dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / dma / mediatek / mtk-uart-apdma.c
blob29f1223b285a4d38bb78dc3bd24b65e41d57eeef
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * MediaTek UART APDMA driver.
5 * Copyright (c) 2019 MediaTek Inc.
6 * Author: Long Cheng <long.cheng@mediatek.com>
7 */
9 #include <linux/clk.h>
10 #include <linux/dmaengine.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/iopoll.h>
16 #include <linux/kernel.h>
17 #include <linux/list.h>
18 #include <linux/module.h>
19 #include <linux/of_device.h>
20 #include <linux/of_dma.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
26 #include "../virt-dma.h"
28 /* The default number of virtual channel */
29 #define MTK_UART_APDMA_NR_VCHANS 8
31 #define VFF_EN_B BIT(0)
32 #define VFF_STOP_B BIT(0)
33 #define VFF_FLUSH_B BIT(0)
34 #define VFF_4G_EN_B BIT(0)
35 /* rx valid size >= vff thre */
36 #define VFF_RX_INT_EN_B (BIT(0) | BIT(1))
37 /* tx left size >= vff thre */
38 #define VFF_TX_INT_EN_B BIT(0)
39 #define VFF_WARM_RST_B BIT(0)
40 #define VFF_RX_INT_CLR_B (BIT(0) | BIT(1))
41 #define VFF_TX_INT_CLR_B 0
42 #define VFF_STOP_CLR_B 0
43 #define VFF_EN_CLR_B 0
44 #define VFF_INT_EN_CLR_B 0
45 #define VFF_4G_SUPPORT_CLR_B 0
48 * interrupt trigger level for tx
49 * if threshold is n, no polling is required to start tx.
50 * otherwise need polling VFF_FLUSH.
52 #define VFF_TX_THRE(n) (n)
53 /* interrupt trigger level for rx */
54 #define VFF_RX_THRE(n) ((n) * 3 / 4)
56 #define VFF_RING_SIZE 0xffff
57 /* invert this bit when wrap ring head again */
58 #define VFF_RING_WRAP 0x10000
60 #define VFF_INT_FLAG 0x00
61 #define VFF_INT_EN 0x04
62 #define VFF_EN 0x08
63 #define VFF_RST 0x0c
64 #define VFF_STOP 0x10
65 #define VFF_FLUSH 0x14
66 #define VFF_ADDR 0x1c
67 #define VFF_LEN 0x24
68 #define VFF_THRE 0x28
69 #define VFF_WPT 0x2c
70 #define VFF_RPT 0x30
71 /* TX: the buffer size HW can read. RX: the buffer size SW can read. */
72 #define VFF_VALID_SIZE 0x3c
73 /* TX: the buffer size SW can write. RX: the buffer size HW can write. */
74 #define VFF_LEFT_SIZE 0x40
75 #define VFF_DEBUG_STATUS 0x50
76 #define VFF_4G_SUPPORT 0x54
78 struct mtk_uart_apdmadev {
79 struct dma_device ddev;
80 struct clk *clk;
81 bool support_33bits;
82 unsigned int dma_requests;
85 struct mtk_uart_apdma_desc {
86 struct virt_dma_desc vd;
88 dma_addr_t addr;
89 unsigned int avail_len;
92 struct mtk_chan {
93 struct virt_dma_chan vc;
94 struct dma_slave_config cfg;
95 struct mtk_uart_apdma_desc *desc;
96 enum dma_transfer_direction dir;
98 void __iomem *base;
99 unsigned int irq;
101 unsigned int rx_status;
104 static inline struct mtk_uart_apdmadev *
105 to_mtk_uart_apdma_dev(struct dma_device *d)
107 return container_of(d, struct mtk_uart_apdmadev, ddev);
110 static inline struct mtk_chan *to_mtk_uart_apdma_chan(struct dma_chan *c)
112 return container_of(c, struct mtk_chan, vc.chan);
115 static inline struct mtk_uart_apdma_desc *to_mtk_uart_apdma_desc
116 (struct dma_async_tx_descriptor *t)
118 return container_of(t, struct mtk_uart_apdma_desc, vd.tx);
121 static void mtk_uart_apdma_write(struct mtk_chan *c,
122 unsigned int reg, unsigned int val)
124 writel(val, c->base + reg);
127 static unsigned int mtk_uart_apdma_read(struct mtk_chan *c, unsigned int reg)
129 return readl(c->base + reg);
132 static void mtk_uart_apdma_desc_free(struct virt_dma_desc *vd)
134 struct dma_chan *chan = vd->tx.chan;
135 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
137 kfree(c->desc);
140 static void mtk_uart_apdma_start_tx(struct mtk_chan *c)
142 struct mtk_uart_apdmadev *mtkd =
143 to_mtk_uart_apdma_dev(c->vc.chan.device);
144 struct mtk_uart_apdma_desc *d = c->desc;
145 unsigned int wpt, vff_sz;
147 vff_sz = c->cfg.dst_port_window_size;
148 if (!mtk_uart_apdma_read(c, VFF_LEN)) {
149 mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
150 mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
151 mtk_uart_apdma_write(c, VFF_THRE, VFF_TX_THRE(vff_sz));
152 mtk_uart_apdma_write(c, VFF_WPT, 0);
153 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
155 if (mtkd->support_33bits)
156 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
159 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
160 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
161 dev_err(c->vc.chan.device->dev, "Enable TX fail\n");
163 if (!mtk_uart_apdma_read(c, VFF_LEFT_SIZE)) {
164 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
165 return;
168 wpt = mtk_uart_apdma_read(c, VFF_WPT);
170 wpt += c->desc->avail_len;
171 if ((wpt & VFF_RING_SIZE) == vff_sz)
172 wpt = (wpt & VFF_RING_WRAP) ^ VFF_RING_WRAP;
174 /* Let DMA start moving data */
175 mtk_uart_apdma_write(c, VFF_WPT, wpt);
177 /* HW auto set to 0 when left size >= threshold */
178 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_TX_INT_EN_B);
179 if (!mtk_uart_apdma_read(c, VFF_FLUSH))
180 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
183 static void mtk_uart_apdma_start_rx(struct mtk_chan *c)
185 struct mtk_uart_apdmadev *mtkd =
186 to_mtk_uart_apdma_dev(c->vc.chan.device);
187 struct mtk_uart_apdma_desc *d = c->desc;
188 unsigned int vff_sz;
190 vff_sz = c->cfg.src_port_window_size;
191 if (!mtk_uart_apdma_read(c, VFF_LEN)) {
192 mtk_uart_apdma_write(c, VFF_ADDR, d->addr);
193 mtk_uart_apdma_write(c, VFF_LEN, vff_sz);
194 mtk_uart_apdma_write(c, VFF_THRE, VFF_RX_THRE(vff_sz));
195 mtk_uart_apdma_write(c, VFF_RPT, 0);
196 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
198 if (mtkd->support_33bits)
199 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_EN_B);
202 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_RX_INT_EN_B);
203 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_B);
204 if (mtk_uart_apdma_read(c, VFF_EN) != VFF_EN_B)
205 dev_err(c->vc.chan.device->dev, "Enable RX fail\n");
208 static void mtk_uart_apdma_tx_handler(struct mtk_chan *c)
210 struct mtk_uart_apdma_desc *d = c->desc;
212 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
213 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
214 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
216 list_del(&d->vd.node);
217 vchan_cookie_complete(&d->vd);
220 static void mtk_uart_apdma_rx_handler(struct mtk_chan *c)
222 struct mtk_uart_apdma_desc *d = c->desc;
223 unsigned int len, wg, rg;
224 int cnt;
226 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
228 if (!mtk_uart_apdma_read(c, VFF_VALID_SIZE))
229 return;
231 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
232 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
234 len = c->cfg.src_port_window_size;
235 rg = mtk_uart_apdma_read(c, VFF_RPT);
236 wg = mtk_uart_apdma_read(c, VFF_WPT);
237 cnt = (wg & VFF_RING_SIZE) - (rg & VFF_RING_SIZE);
240 * The buffer is ring buffer. If wrap bit different,
241 * represents the start of the next cycle for WPT
243 if ((rg ^ wg) & VFF_RING_WRAP)
244 cnt += len;
246 c->rx_status = d->avail_len - cnt;
247 mtk_uart_apdma_write(c, VFF_RPT, wg);
249 list_del(&d->vd.node);
250 vchan_cookie_complete(&d->vd);
253 static irqreturn_t mtk_uart_apdma_irq_handler(int irq, void *dev_id)
255 struct dma_chan *chan = (struct dma_chan *)dev_id;
256 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
257 unsigned long flags;
259 spin_lock_irqsave(&c->vc.lock, flags);
260 if (c->dir == DMA_DEV_TO_MEM)
261 mtk_uart_apdma_rx_handler(c);
262 else if (c->dir == DMA_MEM_TO_DEV)
263 mtk_uart_apdma_tx_handler(c);
264 spin_unlock_irqrestore(&c->vc.lock, flags);
266 return IRQ_HANDLED;
269 static int mtk_uart_apdma_alloc_chan_resources(struct dma_chan *chan)
271 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
272 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
273 unsigned int status;
274 int ret;
276 ret = pm_runtime_get_sync(mtkd->ddev.dev);
277 if (ret < 0) {
278 pm_runtime_put_noidle(chan->device->dev);
279 return ret;
282 mtk_uart_apdma_write(c, VFF_ADDR, 0);
283 mtk_uart_apdma_write(c, VFF_THRE, 0);
284 mtk_uart_apdma_write(c, VFF_LEN, 0);
285 mtk_uart_apdma_write(c, VFF_RST, VFF_WARM_RST_B);
287 ret = readx_poll_timeout(readl, c->base + VFF_EN,
288 status, !status, 10, 100);
289 if (ret)
290 return ret;
292 ret = request_irq(c->irq, mtk_uart_apdma_irq_handler,
293 IRQF_TRIGGER_NONE, KBUILD_MODNAME, chan);
294 if (ret < 0) {
295 dev_err(chan->device->dev, "Can't request dma IRQ\n");
296 return -EINVAL;
299 if (mtkd->support_33bits)
300 mtk_uart_apdma_write(c, VFF_4G_SUPPORT, VFF_4G_SUPPORT_CLR_B);
302 return ret;
305 static void mtk_uart_apdma_free_chan_resources(struct dma_chan *chan)
307 struct mtk_uart_apdmadev *mtkd = to_mtk_uart_apdma_dev(chan->device);
308 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
310 free_irq(c->irq, chan);
312 tasklet_kill(&c->vc.task);
314 vchan_free_chan_resources(&c->vc);
316 pm_runtime_put_sync(mtkd->ddev.dev);
319 static enum dma_status mtk_uart_apdma_tx_status(struct dma_chan *chan,
320 dma_cookie_t cookie,
321 struct dma_tx_state *txstate)
323 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
324 enum dma_status ret;
326 ret = dma_cookie_status(chan, cookie, txstate);
327 if (!txstate)
328 return ret;
330 dma_set_residue(txstate, c->rx_status);
332 return ret;
336 * dmaengine_prep_slave_single will call the function. and sglen is 1.
337 * 8250 uart using one ring buffer, and deal with one sg.
339 static struct dma_async_tx_descriptor *mtk_uart_apdma_prep_slave_sg
340 (struct dma_chan *chan, struct scatterlist *sgl,
341 unsigned int sglen, enum dma_transfer_direction dir,
342 unsigned long tx_flags, void *context)
344 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
345 struct mtk_uart_apdma_desc *d;
347 if (!is_slave_direction(dir) || sglen != 1)
348 return NULL;
350 /* Now allocate and setup the descriptor */
351 d = kzalloc(sizeof(*d), GFP_ATOMIC);
352 if (!d)
353 return NULL;
355 d->avail_len = sg_dma_len(sgl);
356 d->addr = sg_dma_address(sgl);
357 c->dir = dir;
359 return vchan_tx_prep(&c->vc, &d->vd, tx_flags);
362 static void mtk_uart_apdma_issue_pending(struct dma_chan *chan)
364 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
365 struct virt_dma_desc *vd;
366 unsigned long flags;
368 spin_lock_irqsave(&c->vc.lock, flags);
369 if (vchan_issue_pending(&c->vc)) {
370 vd = vchan_next_desc(&c->vc);
371 c->desc = to_mtk_uart_apdma_desc(&vd->tx);
373 if (c->dir == DMA_DEV_TO_MEM)
374 mtk_uart_apdma_start_rx(c);
375 else if (c->dir == DMA_MEM_TO_DEV)
376 mtk_uart_apdma_start_tx(c);
379 spin_unlock_irqrestore(&c->vc.lock, flags);
382 static int mtk_uart_apdma_slave_config(struct dma_chan *chan,
383 struct dma_slave_config *config)
385 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
387 memcpy(&c->cfg, config, sizeof(*config));
389 return 0;
392 static int mtk_uart_apdma_terminate_all(struct dma_chan *chan)
394 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
395 unsigned long flags;
396 unsigned int status;
397 LIST_HEAD(head);
398 int ret;
400 mtk_uart_apdma_write(c, VFF_FLUSH, VFF_FLUSH_B);
402 ret = readx_poll_timeout(readl, c->base + VFF_FLUSH,
403 status, status != VFF_FLUSH_B, 10, 100);
404 if (ret)
405 dev_err(c->vc.chan.device->dev, "flush: fail, status=0x%x\n",
406 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
409 * Stop need 3 steps.
410 * 1. set stop to 1
411 * 2. wait en to 0
412 * 3. set stop as 0
414 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_B);
415 ret = readx_poll_timeout(readl, c->base + VFF_EN,
416 status, !status, 10, 100);
417 if (ret)
418 dev_err(c->vc.chan.device->dev, "stop: fail, status=0x%x\n",
419 mtk_uart_apdma_read(c, VFF_DEBUG_STATUS));
421 mtk_uart_apdma_write(c, VFF_STOP, VFF_STOP_CLR_B);
422 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
424 if (c->dir == DMA_DEV_TO_MEM)
425 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_RX_INT_CLR_B);
426 else if (c->dir == DMA_MEM_TO_DEV)
427 mtk_uart_apdma_write(c, VFF_INT_FLAG, VFF_TX_INT_CLR_B);
429 synchronize_irq(c->irq);
431 spin_lock_irqsave(&c->vc.lock, flags);
432 vchan_get_all_descriptors(&c->vc, &head);
433 spin_unlock_irqrestore(&c->vc.lock, flags);
435 vchan_dma_desc_free_list(&c->vc, &head);
437 return 0;
440 static int mtk_uart_apdma_device_pause(struct dma_chan *chan)
442 struct mtk_chan *c = to_mtk_uart_apdma_chan(chan);
443 unsigned long flags;
445 spin_lock_irqsave(&c->vc.lock, flags);
447 mtk_uart_apdma_write(c, VFF_EN, VFF_EN_CLR_B);
448 mtk_uart_apdma_write(c, VFF_INT_EN, VFF_INT_EN_CLR_B);
450 synchronize_irq(c->irq);
452 spin_unlock_irqrestore(&c->vc.lock, flags);
454 return 0;
457 static void mtk_uart_apdma_free(struct mtk_uart_apdmadev *mtkd)
459 while (!list_empty(&mtkd->ddev.channels)) {
460 struct mtk_chan *c = list_first_entry(&mtkd->ddev.channels,
461 struct mtk_chan, vc.chan.device_node);
463 list_del(&c->vc.chan.device_node);
464 tasklet_kill(&c->vc.task);
468 static const struct of_device_id mtk_uart_apdma_match[] = {
469 { .compatible = "mediatek,mt6577-uart-dma", },
470 { /* sentinel */ },
472 MODULE_DEVICE_TABLE(of, mtk_uart_apdma_match);
474 static int mtk_uart_apdma_probe(struct platform_device *pdev)
476 struct device_node *np = pdev->dev.of_node;
477 struct mtk_uart_apdmadev *mtkd;
478 int bit_mask = 32, rc;
479 struct mtk_chan *c;
480 unsigned int i;
482 mtkd = devm_kzalloc(&pdev->dev, sizeof(*mtkd), GFP_KERNEL);
483 if (!mtkd)
484 return -ENOMEM;
486 mtkd->clk = devm_clk_get(&pdev->dev, NULL);
487 if (IS_ERR(mtkd->clk)) {
488 dev_err(&pdev->dev, "No clock specified\n");
489 rc = PTR_ERR(mtkd->clk);
490 return rc;
493 if (of_property_read_bool(np, "mediatek,dma-33bits"))
494 mtkd->support_33bits = true;
496 if (mtkd->support_33bits)
497 bit_mask = 33;
499 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(bit_mask));
500 if (rc)
501 return rc;
503 dma_cap_set(DMA_SLAVE, mtkd->ddev.cap_mask);
504 mtkd->ddev.device_alloc_chan_resources =
505 mtk_uart_apdma_alloc_chan_resources;
506 mtkd->ddev.device_free_chan_resources =
507 mtk_uart_apdma_free_chan_resources;
508 mtkd->ddev.device_tx_status = mtk_uart_apdma_tx_status;
509 mtkd->ddev.device_issue_pending = mtk_uart_apdma_issue_pending;
510 mtkd->ddev.device_prep_slave_sg = mtk_uart_apdma_prep_slave_sg;
511 mtkd->ddev.device_config = mtk_uart_apdma_slave_config;
512 mtkd->ddev.device_pause = mtk_uart_apdma_device_pause;
513 mtkd->ddev.device_terminate_all = mtk_uart_apdma_terminate_all;
514 mtkd->ddev.src_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
515 mtkd->ddev.dst_addr_widths = BIT(DMA_SLAVE_BUSWIDTH_1_BYTE);
516 mtkd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
517 mtkd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_SEGMENT;
518 mtkd->ddev.dev = &pdev->dev;
519 INIT_LIST_HEAD(&mtkd->ddev.channels);
521 mtkd->dma_requests = MTK_UART_APDMA_NR_VCHANS;
522 if (of_property_read_u32(np, "dma-requests", &mtkd->dma_requests)) {
523 dev_info(&pdev->dev,
524 "Using %u as missing dma-requests property\n",
525 MTK_UART_APDMA_NR_VCHANS);
528 for (i = 0; i < mtkd->dma_requests; i++) {
529 c = devm_kzalloc(mtkd->ddev.dev, sizeof(*c), GFP_KERNEL);
530 if (!c) {
531 rc = -ENODEV;
532 goto err_no_dma;
535 c->base = devm_platform_ioremap_resource(pdev, i);
536 if (IS_ERR(c->base)) {
537 rc = PTR_ERR(c->base);
538 goto err_no_dma;
540 c->vc.desc_free = mtk_uart_apdma_desc_free;
541 vchan_init(&c->vc, &mtkd->ddev);
543 rc = platform_get_irq(pdev, i);
544 if (rc < 0)
545 goto err_no_dma;
546 c->irq = rc;
549 pm_runtime_enable(&pdev->dev);
550 pm_runtime_set_active(&pdev->dev);
552 rc = dma_async_device_register(&mtkd->ddev);
553 if (rc)
554 goto rpm_disable;
556 platform_set_drvdata(pdev, mtkd);
558 /* Device-tree DMA controller registration */
559 rc = of_dma_controller_register(np, of_dma_xlate_by_chan_id, mtkd);
560 if (rc)
561 goto dma_remove;
563 return rc;
565 dma_remove:
566 dma_async_device_unregister(&mtkd->ddev);
567 rpm_disable:
568 pm_runtime_disable(&pdev->dev);
569 err_no_dma:
570 mtk_uart_apdma_free(mtkd);
571 return rc;
574 static int mtk_uart_apdma_remove(struct platform_device *pdev)
576 struct mtk_uart_apdmadev *mtkd = platform_get_drvdata(pdev);
578 of_dma_controller_free(pdev->dev.of_node);
580 mtk_uart_apdma_free(mtkd);
582 dma_async_device_unregister(&mtkd->ddev);
584 pm_runtime_disable(&pdev->dev);
586 return 0;
589 #ifdef CONFIG_PM_SLEEP
590 static int mtk_uart_apdma_suspend(struct device *dev)
592 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
594 if (!pm_runtime_suspended(dev))
595 clk_disable_unprepare(mtkd->clk);
597 return 0;
600 static int mtk_uart_apdma_resume(struct device *dev)
602 int ret;
603 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
605 if (!pm_runtime_suspended(dev)) {
606 ret = clk_prepare_enable(mtkd->clk);
607 if (ret)
608 return ret;
611 return 0;
613 #endif /* CONFIG_PM_SLEEP */
615 #ifdef CONFIG_PM
616 static int mtk_uart_apdma_runtime_suspend(struct device *dev)
618 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
620 clk_disable_unprepare(mtkd->clk);
622 return 0;
625 static int mtk_uart_apdma_runtime_resume(struct device *dev)
627 int ret;
628 struct mtk_uart_apdmadev *mtkd = dev_get_drvdata(dev);
630 ret = clk_prepare_enable(mtkd->clk);
631 if (ret)
632 return ret;
634 return 0;
636 #endif /* CONFIG_PM */
638 static const struct dev_pm_ops mtk_uart_apdma_pm_ops = {
639 SET_SYSTEM_SLEEP_PM_OPS(mtk_uart_apdma_suspend, mtk_uart_apdma_resume)
640 SET_RUNTIME_PM_OPS(mtk_uart_apdma_runtime_suspend,
641 mtk_uart_apdma_runtime_resume, NULL)
644 static struct platform_driver mtk_uart_apdma_driver = {
645 .probe = mtk_uart_apdma_probe,
646 .remove = mtk_uart_apdma_remove,
647 .driver = {
648 .name = KBUILD_MODNAME,
649 .pm = &mtk_uart_apdma_pm_ops,
650 .of_match_table = of_match_ptr(mtk_uart_apdma_match),
654 module_platform_driver(mtk_uart_apdma_driver);
656 MODULE_DESCRIPTION("MediaTek UART APDMA Controller Driver");
657 MODULE_AUTHOR("Long Cheng <long.cheng@mediatek.com>");
658 MODULE_LICENSE("GPL v2");