dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / firmware / efi / libstub / arm-stub.c
blob48161b1dd098f2694f8d5baf02403b6291928ea8
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * EFI stub implementation that is shared by arm and arm64 architectures.
4 * This should be #included by the EFI stub implementation files.
6 * Copyright (C) 2013,2014 Linaro Limited
7 * Roy Franz <roy.franz@linaro.org
8 * Copyright (C) 2013 Red Hat, Inc.
9 * Mark Salter <msalter@redhat.com>
12 #include <linux/efi.h>
13 #include <linux/libfdt.h>
14 #include <asm/efi.h>
16 #include "efistub.h"
19 * This is the base address at which to start allocating virtual memory ranges
20 * for UEFI Runtime Services. This is in the low TTBR0 range so that we can use
21 * any allocation we choose, and eliminate the risk of a conflict after kexec.
22 * The value chosen is the largest non-zero power of 2 suitable for this purpose
23 * both on 32-bit and 64-bit ARM CPUs, to maximize the likelihood that it can
24 * be mapped efficiently.
25 * Since 32-bit ARM could potentially execute with a 1G/3G user/kernel split,
26 * map everything below 1 GB. (512 MB is a reasonable upper bound for the
27 * entire footprint of the UEFI runtime services memory regions)
29 #define EFI_RT_VIRTUAL_BASE SZ_512M
30 #define EFI_RT_VIRTUAL_SIZE SZ_512M
32 #ifdef CONFIG_ARM64
33 # define EFI_RT_VIRTUAL_LIMIT DEFAULT_MAP_WINDOW_64
34 #else
35 # define EFI_RT_VIRTUAL_LIMIT TASK_SIZE
36 #endif
38 static u64 virtmap_base = EFI_RT_VIRTUAL_BASE;
39 static bool __efistub_global flat_va_mapping;
41 static efi_system_table_t *__efistub_global sys_table;
43 __pure efi_system_table_t *efi_system_table(void)
45 return sys_table;
48 static struct screen_info *setup_graphics(void)
50 efi_guid_t gop_proto = EFI_GRAPHICS_OUTPUT_PROTOCOL_GUID;
51 efi_status_t status;
52 unsigned long size;
53 void **gop_handle = NULL;
54 struct screen_info *si = NULL;
56 size = 0;
57 status = efi_bs_call(locate_handle, EFI_LOCATE_BY_PROTOCOL,
58 &gop_proto, NULL, &size, gop_handle);
59 if (status == EFI_BUFFER_TOO_SMALL) {
60 si = alloc_screen_info();
61 if (!si)
62 return NULL;
63 status = efi_setup_gop(si, &gop_proto, size);
64 if (status != EFI_SUCCESS) {
65 free_screen_info(si);
66 return NULL;
69 return si;
72 void install_memreserve_table(void)
74 struct linux_efi_memreserve *rsv;
75 efi_guid_t memreserve_table_guid = LINUX_EFI_MEMRESERVE_TABLE_GUID;
76 efi_status_t status;
78 status = efi_bs_call(allocate_pool, EFI_LOADER_DATA, sizeof(*rsv),
79 (void **)&rsv);
80 if (status != EFI_SUCCESS) {
81 pr_efi_err("Failed to allocate memreserve entry!\n");
82 return;
85 rsv->next = 0;
86 rsv->size = 0;
87 atomic_set(&rsv->count, 0);
89 status = efi_bs_call(install_configuration_table,
90 &memreserve_table_guid, rsv);
91 if (status != EFI_SUCCESS)
92 pr_efi_err("Failed to install memreserve config table!\n");
95 static unsigned long get_dram_base(void)
97 efi_status_t status;
98 unsigned long map_size, buff_size;
99 unsigned long membase = EFI_ERROR;
100 struct efi_memory_map map;
101 efi_memory_desc_t *md;
102 struct efi_boot_memmap boot_map;
104 boot_map.map = (efi_memory_desc_t **)&map.map;
105 boot_map.map_size = &map_size;
106 boot_map.desc_size = &map.desc_size;
107 boot_map.desc_ver = NULL;
108 boot_map.key_ptr = NULL;
109 boot_map.buff_size = &buff_size;
111 status = efi_get_memory_map(&boot_map);
112 if (status != EFI_SUCCESS)
113 return membase;
115 map.map_end = map.map + map_size;
117 for_each_efi_memory_desc_in_map(&map, md) {
118 if (md->attribute & EFI_MEMORY_WB) {
119 if (membase > md->phys_addr)
120 membase = md->phys_addr;
124 efi_bs_call(free_pool, map.map);
126 return membase;
130 * This function handles the architcture specific differences between arm and
131 * arm64 regarding where the kernel image must be loaded and any memory that
132 * must be reserved. On failure it is required to free all
133 * all allocations it has made.
135 efi_status_t handle_kernel_image(unsigned long *image_addr,
136 unsigned long *image_size,
137 unsigned long *reserve_addr,
138 unsigned long *reserve_size,
139 unsigned long dram_base,
140 efi_loaded_image_t *image);
142 asmlinkage void __noreturn efi_enter_kernel(unsigned long entrypoint,
143 unsigned long fdt_addr,
144 unsigned long fdt_size);
147 * EFI entry point for the arm/arm64 EFI stubs. This is the entrypoint
148 * that is described in the PE/COFF header. Most of the code is the same
149 * for both archictectures, with the arch-specific code provided in the
150 * handle_kernel_image() function.
152 efi_status_t efi_entry(efi_handle_t handle, efi_system_table_t *sys_table_arg)
154 efi_loaded_image_t *image;
155 efi_status_t status;
156 unsigned long image_addr;
157 unsigned long image_size = 0;
158 unsigned long dram_base;
159 /* addr/point and size pairs for memory management*/
160 unsigned long initrd_addr = 0;
161 unsigned long initrd_size = 0;
162 unsigned long fdt_addr = 0; /* Original DTB */
163 unsigned long fdt_size = 0;
164 char *cmdline_ptr = NULL;
165 int cmdline_size = 0;
166 efi_guid_t loaded_image_proto = LOADED_IMAGE_PROTOCOL_GUID;
167 unsigned long reserve_addr = 0;
168 unsigned long reserve_size = 0;
169 enum efi_secureboot_mode secure_boot;
170 struct screen_info *si;
171 efi_properties_table_t *prop_tbl;
172 unsigned long max_addr;
174 sys_table = sys_table_arg;
176 /* Check if we were booted by the EFI firmware */
177 if (sys_table->hdr.signature != EFI_SYSTEM_TABLE_SIGNATURE) {
178 status = EFI_INVALID_PARAMETER;
179 goto fail;
182 status = check_platform_features();
183 if (status != EFI_SUCCESS)
184 goto fail;
187 * Get a handle to the loaded image protocol. This is used to get
188 * information about the running image, such as size and the command
189 * line.
191 status = sys_table->boottime->handle_protocol(handle,
192 &loaded_image_proto, (void *)&image);
193 if (status != EFI_SUCCESS) {
194 pr_efi_err("Failed to get loaded image protocol\n");
195 goto fail;
198 dram_base = get_dram_base();
199 if (dram_base == EFI_ERROR) {
200 pr_efi_err("Failed to find DRAM base\n");
201 status = EFI_LOAD_ERROR;
202 goto fail;
206 * Get the command line from EFI, using the LOADED_IMAGE
207 * protocol. We are going to copy the command line into the
208 * device tree, so this can be allocated anywhere.
210 cmdline_ptr = efi_convert_cmdline(image, &cmdline_size, ULONG_MAX);
211 if (!cmdline_ptr) {
212 pr_efi_err("getting command line via LOADED_IMAGE_PROTOCOL\n");
213 status = EFI_OUT_OF_RESOURCES;
214 goto fail;
217 if (IS_ENABLED(CONFIG_CMDLINE_EXTEND) ||
218 IS_ENABLED(CONFIG_CMDLINE_FORCE) ||
219 cmdline_size == 0)
220 efi_parse_options(CONFIG_CMDLINE);
222 if (!IS_ENABLED(CONFIG_CMDLINE_FORCE) && cmdline_size > 0)
223 efi_parse_options(cmdline_ptr);
225 pr_efi("Booting Linux Kernel...\n");
227 si = setup_graphics();
229 status = handle_kernel_image(&image_addr, &image_size,
230 &reserve_addr,
231 &reserve_size,
232 dram_base, image);
233 if (status != EFI_SUCCESS) {
234 pr_efi_err("Failed to relocate kernel\n");
235 goto fail_free_cmdline;
238 efi_retrieve_tpm2_eventlog();
240 /* Ask the firmware to clear memory on unclean shutdown */
241 efi_enable_reset_attack_mitigation();
243 secure_boot = efi_get_secureboot();
246 * Unauthenticated device tree data is a security hazard, so ignore
247 * 'dtb=' unless UEFI Secure Boot is disabled. We assume that secure
248 * boot is enabled if we can't determine its state.
250 if (!IS_ENABLED(CONFIG_EFI_ARMSTUB_DTB_LOADER) ||
251 secure_boot != efi_secureboot_mode_disabled) {
252 if (strstr(cmdline_ptr, "dtb="))
253 pr_efi("Ignoring DTB from command line.\n");
254 } else {
255 status = efi_load_dtb(image, &fdt_addr, &fdt_size);
257 if (status != EFI_SUCCESS) {
258 pr_efi_err("Failed to load device tree!\n");
259 goto fail_free_image;
263 if (fdt_addr) {
264 pr_efi("Using DTB from command line\n");
265 } else {
266 /* Look for a device tree configuration table entry. */
267 fdt_addr = (uintptr_t)get_fdt(&fdt_size);
268 if (fdt_addr)
269 pr_efi("Using DTB from configuration table\n");
272 if (!fdt_addr)
273 pr_efi("Generating empty DTB\n");
275 if (!noinitrd()) {
276 max_addr = efi_get_max_initrd_addr(dram_base, image_addr);
277 status = efi_load_initrd_dev_path(&initrd_addr, &initrd_size,
278 max_addr);
279 if (status == EFI_SUCCESS) {
280 pr_efi("Loaded initrd from LINUX_EFI_INITRD_MEDIA_GUID device path\n");
281 } else if (status == EFI_NOT_FOUND) {
282 status = efi_load_initrd(image, &initrd_addr, &initrd_size,
283 ULONG_MAX, max_addr);
284 if (status == EFI_SUCCESS && initrd_size > 0)
285 pr_efi("Loaded initrd from command line option\n");
287 if (status != EFI_SUCCESS)
288 pr_efi_err("Failed to load initrd!\n");
291 efi_random_get_seed();
294 * If the NX PE data feature is enabled in the properties table, we
295 * should take care not to create a virtual mapping that changes the
296 * relative placement of runtime services code and data regions, as
297 * they may belong to the same PE/COFF executable image in memory.
298 * The easiest way to achieve that is to simply use a 1:1 mapping.
300 prop_tbl = get_efi_config_table(EFI_PROPERTIES_TABLE_GUID);
301 flat_va_mapping = prop_tbl &&
302 (prop_tbl->memory_protection_attribute &
303 EFI_PROPERTIES_RUNTIME_MEMORY_PROTECTION_NON_EXECUTABLE_PE_DATA);
305 /* hibernation expects the runtime regions to stay in the same place */
306 if (!IS_ENABLED(CONFIG_HIBERNATION) && !nokaslr() && !flat_va_mapping) {
308 * Randomize the base of the UEFI runtime services region.
309 * Preserve the 2 MB alignment of the region by taking a
310 * shift of 21 bit positions into account when scaling
311 * the headroom value using a 32-bit random value.
313 static const u64 headroom = EFI_RT_VIRTUAL_LIMIT -
314 EFI_RT_VIRTUAL_BASE -
315 EFI_RT_VIRTUAL_SIZE;
316 u32 rnd;
318 status = efi_get_random_bytes(sizeof(rnd), (u8 *)&rnd);
319 if (status == EFI_SUCCESS) {
320 virtmap_base = EFI_RT_VIRTUAL_BASE +
321 (((headroom >> 21) * rnd) >> (32 - 21));
325 install_memreserve_table();
327 status = allocate_new_fdt_and_exit_boot(handle, &fdt_addr,
328 efi_get_max_fdt_addr(dram_base),
329 initrd_addr, initrd_size,
330 cmdline_ptr, fdt_addr, fdt_size);
331 if (status != EFI_SUCCESS)
332 goto fail_free_initrd;
334 efi_enter_kernel(image_addr, fdt_addr, fdt_totalsize((void *)fdt_addr));
335 /* not reached */
337 fail_free_initrd:
338 pr_efi_err("Failed to update FDT and exit boot services\n");
340 efi_free(initrd_size, initrd_addr);
341 efi_free(fdt_size, fdt_addr);
343 fail_free_image:
344 efi_free(image_size, image_addr);
345 efi_free(reserve_size, reserve_addr);
346 fail_free_cmdline:
347 free_screen_info(si);
348 efi_free(cmdline_size, (unsigned long)cmdline_ptr);
349 fail:
350 return status;
354 * efi_get_virtmap() - create a virtual mapping for the EFI memory map
356 * This function populates the virt_addr fields of all memory region descriptors
357 * in @memory_map whose EFI_MEMORY_RUNTIME attribute is set. Those descriptors
358 * are also copied to @runtime_map, and their total count is returned in @count.
360 void efi_get_virtmap(efi_memory_desc_t *memory_map, unsigned long map_size,
361 unsigned long desc_size, efi_memory_desc_t *runtime_map,
362 int *count)
364 u64 efi_virt_base = virtmap_base;
365 efi_memory_desc_t *in, *out = runtime_map;
366 int l;
368 for (l = 0; l < map_size; l += desc_size) {
369 u64 paddr, size;
371 in = (void *)memory_map + l;
372 if (!(in->attribute & EFI_MEMORY_RUNTIME))
373 continue;
375 paddr = in->phys_addr;
376 size = in->num_pages * EFI_PAGE_SIZE;
378 in->virt_addr = in->phys_addr;
379 if (novamap()) {
380 continue;
384 * Make the mapping compatible with 64k pages: this allows
385 * a 4k page size kernel to kexec a 64k page size kernel and
386 * vice versa.
388 if (!flat_va_mapping) {
390 paddr = round_down(in->phys_addr, SZ_64K);
391 size += in->phys_addr - paddr;
394 * Avoid wasting memory on PTEs by choosing a virtual
395 * base that is compatible with section mappings if this
396 * region has the appropriate size and physical
397 * alignment. (Sections are 2 MB on 4k granule kernels)
399 if (IS_ALIGNED(in->phys_addr, SZ_2M) && size >= SZ_2M)
400 efi_virt_base = round_up(efi_virt_base, SZ_2M);
401 else
402 efi_virt_base = round_up(efi_virt_base, SZ_64K);
404 in->virt_addr += efi_virt_base - paddr;
405 efi_virt_base += size;
408 memcpy(out, in, desc_size);
409 out = (void *)out + desc_size;
410 ++*count;