dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / crypto / stm32 / stm32-cryp.c
blobd347a1d6e351dc794a4418155fced86e8f3a39f7
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 */
7 #include <linux/clk.h>
8 #include <linux/delay.h>
9 #include <linux/interrupt.h>
10 #include <linux/iopoll.h>
11 #include <linux/module.h>
12 #include <linux/of_device.h>
13 #include <linux/platform_device.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/reset.h>
17 #include <crypto/aes.h>
18 #include <crypto/internal/des.h>
19 #include <crypto/engine.h>
20 #include <crypto/scatterwalk.h>
21 #include <crypto/internal/aead.h>
22 #include <crypto/internal/skcipher.h>
24 #define DRIVER_NAME "stm32-cryp"
26 /* Bit [0] encrypt / decrypt */
27 #define FLG_ENCRYPT BIT(0)
28 /* Bit [8..1] algo & operation mode */
29 #define FLG_AES BIT(1)
30 #define FLG_DES BIT(2)
31 #define FLG_TDES BIT(3)
32 #define FLG_ECB BIT(4)
33 #define FLG_CBC BIT(5)
34 #define FLG_CTR BIT(6)
35 #define FLG_GCM BIT(7)
36 #define FLG_CCM BIT(8)
37 /* Mode mask = bits [15..0] */
38 #define FLG_MODE_MASK GENMASK(15, 0)
39 /* Bit [31..16] status */
40 #define FLG_CCM_PADDED_WA BIT(16)
42 /* Registers */
43 #define CRYP_CR 0x00000000
44 #define CRYP_SR 0x00000004
45 #define CRYP_DIN 0x00000008
46 #define CRYP_DOUT 0x0000000C
47 #define CRYP_DMACR 0x00000010
48 #define CRYP_IMSCR 0x00000014
49 #define CRYP_RISR 0x00000018
50 #define CRYP_MISR 0x0000001C
51 #define CRYP_K0LR 0x00000020
52 #define CRYP_K0RR 0x00000024
53 #define CRYP_K1LR 0x00000028
54 #define CRYP_K1RR 0x0000002C
55 #define CRYP_K2LR 0x00000030
56 #define CRYP_K2RR 0x00000034
57 #define CRYP_K3LR 0x00000038
58 #define CRYP_K3RR 0x0000003C
59 #define CRYP_IV0LR 0x00000040
60 #define CRYP_IV0RR 0x00000044
61 #define CRYP_IV1LR 0x00000048
62 #define CRYP_IV1RR 0x0000004C
63 #define CRYP_CSGCMCCM0R 0x00000050
64 #define CRYP_CSGCM0R 0x00000070
66 /* Registers values */
67 #define CR_DEC_NOT_ENC 0x00000004
68 #define CR_TDES_ECB 0x00000000
69 #define CR_TDES_CBC 0x00000008
70 #define CR_DES_ECB 0x00000010
71 #define CR_DES_CBC 0x00000018
72 #define CR_AES_ECB 0x00000020
73 #define CR_AES_CBC 0x00000028
74 #define CR_AES_CTR 0x00000030
75 #define CR_AES_KP 0x00000038
76 #define CR_AES_GCM 0x00080000
77 #define CR_AES_CCM 0x00080008
78 #define CR_AES_UNKNOWN 0xFFFFFFFF
79 #define CR_ALGO_MASK 0x00080038
80 #define CR_DATA32 0x00000000
81 #define CR_DATA16 0x00000040
82 #define CR_DATA8 0x00000080
83 #define CR_DATA1 0x000000C0
84 #define CR_KEY128 0x00000000
85 #define CR_KEY192 0x00000100
86 #define CR_KEY256 0x00000200
87 #define CR_FFLUSH 0x00004000
88 #define CR_CRYPEN 0x00008000
89 #define CR_PH_INIT 0x00000000
90 #define CR_PH_HEADER 0x00010000
91 #define CR_PH_PAYLOAD 0x00020000
92 #define CR_PH_FINAL 0x00030000
93 #define CR_PH_MASK 0x00030000
94 #define CR_NBPBL_SHIFT 20
96 #define SR_BUSY 0x00000010
97 #define SR_OFNE 0x00000004
99 #define IMSCR_IN BIT(0)
100 #define IMSCR_OUT BIT(1)
102 #define MISR_IN BIT(0)
103 #define MISR_OUT BIT(1)
105 /* Misc */
106 #define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
107 #define GCM_CTR_INIT 2
108 #define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
109 #define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
110 #define CRYP_AUTOSUSPEND_DELAY 50
112 struct stm32_cryp_caps {
113 bool swap_final;
114 bool padding_wa;
117 struct stm32_cryp_ctx {
118 struct crypto_engine_ctx enginectx;
119 struct stm32_cryp *cryp;
120 int keylen;
121 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
122 unsigned long flags;
125 struct stm32_cryp_reqctx {
126 unsigned long mode;
129 struct stm32_cryp {
130 struct list_head list;
131 struct device *dev;
132 void __iomem *regs;
133 struct clk *clk;
134 unsigned long flags;
135 u32 irq_status;
136 const struct stm32_cryp_caps *caps;
137 struct stm32_cryp_ctx *ctx;
139 struct crypto_engine *engine;
141 struct skcipher_request *req;
142 struct aead_request *areq;
144 size_t authsize;
145 size_t hw_blocksize;
147 size_t total_in;
148 size_t total_in_save;
149 size_t total_out;
150 size_t total_out_save;
152 struct scatterlist *in_sg;
153 struct scatterlist *out_sg;
154 struct scatterlist *out_sg_save;
156 struct scatterlist in_sgl;
157 struct scatterlist out_sgl;
158 bool sgs_copied;
160 int in_sg_len;
161 int out_sg_len;
163 struct scatter_walk in_walk;
164 struct scatter_walk out_walk;
166 u32 last_ctr[4];
167 u32 gcm_ctr;
170 struct stm32_cryp_list {
171 struct list_head dev_list;
172 spinlock_t lock; /* protect dev_list */
175 static struct stm32_cryp_list cryp_list = {
176 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
177 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
180 static inline bool is_aes(struct stm32_cryp *cryp)
182 return cryp->flags & FLG_AES;
185 static inline bool is_des(struct stm32_cryp *cryp)
187 return cryp->flags & FLG_DES;
190 static inline bool is_tdes(struct stm32_cryp *cryp)
192 return cryp->flags & FLG_TDES;
195 static inline bool is_ecb(struct stm32_cryp *cryp)
197 return cryp->flags & FLG_ECB;
200 static inline bool is_cbc(struct stm32_cryp *cryp)
202 return cryp->flags & FLG_CBC;
205 static inline bool is_ctr(struct stm32_cryp *cryp)
207 return cryp->flags & FLG_CTR;
210 static inline bool is_gcm(struct stm32_cryp *cryp)
212 return cryp->flags & FLG_GCM;
215 static inline bool is_ccm(struct stm32_cryp *cryp)
217 return cryp->flags & FLG_CCM;
220 static inline bool is_encrypt(struct stm32_cryp *cryp)
222 return cryp->flags & FLG_ENCRYPT;
225 static inline bool is_decrypt(struct stm32_cryp *cryp)
227 return !is_encrypt(cryp);
230 static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
232 return readl_relaxed(cryp->regs + ofst);
235 static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
237 writel_relaxed(val, cryp->regs + ofst);
240 static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
242 u32 status;
244 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
245 !(status & SR_BUSY), 10, 100000);
248 static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
250 u32 status;
252 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
253 !(status & CR_CRYPEN), 10, 100000);
256 static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
258 u32 status;
260 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
261 status & SR_OFNE, 10, 100000);
264 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
266 static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
268 struct stm32_cryp *tmp, *cryp = NULL;
270 spin_lock_bh(&cryp_list.lock);
271 if (!ctx->cryp) {
272 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
273 cryp = tmp;
274 break;
276 ctx->cryp = cryp;
277 } else {
278 cryp = ctx->cryp;
281 spin_unlock_bh(&cryp_list.lock);
283 return cryp;
286 static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
287 size_t align)
289 int len = 0;
291 if (!total)
292 return 0;
294 if (!IS_ALIGNED(total, align))
295 return -EINVAL;
297 while (sg) {
298 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
299 return -EINVAL;
301 if (!IS_ALIGNED(sg->length, align))
302 return -EINVAL;
304 len += sg->length;
305 sg = sg_next(sg);
308 if (len != total)
309 return -EINVAL;
311 return 0;
314 static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
316 int ret;
318 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
319 cryp->hw_blocksize);
320 if (ret)
321 return ret;
323 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
324 cryp->hw_blocksize);
326 return ret;
329 static void sg_copy_buf(void *buf, struct scatterlist *sg,
330 unsigned int start, unsigned int nbytes, int out)
332 struct scatter_walk walk;
334 if (!nbytes)
335 return;
337 scatterwalk_start(&walk, sg);
338 scatterwalk_advance(&walk, start);
339 scatterwalk_copychunks(buf, &walk, nbytes, out);
340 scatterwalk_done(&walk, out, 0);
343 static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
345 void *buf_in, *buf_out;
346 int pages, total_in, total_out;
348 if (!stm32_cryp_check_io_aligned(cryp)) {
349 cryp->sgs_copied = 0;
350 return 0;
353 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
354 pages = total_in ? get_order(total_in) : 1;
355 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
357 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
358 pages = total_out ? get_order(total_out) : 1;
359 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
361 if (!buf_in || !buf_out) {
362 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
363 cryp->sgs_copied = 0;
364 return -EFAULT;
367 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
369 sg_init_one(&cryp->in_sgl, buf_in, total_in);
370 cryp->in_sg = &cryp->in_sgl;
371 cryp->in_sg_len = 1;
373 sg_init_one(&cryp->out_sgl, buf_out, total_out);
374 cryp->out_sg_save = cryp->out_sg;
375 cryp->out_sg = &cryp->out_sgl;
376 cryp->out_sg_len = 1;
378 cryp->sgs_copied = 1;
380 return 0;
383 static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
385 if (!iv)
386 return;
388 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
389 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
391 if (is_aes(cryp)) {
392 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
393 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
397 static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
399 struct skcipher_request *req = cryp->req;
400 u32 *tmp = (void *)req->iv;
402 if (!tmp)
403 return;
405 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
406 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
408 if (is_aes(cryp)) {
409 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
410 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
414 static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
416 unsigned int i;
417 int r_id;
419 if (is_des(c)) {
420 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
421 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
422 } else {
423 r_id = CRYP_K3RR;
424 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
425 stm32_cryp_write(c, r_id,
426 cpu_to_be32(c->ctx->key[i - 1]));
430 static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
432 if (is_aes(cryp) && is_ecb(cryp))
433 return CR_AES_ECB;
435 if (is_aes(cryp) && is_cbc(cryp))
436 return CR_AES_CBC;
438 if (is_aes(cryp) && is_ctr(cryp))
439 return CR_AES_CTR;
441 if (is_aes(cryp) && is_gcm(cryp))
442 return CR_AES_GCM;
444 if (is_aes(cryp) && is_ccm(cryp))
445 return CR_AES_CCM;
447 if (is_des(cryp) && is_ecb(cryp))
448 return CR_DES_ECB;
450 if (is_des(cryp) && is_cbc(cryp))
451 return CR_DES_CBC;
453 if (is_tdes(cryp) && is_ecb(cryp))
454 return CR_TDES_ECB;
456 if (is_tdes(cryp) && is_cbc(cryp))
457 return CR_TDES_CBC;
459 dev_err(cryp->dev, "Unknown mode\n");
460 return CR_AES_UNKNOWN;
463 static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
465 return is_encrypt(cryp) ? cryp->areq->cryptlen :
466 cryp->areq->cryptlen - cryp->authsize;
469 static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
471 int ret;
472 u32 iv[4];
474 /* Phase 1 : init */
475 memcpy(iv, cryp->areq->iv, 12);
476 iv[3] = cpu_to_be32(GCM_CTR_INIT);
477 cryp->gcm_ctr = GCM_CTR_INIT;
478 stm32_cryp_hw_write_iv(cryp, iv);
480 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
482 /* Wait for end of processing */
483 ret = stm32_cryp_wait_enable(cryp);
484 if (ret)
485 dev_err(cryp->dev, "Timeout (gcm init)\n");
487 return ret;
490 static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
492 int ret;
493 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
494 u32 *d;
495 unsigned int i, textlen;
497 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
498 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
499 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
500 iv[AES_BLOCK_SIZE - 1] = 1;
501 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
503 /* Build B0 */
504 memcpy(b0, iv, AES_BLOCK_SIZE);
506 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
508 if (cryp->areq->assoclen)
509 b0[0] |= 0x40;
511 textlen = stm32_cryp_get_input_text_len(cryp);
513 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
514 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
516 /* Enable HW */
517 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
519 /* Write B0 */
520 d = (u32 *)b0;
522 for (i = 0; i < AES_BLOCK_32; i++) {
523 if (!cryp->caps->padding_wa)
524 *d = cpu_to_be32(*d);
525 stm32_cryp_write(cryp, CRYP_DIN, *d++);
528 /* Wait for end of processing */
529 ret = stm32_cryp_wait_enable(cryp);
530 if (ret)
531 dev_err(cryp->dev, "Timeout (ccm init)\n");
533 return ret;
536 static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
538 int ret;
539 u32 cfg, hw_mode;
541 pm_runtime_get_sync(cryp->dev);
543 /* Disable interrupt */
544 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
546 /* Set key */
547 stm32_cryp_hw_write_key(cryp);
549 /* Set configuration */
550 cfg = CR_DATA8 | CR_FFLUSH;
552 switch (cryp->ctx->keylen) {
553 case AES_KEYSIZE_128:
554 cfg |= CR_KEY128;
555 break;
557 case AES_KEYSIZE_192:
558 cfg |= CR_KEY192;
559 break;
561 default:
562 case AES_KEYSIZE_256:
563 cfg |= CR_KEY256;
564 break;
567 hw_mode = stm32_cryp_get_hw_mode(cryp);
568 if (hw_mode == CR_AES_UNKNOWN)
569 return -EINVAL;
571 /* AES ECB/CBC decrypt: run key preparation first */
572 if (is_decrypt(cryp) &&
573 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
574 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
576 /* Wait for end of processing */
577 ret = stm32_cryp_wait_busy(cryp);
578 if (ret) {
579 dev_err(cryp->dev, "Timeout (key preparation)\n");
580 return ret;
584 cfg |= hw_mode;
586 if (is_decrypt(cryp))
587 cfg |= CR_DEC_NOT_ENC;
589 /* Apply config and flush (valid when CRYPEN = 0) */
590 stm32_cryp_write(cryp, CRYP_CR, cfg);
592 switch (hw_mode) {
593 case CR_AES_GCM:
594 case CR_AES_CCM:
595 /* Phase 1 : init */
596 if (hw_mode == CR_AES_CCM)
597 ret = stm32_cryp_ccm_init(cryp, cfg);
598 else
599 ret = stm32_cryp_gcm_init(cryp, cfg);
601 if (ret)
602 return ret;
604 /* Phase 2 : header (authenticated data) */
605 if (cryp->areq->assoclen) {
606 cfg |= CR_PH_HEADER;
607 } else if (stm32_cryp_get_input_text_len(cryp)) {
608 cfg |= CR_PH_PAYLOAD;
609 stm32_cryp_write(cryp, CRYP_CR, cfg);
610 } else {
611 cfg |= CR_PH_INIT;
614 break;
616 case CR_DES_CBC:
617 case CR_TDES_CBC:
618 case CR_AES_CBC:
619 case CR_AES_CTR:
620 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->iv);
621 break;
623 default:
624 break;
627 /* Enable now */
628 cfg |= CR_CRYPEN;
630 stm32_cryp_write(cryp, CRYP_CR, cfg);
632 cryp->flags &= ~FLG_CCM_PADDED_WA;
634 return 0;
637 static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
639 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
640 /* Phase 4 : output tag */
641 err = stm32_cryp_read_auth_tag(cryp);
643 if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
644 stm32_cryp_get_iv(cryp);
646 if (cryp->sgs_copied) {
647 void *buf_in, *buf_out;
648 int pages, len;
650 buf_in = sg_virt(&cryp->in_sgl);
651 buf_out = sg_virt(&cryp->out_sgl);
653 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
654 cryp->total_out_save, 1);
656 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
657 pages = len ? get_order(len) : 1;
658 free_pages((unsigned long)buf_in, pages);
660 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
661 pages = len ? get_order(len) : 1;
662 free_pages((unsigned long)buf_out, pages);
665 pm_runtime_mark_last_busy(cryp->dev);
666 pm_runtime_put_autosuspend(cryp->dev);
668 if (is_gcm(cryp) || is_ccm(cryp))
669 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
670 else
671 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
672 err);
674 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
677 static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
679 /* Enable interrupt and let the IRQ handler do everything */
680 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
682 return 0;
685 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
686 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
687 void *areq);
689 static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
691 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
693 crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
695 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
696 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
697 ctx->enginectx.op.unprepare_request = NULL;
698 return 0;
701 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
702 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
703 void *areq);
705 static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
707 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
709 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
711 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
712 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
713 ctx->enginectx.op.unprepare_request = NULL;
715 return 0;
718 static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
720 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
721 crypto_skcipher_reqtfm(req));
722 struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
723 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
725 if (!cryp)
726 return -ENODEV;
728 rctx->mode = mode;
730 return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
733 static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
735 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
736 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
737 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
739 if (!cryp)
740 return -ENODEV;
742 rctx->mode = mode;
744 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
747 static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
748 unsigned int keylen)
750 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
752 memcpy(ctx->key, key, keylen);
753 ctx->keylen = keylen;
755 return 0;
758 static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
759 unsigned int keylen)
761 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
762 keylen != AES_KEYSIZE_256)
763 return -EINVAL;
764 else
765 return stm32_cryp_setkey(tfm, key, keylen);
768 static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
769 unsigned int keylen)
771 return verify_skcipher_des_key(tfm, key) ?:
772 stm32_cryp_setkey(tfm, key, keylen);
775 static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
776 unsigned int keylen)
778 return verify_skcipher_des3_key(tfm, key) ?:
779 stm32_cryp_setkey(tfm, key, keylen);
782 static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
783 unsigned int keylen)
785 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
787 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
788 keylen != AES_KEYSIZE_256)
789 return -EINVAL;
791 memcpy(ctx->key, key, keylen);
792 ctx->keylen = keylen;
794 return 0;
797 static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
798 unsigned int authsize)
800 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
803 static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
804 unsigned int authsize)
806 switch (authsize) {
807 case 4:
808 case 6:
809 case 8:
810 case 10:
811 case 12:
812 case 14:
813 case 16:
814 break;
815 default:
816 return -EINVAL;
819 return 0;
822 static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
824 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
827 static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
829 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
832 static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
834 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
837 static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
839 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
842 static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
844 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
847 static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
849 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
852 static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
854 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
857 static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
859 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
862 static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
864 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
867 static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
869 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
872 static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
874 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
877 static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
879 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
882 static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
884 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
887 static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
889 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
892 static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
894 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
897 static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
899 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
902 static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
904 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
907 static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
909 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
912 static int stm32_cryp_prepare_req(struct skcipher_request *req,
913 struct aead_request *areq)
915 struct stm32_cryp_ctx *ctx;
916 struct stm32_cryp *cryp;
917 struct stm32_cryp_reqctx *rctx;
918 int ret;
920 if (!req && !areq)
921 return -EINVAL;
923 ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
924 crypto_aead_ctx(crypto_aead_reqtfm(areq));
926 cryp = ctx->cryp;
928 if (!cryp)
929 return -ENODEV;
931 rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
932 rctx->mode &= FLG_MODE_MASK;
934 ctx->cryp = cryp;
936 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
937 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
938 cryp->ctx = ctx;
940 if (req) {
941 cryp->req = req;
942 cryp->areq = NULL;
943 cryp->total_in = req->cryptlen;
944 cryp->total_out = cryp->total_in;
945 } else {
947 * Length of input and output data:
948 * Encryption case:
949 * INPUT = AssocData || PlainText
950 * <- assoclen -> <- cryptlen ->
951 * <------- total_in ----------->
953 * OUTPUT = AssocData || CipherText || AuthTag
954 * <- assoclen -> <- cryptlen -> <- authsize ->
955 * <---------------- total_out ----------------->
957 * Decryption case:
958 * INPUT = AssocData || CipherText || AuthTag
959 * <- assoclen -> <--------- cryptlen --------->
960 * <- authsize ->
961 * <---------------- total_in ------------------>
963 * OUTPUT = AssocData || PlainText
964 * <- assoclen -> <- crypten - authsize ->
965 * <---------- total_out ----------------->
967 cryp->areq = areq;
968 cryp->req = NULL;
969 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
970 cryp->total_in = areq->assoclen + areq->cryptlen;
971 if (is_encrypt(cryp))
972 /* Append auth tag to output */
973 cryp->total_out = cryp->total_in + cryp->authsize;
974 else
975 /* No auth tag in output */
976 cryp->total_out = cryp->total_in - cryp->authsize;
979 cryp->total_in_save = cryp->total_in;
980 cryp->total_out_save = cryp->total_out;
982 cryp->in_sg = req ? req->src : areq->src;
983 cryp->out_sg = req ? req->dst : areq->dst;
984 cryp->out_sg_save = cryp->out_sg;
986 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
987 if (cryp->in_sg_len < 0) {
988 dev_err(cryp->dev, "Cannot get in_sg_len\n");
989 ret = cryp->in_sg_len;
990 return ret;
993 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
994 if (cryp->out_sg_len < 0) {
995 dev_err(cryp->dev, "Cannot get out_sg_len\n");
996 ret = cryp->out_sg_len;
997 return ret;
1000 ret = stm32_cryp_copy_sgs(cryp);
1001 if (ret)
1002 return ret;
1004 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1005 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1007 if (is_gcm(cryp) || is_ccm(cryp)) {
1008 /* In output, jump after assoc data */
1009 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1010 cryp->total_out -= cryp->areq->assoclen;
1013 ret = stm32_cryp_hw_init(cryp);
1014 return ret;
1017 static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1018 void *areq)
1020 struct skcipher_request *req = container_of(areq,
1021 struct skcipher_request,
1022 base);
1024 return stm32_cryp_prepare_req(req, NULL);
1027 static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1029 struct skcipher_request *req = container_of(areq,
1030 struct skcipher_request,
1031 base);
1032 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1033 crypto_skcipher_reqtfm(req));
1034 struct stm32_cryp *cryp = ctx->cryp;
1036 if (!cryp)
1037 return -ENODEV;
1039 return stm32_cryp_cpu_start(cryp);
1042 static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1044 struct aead_request *req = container_of(areq, struct aead_request,
1045 base);
1047 return stm32_cryp_prepare_req(NULL, req);
1050 static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1052 struct aead_request *req = container_of(areq, struct aead_request,
1053 base);
1054 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1055 struct stm32_cryp *cryp = ctx->cryp;
1057 if (!cryp)
1058 return -ENODEV;
1060 if (unlikely(!cryp->areq->assoclen &&
1061 !stm32_cryp_get_input_text_len(cryp))) {
1062 /* No input data to process: get tag and finish */
1063 stm32_cryp_finish_req(cryp, 0);
1064 return 0;
1067 return stm32_cryp_cpu_start(cryp);
1070 static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1071 unsigned int n)
1073 scatterwalk_advance(&cryp->out_walk, n);
1075 if (unlikely(cryp->out_sg->length == _walked_out)) {
1076 cryp->out_sg = sg_next(cryp->out_sg);
1077 if (cryp->out_sg) {
1078 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1079 return (sg_virt(cryp->out_sg) + _walked_out);
1083 return (u32 *)((u8 *)dst + n);
1086 static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1087 unsigned int n)
1089 scatterwalk_advance(&cryp->in_walk, n);
1091 if (unlikely(cryp->in_sg->length == _walked_in)) {
1092 cryp->in_sg = sg_next(cryp->in_sg);
1093 if (cryp->in_sg) {
1094 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1095 return (sg_virt(cryp->in_sg) + _walked_in);
1099 return (u32 *)((u8 *)src + n);
1102 static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1104 u32 cfg, size_bit, *dst, d32;
1105 u8 *d8;
1106 unsigned int i, j;
1107 int ret = 0;
1109 /* Update Config */
1110 cfg = stm32_cryp_read(cryp, CRYP_CR);
1112 cfg &= ~CR_PH_MASK;
1113 cfg |= CR_PH_FINAL;
1114 cfg &= ~CR_DEC_NOT_ENC;
1115 cfg |= CR_CRYPEN;
1117 stm32_cryp_write(cryp, CRYP_CR, cfg);
1119 if (is_gcm(cryp)) {
1120 /* GCM: write aad and payload size (in bits) */
1121 size_bit = cryp->areq->assoclen * 8;
1122 if (cryp->caps->swap_final)
1123 size_bit = cpu_to_be32(size_bit);
1125 stm32_cryp_write(cryp, CRYP_DIN, 0);
1126 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1128 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1129 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1130 size_bit *= 8;
1131 if (cryp->caps->swap_final)
1132 size_bit = cpu_to_be32(size_bit);
1134 stm32_cryp_write(cryp, CRYP_DIN, 0);
1135 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1136 } else {
1137 /* CCM: write CTR0 */
1138 u8 iv[AES_BLOCK_SIZE];
1139 u32 *iv32 = (u32 *)iv;
1141 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1142 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1144 for (i = 0; i < AES_BLOCK_32; i++) {
1145 if (!cryp->caps->padding_wa)
1146 *iv32 = cpu_to_be32(*iv32);
1147 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1151 /* Wait for output data */
1152 ret = stm32_cryp_wait_output(cryp);
1153 if (ret) {
1154 dev_err(cryp->dev, "Timeout (read tag)\n");
1155 return ret;
1158 if (is_encrypt(cryp)) {
1159 /* Get and write tag */
1160 dst = sg_virt(cryp->out_sg) + _walked_out;
1162 for (i = 0; i < AES_BLOCK_32; i++) {
1163 if (cryp->total_out >= sizeof(u32)) {
1164 /* Read a full u32 */
1165 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1167 dst = stm32_cryp_next_out(cryp, dst,
1168 sizeof(u32));
1169 cryp->total_out -= sizeof(u32);
1170 } else if (!cryp->total_out) {
1171 /* Empty fifo out (data from input padding) */
1172 stm32_cryp_read(cryp, CRYP_DOUT);
1173 } else {
1174 /* Read less than an u32 */
1175 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1176 d8 = (u8 *)&d32;
1178 for (j = 0; j < cryp->total_out; j++) {
1179 *((u8 *)dst) = *(d8++);
1180 dst = stm32_cryp_next_out(cryp, dst, 1);
1182 cryp->total_out = 0;
1185 } else {
1186 /* Get and check tag */
1187 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1189 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1190 cryp->total_in_save - cryp->authsize,
1191 cryp->authsize, 0);
1193 for (i = 0; i < AES_BLOCK_32; i++)
1194 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1196 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1197 ret = -EBADMSG;
1200 /* Disable cryp */
1201 cfg &= ~CR_CRYPEN;
1202 stm32_cryp_write(cryp, CRYP_CR, cfg);
1204 return ret;
1207 static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1209 u32 cr;
1211 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1212 cryp->last_ctr[3] = 0;
1213 cryp->last_ctr[2]++;
1214 if (!cryp->last_ctr[2]) {
1215 cryp->last_ctr[1]++;
1216 if (!cryp->last_ctr[1])
1217 cryp->last_ctr[0]++;
1220 cr = stm32_cryp_read(cryp, CRYP_CR);
1221 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1223 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1225 stm32_cryp_write(cryp, CRYP_CR, cr);
1228 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1229 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1230 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1231 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1234 static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1236 unsigned int i, j;
1237 u32 d32, *dst;
1238 u8 *d8;
1239 size_t tag_size;
1241 /* Do no read tag now (if any) */
1242 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1243 tag_size = cryp->authsize;
1244 else
1245 tag_size = 0;
1247 dst = sg_virt(cryp->out_sg) + _walked_out;
1249 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1250 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1251 /* Read a full u32 */
1252 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1254 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1255 cryp->total_out -= sizeof(u32);
1256 } else if (cryp->total_out == tag_size) {
1257 /* Empty fifo out (data from input padding) */
1258 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1259 } else {
1260 /* Read less than an u32 */
1261 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1262 d8 = (u8 *)&d32;
1264 for (j = 0; j < cryp->total_out - tag_size; j++) {
1265 *((u8 *)dst) = *(d8++);
1266 dst = stm32_cryp_next_out(cryp, dst, 1);
1268 cryp->total_out = tag_size;
1272 return !(cryp->total_out - tag_size) || !cryp->total_in;
1275 static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1277 unsigned int i, j;
1278 u32 *src;
1279 u8 d8[4];
1280 size_t tag_size;
1282 /* Do no write tag (if any) */
1283 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1284 tag_size = cryp->authsize;
1285 else
1286 tag_size = 0;
1288 src = sg_virt(cryp->in_sg) + _walked_in;
1290 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1291 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1292 /* Write a full u32 */
1293 stm32_cryp_write(cryp, CRYP_DIN, *src);
1295 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1296 cryp->total_in -= sizeof(u32);
1297 } else if (cryp->total_in == tag_size) {
1298 /* Write padding data */
1299 stm32_cryp_write(cryp, CRYP_DIN, 0);
1300 } else {
1301 /* Write less than an u32 */
1302 memset(d8, 0, sizeof(u32));
1303 for (j = 0; j < cryp->total_in - tag_size; j++) {
1304 d8[j] = *((u8 *)src);
1305 src = stm32_cryp_next_in(cryp, src, 1);
1308 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1309 cryp->total_in = tag_size;
1314 static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1316 int err;
1317 u32 cfg, tmp[AES_BLOCK_32];
1318 size_t total_in_ori = cryp->total_in;
1319 struct scatterlist *out_sg_ori = cryp->out_sg;
1320 unsigned int i;
1322 /* 'Special workaround' procedure described in the datasheet */
1324 /* a) disable ip */
1325 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1326 cfg = stm32_cryp_read(cryp, CRYP_CR);
1327 cfg &= ~CR_CRYPEN;
1328 stm32_cryp_write(cryp, CRYP_CR, cfg);
1330 /* b) Update IV1R */
1331 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1333 /* c) change mode to CTR */
1334 cfg &= ~CR_ALGO_MASK;
1335 cfg |= CR_AES_CTR;
1336 stm32_cryp_write(cryp, CRYP_CR, cfg);
1338 /* a) enable IP */
1339 cfg |= CR_CRYPEN;
1340 stm32_cryp_write(cryp, CRYP_CR, cfg);
1342 /* b) pad and write the last block */
1343 stm32_cryp_irq_write_block(cryp);
1344 cryp->total_in = total_in_ori;
1345 err = stm32_cryp_wait_output(cryp);
1346 if (err) {
1347 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1348 return stm32_cryp_finish_req(cryp, err);
1351 /* c) get and store encrypted data */
1352 stm32_cryp_irq_read_data(cryp);
1353 scatterwalk_map_and_copy(tmp, out_sg_ori,
1354 cryp->total_in_save - total_in_ori,
1355 total_in_ori, 0);
1357 /* d) change mode back to AES GCM */
1358 cfg &= ~CR_ALGO_MASK;
1359 cfg |= CR_AES_GCM;
1360 stm32_cryp_write(cryp, CRYP_CR, cfg);
1362 /* e) change phase to Final */
1363 cfg &= ~CR_PH_MASK;
1364 cfg |= CR_PH_FINAL;
1365 stm32_cryp_write(cryp, CRYP_CR, cfg);
1367 /* f) write padded data */
1368 for (i = 0; i < AES_BLOCK_32; i++) {
1369 if (cryp->total_in)
1370 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1371 else
1372 stm32_cryp_write(cryp, CRYP_DIN, 0);
1374 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1377 /* g) Empty fifo out */
1378 err = stm32_cryp_wait_output(cryp);
1379 if (err) {
1380 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1381 return stm32_cryp_finish_req(cryp, err);
1384 for (i = 0; i < AES_BLOCK_32; i++)
1385 stm32_cryp_read(cryp, CRYP_DOUT);
1387 /* h) run the he normal Final phase */
1388 stm32_cryp_finish_req(cryp, 0);
1391 static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1393 u32 cfg, payload_bytes;
1395 /* disable ip, set NPBLB and reneable ip */
1396 cfg = stm32_cryp_read(cryp, CRYP_CR);
1397 cfg &= ~CR_CRYPEN;
1398 stm32_cryp_write(cryp, CRYP_CR, cfg);
1400 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1401 cryp->total_in;
1402 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1403 cfg |= CR_CRYPEN;
1404 stm32_cryp_write(cryp, CRYP_CR, cfg);
1407 static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1409 int err = 0;
1410 u32 cfg, iv1tmp;
1411 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1412 size_t last_total_out, total_in_ori = cryp->total_in;
1413 struct scatterlist *out_sg_ori = cryp->out_sg;
1414 unsigned int i;
1416 /* 'Special workaround' procedure described in the datasheet */
1417 cryp->flags |= FLG_CCM_PADDED_WA;
1419 /* a) disable ip */
1420 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1422 cfg = stm32_cryp_read(cryp, CRYP_CR);
1423 cfg &= ~CR_CRYPEN;
1424 stm32_cryp_write(cryp, CRYP_CR, cfg);
1426 /* b) get IV1 from CRYP_CSGCMCCM7 */
1427 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1429 /* c) Load CRYP_CSGCMCCMxR */
1430 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1431 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1433 /* d) Write IV1R */
1434 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1436 /* e) change mode to CTR */
1437 cfg &= ~CR_ALGO_MASK;
1438 cfg |= CR_AES_CTR;
1439 stm32_cryp_write(cryp, CRYP_CR, cfg);
1441 /* a) enable IP */
1442 cfg |= CR_CRYPEN;
1443 stm32_cryp_write(cryp, CRYP_CR, cfg);
1445 /* b) pad and write the last block */
1446 stm32_cryp_irq_write_block(cryp);
1447 cryp->total_in = total_in_ori;
1448 err = stm32_cryp_wait_output(cryp);
1449 if (err) {
1450 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1451 return stm32_cryp_finish_req(cryp, err);
1454 /* c) get and store decrypted data */
1455 last_total_out = cryp->total_out;
1456 stm32_cryp_irq_read_data(cryp);
1458 memset(tmp, 0, sizeof(tmp));
1459 scatterwalk_map_and_copy(tmp, out_sg_ori,
1460 cryp->total_out_save - last_total_out,
1461 last_total_out, 0);
1463 /* d) Load again CRYP_CSGCMCCMxR */
1464 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1465 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1467 /* e) change mode back to AES CCM */
1468 cfg &= ~CR_ALGO_MASK;
1469 cfg |= CR_AES_CCM;
1470 stm32_cryp_write(cryp, CRYP_CR, cfg);
1472 /* f) change phase to header */
1473 cfg &= ~CR_PH_MASK;
1474 cfg |= CR_PH_HEADER;
1475 stm32_cryp_write(cryp, CRYP_CR, cfg);
1477 /* g) XOR and write padded data */
1478 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1479 tmp[i] ^= cstmp1[i];
1480 tmp[i] ^= cstmp2[i];
1481 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1484 /* h) wait for completion */
1485 err = stm32_cryp_wait_busy(cryp);
1486 if (err)
1487 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1489 /* i) run the he normal Final phase */
1490 stm32_cryp_finish_req(cryp, err);
1493 static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1495 if (unlikely(!cryp->total_in)) {
1496 dev_warn(cryp->dev, "No more data to process\n");
1497 return;
1500 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1501 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1502 is_encrypt(cryp))) {
1503 /* Padding for AES GCM encryption */
1504 if (cryp->caps->padding_wa)
1505 /* Special case 1 */
1506 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1508 /* Setting padding bytes (NBBLB) */
1509 stm32_cryp_irq_set_npblb(cryp);
1512 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1513 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1514 is_decrypt(cryp))) {
1515 /* Padding for AES CCM decryption */
1516 if (cryp->caps->padding_wa)
1517 /* Special case 2 */
1518 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1520 /* Setting padding bytes (NBBLB) */
1521 stm32_cryp_irq_set_npblb(cryp);
1524 if (is_aes(cryp) && is_ctr(cryp))
1525 stm32_cryp_check_ctr_counter(cryp);
1527 stm32_cryp_irq_write_block(cryp);
1530 static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1532 int err;
1533 unsigned int i, j;
1534 u32 cfg, *src;
1536 src = sg_virt(cryp->in_sg) + _walked_in;
1538 for (i = 0; i < AES_BLOCK_32; i++) {
1539 stm32_cryp_write(cryp, CRYP_DIN, *src);
1541 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1542 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1544 /* Check if whole header written */
1545 if ((cryp->total_in_save - cryp->total_in) ==
1546 cryp->areq->assoclen) {
1547 /* Write padding if needed */
1548 for (j = i + 1; j < AES_BLOCK_32; j++)
1549 stm32_cryp_write(cryp, CRYP_DIN, 0);
1551 /* Wait for completion */
1552 err = stm32_cryp_wait_busy(cryp);
1553 if (err) {
1554 dev_err(cryp->dev, "Timeout (gcm header)\n");
1555 return stm32_cryp_finish_req(cryp, err);
1558 if (stm32_cryp_get_input_text_len(cryp)) {
1559 /* Phase 3 : payload */
1560 cfg = stm32_cryp_read(cryp, CRYP_CR);
1561 cfg &= ~CR_CRYPEN;
1562 stm32_cryp_write(cryp, CRYP_CR, cfg);
1564 cfg &= ~CR_PH_MASK;
1565 cfg |= CR_PH_PAYLOAD;
1566 cfg |= CR_CRYPEN;
1567 stm32_cryp_write(cryp, CRYP_CR, cfg);
1568 } else {
1569 /* Phase 4 : tag */
1570 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1571 stm32_cryp_finish_req(cryp, 0);
1574 break;
1577 if (!cryp->total_in)
1578 break;
1582 static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1584 int err;
1585 unsigned int i = 0, j, k;
1586 u32 alen, cfg, *src;
1587 u8 d8[4];
1589 src = sg_virt(cryp->in_sg) + _walked_in;
1590 alen = cryp->areq->assoclen;
1592 if (!_walked_in) {
1593 if (cryp->areq->assoclen <= 65280) {
1594 /* Write first u32 of B1 */
1595 d8[0] = (alen >> 8) & 0xFF;
1596 d8[1] = alen & 0xFF;
1597 d8[2] = *((u8 *)src);
1598 src = stm32_cryp_next_in(cryp, src, 1);
1599 d8[3] = *((u8 *)src);
1600 src = stm32_cryp_next_in(cryp, src, 1);
1602 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1603 i++;
1605 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1606 } else {
1607 /* Build the two first u32 of B1 */
1608 d8[0] = 0xFF;
1609 d8[1] = 0xFE;
1610 d8[2] = alen & 0xFF000000;
1611 d8[3] = alen & 0x00FF0000;
1613 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1614 i++;
1616 d8[0] = alen & 0x0000FF00;
1617 d8[1] = alen & 0x000000FF;
1618 d8[2] = *((u8 *)src);
1619 src = stm32_cryp_next_in(cryp, src, 1);
1620 d8[3] = *((u8 *)src);
1621 src = stm32_cryp_next_in(cryp, src, 1);
1623 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1624 i++;
1626 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1630 /* Write next u32 */
1631 for (; i < AES_BLOCK_32; i++) {
1632 /* Build an u32 */
1633 memset(d8, 0, sizeof(u32));
1634 for (k = 0; k < sizeof(u32); k++) {
1635 d8[k] = *((u8 *)src);
1636 src = stm32_cryp_next_in(cryp, src, 1);
1638 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1639 if ((cryp->total_in_save - cryp->total_in) == alen)
1640 break;
1643 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1645 if ((cryp->total_in_save - cryp->total_in) == alen) {
1646 /* Write padding if needed */
1647 for (j = i + 1; j < AES_BLOCK_32; j++)
1648 stm32_cryp_write(cryp, CRYP_DIN, 0);
1650 /* Wait for completion */
1651 err = stm32_cryp_wait_busy(cryp);
1652 if (err) {
1653 dev_err(cryp->dev, "Timeout (ccm header)\n");
1654 return stm32_cryp_finish_req(cryp, err);
1657 if (stm32_cryp_get_input_text_len(cryp)) {
1658 /* Phase 3 : payload */
1659 cfg = stm32_cryp_read(cryp, CRYP_CR);
1660 cfg &= ~CR_CRYPEN;
1661 stm32_cryp_write(cryp, CRYP_CR, cfg);
1663 cfg &= ~CR_PH_MASK;
1664 cfg |= CR_PH_PAYLOAD;
1665 cfg |= CR_CRYPEN;
1666 stm32_cryp_write(cryp, CRYP_CR, cfg);
1667 } else {
1668 /* Phase 4 : tag */
1669 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1670 stm32_cryp_finish_req(cryp, 0);
1673 break;
1678 static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1680 struct stm32_cryp *cryp = arg;
1681 u32 ph;
1683 if (cryp->irq_status & MISR_OUT)
1684 /* Output FIFO IRQ: read data */
1685 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1686 /* All bytes processed, finish */
1687 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1688 stm32_cryp_finish_req(cryp, 0);
1689 return IRQ_HANDLED;
1692 if (cryp->irq_status & MISR_IN) {
1693 if (is_gcm(cryp)) {
1694 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1695 if (unlikely(ph == CR_PH_HEADER))
1696 /* Write Header */
1697 stm32_cryp_irq_write_gcm_header(cryp);
1698 else
1699 /* Input FIFO IRQ: write data */
1700 stm32_cryp_irq_write_data(cryp);
1701 cryp->gcm_ctr++;
1702 } else if (is_ccm(cryp)) {
1703 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704 if (unlikely(ph == CR_PH_HEADER))
1705 /* Write Header */
1706 stm32_cryp_irq_write_ccm_header(cryp);
1707 else
1708 /* Input FIFO IRQ: write data */
1709 stm32_cryp_irq_write_data(cryp);
1710 } else {
1711 /* Input FIFO IRQ: write data */
1712 stm32_cryp_irq_write_data(cryp);
1716 return IRQ_HANDLED;
1719 static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1721 struct stm32_cryp *cryp = arg;
1723 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1725 return IRQ_WAKE_THREAD;
1728 static struct skcipher_alg crypto_algs[] = {
1730 .base.cra_name = "ecb(aes)",
1731 .base.cra_driver_name = "stm32-ecb-aes",
1732 .base.cra_priority = 200,
1733 .base.cra_flags = CRYPTO_ALG_ASYNC,
1734 .base.cra_blocksize = AES_BLOCK_SIZE,
1735 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1736 .base.cra_alignmask = 0xf,
1737 .base.cra_module = THIS_MODULE,
1739 .init = stm32_cryp_init_tfm,
1740 .min_keysize = AES_MIN_KEY_SIZE,
1741 .max_keysize = AES_MAX_KEY_SIZE,
1742 .setkey = stm32_cryp_aes_setkey,
1743 .encrypt = stm32_cryp_aes_ecb_encrypt,
1744 .decrypt = stm32_cryp_aes_ecb_decrypt,
1747 .base.cra_name = "cbc(aes)",
1748 .base.cra_driver_name = "stm32-cbc-aes",
1749 .base.cra_priority = 200,
1750 .base.cra_flags = CRYPTO_ALG_ASYNC,
1751 .base.cra_blocksize = AES_BLOCK_SIZE,
1752 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1753 .base.cra_alignmask = 0xf,
1754 .base.cra_module = THIS_MODULE,
1756 .init = stm32_cryp_init_tfm,
1757 .min_keysize = AES_MIN_KEY_SIZE,
1758 .max_keysize = AES_MAX_KEY_SIZE,
1759 .ivsize = AES_BLOCK_SIZE,
1760 .setkey = stm32_cryp_aes_setkey,
1761 .encrypt = stm32_cryp_aes_cbc_encrypt,
1762 .decrypt = stm32_cryp_aes_cbc_decrypt,
1765 .base.cra_name = "ctr(aes)",
1766 .base.cra_driver_name = "stm32-ctr-aes",
1767 .base.cra_priority = 200,
1768 .base.cra_flags = CRYPTO_ALG_ASYNC,
1769 .base.cra_blocksize = 1,
1770 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1771 .base.cra_alignmask = 0xf,
1772 .base.cra_module = THIS_MODULE,
1774 .init = stm32_cryp_init_tfm,
1775 .min_keysize = AES_MIN_KEY_SIZE,
1776 .max_keysize = AES_MAX_KEY_SIZE,
1777 .ivsize = AES_BLOCK_SIZE,
1778 .setkey = stm32_cryp_aes_setkey,
1779 .encrypt = stm32_cryp_aes_ctr_encrypt,
1780 .decrypt = stm32_cryp_aes_ctr_decrypt,
1783 .base.cra_name = "ecb(des)",
1784 .base.cra_driver_name = "stm32-ecb-des",
1785 .base.cra_priority = 200,
1786 .base.cra_flags = CRYPTO_ALG_ASYNC,
1787 .base.cra_blocksize = DES_BLOCK_SIZE,
1788 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1789 .base.cra_alignmask = 0xf,
1790 .base.cra_module = THIS_MODULE,
1792 .init = stm32_cryp_init_tfm,
1793 .min_keysize = DES_BLOCK_SIZE,
1794 .max_keysize = DES_BLOCK_SIZE,
1795 .setkey = stm32_cryp_des_setkey,
1796 .encrypt = stm32_cryp_des_ecb_encrypt,
1797 .decrypt = stm32_cryp_des_ecb_decrypt,
1800 .base.cra_name = "cbc(des)",
1801 .base.cra_driver_name = "stm32-cbc-des",
1802 .base.cra_priority = 200,
1803 .base.cra_flags = CRYPTO_ALG_ASYNC,
1804 .base.cra_blocksize = DES_BLOCK_SIZE,
1805 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1806 .base.cra_alignmask = 0xf,
1807 .base.cra_module = THIS_MODULE,
1809 .init = stm32_cryp_init_tfm,
1810 .min_keysize = DES_BLOCK_SIZE,
1811 .max_keysize = DES_BLOCK_SIZE,
1812 .ivsize = DES_BLOCK_SIZE,
1813 .setkey = stm32_cryp_des_setkey,
1814 .encrypt = stm32_cryp_des_cbc_encrypt,
1815 .decrypt = stm32_cryp_des_cbc_decrypt,
1818 .base.cra_name = "ecb(des3_ede)",
1819 .base.cra_driver_name = "stm32-ecb-des3",
1820 .base.cra_priority = 200,
1821 .base.cra_flags = CRYPTO_ALG_ASYNC,
1822 .base.cra_blocksize = DES_BLOCK_SIZE,
1823 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1824 .base.cra_alignmask = 0xf,
1825 .base.cra_module = THIS_MODULE,
1827 .init = stm32_cryp_init_tfm,
1828 .min_keysize = 3 * DES_BLOCK_SIZE,
1829 .max_keysize = 3 * DES_BLOCK_SIZE,
1830 .setkey = stm32_cryp_tdes_setkey,
1831 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1832 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1835 .base.cra_name = "cbc(des3_ede)",
1836 .base.cra_driver_name = "stm32-cbc-des3",
1837 .base.cra_priority = 200,
1838 .base.cra_flags = CRYPTO_ALG_ASYNC,
1839 .base.cra_blocksize = DES_BLOCK_SIZE,
1840 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1841 .base.cra_alignmask = 0xf,
1842 .base.cra_module = THIS_MODULE,
1844 .init = stm32_cryp_init_tfm,
1845 .min_keysize = 3 * DES_BLOCK_SIZE,
1846 .max_keysize = 3 * DES_BLOCK_SIZE,
1847 .ivsize = DES_BLOCK_SIZE,
1848 .setkey = stm32_cryp_tdes_setkey,
1849 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1850 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1854 static struct aead_alg aead_algs[] = {
1856 .setkey = stm32_cryp_aes_aead_setkey,
1857 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1858 .encrypt = stm32_cryp_aes_gcm_encrypt,
1859 .decrypt = stm32_cryp_aes_gcm_decrypt,
1860 .init = stm32_cryp_aes_aead_init,
1861 .ivsize = 12,
1862 .maxauthsize = AES_BLOCK_SIZE,
1864 .base = {
1865 .cra_name = "gcm(aes)",
1866 .cra_driver_name = "stm32-gcm-aes",
1867 .cra_priority = 200,
1868 .cra_flags = CRYPTO_ALG_ASYNC,
1869 .cra_blocksize = 1,
1870 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1871 .cra_alignmask = 0xf,
1872 .cra_module = THIS_MODULE,
1876 .setkey = stm32_cryp_aes_aead_setkey,
1877 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1878 .encrypt = stm32_cryp_aes_ccm_encrypt,
1879 .decrypt = stm32_cryp_aes_ccm_decrypt,
1880 .init = stm32_cryp_aes_aead_init,
1881 .ivsize = AES_BLOCK_SIZE,
1882 .maxauthsize = AES_BLOCK_SIZE,
1884 .base = {
1885 .cra_name = "ccm(aes)",
1886 .cra_driver_name = "stm32-ccm-aes",
1887 .cra_priority = 200,
1888 .cra_flags = CRYPTO_ALG_ASYNC,
1889 .cra_blocksize = 1,
1890 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1891 .cra_alignmask = 0xf,
1892 .cra_module = THIS_MODULE,
1897 static const struct stm32_cryp_caps f7_data = {
1898 .swap_final = true,
1899 .padding_wa = true,
1902 static const struct stm32_cryp_caps mp1_data = {
1903 .swap_final = false,
1904 .padding_wa = false,
1907 static const struct of_device_id stm32_dt_ids[] = {
1908 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1909 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1912 MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1914 static int stm32_cryp_probe(struct platform_device *pdev)
1916 struct device *dev = &pdev->dev;
1917 struct stm32_cryp *cryp;
1918 struct reset_control *rst;
1919 int irq, ret;
1921 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1922 if (!cryp)
1923 return -ENOMEM;
1925 cryp->caps = of_device_get_match_data(dev);
1926 if (!cryp->caps)
1927 return -ENODEV;
1929 cryp->dev = dev;
1931 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1932 if (IS_ERR(cryp->regs))
1933 return PTR_ERR(cryp->regs);
1935 irq = platform_get_irq(pdev, 0);
1936 if (irq < 0)
1937 return irq;
1939 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1940 stm32_cryp_irq_thread, IRQF_ONESHOT,
1941 dev_name(dev), cryp);
1942 if (ret) {
1943 dev_err(dev, "Cannot grab IRQ\n");
1944 return ret;
1947 cryp->clk = devm_clk_get(dev, NULL);
1948 if (IS_ERR(cryp->clk)) {
1949 dev_err(dev, "Could not get clock\n");
1950 return PTR_ERR(cryp->clk);
1953 ret = clk_prepare_enable(cryp->clk);
1954 if (ret) {
1955 dev_err(cryp->dev, "Failed to enable clock\n");
1956 return ret;
1959 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1960 pm_runtime_use_autosuspend(dev);
1962 pm_runtime_get_noresume(dev);
1963 pm_runtime_set_active(dev);
1964 pm_runtime_enable(dev);
1966 rst = devm_reset_control_get(dev, NULL);
1967 if (!IS_ERR(rst)) {
1968 reset_control_assert(rst);
1969 udelay(2);
1970 reset_control_deassert(rst);
1973 platform_set_drvdata(pdev, cryp);
1975 spin_lock(&cryp_list.lock);
1976 list_add(&cryp->list, &cryp_list.dev_list);
1977 spin_unlock(&cryp_list.lock);
1979 /* Initialize crypto engine */
1980 cryp->engine = crypto_engine_alloc_init(dev, 1);
1981 if (!cryp->engine) {
1982 dev_err(dev, "Could not init crypto engine\n");
1983 ret = -ENOMEM;
1984 goto err_engine1;
1987 ret = crypto_engine_start(cryp->engine);
1988 if (ret) {
1989 dev_err(dev, "Could not start crypto engine\n");
1990 goto err_engine2;
1993 ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
1994 if (ret) {
1995 dev_err(dev, "Could not register algs\n");
1996 goto err_algs;
1999 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2000 if (ret)
2001 goto err_aead_algs;
2003 dev_info(dev, "Initialized\n");
2005 pm_runtime_put_sync(dev);
2007 return 0;
2009 err_aead_algs:
2010 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2011 err_algs:
2012 err_engine2:
2013 crypto_engine_exit(cryp->engine);
2014 err_engine1:
2015 spin_lock(&cryp_list.lock);
2016 list_del(&cryp->list);
2017 spin_unlock(&cryp_list.lock);
2019 pm_runtime_disable(dev);
2020 pm_runtime_put_noidle(dev);
2021 pm_runtime_disable(dev);
2022 pm_runtime_put_noidle(dev);
2024 clk_disable_unprepare(cryp->clk);
2026 return ret;
2029 static int stm32_cryp_remove(struct platform_device *pdev)
2031 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2032 int ret;
2034 if (!cryp)
2035 return -ENODEV;
2037 ret = pm_runtime_get_sync(cryp->dev);
2038 if (ret < 0)
2039 return ret;
2041 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2042 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2044 crypto_engine_exit(cryp->engine);
2046 spin_lock(&cryp_list.lock);
2047 list_del(&cryp->list);
2048 spin_unlock(&cryp_list.lock);
2050 pm_runtime_disable(cryp->dev);
2051 pm_runtime_put_noidle(cryp->dev);
2053 clk_disable_unprepare(cryp->clk);
2055 return 0;
2058 #ifdef CONFIG_PM
2059 static int stm32_cryp_runtime_suspend(struct device *dev)
2061 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2063 clk_disable_unprepare(cryp->clk);
2065 return 0;
2068 static int stm32_cryp_runtime_resume(struct device *dev)
2070 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071 int ret;
2073 ret = clk_prepare_enable(cryp->clk);
2074 if (ret) {
2075 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2076 return ret;
2079 return 0;
2081 #endif
2083 static const struct dev_pm_ops stm32_cryp_pm_ops = {
2084 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2085 pm_runtime_force_resume)
2086 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2087 stm32_cryp_runtime_resume, NULL)
2090 static struct platform_driver stm32_cryp_driver = {
2091 .probe = stm32_cryp_probe,
2092 .remove = stm32_cryp_remove,
2093 .driver = {
2094 .name = DRIVER_NAME,
2095 .pm = &stm32_cryp_pm_ops,
2096 .of_match_table = stm32_dt_ids,
2100 module_platform_driver(stm32_cryp_driver);
2102 MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2103 MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2104 MODULE_LICENSE("GPL");