dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / crypto / nx / nx-sha512.c
blob4c7a3e3eeebf3dbf6c1bcc3a33054669512ac7e1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /**
3 * SHA-512 routines supporting the Power 7+ Nest Accelerators driver
5 * Copyright (C) 2011-2012 International Business Machines Inc.
7 * Author: Kent Yoder <yoder1@us.ibm.com>
8 */
10 #include <crypto/internal/hash.h>
11 #include <crypto/sha.h>
12 #include <linux/module.h>
13 #include <asm/vio.h>
15 #include "nx_csbcpb.h"
16 #include "nx.h"
19 static int nx_crypto_ctx_sha512_init(struct crypto_tfm *tfm)
21 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(tfm);
22 int err;
24 err = nx_crypto_ctx_sha_init(tfm);
25 if (err)
26 return err;
28 nx_ctx_init(nx_ctx, HCOP_FC_SHA);
30 nx_ctx->ap = &nx_ctx->props[NX_PROPS_SHA512];
32 NX_CPB_SET_DIGEST_SIZE(nx_ctx->csbcpb, NX_DS_SHA512);
34 return 0;
37 static int nx_sha512_init(struct shash_desc *desc)
39 struct sha512_state *sctx = shash_desc_ctx(desc);
41 memset(sctx, 0, sizeof *sctx);
43 sctx->state[0] = __cpu_to_be64(SHA512_H0);
44 sctx->state[1] = __cpu_to_be64(SHA512_H1);
45 sctx->state[2] = __cpu_to_be64(SHA512_H2);
46 sctx->state[3] = __cpu_to_be64(SHA512_H3);
47 sctx->state[4] = __cpu_to_be64(SHA512_H4);
48 sctx->state[5] = __cpu_to_be64(SHA512_H5);
49 sctx->state[6] = __cpu_to_be64(SHA512_H6);
50 sctx->state[7] = __cpu_to_be64(SHA512_H7);
51 sctx->count[0] = 0;
53 return 0;
56 static int nx_sha512_update(struct shash_desc *desc, const u8 *data,
57 unsigned int len)
59 struct sha512_state *sctx = shash_desc_ctx(desc);
60 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
61 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
62 struct nx_sg *out_sg;
63 u64 to_process, leftover = 0, total;
64 unsigned long irq_flags;
65 int rc = 0;
66 int data_len;
67 u32 max_sg_len;
68 u64 buf_len = (sctx->count[0] % SHA512_BLOCK_SIZE);
70 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
72 /* 2 cases for total data len:
73 * 1: < SHA512_BLOCK_SIZE: copy into state, return 0
74 * 2: >= SHA512_BLOCK_SIZE: process X blocks, copy in leftover
76 total = (sctx->count[0] % SHA512_BLOCK_SIZE) + len;
77 if (total < SHA512_BLOCK_SIZE) {
78 memcpy(sctx->buf + buf_len, data, len);
79 sctx->count[0] += len;
80 goto out;
83 memcpy(csbcpb->cpb.sha512.message_digest, sctx->state, SHA512_DIGEST_SIZE);
84 NX_CPB_FDM(csbcpb) |= NX_FDM_INTERMEDIATE;
85 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
87 max_sg_len = min_t(u64, nx_ctx->ap->sglen,
88 nx_driver.of.max_sg_len/sizeof(struct nx_sg));
89 max_sg_len = min_t(u64, max_sg_len,
90 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
92 data_len = SHA512_DIGEST_SIZE;
93 out_sg = nx_build_sg_list(nx_ctx->out_sg, (u8 *)sctx->state,
94 &data_len, max_sg_len);
95 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
97 if (data_len != SHA512_DIGEST_SIZE) {
98 rc = -EINVAL;
99 goto out;
102 do {
103 int used_sgs = 0;
104 struct nx_sg *in_sg = nx_ctx->in_sg;
106 if (buf_len) {
107 data_len = buf_len;
108 in_sg = nx_build_sg_list(in_sg,
109 (u8 *) sctx->buf,
110 &data_len, max_sg_len);
112 if (data_len != buf_len) {
113 rc = -EINVAL;
114 goto out;
116 used_sgs = in_sg - nx_ctx->in_sg;
119 /* to_process: SHA512_BLOCK_SIZE aligned chunk to be
120 * processed in this iteration. This value is restricted
121 * by sg list limits and number of sgs we already used
122 * for leftover data. (see above)
123 * In ideal case, we could allow NX_PAGE_SIZE * max_sg_len,
124 * but because data may not be aligned, we need to account
125 * for that too. */
126 to_process = min_t(u64, total,
127 (max_sg_len - 1 - used_sgs) * NX_PAGE_SIZE);
128 to_process = to_process & ~(SHA512_BLOCK_SIZE - 1);
130 data_len = to_process - buf_len;
131 in_sg = nx_build_sg_list(in_sg, (u8 *) data,
132 &data_len, max_sg_len);
134 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
136 if (data_len != (to_process - buf_len)) {
137 rc = -EINVAL;
138 goto out;
141 to_process = data_len + buf_len;
142 leftover = total - to_process;
145 * we've hit the nx chip previously and we're updating
146 * again, so copy over the partial digest.
148 memcpy(csbcpb->cpb.sha512.input_partial_digest,
149 csbcpb->cpb.sha512.message_digest,
150 SHA512_DIGEST_SIZE);
152 if (!nx_ctx->op.inlen || !nx_ctx->op.outlen) {
153 rc = -EINVAL;
154 goto out;
157 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
158 if (rc)
159 goto out;
161 atomic_inc(&(nx_ctx->stats->sha512_ops));
163 total -= to_process;
164 data += to_process - buf_len;
165 buf_len = 0;
167 } while (leftover >= SHA512_BLOCK_SIZE);
169 /* copy the leftover back into the state struct */
170 if (leftover)
171 memcpy(sctx->buf, data, leftover);
172 sctx->count[0] += len;
173 memcpy(sctx->state, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
174 out:
175 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
176 return rc;
179 static int nx_sha512_final(struct shash_desc *desc, u8 *out)
181 struct sha512_state *sctx = shash_desc_ctx(desc);
182 struct nx_crypto_ctx *nx_ctx = crypto_tfm_ctx(&desc->tfm->base);
183 struct nx_csbcpb *csbcpb = (struct nx_csbcpb *)nx_ctx->csbcpb;
184 struct nx_sg *in_sg, *out_sg;
185 u32 max_sg_len;
186 u64 count0;
187 unsigned long irq_flags;
188 int rc = 0;
189 int len;
191 spin_lock_irqsave(&nx_ctx->lock, irq_flags);
193 max_sg_len = min_t(u64, nx_ctx->ap->sglen,
194 nx_driver.of.max_sg_len/sizeof(struct nx_sg));
195 max_sg_len = min_t(u64, max_sg_len,
196 nx_ctx->ap->databytelen/NX_PAGE_SIZE);
198 /* final is represented by continuing the operation and indicating that
199 * this is not an intermediate operation */
200 if (sctx->count[0] >= SHA512_BLOCK_SIZE) {
201 /* we've hit the nx chip previously, now we're finalizing,
202 * so copy over the partial digest */
203 memcpy(csbcpb->cpb.sha512.input_partial_digest, sctx->state,
204 SHA512_DIGEST_SIZE);
205 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
206 NX_CPB_FDM(csbcpb) |= NX_FDM_CONTINUATION;
207 } else {
208 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
209 NX_CPB_FDM(csbcpb) &= ~NX_FDM_CONTINUATION;
212 NX_CPB_FDM(csbcpb) &= ~NX_FDM_INTERMEDIATE;
214 count0 = sctx->count[0] * 8;
216 csbcpb->cpb.sha512.message_bit_length_lo = count0;
218 len = sctx->count[0] & (SHA512_BLOCK_SIZE - 1);
219 in_sg = nx_build_sg_list(nx_ctx->in_sg, sctx->buf, &len,
220 max_sg_len);
222 if (len != (sctx->count[0] & (SHA512_BLOCK_SIZE - 1))) {
223 rc = -EINVAL;
224 goto out;
227 len = SHA512_DIGEST_SIZE;
228 out_sg = nx_build_sg_list(nx_ctx->out_sg, out, &len,
229 max_sg_len);
231 nx_ctx->op.inlen = (nx_ctx->in_sg - in_sg) * sizeof(struct nx_sg);
232 nx_ctx->op.outlen = (nx_ctx->out_sg - out_sg) * sizeof(struct nx_sg);
234 if (!nx_ctx->op.outlen) {
235 rc = -EINVAL;
236 goto out;
239 rc = nx_hcall_sync(nx_ctx, &nx_ctx->op, 0);
240 if (rc)
241 goto out;
243 atomic_inc(&(nx_ctx->stats->sha512_ops));
244 atomic64_add(sctx->count[0], &(nx_ctx->stats->sha512_bytes));
246 memcpy(out, csbcpb->cpb.sha512.message_digest, SHA512_DIGEST_SIZE);
247 out:
248 spin_unlock_irqrestore(&nx_ctx->lock, irq_flags);
249 return rc;
252 static int nx_sha512_export(struct shash_desc *desc, void *out)
254 struct sha512_state *sctx = shash_desc_ctx(desc);
256 memcpy(out, sctx, sizeof(*sctx));
258 return 0;
261 static int nx_sha512_import(struct shash_desc *desc, const void *in)
263 struct sha512_state *sctx = shash_desc_ctx(desc);
265 memcpy(sctx, in, sizeof(*sctx));
267 return 0;
270 struct shash_alg nx_shash_sha512_alg = {
271 .digestsize = SHA512_DIGEST_SIZE,
272 .init = nx_sha512_init,
273 .update = nx_sha512_update,
274 .final = nx_sha512_final,
275 .export = nx_sha512_export,
276 .import = nx_sha512_import,
277 .descsize = sizeof(struct sha512_state),
278 .statesize = sizeof(struct sha512_state),
279 .base = {
280 .cra_name = "sha512",
281 .cra_driver_name = "sha512-nx",
282 .cra_priority = 300,
283 .cra_blocksize = SHA512_BLOCK_SIZE,
284 .cra_module = THIS_MODULE,
285 .cra_ctxsize = sizeof(struct nx_crypto_ctx),
286 .cra_init = nx_crypto_ctx_sha512_init,
287 .cra_exit = nx_crypto_ctx_exit,