROM_DEVICE);
2212 if (ret)
2213 goto e_src;
2215 op.soc = 1;
2216 op.src.u.dma.address = src.dma.address;
2217 op.src.u.dma.offset = 0;
2218 op.src.u.dma.length = src.length;
2219 op.dst.u.dma.address = dst.dma.address;
2220 op.dst.u.dma.offset = 0;
2221 op.dst.u.dma.length = dst.length;
2223 op.u.ecc.function = cmd->u.ecc.function;
2225 ret = cmd_q->ccp->vdata->perform->ecc(&op);
2226 if (ret) {
2227 cmd->engine_error = cmd_q->cmd_error;
2228 goto e_dst;
2231 ecc->ecc_result = le16_to_cpup(
2232 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2233 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2234 ret = -EIO;
2235 goto e_dst;
2238 /* Save the ECC result */
2239 ccp_reverse_get_dm_area(&dst, 0, ecc->u.mm.result, 0,
2240 CCP_ECC_MODULUS_BYTES);
2242 e_dst:
2243 ccp_dm_free(&dst);
2245 e_src:
2246 ccp_dm_free(&src);
2248 return ret;
2251 static int ccp_run_ecc_pm_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2253 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2254 struct ccp_dm_workarea src, dst;
2255 struct ccp_op op;
2256 int ret;
2257 u8 *save;
2259 if (!ecc->u.pm.point_1.x ||
2260 (ecc->u.pm.point_1.x_len > CCP_ECC_MODULUS_BYTES) ||
2261 !ecc->u.pm.point_1.y ||
2262 (ecc->u.pm.point_1.y_len > CCP_ECC_MODULUS_BYTES))
2263 return -EINVAL;
2265 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2266 if (!ecc->u.pm.point_2.x ||
2267 (ecc->u.pm.point_2.x_len > CCP_ECC_MODULUS_BYTES) ||
2268 !ecc->u.pm.point_2.y ||
2269 (ecc->u.pm.point_2.y_len > CCP_ECC_MODULUS_BYTES))
2270 return -EINVAL;
2271 } else {
2272 if (!ecc->u.pm.domain_a ||
2273 (ecc->u.pm.domain_a_len > CCP_ECC_MODULUS_BYTES))
2274 return -EINVAL;
2276 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT)
2277 if (!ecc->u.pm.scalar ||
2278 (ecc->u.pm.scalar_len > CCP_ECC_MODULUS_BYTES))
2279 return -EINVAL;
2282 if (!ecc->u.pm.result.x ||
2283 (ecc->u.pm.result.x_len < CCP_ECC_MODULUS_BYTES) ||
2284 !ecc->u.pm.result.y ||
2285 (ecc->u.pm.result.y_len < CCP_ECC_MODULUS_BYTES))
2286 return -EINVAL;
2288 memset(&op, 0, sizeof(op));
2289 op.cmd_q = cmd_q;
2290 op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
2292 /* Concatenate the modulus and the operands. Both the modulus and
2293 * the operands must be in little endian format. Since the input
2294 * is in big endian format it must be converted and placed in a
2295 * fixed length buffer.
2297 ret = ccp_init_dm_workarea(&src, cmd_q, CCP_ECC_SRC_BUF_SIZE,
2298 DMA_TO_DEVICE);
2299 if (ret)
2300 return ret;
2302 /* Save the workarea address since it is updated in order to perform
2303 * the concatenation
2305 save = src.address;
2307 /* Copy the ECC modulus */
2308 ret = ccp_reverse_set_dm_area(&src, 0, ecc->mod, 0, ecc->mod_len);
2309 if (ret)
2310 goto e_src;
2311 src.address += CCP_ECC_OPERAND_SIZE;
2313 /* Copy the first point X and Y coordinate */
2314 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.x, 0,
2315 ecc->u.pm.point_1.x_len);
2316 if (ret)
2317 goto e_src;
2318 src.address += CCP_ECC_OPERAND_SIZE;
2319 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_1.y, 0,
2320 ecc->u.pm.point_1.y_len);
2321 if (ret)
2322 goto e_src;
2323 src.address += CCP_ECC_OPERAND_SIZE;
2325 /* Set the first point Z coordinate to 1 */
2326 *src.address = 0x01;
2327 src.address += CCP_ECC_OPERAND_SIZE;
2329 if (ecc->function == CCP_ECC_FUNCTION_PADD_384BIT) {
2330 /* Copy the second point X and Y coordinate */
2331 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.x, 0,
2332 ecc->u.pm.point_2.x_len);
2333 if (ret)
2334 goto e_src;
2335 src.address += CCP_ECC_OPERAND_SIZE;
2336 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.point_2.y, 0,
2337 ecc->u.pm.point_2.y_len);
2338 if (ret)
2339 goto e_src;
2340 src.address += CCP_ECC_OPERAND_SIZE;
2342 /* Set the second point Z coordinate to 1 */
2343 *src.address = 0x01;
2344 src.address += CCP_ECC_OPERAND_SIZE;
2345 } else {
2346 /* Copy the Domain "a" parameter */
2347 ret = ccp_reverse_set_dm_area(&src, 0, ecc->u.pm.domain_a, 0,
2348 ecc->u.pm.domain_a_len);
2349 if (ret)
2350 goto e_src;
2351 src.address += CCP_ECC_OPERAND_SIZE;
2353 if (ecc->function == CCP_ECC_FUNCTION_PMUL_384BIT) {
2354 /* Copy the scalar value */
2355 ret = ccp_reverse_set_dm_area(&src, 0,
2356 ecc->u.pm.scalar, 0,
2357 ecc->u.pm.scalar_len);
2358 if (ret)
2359 goto e_src;
2360 src.address += CCP_ECC_OPERAND_SIZE;
2364 /* Restore the workarea address */
2365 src.address = save;
2367 /* Prepare the output area for the operation */
2368 ret = ccp_init_dm_workarea(&dst, cmd_q, CCP_ECC_DST_BUF_SIZE,
2369 DMA_FROM_DEVICE);
2370 if (ret)
2371 goto e_src;
2373 op.soc = 1;
2374 op.src.u.dma.address = src.dma.address;
2375 op.src.u.dma.offset = 0;
2376 op.src.u.dma.length = src.length;
2377 op.dst.u.dma.address = dst.dma.address;
2378 op.dst.u.dma.offset = 0;
2379 op.dst.u.dma.length = dst.length;
2381 op.u.ecc.function = cmd->u.ecc.function;
2383 ret = cmd_q->ccp->vdata->perform->ecc(&op);
2384 if (ret) {
2385 cmd->engine_error = cmd_q->cmd_error;
2386 goto e_dst;
2389 ecc->ecc_result = le16_to_cpup(
2390 (const __le16 *)(dst.address + CCP_ECC_RESULT_OFFSET));
2391 if (!(ecc->ecc_result & CCP_ECC_RESULT_SUCCESS)) {
2392 ret = -EIO;
2393 goto e_dst;
2396 /* Save the workarea address since it is updated as we walk through
2397 * to copy the point math result
2399 save = dst.address;
2401 /* Save the ECC result X and Y coordinates */
2402 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.x, 0,
2403 CCP_ECC_MODULUS_BYTES);
2404 dst.address += CCP_ECC_OUTPUT_SIZE;
2405 ccp_reverse_get_dm_area(&dst, 0, ecc->u.pm.result.y, 0,
2406 CCP_ECC_MODULUS_BYTES);
2407 dst.address += CCP_ECC_OUTPUT_SIZE;
2409 /* Restore the workarea address */
2410 dst.address = save;
2412 e_dst:
2413 ccp_dm_free(&dst);
2415 e_src:
2416 ccp_dm_free(&src);
2418 return ret;
2421 static noinline_for_stack int
2422 ccp_run_ecc_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2424 struct ccp_ecc_engine *ecc = &cmd->u.ecc;
2426 ecc->ecc_result = 0;
2428 if (!ecc->mod ||
2429 (ecc->mod_len > CCP_ECC_MODULUS_BYTES))
2430 return -EINVAL;
2432 switch (ecc->function) {
2433 case CCP_ECC_FUNCTION_MMUL_384BIT:
2434 case CCP_ECC_FUNCTION_MADD_384BIT:
2435 case CCP_ECC_FUNCTION_MINV_384BIT:
2436 return ccp_run_ecc_mm_cmd(cmd_q, cmd);
2438 case CCP_ECC_FUNCTION_PADD_384BIT:
2439 case CCP_ECC_FUNCTION_PMUL_384BIT:
2440 case CCP_ECC_FUNCTION_PDBL_384BIT:
2441 return ccp_run_ecc_pm_cmd(cmd_q, cmd);
2443 default:
2444 return -EINVAL;
2448 int ccp_run_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
2450 int ret;
2452 cmd->engine_error = 0;
2453 cmd_q->cmd_error = 0;
2454 cmd_q->int_rcvd = 0;
2455 cmd_q->free_slots = cmd_q->ccp->vdata->perform->get_free_slots(cmd_q);
2457 switch (cmd->engine) {
2458 case CCP_ENGINE_AES:
2459 switch (cmd->u.aes.mode) {
2460 case CCP_AES_MODE_CMAC:
2461 ret = ccp_run_aes_cmac_cmd(cmd_q, cmd);
2462 break;
2463 case CCP_AES_MODE_GCM:
2464 ret = ccp_run_aes_gcm_cmd(cmd_q, cmd);
2465 break;
2466 default:
2467 ret = ccp_run_aes_cmd(cmd_q, cmd);
2468 break;
2470 break;
2471 case CCP_ENGINE_XTS_AES_128:
2472 ret = ccp_run_xts_aes_cmd(cmd_q, cmd);
2473 break;
2474 case CCP_ENGINE_DES3:
2475 ret = ccp_run_des3_cmd(cmd_q, cmd);
2476 break;
2477 case CCP_ENGINE_SHA:
2478 ret = ccp_run_sha_cmd(cmd_q, cmd);
2479 break;
2480 case CCP_ENGINE_RSA:
2481 ret = ccp_run_rsa_cmd(cmd_q, cmd);
2482 break;
2483 case CCP_ENGINE_PASSTHRU:
2484 if (cmd->flags & CCP_CMD_PASSTHRU_NO_DMA_MAP)
2485 ret = ccp_run_passthru_nomap_cmd(cmd_q, cmd);
2486 else
2487 ret = ccp_run_passthru_cmd(cmd_q, cmd);
2488 break;
2489 case CCP_ENGINE_ECC:
2490 ret = ccp_run_ecc_cmd(cmd_q, cmd);
2491 break;
2492 default:
2493 ret = -EINVAL;
2496 return ret;