dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / crypto / padlock-aes.c
blob62c6fe88b21290138c3cd9b95a5d6e64f0f9aadf
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Cryptographic API.
5 * Support for VIA PadLock hardware crypto engine.
7 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
9 */
11 #include <crypto/algapi.h>
12 #include <crypto/aes.h>
13 #include <crypto/internal/skcipher.h>
14 #include <crypto/padlock.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/types.h>
18 #include <linux/errno.h>
19 #include <linux/interrupt.h>
20 #include <linux/kernel.h>
21 #include <linux/percpu.h>
22 #include <linux/smp.h>
23 #include <linux/slab.h>
24 #include <asm/cpu_device_id.h>
25 #include <asm/byteorder.h>
26 #include <asm/processor.h>
27 #include <asm/fpu/api.h>
30 * Number of data blocks actually fetched for each xcrypt insn.
31 * Processors with prefetch errata will fetch extra blocks.
33 static unsigned int ecb_fetch_blocks = 2;
34 #define MAX_ECB_FETCH_BLOCKS (8)
35 #define ecb_fetch_bytes (ecb_fetch_blocks * AES_BLOCK_SIZE)
37 static unsigned int cbc_fetch_blocks = 1;
38 #define MAX_CBC_FETCH_BLOCKS (4)
39 #define cbc_fetch_bytes (cbc_fetch_blocks * AES_BLOCK_SIZE)
41 /* Control word. */
42 struct cword {
43 unsigned int __attribute__ ((__packed__))
44 rounds:4,
45 algo:3,
46 keygen:1,
47 interm:1,
48 encdec:1,
49 ksize:2;
50 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
52 /* Whenever making any changes to the following
53 * structure *make sure* you keep E, d_data
54 * and cword aligned on 16 Bytes boundaries and
55 * the Hardware can access 16 * 16 bytes of E and d_data
56 * (only the first 15 * 16 bytes matter but the HW reads
57 * more).
59 struct aes_ctx {
60 u32 E[AES_MAX_KEYLENGTH_U32]
61 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
62 u32 d_data[AES_MAX_KEYLENGTH_U32]
63 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
64 struct {
65 struct cword encrypt;
66 struct cword decrypt;
67 } cword;
68 u32 *D;
71 static DEFINE_PER_CPU(struct cword *, paes_last_cword);
73 /* Tells whether the ACE is capable to generate
74 the extended key for a given key_len. */
75 static inline int
76 aes_hw_extkey_available(uint8_t key_len)
78 /* TODO: We should check the actual CPU model/stepping
79 as it's possible that the capability will be
80 added in the next CPU revisions. */
81 if (key_len == 16)
82 return 1;
83 return 0;
86 static inline struct aes_ctx *aes_ctx_common(void *ctx)
88 unsigned long addr = (unsigned long)ctx;
89 unsigned long align = PADLOCK_ALIGNMENT;
91 if (align <= crypto_tfm_ctx_alignment())
92 align = 1;
93 return (struct aes_ctx *)ALIGN(addr, align);
96 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
98 return aes_ctx_common(crypto_tfm_ctx(tfm));
101 static inline struct aes_ctx *skcipher_aes_ctx(struct crypto_skcipher *tfm)
103 return aes_ctx_common(crypto_skcipher_ctx(tfm));
106 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
107 unsigned int key_len)
109 struct aes_ctx *ctx = aes_ctx(tfm);
110 const __le32 *key = (const __le32 *)in_key;
111 struct crypto_aes_ctx gen_aes;
112 int cpu;
114 if (key_len % 8)
115 return -EINVAL;
118 * If the hardware is capable of generating the extended key
119 * itself we must supply the plain key for both encryption
120 * and decryption.
122 ctx->D = ctx->E;
124 ctx->E[0] = le32_to_cpu(key[0]);
125 ctx->E[1] = le32_to_cpu(key[1]);
126 ctx->E[2] = le32_to_cpu(key[2]);
127 ctx->E[3] = le32_to_cpu(key[3]);
129 /* Prepare control words. */
130 memset(&ctx->cword, 0, sizeof(ctx->cword));
132 ctx->cword.decrypt.encdec = 1;
133 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
134 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
135 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
136 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
138 /* Don't generate extended keys if the hardware can do it. */
139 if (aes_hw_extkey_available(key_len))
140 goto ok;
142 ctx->D = ctx->d_data;
143 ctx->cword.encrypt.keygen = 1;
144 ctx->cword.decrypt.keygen = 1;
146 if (aes_expandkey(&gen_aes, in_key, key_len))
147 return -EINVAL;
149 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
150 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
153 for_each_online_cpu(cpu)
154 if (&ctx->cword.encrypt == per_cpu(paes_last_cword, cpu) ||
155 &ctx->cword.decrypt == per_cpu(paes_last_cword, cpu))
156 per_cpu(paes_last_cword, cpu) = NULL;
158 return 0;
161 static int aes_set_key_skcipher(struct crypto_skcipher *tfm, const u8 *in_key,
162 unsigned int key_len)
164 return aes_set_key(crypto_skcipher_tfm(tfm), in_key, key_len);
167 /* ====== Encryption/decryption routines ====== */
169 /* These are the real call to PadLock. */
170 static inline void padlock_reset_key(struct cword *cword)
172 int cpu = raw_smp_processor_id();
174 if (cword != per_cpu(paes_last_cword, cpu))
175 #ifndef CONFIG_X86_64
176 asm volatile ("pushfl; popfl");
177 #else
178 asm volatile ("pushfq; popfq");
179 #endif
182 static inline void padlock_store_cword(struct cword *cword)
184 per_cpu(paes_last_cword, raw_smp_processor_id()) = cword;
188 * While the padlock instructions don't use FP/SSE registers, they
189 * generate a spurious DNA fault when CR0.TS is '1'. Fortunately,
190 * the kernel doesn't use CR0.TS.
193 static inline void rep_xcrypt_ecb(const u8 *input, u8 *output, void *key,
194 struct cword *control_word, int count)
196 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
197 : "+S"(input), "+D"(output)
198 : "d"(control_word), "b"(key), "c"(count));
201 static inline u8 *rep_xcrypt_cbc(const u8 *input, u8 *output, void *key,
202 u8 *iv, struct cword *control_word, int count)
204 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
205 : "+S" (input), "+D" (output), "+a" (iv)
206 : "d" (control_word), "b" (key), "c" (count));
207 return iv;
210 static void ecb_crypt_copy(const u8 *in, u8 *out, u32 *key,
211 struct cword *cword, int count)
214 * Padlock prefetches extra data so we must provide mapped input buffers.
215 * Assume there are at least 16 bytes of stack already in use.
217 u8 buf[AES_BLOCK_SIZE * (MAX_ECB_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
218 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
220 memcpy(tmp, in, count * AES_BLOCK_SIZE);
221 rep_xcrypt_ecb(tmp, out, key, cword, count);
224 static u8 *cbc_crypt_copy(const u8 *in, u8 *out, u32 *key,
225 u8 *iv, struct cword *cword, int count)
228 * Padlock prefetches extra data so we must provide mapped input buffers.
229 * Assume there are at least 16 bytes of stack already in use.
231 u8 buf[AES_BLOCK_SIZE * (MAX_CBC_FETCH_BLOCKS - 1) + PADLOCK_ALIGNMENT - 1];
232 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
234 memcpy(tmp, in, count * AES_BLOCK_SIZE);
235 return rep_xcrypt_cbc(tmp, out, key, iv, cword, count);
238 static inline void ecb_crypt(const u8 *in, u8 *out, u32 *key,
239 struct cword *cword, int count)
241 /* Padlock in ECB mode fetches at least ecb_fetch_bytes of data.
242 * We could avoid some copying here but it's probably not worth it.
244 if (unlikely(offset_in_page(in) + ecb_fetch_bytes > PAGE_SIZE)) {
245 ecb_crypt_copy(in, out, key, cword, count);
246 return;
249 rep_xcrypt_ecb(in, out, key, cword, count);
252 static inline u8 *cbc_crypt(const u8 *in, u8 *out, u32 *key,
253 u8 *iv, struct cword *cword, int count)
255 /* Padlock in CBC mode fetches at least cbc_fetch_bytes of data. */
256 if (unlikely(offset_in_page(in) + cbc_fetch_bytes > PAGE_SIZE))
257 return cbc_crypt_copy(in, out, key, iv, cword, count);
259 return rep_xcrypt_cbc(in, out, key, iv, cword, count);
262 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
263 void *control_word, u32 count)
265 u32 initial = count & (ecb_fetch_blocks - 1);
267 if (count < ecb_fetch_blocks) {
268 ecb_crypt(input, output, key, control_word, count);
269 return;
272 count -= initial;
274 if (initial)
275 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
276 : "+S"(input), "+D"(output)
277 : "d"(control_word), "b"(key), "c"(initial));
279 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
280 : "+S"(input), "+D"(output)
281 : "d"(control_word), "b"(key), "c"(count));
284 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
285 u8 *iv, void *control_word, u32 count)
287 u32 initial = count & (cbc_fetch_blocks - 1);
289 if (count < cbc_fetch_blocks)
290 return cbc_crypt(input, output, key, iv, control_word, count);
292 count -= initial;
294 if (initial)
295 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
296 : "+S" (input), "+D" (output), "+a" (iv)
297 : "d" (control_word), "b" (key), "c" (initial));
299 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0" /* rep xcryptcbc */
300 : "+S" (input), "+D" (output), "+a" (iv)
301 : "d" (control_word), "b" (key), "c" (count));
302 return iv;
305 static void padlock_aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
307 struct aes_ctx *ctx = aes_ctx(tfm);
309 padlock_reset_key(&ctx->cword.encrypt);
310 ecb_crypt(in, out, ctx->E, &ctx->cword.encrypt, 1);
311 padlock_store_cword(&ctx->cword.encrypt);
314 static void padlock_aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
316 struct aes_ctx *ctx = aes_ctx(tfm);
318 padlock_reset_key(&ctx->cword.encrypt);
319 ecb_crypt(in, out, ctx->D, &ctx->cword.decrypt, 1);
320 padlock_store_cword(&ctx->cword.encrypt);
323 static struct crypto_alg aes_alg = {
324 .cra_name = "aes",
325 .cra_driver_name = "aes-padlock",
326 .cra_priority = PADLOCK_CRA_PRIORITY,
327 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
328 .cra_blocksize = AES_BLOCK_SIZE,
329 .cra_ctxsize = sizeof(struct aes_ctx),
330 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
331 .cra_module = THIS_MODULE,
332 .cra_u = {
333 .cipher = {
334 .cia_min_keysize = AES_MIN_KEY_SIZE,
335 .cia_max_keysize = AES_MAX_KEY_SIZE,
336 .cia_setkey = aes_set_key,
337 .cia_encrypt = padlock_aes_encrypt,
338 .cia_decrypt = padlock_aes_decrypt,
343 static int ecb_aes_encrypt(struct skcipher_request *req)
345 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
346 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
347 struct skcipher_walk walk;
348 unsigned int nbytes;
349 int err;
351 padlock_reset_key(&ctx->cword.encrypt);
353 err = skcipher_walk_virt(&walk, req, false);
355 while ((nbytes = walk.nbytes) != 0) {
356 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
357 ctx->E, &ctx->cword.encrypt,
358 nbytes / AES_BLOCK_SIZE);
359 nbytes &= AES_BLOCK_SIZE - 1;
360 err = skcipher_walk_done(&walk, nbytes);
363 padlock_store_cword(&ctx->cword.encrypt);
365 return err;
368 static int ecb_aes_decrypt(struct skcipher_request *req)
370 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
371 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
372 struct skcipher_walk walk;
373 unsigned int nbytes;
374 int err;
376 padlock_reset_key(&ctx->cword.decrypt);
378 err = skcipher_walk_virt(&walk, req, false);
380 while ((nbytes = walk.nbytes) != 0) {
381 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
382 ctx->D, &ctx->cword.decrypt,
383 nbytes / AES_BLOCK_SIZE);
384 nbytes &= AES_BLOCK_SIZE - 1;
385 err = skcipher_walk_done(&walk, nbytes);
388 padlock_store_cword(&ctx->cword.encrypt);
390 return err;
393 static struct skcipher_alg ecb_aes_alg = {
394 .base.cra_name = "ecb(aes)",
395 .base.cra_driver_name = "ecb-aes-padlock",
396 .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
397 .base.cra_blocksize = AES_BLOCK_SIZE,
398 .base.cra_ctxsize = sizeof(struct aes_ctx),
399 .base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
400 .base.cra_module = THIS_MODULE,
401 .min_keysize = AES_MIN_KEY_SIZE,
402 .max_keysize = AES_MAX_KEY_SIZE,
403 .setkey = aes_set_key_skcipher,
404 .encrypt = ecb_aes_encrypt,
405 .decrypt = ecb_aes_decrypt,
408 static int cbc_aes_encrypt(struct skcipher_request *req)
410 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
411 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
412 struct skcipher_walk walk;
413 unsigned int nbytes;
414 int err;
416 padlock_reset_key(&ctx->cword.encrypt);
418 err = skcipher_walk_virt(&walk, req, false);
420 while ((nbytes = walk.nbytes) != 0) {
421 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
422 walk.dst.virt.addr, ctx->E,
423 walk.iv, &ctx->cword.encrypt,
424 nbytes / AES_BLOCK_SIZE);
425 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
426 nbytes &= AES_BLOCK_SIZE - 1;
427 err = skcipher_walk_done(&walk, nbytes);
430 padlock_store_cword(&ctx->cword.decrypt);
432 return err;
435 static int cbc_aes_decrypt(struct skcipher_request *req)
437 struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
438 struct aes_ctx *ctx = skcipher_aes_ctx(tfm);
439 struct skcipher_walk walk;
440 unsigned int nbytes;
441 int err;
443 padlock_reset_key(&ctx->cword.encrypt);
445 err = skcipher_walk_virt(&walk, req, false);
447 while ((nbytes = walk.nbytes) != 0) {
448 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
449 ctx->D, walk.iv, &ctx->cword.decrypt,
450 nbytes / AES_BLOCK_SIZE);
451 nbytes &= AES_BLOCK_SIZE - 1;
452 err = skcipher_walk_done(&walk, nbytes);
455 padlock_store_cword(&ctx->cword.encrypt);
457 return err;
460 static struct skcipher_alg cbc_aes_alg = {
461 .base.cra_name = "cbc(aes)",
462 .base.cra_driver_name = "cbc-aes-padlock",
463 .base.cra_priority = PADLOCK_COMPOSITE_PRIORITY,
464 .base.cra_blocksize = AES_BLOCK_SIZE,
465 .base.cra_ctxsize = sizeof(struct aes_ctx),
466 .base.cra_alignmask = PADLOCK_ALIGNMENT - 1,
467 .base.cra_module = THIS_MODULE,
468 .min_keysize = AES_MIN_KEY_SIZE,
469 .max_keysize = AES_MAX_KEY_SIZE,
470 .ivsize = AES_BLOCK_SIZE,
471 .setkey = aes_set_key_skcipher,
472 .encrypt = cbc_aes_encrypt,
473 .decrypt = cbc_aes_decrypt,
476 static const struct x86_cpu_id padlock_cpu_id[] = {
477 X86_MATCH_FEATURE(X86_FEATURE_XCRYPT, NULL),
480 MODULE_DEVICE_TABLE(x86cpu, padlock_cpu_id);
482 static int __init padlock_init(void)
484 int ret;
485 struct cpuinfo_x86 *c = &cpu_data(0);
487 if (!x86_match_cpu(padlock_cpu_id))
488 return -ENODEV;
490 if (!boot_cpu_has(X86_FEATURE_XCRYPT_EN)) {
491 printk(KERN_NOTICE PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
492 return -ENODEV;
495 if ((ret = crypto_register_alg(&aes_alg)) != 0)
496 goto aes_err;
498 if ((ret = crypto_register_skcipher(&ecb_aes_alg)) != 0)
499 goto ecb_aes_err;
501 if ((ret = crypto_register_skcipher(&cbc_aes_alg)) != 0)
502 goto cbc_aes_err;
504 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
506 if (c->x86 == 6 && c->x86_model == 15 && c->x86_stepping == 2) {
507 ecb_fetch_blocks = MAX_ECB_FETCH_BLOCKS;
508 cbc_fetch_blocks = MAX_CBC_FETCH_BLOCKS;
509 printk(KERN_NOTICE PFX "VIA Nano stepping 2 detected: enabling workaround.\n");
512 out:
513 return ret;
515 cbc_aes_err:
516 crypto_unregister_skcipher(&ecb_aes_alg);
517 ecb_aes_err:
518 crypto_unregister_alg(&aes_alg);
519 aes_err:
520 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
521 goto out;
524 static void __exit padlock_fini(void)
526 crypto_unregister_skcipher(&cbc_aes_alg);
527 crypto_unregister_skcipher(&ecb_aes_alg);
528 crypto_unregister_alg(&aes_alg);
531 module_init(padlock_init);
532 module_exit(padlock_fini);
534 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
535 MODULE_LICENSE("GPL");
536 MODULE_AUTHOR("Michal Ludvig");
538 MODULE_ALIAS_CRYPTO("aes");