1 // SPDX-License-Identifier: GPL-2.0-only
3 * EFI stub implementation that is shared by arm and arm64 architectures.
4 * This should be #included by the EFI stub implementation files.
6 * Copyright (C) 2013,2014 Linaro Limited
7 * Roy Franz <roy.franz@linaro.org
8 * Copyright (C) 2013 Red Hat, Inc.
9 * Mark Salter <msalter@redhat.com>
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
19 * This is the base address at which to start allocating virtual memory ranges
20 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21 * any allocation we choose, and eliminate the risk of a conflict after kexec.
22 * The value chosen is the largest non-zero power of 2 suitable for this purpose
23 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24 * be mapped efficiently.
25 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27 * entire footprint of the UEFI runtime services memory regions)
29 #define EFI_RT_VIRTUAL_BASE SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE SZ_512M
33 # define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64
35 # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
38 static u64 virtmap_base
= EFI_RT_VIRTUAL_BASE
;
39 static bool __efistub_global flat_va_mapping
;
41 static efi_system_table_t
*__efistub_global sys_table
;
43 __pure efi_system_table_t
*efi_system_table(void)
48 static struct screen_info
*setup_graphics(void)
50 efi_guid_t gop_proto
= EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID
;
53 void **gop_handle
= NULL
;
54 struct screen_info
*si
= NULL
;
57 status
= efi_bs_call(locate_handle
, EFI_LOCATE_BY_PROTOCOL
,
58 &gop_proto
, NULL
, &size
, gop_handle
);
59 if (status
== EFI_BUFFER_TOO_SMALL
) {
60 si
= alloc_screen_info();
63 status
= efi_setup_gop(si
, &gop_proto
, size
);
64 if (status
!= EFI_SUCCESS
) {
72 void install_memreserve_table(void)
74 struct linux_efi_memreserve
*rsv
;
75 efi_guid_t memreserve_table_guid
= LINUX_EFI_MEMRESERVE_TABLE_GUID
;
78 status
= efi_bs_call(allocate_pool
, EFI_LOADER_DATA
, sizeof(*rsv
),
80 if (status
!= EFI_SUCCESS
) {
81 pr_efi_err("Failed to allocate memreserve entry!\n");
87 atomic_set(&rsv
->count
, 0);
89 status
= efi_bs_call(install_configuration_table
,
90 &memreserve_table_guid
, rsv
);
91 if (status
!= EFI_SUCCESS
)
92 pr_efi_err("Failed to install memreserve config table!\n");
95 static unsigned long get_dram_base(void)
98 unsigned long map_size
, buff_size
;
99 unsigned long membase
= EFI_ERROR
;
100 struct efi_memory_map map
;
101 efi_memory_desc_t
*md
;
102 struct efi_boot_memmap boot_map
;
104 boot_map
.map
= (efi_memory_desc_t
**)&map
.map
;
105 boot_map
.map_size
= &map_size
;
106 boot_map
.desc_size
= &map
.desc_size
;
107 boot_map
.desc_ver
= NULL
;
108 boot_map
.key_ptr
= NULL
;
109 boot_map
.buff_size
= &buff_size
;
111 status
= efi_get_memory_map(&boot_map
);
112 if (status
!= EFI_SUCCESS
)
115 map
.map_end
= map
.map
+ map_size
;
117 for_each_efi_memory_desc_in_map(&map
, md
) {
118 if (md
->attribute
& EFI_MEMORY_WB
) {
119 if (membase
> md
->phys_addr
)
120 membase
= md
->phys_addr
;
124 efi_bs_call(free_pool
, map
.map
);
130 * This function handles the architcture specific differences between arm and
131 * arm64 regarding where the kernel image must be loaded and any memory that
132 * must be reserved. On failure it is required to free all
133 * all allocations it has made.
135 efi_status_t
handle_kernel_image(unsigned long *image_addr
,
136 unsigned long *image_size
,
137 unsigned long *reserve_addr
,
138 unsigned long *reserve_size
,
139 unsigned long dram_base
,
140 efi_loaded_image_t
*image
);
142 asmlinkage
void __noreturn
efi_enter_kernel(unsigned long entrypoint
,
143 unsigned long fdt_addr
,
144 unsigned long fdt_size
);
147 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
148 * that is described in the PE/COFF header. Most of the code is the same
149 * for both archictectures, with the arch-specific code provided in the
150 * handle_kernel_image() function.
152 efi_status_t
efi_entry(efi_handle_t handle
, efi_system_table_t
*sys_table_arg
)
154 efi_loaded_image_t
*image
;
156 unsigned long image_addr
;
157 unsigned long image_size
= 0;
158 unsigned long dram_base
;
159 /* addr/point and size pairs for memory management*/
160 unsigned long initrd_addr
= 0;
161 unsigned long initrd_size
= 0;
162 unsigned long fdt_addr
= 0; /* Original DTB */
163 unsigned long fdt_size
= 0;
164 char *cmdline_ptr
= NULL
;
165 int cmdline_size
= 0;
166 efi_guid_t loaded_image_proto
= LOADED_IMAGE_PROTOCOL_GUID
;
167 unsigned long reserve_addr
= 0;
168 unsigned long reserve_size
= 0;
169 enum efi_secureboot_mode secure_boot
;
170 struct screen_info
*si
;
171 efi_properties_table_t
*prop_tbl
;
172 unsigned long max_addr
;
174 sys_table
= sys_table_arg
;
176 /* Check if we were booted by the EFI firmware */
177 if (sys_table
->hdr
.signature
!= EFI_SYSTEM_TABLE_SIGNATURE
) {
178 status
= EFI_INVALID_PARAMETER
;
182 status
= check_platform_features();
183 if (status
!= EFI_SUCCESS
)
187 * Get a handle to the loaded image protocol. This is used to get
188 * information about the running image, such as size and the command
191 status
= sys_table
->boottime
->handle_protocol(handle
,
192 &loaded_image_proto
, (void *)&image
);
193 if (status
!= EFI_SUCCESS
) {
194 pr_efi_err("Failed to get loaded image protocol\n");
198 dram_base
= get_dram_base();
199 if (dram_base
== EFI_ERROR
) {
200 pr_efi_err("Failed to find DRAM base\n");
201 status
= EFI_LOAD_ERROR
;
206 * Get the command line from EFI, using the LOADED_IMAGE
207 * protocol. We are going to copy the command line into the
208 * device tree, so this can be allocated anywhere.
210 cmdline_ptr
= efi_convert_cmdline(image
, &cmdline_size
, ULONG_MAX
);
212 pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
213 status
= EFI_OUT_OF_RESOURCES
;
217 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND
) ||
218 IS_ENABLED(CONFIG_CMDLINE_FORCE
) ||
220 efi_parse_options(CONFIG_CMDLINE
);
222 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE
) && cmdline_size
> 0)
223 efi_parse_options(cmdline_ptr
);
225 pr_efi("Booting Linux Kernel...\n");
227 si
= setup_graphics();
229 status
= handle_kernel_image(&image_addr
, &image_size
,
233 if (status
!= EFI_SUCCESS
) {
234 pr_efi_err("Failed to relocate kernel\n");
235 goto fail_free_cmdline
;
238 efi_retrieve_tpm2_eventlog();
240 /* Ask the firmware to clear memory on unclean shutdown */
241 efi_enable_reset_attack_mitigation();
243 secure_boot
= efi_get_secureboot();
246 * Unauthenticated device tree data is a security hazard, so ignore
247 * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
248 * boot is enabled if we can't determine its state.
250 if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER
) ||
251 secure_boot
!= efi_secureboot_mode_disabled
) {
252 if (strstr(cmdline_ptr
, "dtb="))
253 pr_efi("Ignoring DTB from command line.\n");
255 status
= efi_load_dtb(image
, &fdt_addr
, &fdt_size
);
257 if (status
!= EFI_SUCCESS
) {
258 pr_efi_err("Failed to load device tree!\n");
259 goto fail_free_image
;
264 pr_efi("Using DTB from command line\n");
266 /* Look for a device tree configuration table entry. */
267 fdt_addr
= (uintptr_t)get_fdt(&fdt_size
);
269 pr_efi("Using DTB from configuration table\n");
273 pr_efi("Generating empty DTB\n");
276 max_addr
= efi_get_max_initrd_addr(dram_base
, image_addr
);
277 status
= efi_load_initrd_dev_path(&initrd_addr
, &initrd_size
,
279 if (status
== EFI_SUCCESS
) {
280 pr_efi("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
281 } else if (status
== EFI_NOT_FOUND
) {
282 status
= efi_load_initrd(image
, &initrd_addr
, &initrd_size
,
283 ULONG_MAX
, max_addr
);
284 if (status
== EFI_SUCCESS
&& initrd_size
> 0)
285 pr_efi("Loaded initrd from command line option\n");
287 if (status
!= EFI_SUCCESS
)
288 pr_efi_err("Failed to load initrd!\n");
291 efi_random_get_seed();
294 * If the NX PE data feature is enabled in the properties table, we
295 * should take care not to create a virtual mapping that changes the
296 * relative placement of runtime services code and data regions, as
297 * they may belong to the same PE/COFF executable image in memory.
298 * The easiest way to achieve that is to simply use a 1:1 mapping.
300 prop_tbl
= get_efi_config_table(EFI_PROPERTIES_TABLE_GUID
);
301 flat_va_mapping
= prop_tbl
&&
302 (prop_tbl
->memory_protection_attribute
&
303 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA
);
305 /* hibernation expects the runtime regions to stay in the same place */
306 if (!IS_ENABLED(CONFIG_HIBERNATION
) && !nokaslr() && !flat_va_mapping
) {
308 * Randomize the base of the UEFI runtime services region.
309 * Preserve the 2 MB alignment of the region by taking a
310 * shift of 21 bit positions into account when scaling
311 * the headroom value using a 32-bit random value.
313 static const u64 headroom
= EFI_RT_VIRTUAL_LIMIT
-
314 EFI_RT_VIRTUAL_BASE
-
318 status
= efi_get_random_bytes(sizeof(rnd
), (u8
*)&rnd
);
319 if (status
== EFI_SUCCESS
) {
320 virtmap_base
= EFI_RT_VIRTUAL_BASE
+
321 (((headroom
>> 21) * rnd
) >> (32 - 21));
325 install_memreserve_table();
327 status
= allocate_new_fdt_and_exit_boot(handle
, &fdt_addr
,
328 efi_get_max_fdt_addr(dram_base
),
329 initrd_addr
, initrd_size
,
330 cmdline_ptr
, fdt_addr
, fdt_size
);
331 if (status
!= EFI_SUCCESS
)
332 goto fail_free_initrd
;
334 efi_enter_kernel(image_addr
, fdt_addr
, fdt_totalsize((void *)fdt_addr
));
338 pr_efi_err("Failed to update FDT and exit boot services\n");
340 efi_free(initrd_size
, initrd_addr
);
341 efi_free(fdt_size
, fdt_addr
);
344 efi_free(image_size
, image_addr
);
345 efi_free(reserve_size
, reserve_addr
);
347 free_screen_info(si
);
348 efi_free(cmdline_size
, (unsigned long)cmdline_ptr
);
354 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
356 * This function populates the virt_addr fields of all memory region descriptors
357 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
358 * are also copied to @runtime_map, and their total count is returned in @count.
360 void efi_get_virtmap(efi_memory_desc_t
*memory_map
, unsigned long map_size
,
361 unsigned long desc_size
, efi_memory_desc_t
*runtime_map
,
364 u64 efi_virt_base
= virtmap_base
;
365 efi_memory_desc_t
*in
, *out
= runtime_map
;
368 for (l
= 0; l
< map_size
; l
+= desc_size
) {
371 in
= (void *)memory_map
+ l
;
372 if (!(in
->attribute
& EFI_MEMORY_RUNTIME
))
375 paddr
= in
->phys_addr
;
376 size
= in
->num_pages
* EFI_PAGE_SIZE
;
378 in
->virt_addr
= in
->phys_addr
;
384 * Make the mapping compatible with 64k pages: this allows
385 * a 4k page size kernel to kexec a 64k page size kernel and
388 if (!flat_va_mapping
) {
390 paddr
= round_down(in
->phys_addr
, SZ_64K
);
391 size
+= in
->phys_addr
- paddr
;
394 * Avoid wasting memory on PTEs by choosing a virtual
395 * base that is compatible with section mappings if this
396 * region has the appropriate size and physical
397 * alignment. (Sections are 2 MB on 4k granule kernels)
399 if (IS_ALIGNED(in
->phys_addr
, SZ_2M
) && size
>= SZ_2M
)
400 efi_virt_base
= round_up(efi_virt_base
, SZ_2M
);
402 efi_virt_base
= round_up(efi_virt_base
, SZ_64K
);
404 in
->virt_addr
+= efi_virt_base
- paddr
;
405 efi_virt_base
+= size
;
408 memcpy(out
, in
, desc_size
);
409 out
= (void *)out
+ desc_size
;