1 // SPDX-License-Identifier: GPL-2.0-only
3 * Copyright (c) 2009, Microsoft Corporation.
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/task_stack.h>
26 #include <asm/mshyperv.h>
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/ptrace.h>
30 #include <linux/screen_info.h>
31 #include <linux/kdebug.h>
32 #include <linux/efi.h>
33 #include <linux/random.h>
34 #include <linux/kernel.h>
35 #include <linux/syscore_ops.h>
36 #include <clocksource/hyperv_timer.h>
37 #include "hyperv_vmbus.h"
40 struct list_head node
;
41 struct hv_vmbus_device_id id
;
44 static struct acpi_device
*hv_acpi_dev
;
46 static struct completion probe_event
;
48 static int hyperv_cpuhp_online
;
50 static void *hv_panic_page
;
53 * Boolean to control whether to report panic messages over Hyper-V.
55 * It can be set via /proc/sys/kernel/hyperv/record_panic_msg
57 static int sysctl_record_panic_msg
= 1;
59 static int hyperv_report_reg(void)
61 return !sysctl_record_panic_msg
|| !hv_panic_page
;
64 static int hyperv_panic_event(struct notifier_block
*nb
, unsigned long val
,
69 vmbus_initiate_unload(true);
72 * Hyper-V should be notified only once about a panic. If we will be
73 * doing hyperv_report_panic_msg() later with kmsg data, don't do
74 * the notification here.
76 if (ms_hyperv
.misc_features
& HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
77 && hyperv_report_reg()) {
78 regs
= current_pt_regs();
79 hyperv_report_panic(regs
, val
, false);
84 static int hyperv_die_event(struct notifier_block
*nb
, unsigned long val
,
87 struct die_args
*die
= (struct die_args
*)args
;
88 struct pt_regs
*regs
= die
->regs
;
91 * Hyper-V should be notified only once about a panic. If we will be
92 * doing hyperv_report_panic_msg() later with kmsg data, don't do
93 * the notification here.
95 if (hyperv_report_reg())
96 hyperv_report_panic(regs
, val
, true);
100 static struct notifier_block hyperv_die_block
= {
101 .notifier_call
= hyperv_die_event
,
103 static struct notifier_block hyperv_panic_block
= {
104 .notifier_call
= hyperv_panic_event
,
107 static const char *fb_mmio_name
= "fb_range";
108 static struct resource
*fb_mmio
;
109 static struct resource
*hyperv_mmio
;
110 static DEFINE_MUTEX(hyperv_mmio_lock
);
112 static int vmbus_exists(void)
114 if (hv_acpi_dev
== NULL
)
120 #define VMBUS_ALIAS_LEN ((sizeof((struct hv_vmbus_device_id *)0)->guid) * 2)
121 static void print_alias_name(struct hv_device
*hv_dev
, char *alias_name
)
124 for (i
= 0; i
< VMBUS_ALIAS_LEN
; i
+= 2)
125 sprintf(&alias_name
[i
], "%02x", hv_dev
->dev_type
.b
[i
/2]);
128 static u8
channel_monitor_group(const struct vmbus_channel
*channel
)
130 return (u8
)channel
->offermsg
.monitorid
/ 32;
133 static u8
channel_monitor_offset(const struct vmbus_channel
*channel
)
135 return (u8
)channel
->offermsg
.monitorid
% 32;
138 static u32
channel_pending(const struct vmbus_channel
*channel
,
139 const struct hv_monitor_page
*monitor_page
)
141 u8 monitor_group
= channel_monitor_group(channel
);
143 return monitor_page
->trigger_group
[monitor_group
].pending
;
146 static u32
channel_latency(const struct vmbus_channel
*channel
,
147 const struct hv_monitor_page
*monitor_page
)
149 u8 monitor_group
= channel_monitor_group(channel
);
150 u8 monitor_offset
= channel_monitor_offset(channel
);
152 return monitor_page
->latency
[monitor_group
][monitor_offset
];
155 static u32
channel_conn_id(struct vmbus_channel
*channel
,
156 struct hv_monitor_page
*monitor_page
)
158 u8 monitor_group
= channel_monitor_group(channel
);
159 u8 monitor_offset
= channel_monitor_offset(channel
);
160 return monitor_page
->parameter
[monitor_group
][monitor_offset
].connectionid
.u
.id
;
163 static ssize_t
id_show(struct device
*dev
, struct device_attribute
*dev_attr
,
166 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
168 if (!hv_dev
->channel
)
170 return sprintf(buf
, "%d\n", hv_dev
->channel
->offermsg
.child_relid
);
172 static DEVICE_ATTR_RO(id
);
174 static ssize_t
state_show(struct device
*dev
, struct device_attribute
*dev_attr
,
177 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
179 if (!hv_dev
->channel
)
181 return sprintf(buf
, "%d\n", hv_dev
->channel
->state
);
183 static DEVICE_ATTR_RO(state
);
185 static ssize_t
monitor_id_show(struct device
*dev
,
186 struct device_attribute
*dev_attr
, char *buf
)
188 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
190 if (!hv_dev
->channel
)
192 return sprintf(buf
, "%d\n", hv_dev
->channel
->offermsg
.monitorid
);
194 static DEVICE_ATTR_RO(monitor_id
);
196 static ssize_t
class_id_show(struct device
*dev
,
197 struct device_attribute
*dev_attr
, char *buf
)
199 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
201 if (!hv_dev
->channel
)
203 return sprintf(buf
, "{%pUl}\n",
204 hv_dev
->channel
->offermsg
.offer
.if_type
.b
);
206 static DEVICE_ATTR_RO(class_id
);
208 static ssize_t
device_id_show(struct device
*dev
,
209 struct device_attribute
*dev_attr
, char *buf
)
211 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
213 if (!hv_dev
->channel
)
215 return sprintf(buf
, "{%pUl}\n",
216 hv_dev
->channel
->offermsg
.offer
.if_instance
.b
);
218 static DEVICE_ATTR_RO(device_id
);
220 static ssize_t
modalias_show(struct device
*dev
,
221 struct device_attribute
*dev_attr
, char *buf
)
223 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
224 char alias_name
[VMBUS_ALIAS_LEN
+ 1];
226 print_alias_name(hv_dev
, alias_name
);
227 return sprintf(buf
, "vmbus:%s\n", alias_name
);
229 static DEVICE_ATTR_RO(modalias
);
232 static ssize_t
numa_node_show(struct device
*dev
,
233 struct device_attribute
*attr
, char *buf
)
235 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
237 if (!hv_dev
->channel
)
240 return sprintf(buf
, "%d\n", hv_dev
->channel
->numa_node
);
242 static DEVICE_ATTR_RO(numa_node
);
245 static ssize_t
server_monitor_pending_show(struct device
*dev
,
246 struct device_attribute
*dev_attr
,
249 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
251 if (!hv_dev
->channel
)
253 return sprintf(buf
, "%d\n",
254 channel_pending(hv_dev
->channel
,
255 vmbus_connection
.monitor_pages
[0]));
257 static DEVICE_ATTR_RO(server_monitor_pending
);
259 static ssize_t
client_monitor_pending_show(struct device
*dev
,
260 struct device_attribute
*dev_attr
,
263 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
265 if (!hv_dev
->channel
)
267 return sprintf(buf
, "%d\n",
268 channel_pending(hv_dev
->channel
,
269 vmbus_connection
.monitor_pages
[1]));
271 static DEVICE_ATTR_RO(client_monitor_pending
);
273 static ssize_t
server_monitor_latency_show(struct device
*dev
,
274 struct device_attribute
*dev_attr
,
277 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
279 if (!hv_dev
->channel
)
281 return sprintf(buf
, "%d\n",
282 channel_latency(hv_dev
->channel
,
283 vmbus_connection
.monitor_pages
[0]));
285 static DEVICE_ATTR_RO(server_monitor_latency
);
287 static ssize_t
client_monitor_latency_show(struct device
*dev
,
288 struct device_attribute
*dev_attr
,
291 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
293 if (!hv_dev
->channel
)
295 return sprintf(buf
, "%d\n",
296 channel_latency(hv_dev
->channel
,
297 vmbus_connection
.monitor_pages
[1]));
299 static DEVICE_ATTR_RO(client_monitor_latency
);
301 static ssize_t
server_monitor_conn_id_show(struct device
*dev
,
302 struct device_attribute
*dev_attr
,
305 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
307 if (!hv_dev
->channel
)
309 return sprintf(buf
, "%d\n",
310 channel_conn_id(hv_dev
->channel
,
311 vmbus_connection
.monitor_pages
[0]));
313 static DEVICE_ATTR_RO(server_monitor_conn_id
);
315 static ssize_t
client_monitor_conn_id_show(struct device
*dev
,
316 struct device_attribute
*dev_attr
,
319 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
321 if (!hv_dev
->channel
)
323 return sprintf(buf
, "%d\n",
324 channel_conn_id(hv_dev
->channel
,
325 vmbus_connection
.monitor_pages
[1]));
327 static DEVICE_ATTR_RO(client_monitor_conn_id
);
329 static ssize_t
out_intr_mask_show(struct device
*dev
,
330 struct device_attribute
*dev_attr
, char *buf
)
332 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
333 struct hv_ring_buffer_debug_info outbound
;
336 if (!hv_dev
->channel
)
339 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
344 return sprintf(buf
, "%d\n", outbound
.current_interrupt_mask
);
346 static DEVICE_ATTR_RO(out_intr_mask
);
348 static ssize_t
out_read_index_show(struct device
*dev
,
349 struct device_attribute
*dev_attr
, char *buf
)
351 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
352 struct hv_ring_buffer_debug_info outbound
;
355 if (!hv_dev
->channel
)
358 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
362 return sprintf(buf
, "%d\n", outbound
.current_read_index
);
364 static DEVICE_ATTR_RO(out_read_index
);
366 static ssize_t
out_write_index_show(struct device
*dev
,
367 struct device_attribute
*dev_attr
,
370 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
371 struct hv_ring_buffer_debug_info outbound
;
374 if (!hv_dev
->channel
)
377 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
381 return sprintf(buf
, "%d\n", outbound
.current_write_index
);
383 static DEVICE_ATTR_RO(out_write_index
);
385 static ssize_t
out_read_bytes_avail_show(struct device
*dev
,
386 struct device_attribute
*dev_attr
,
389 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
390 struct hv_ring_buffer_debug_info outbound
;
393 if (!hv_dev
->channel
)
396 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
400 return sprintf(buf
, "%d\n", outbound
.bytes_avail_toread
);
402 static DEVICE_ATTR_RO(out_read_bytes_avail
);
404 static ssize_t
out_write_bytes_avail_show(struct device
*dev
,
405 struct device_attribute
*dev_attr
,
408 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
409 struct hv_ring_buffer_debug_info outbound
;
412 if (!hv_dev
->channel
)
415 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->outbound
,
419 return sprintf(buf
, "%d\n", outbound
.bytes_avail_towrite
);
421 static DEVICE_ATTR_RO(out_write_bytes_avail
);
423 static ssize_t
in_intr_mask_show(struct device
*dev
,
424 struct device_attribute
*dev_attr
, char *buf
)
426 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
427 struct hv_ring_buffer_debug_info inbound
;
430 if (!hv_dev
->channel
)
433 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
437 return sprintf(buf
, "%d\n", inbound
.current_interrupt_mask
);
439 static DEVICE_ATTR_RO(in_intr_mask
);
441 static ssize_t
in_read_index_show(struct device
*dev
,
442 struct device_attribute
*dev_attr
, char *buf
)
444 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
445 struct hv_ring_buffer_debug_info inbound
;
448 if (!hv_dev
->channel
)
451 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
455 return sprintf(buf
, "%d\n", inbound
.current_read_index
);
457 static DEVICE_ATTR_RO(in_read_index
);
459 static ssize_t
in_write_index_show(struct device
*dev
,
460 struct device_attribute
*dev_attr
, char *buf
)
462 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
463 struct hv_ring_buffer_debug_info inbound
;
466 if (!hv_dev
->channel
)
469 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
473 return sprintf(buf
, "%d\n", inbound
.current_write_index
);
475 static DEVICE_ATTR_RO(in_write_index
);
477 static ssize_t
in_read_bytes_avail_show(struct device
*dev
,
478 struct device_attribute
*dev_attr
,
481 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
482 struct hv_ring_buffer_debug_info inbound
;
485 if (!hv_dev
->channel
)
488 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
492 return sprintf(buf
, "%d\n", inbound
.bytes_avail_toread
);
494 static DEVICE_ATTR_RO(in_read_bytes_avail
);
496 static ssize_t
in_write_bytes_avail_show(struct device
*dev
,
497 struct device_attribute
*dev_attr
,
500 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
501 struct hv_ring_buffer_debug_info inbound
;
504 if (!hv_dev
->channel
)
507 ret
= hv_ringbuffer_get_debuginfo(&hv_dev
->channel
->inbound
, &inbound
);
511 return sprintf(buf
, "%d\n", inbound
.bytes_avail_towrite
);
513 static DEVICE_ATTR_RO(in_write_bytes_avail
);
515 static ssize_t
channel_vp_mapping_show(struct device
*dev
,
516 struct device_attribute
*dev_attr
,
519 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
520 struct vmbus_channel
*channel
= hv_dev
->channel
, *cur_sc
;
522 int buf_size
= PAGE_SIZE
, n_written
, tot_written
;
523 struct list_head
*cur
;
528 tot_written
= snprintf(buf
, buf_size
, "%u:%u\n",
529 channel
->offermsg
.child_relid
, channel
->target_cpu
);
531 spin_lock_irqsave(&channel
->lock
, flags
);
533 list_for_each(cur
, &channel
->sc_list
) {
534 if (tot_written
>= buf_size
- 1)
537 cur_sc
= list_entry(cur
, struct vmbus_channel
, sc_list
);
538 n_written
= scnprintf(buf
+ tot_written
,
539 buf_size
- tot_written
,
541 cur_sc
->offermsg
.child_relid
,
543 tot_written
+= n_written
;
546 spin_unlock_irqrestore(&channel
->lock
, flags
);
550 static DEVICE_ATTR_RO(channel_vp_mapping
);
552 static ssize_t
vendor_show(struct device
*dev
,
553 struct device_attribute
*dev_attr
,
556 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
557 return sprintf(buf
, "0x%x\n", hv_dev
->vendor_id
);
559 static DEVICE_ATTR_RO(vendor
);
561 static ssize_t
device_show(struct device
*dev
,
562 struct device_attribute
*dev_attr
,
565 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
566 return sprintf(buf
, "0x%x\n", hv_dev
->device_id
);
568 static DEVICE_ATTR_RO(device
);
570 static ssize_t
driver_override_store(struct device
*dev
,
571 struct device_attribute
*attr
,
572 const char *buf
, size_t count
)
574 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
575 char *driver_override
, *old
, *cp
;
577 /* We need to keep extra room for a newline */
578 if (count
>= (PAGE_SIZE
- 1))
581 driver_override
= kstrndup(buf
, count
, GFP_KERNEL
);
582 if (!driver_override
)
585 cp
= strchr(driver_override
, '\n');
590 old
= hv_dev
->driver_override
;
591 if (strlen(driver_override
)) {
592 hv_dev
->driver_override
= driver_override
;
594 kfree(driver_override
);
595 hv_dev
->driver_override
= NULL
;
604 static ssize_t
driver_override_show(struct device
*dev
,
605 struct device_attribute
*attr
, char *buf
)
607 struct hv_device
*hv_dev
= device_to_hv_device(dev
);
611 len
= snprintf(buf
, PAGE_SIZE
, "%s\n", hv_dev
->driver_override
);
616 static DEVICE_ATTR_RW(driver_override
);
618 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
619 static struct attribute
*vmbus_dev_attrs
[] = {
621 &dev_attr_state
.attr
,
622 &dev_attr_monitor_id
.attr
,
623 &dev_attr_class_id
.attr
,
624 &dev_attr_device_id
.attr
,
625 &dev_attr_modalias
.attr
,
627 &dev_attr_numa_node
.attr
,
629 &dev_attr_server_monitor_pending
.attr
,
630 &dev_attr_client_monitor_pending
.attr
,
631 &dev_attr_server_monitor_latency
.attr
,
632 &dev_attr_client_monitor_latency
.attr
,
633 &dev_attr_server_monitor_conn_id
.attr
,
634 &dev_attr_client_monitor_conn_id
.attr
,
635 &dev_attr_out_intr_mask
.attr
,
636 &dev_attr_out_read_index
.attr
,
637 &dev_attr_out_write_index
.attr
,
638 &dev_attr_out_read_bytes_avail
.attr
,
639 &dev_attr_out_write_bytes_avail
.attr
,
640 &dev_attr_in_intr_mask
.attr
,
641 &dev_attr_in_read_index
.attr
,
642 &dev_attr_in_write_index
.attr
,
643 &dev_attr_in_read_bytes_avail
.attr
,
644 &dev_attr_in_write_bytes_avail
.attr
,
645 &dev_attr_channel_vp_mapping
.attr
,
646 &dev_attr_vendor
.attr
,
647 &dev_attr_device
.attr
,
648 &dev_attr_driver_override
.attr
,
653 * Device-level attribute_group callback function. Returns the permission for
654 * each attribute, and returns 0 if an attribute is not visible.
656 static umode_t
vmbus_dev_attr_is_visible(struct kobject
*kobj
,
657 struct attribute
*attr
, int idx
)
659 struct device
*dev
= kobj_to_dev(kobj
);
660 const struct hv_device
*hv_dev
= device_to_hv_device(dev
);
662 /* Hide the monitor attributes if the monitor mechanism is not used. */
663 if (!hv_dev
->channel
->offermsg
.monitor_allocated
&&
664 (attr
== &dev_attr_monitor_id
.attr
||
665 attr
== &dev_attr_server_monitor_pending
.attr
||
666 attr
== &dev_attr_client_monitor_pending
.attr
||
667 attr
== &dev_attr_server_monitor_latency
.attr
||
668 attr
== &dev_attr_client_monitor_latency
.attr
||
669 attr
== &dev_attr_server_monitor_conn_id
.attr
||
670 attr
== &dev_attr_client_monitor_conn_id
.attr
))
676 static const struct attribute_group vmbus_dev_group
= {
677 .attrs
= vmbus_dev_attrs
,
678 .is_visible
= vmbus_dev_attr_is_visible
680 __ATTRIBUTE_GROUPS(vmbus_dev
);
683 * vmbus_uevent - add uevent for our device
685 * This routine is invoked when a device is added or removed on the vmbus to
686 * generate a uevent to udev in the userspace. The udev will then look at its
687 * rule and the uevent generated here to load the appropriate driver
689 * The alias string will be of the form vmbus:guid where guid is the string
690 * representation of the device guid (each byte of the guid will be
691 * represented with two hex characters.
693 static int vmbus_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
695 struct hv_device
*dev
= device_to_hv_device(device
);
697 char alias_name
[VMBUS_ALIAS_LEN
+ 1];
699 print_alias_name(dev
, alias_name
);
700 ret
= add_uevent_var(env
, "MODALIAS=vmbus:%s", alias_name
);
704 static const struct hv_vmbus_device_id
*
705 hv_vmbus_dev_match(const struct hv_vmbus_device_id
*id
, const guid_t
*guid
)
708 return NULL
; /* empty device table */
710 for (; !guid_is_null(&id
->guid
); id
++)
711 if (guid_equal(&id
->guid
, guid
))
717 static const struct hv_vmbus_device_id
*
718 hv_vmbus_dynid_match(struct hv_driver
*drv
, const guid_t
*guid
)
720 const struct hv_vmbus_device_id
*id
= NULL
;
721 struct vmbus_dynid
*dynid
;
723 spin_lock(&drv
->dynids
.lock
);
724 list_for_each_entry(dynid
, &drv
->dynids
.list
, node
) {
725 if (guid_equal(&dynid
->id
.guid
, guid
)) {
730 spin_unlock(&drv
->dynids
.lock
);
735 static const struct hv_vmbus_device_id vmbus_device_null
;
738 * Return a matching hv_vmbus_device_id pointer.
739 * If there is no match, return NULL.
741 static const struct hv_vmbus_device_id
*hv_vmbus_get_id(struct hv_driver
*drv
,
742 struct hv_device
*dev
)
744 const guid_t
*guid
= &dev
->dev_type
;
745 const struct hv_vmbus_device_id
*id
;
747 /* When driver_override is set, only bind to the matching driver */
748 if (dev
->driver_override
&& strcmp(dev
->driver_override
, drv
->name
))
751 /* Look at the dynamic ids first, before the static ones */
752 id
= hv_vmbus_dynid_match(drv
, guid
);
754 id
= hv_vmbus_dev_match(drv
->id_table
, guid
);
756 /* driver_override will always match, send a dummy id */
757 if (!id
&& dev
->driver_override
)
758 id
= &vmbus_device_null
;
763 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
764 static int vmbus_add_dynid(struct hv_driver
*drv
, guid_t
*guid
)
766 struct vmbus_dynid
*dynid
;
768 dynid
= kzalloc(sizeof(*dynid
), GFP_KERNEL
);
772 dynid
->id
.guid
= *guid
;
774 spin_lock(&drv
->dynids
.lock
);
775 list_add_tail(&dynid
->node
, &drv
->dynids
.list
);
776 spin_unlock(&drv
->dynids
.lock
);
778 return driver_attach(&drv
->driver
);
781 static void vmbus_free_dynids(struct hv_driver
*drv
)
783 struct vmbus_dynid
*dynid
, *n
;
785 spin_lock(&drv
->dynids
.lock
);
786 list_for_each_entry_safe(dynid
, n
, &drv
->dynids
.list
, node
) {
787 list_del(&dynid
->node
);
790 spin_unlock(&drv
->dynids
.lock
);
794 * store_new_id - sysfs frontend to vmbus_add_dynid()
796 * Allow GUIDs to be added to an existing driver via sysfs.
798 static ssize_t
new_id_store(struct device_driver
*driver
, const char *buf
,
801 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
805 retval
= guid_parse(buf
, &guid
);
809 if (hv_vmbus_dynid_match(drv
, &guid
))
812 retval
= vmbus_add_dynid(drv
, &guid
);
817 static DRIVER_ATTR_WO(new_id
);
820 * store_remove_id - remove a PCI device ID from this driver
822 * Removes a dynamic pci device ID to this driver.
824 static ssize_t
remove_id_store(struct device_driver
*driver
, const char *buf
,
827 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
828 struct vmbus_dynid
*dynid
, *n
;
832 retval
= guid_parse(buf
, &guid
);
837 spin_lock(&drv
->dynids
.lock
);
838 list_for_each_entry_safe(dynid
, n
, &drv
->dynids
.list
, node
) {
839 struct hv_vmbus_device_id
*id
= &dynid
->id
;
841 if (guid_equal(&id
->guid
, &guid
)) {
842 list_del(&dynid
->node
);
848 spin_unlock(&drv
->dynids
.lock
);
852 static DRIVER_ATTR_WO(remove_id
);
854 static struct attribute
*vmbus_drv_attrs
[] = {
855 &driver_attr_new_id
.attr
,
856 &driver_attr_remove_id
.attr
,
859 ATTRIBUTE_GROUPS(vmbus_drv
);
863 * vmbus_match - Attempt to match the specified device to the specified driver
865 static int vmbus_match(struct device
*device
, struct device_driver
*driver
)
867 struct hv_driver
*drv
= drv_to_hv_drv(driver
);
868 struct hv_device
*hv_dev
= device_to_hv_device(device
);
870 /* The hv_sock driver handles all hv_sock offers. */
871 if (is_hvsock_channel(hv_dev
->channel
))
874 if (hv_vmbus_get_id(drv
, hv_dev
))
881 * vmbus_probe - Add the new vmbus's child device
883 static int vmbus_probe(struct device
*child_device
)
886 struct hv_driver
*drv
=
887 drv_to_hv_drv(child_device
->driver
);
888 struct hv_device
*dev
= device_to_hv_device(child_device
);
889 const struct hv_vmbus_device_id
*dev_id
;
891 dev_id
= hv_vmbus_get_id(drv
, dev
);
893 ret
= drv
->probe(dev
, dev_id
);
895 pr_err("probe failed for device %s (%d)\n",
896 dev_name(child_device
), ret
);
899 pr_err("probe not set for driver %s\n",
900 dev_name(child_device
));
907 * vmbus_remove - Remove a vmbus device
909 static int vmbus_remove(struct device
*child_device
)
911 struct hv_driver
*drv
;
912 struct hv_device
*dev
= device_to_hv_device(child_device
);
914 if (child_device
->driver
) {
915 drv
= drv_to_hv_drv(child_device
->driver
);
925 * vmbus_shutdown - Shutdown a vmbus device
927 static void vmbus_shutdown(struct device
*child_device
)
929 struct hv_driver
*drv
;
930 struct hv_device
*dev
= device_to_hv_device(child_device
);
933 /* The device may not be attached yet */
934 if (!child_device
->driver
)
937 drv
= drv_to_hv_drv(child_device
->driver
);
943 #ifdef CONFIG_PM_SLEEP
945 * vmbus_suspend - Suspend a vmbus device
947 static int vmbus_suspend(struct device
*child_device
)
949 struct hv_driver
*drv
;
950 struct hv_device
*dev
= device_to_hv_device(child_device
);
952 /* The device may not be attached yet */
953 if (!child_device
->driver
)
956 drv
= drv_to_hv_drv(child_device
->driver
);
960 return drv
->suspend(dev
);
964 * vmbus_resume - Resume a vmbus device
966 static int vmbus_resume(struct device
*child_device
)
968 struct hv_driver
*drv
;
969 struct hv_device
*dev
= device_to_hv_device(child_device
);
971 /* The device may not be attached yet */
972 if (!child_device
->driver
)
975 drv
= drv_to_hv_drv(child_device
->driver
);
979 return drv
->resume(dev
);
982 #define vmbus_suspend NULL
983 #define vmbus_resume NULL
984 #endif /* CONFIG_PM_SLEEP */
987 * vmbus_device_release - Final callback release of the vmbus child device
989 static void vmbus_device_release(struct device
*device
)
991 struct hv_device
*hv_dev
= device_to_hv_device(device
);
992 struct vmbus_channel
*channel
= hv_dev
->channel
;
994 hv_debug_rm_dev_dir(hv_dev
);
996 mutex_lock(&vmbus_connection
.channel_mutex
);
997 hv_process_channel_removal(channel
);
998 mutex_unlock(&vmbus_connection
.channel_mutex
);
1003 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1005 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1006 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1007 * is no way to wake up a Generation-2 VM.
1009 * The other 4 ops are for hibernation.
1012 static const struct dev_pm_ops vmbus_pm
= {
1013 .suspend_noirq
= NULL
,
1014 .resume_noirq
= NULL
,
1015 .freeze_noirq
= vmbus_suspend
,
1016 .thaw_noirq
= vmbus_resume
,
1017 .poweroff_noirq
= vmbus_suspend
,
1018 .restore_noirq
= vmbus_resume
,
1021 /* The one and only one */
1022 static struct bus_type hv_bus
= {
1024 .match
= vmbus_match
,
1025 .shutdown
= vmbus_shutdown
,
1026 .remove
= vmbus_remove
,
1027 .probe
= vmbus_probe
,
1028 .uevent
= vmbus_uevent
,
1029 .dev_groups
= vmbus_dev_groups
,
1030 .drv_groups
= vmbus_drv_groups
,
1034 struct onmessage_work_context
{
1035 struct work_struct work
;
1036 struct hv_message msg
;
1039 static void vmbus_onmessage_work(struct work_struct
*work
)
1041 struct onmessage_work_context
*ctx
;
1043 /* Do not process messages if we're in DISCONNECTED state */
1044 if (vmbus_connection
.conn_state
== DISCONNECTED
)
1047 ctx
= container_of(work
, struct onmessage_work_context
,
1049 vmbus_onmessage(&ctx
->msg
);
1053 void vmbus_on_msg_dpc(unsigned long data
)
1055 struct hv_per_cpu_context
*hv_cpu
= (void *)data
;
1056 void *page_addr
= hv_cpu
->synic_message_page
;
1057 struct hv_message
*msg
= (struct hv_message
*)page_addr
+
1059 struct vmbus_channel_message_header
*hdr
;
1060 const struct vmbus_channel_message_table_entry
*entry
;
1061 struct onmessage_work_context
*ctx
;
1062 u32 message_type
= msg
->header
.message_type
;
1064 if (message_type
== HVMSG_NONE
)
1068 hdr
= (struct vmbus_channel_message_header
*)msg
->u
.payload
;
1070 trace_vmbus_on_msg_dpc(hdr
);
1072 if (hdr
->msgtype
>= CHANNELMSG_COUNT
) {
1073 WARN_ONCE(1, "unknown msgtype=%d\n", hdr
->msgtype
);
1077 entry
= &channel_message_table
[hdr
->msgtype
];
1079 if (!entry
->message_handler
)
1082 if (entry
->handler_type
== VMHT_BLOCKING
) {
1083 ctx
= kmalloc(sizeof(*ctx
), GFP_ATOMIC
);
1087 INIT_WORK(&ctx
->work
, vmbus_onmessage_work
);
1088 memcpy(&ctx
->msg
, msg
, sizeof(*msg
));
1091 * The host can generate a rescind message while we
1092 * may still be handling the original offer. We deal with
1093 * this condition by ensuring the processing is done on the
1096 switch (hdr
->msgtype
) {
1097 case CHANNELMSG_RESCIND_CHANNELOFFER
:
1099 * If we are handling the rescind message;
1100 * schedule the work on the global work queue.
1102 * The OFFER message and the RESCIND message should
1103 * not be handled by the same serialized work queue,
1104 * because the OFFER handler may call vmbus_open(),
1105 * which tries to open the channel by sending an
1106 * OPEN_CHANNEL message to the host and waits for
1107 * the host's response; however, if the host has
1108 * rescinded the channel before it receives the
1109 * OPEN_CHANNEL message, the host just silently
1110 * ignores the OPEN_CHANNEL message; as a result,
1111 * the guest's OFFER handler hangs for ever, if we
1112 * handle the RESCIND message in the same serialized
1113 * work queue: the RESCIND handler can not start to
1114 * run before the OFFER handler finishes.
1116 schedule_work_on(VMBUS_CONNECT_CPU
,
1120 case CHANNELMSG_OFFERCHANNEL
:
1121 atomic_inc(&vmbus_connection
.offer_in_progress
);
1122 queue_work_on(VMBUS_CONNECT_CPU
,
1123 vmbus_connection
.work_queue
,
1128 queue_work(vmbus_connection
.work_queue
, &ctx
->work
);
1131 entry
->message_handler(hdr
);
1134 vmbus_signal_eom(msg
, message_type
);
1137 #ifdef CONFIG_PM_SLEEP
1139 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1140 * hibernation, because hv_sock connections can not persist across hibernation.
1142 static void vmbus_force_channel_rescinded(struct vmbus_channel
*channel
)
1144 struct onmessage_work_context
*ctx
;
1145 struct vmbus_channel_rescind_offer
*rescind
;
1147 WARN_ON(!is_hvsock_channel(channel
));
1150 * sizeof(*ctx) is small and the allocation should really not fail,
1151 * otherwise the state of the hv_sock connections ends up in limbo.
1153 ctx
= kzalloc(sizeof(*ctx
), GFP_KERNEL
| __GFP_NOFAIL
);
1156 * So far, these are not really used by Linux. Just set them to the
1157 * reasonable values conforming to the definitions of the fields.
1159 ctx
->msg
.header
.message_type
= 1;
1160 ctx
->msg
.header
.payload_size
= sizeof(*rescind
);
1162 /* These values are actually used by Linux. */
1163 rescind
= (struct vmbus_channel_rescind_offer
*)ctx
->msg
.u
.payload
;
1164 rescind
->header
.msgtype
= CHANNELMSG_RESCIND_CHANNELOFFER
;
1165 rescind
->child_relid
= channel
->offermsg
.child_relid
;
1167 INIT_WORK(&ctx
->work
, vmbus_onmessage_work
);
1169 queue_work_on(VMBUS_CONNECT_CPU
,
1170 vmbus_connection
.work_queue
,
1173 #endif /* CONFIG_PM_SLEEP */
1176 * Direct callback for channels using other deferred processing
1178 static void vmbus_channel_isr(struct vmbus_channel
*channel
)
1180 void (*callback_fn
)(void *);
1182 callback_fn
= READ_ONCE(channel
->onchannel_callback
);
1183 if (likely(callback_fn
!= NULL
))
1184 (*callback_fn
)(channel
->channel_callback_context
);
1188 * Schedule all channels with events pending
1190 static void vmbus_chan_sched(struct hv_per_cpu_context
*hv_cpu
)
1192 unsigned long *recv_int_page
;
1195 if (vmbus_proto_version
< VERSION_WIN8
) {
1196 maxbits
= MAX_NUM_CHANNELS_SUPPORTED
;
1197 recv_int_page
= vmbus_connection
.recv_int_page
;
1200 * When the host is win8 and beyond, the event page
1201 * can be directly checked to get the id of the channel
1202 * that has the interrupt pending.
1204 void *page_addr
= hv_cpu
->synic_event_page
;
1205 union hv_synic_event_flags
*event
1206 = (union hv_synic_event_flags
*)page_addr
+
1209 maxbits
= HV_EVENT_FLAGS_COUNT
;
1210 recv_int_page
= event
->flags
;
1213 if (unlikely(!recv_int_page
))
1216 for_each_set_bit(relid
, recv_int_page
, maxbits
) {
1217 struct vmbus_channel
*channel
;
1219 if (!sync_test_and_clear_bit(relid
, recv_int_page
))
1222 /* Special case - vmbus channel protocol msg */
1228 /* Find channel based on relid */
1229 list_for_each_entry_rcu(channel
, &hv_cpu
->chan_list
, percpu_list
) {
1230 if (channel
->offermsg
.child_relid
!= relid
)
1233 if (channel
->rescind
)
1236 trace_vmbus_chan_sched(channel
);
1238 ++channel
->interrupts
;
1240 switch (channel
->callback_mode
) {
1242 vmbus_channel_isr(channel
);
1245 case HV_CALL_BATCHED
:
1246 hv_begin_read(&channel
->inbound
);
1248 case HV_CALL_DIRECT
:
1249 tasklet_schedule(&channel
->callback_event
);
1257 static void vmbus_isr(void)
1259 struct hv_per_cpu_context
*hv_cpu
1260 = this_cpu_ptr(hv_context
.cpu_context
);
1261 void *page_addr
= hv_cpu
->synic_event_page
;
1262 struct hv_message
*msg
;
1263 union hv_synic_event_flags
*event
;
1264 bool handled
= false;
1266 if (unlikely(page_addr
== NULL
))
1269 event
= (union hv_synic_event_flags
*)page_addr
+
1272 * Check for events before checking for messages. This is the order
1273 * in which events and messages are checked in Windows guests on
1274 * Hyper-V, and the Windows team suggested we do the same.
1277 if ((vmbus_proto_version
== VERSION_WS2008
) ||
1278 (vmbus_proto_version
== VERSION_WIN7
)) {
1280 /* Since we are a child, we only need to check bit 0 */
1281 if (sync_test_and_clear_bit(0, event
->flags
))
1285 * Our host is win8 or above. The signaling mechanism
1286 * has changed and we can directly look at the event page.
1287 * If bit n is set then we have an interrup on the channel
1294 vmbus_chan_sched(hv_cpu
);
1296 page_addr
= hv_cpu
->synic_message_page
;
1297 msg
= (struct hv_message
*)page_addr
+ VMBUS_MESSAGE_SINT
;
1299 /* Check if there are actual msgs to be processed */
1300 if (msg
->header
.message_type
!= HVMSG_NONE
) {
1301 if (msg
->header
.message_type
== HVMSG_TIMER_EXPIRED
) {
1303 vmbus_signal_eom(msg
, HVMSG_TIMER_EXPIRED
);
1305 tasklet_schedule(&hv_cpu
->msg_dpc
);
1308 add_interrupt_randomness(HYPERVISOR_CALLBACK_VECTOR
, 0);
1312 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1313 * buffer and call into Hyper-V to transfer the data.
1315 static void hv_kmsg_dump(struct kmsg_dumper
*dumper
,
1316 enum kmsg_dump_reason reason
)
1318 size_t bytes_written
;
1319 phys_addr_t panic_pa
;
1321 /* We are only interested in panics. */
1322 if ((reason
!= KMSG_DUMP_PANIC
) || (!sysctl_record_panic_msg
))
1325 panic_pa
= virt_to_phys(hv_panic_page
);
1328 * Write dump contents to the page. No need to synchronize; panic should
1329 * be single-threaded.
1331 kmsg_dump_get_buffer(dumper
, true, hv_panic_page
, HV_HYP_PAGE_SIZE
,
1334 hyperv_report_panic_msg(panic_pa
, bytes_written
);
1337 static struct kmsg_dumper hv_kmsg_dumper
= {
1338 .dump
= hv_kmsg_dump
,
1341 static struct ctl_table_header
*hv_ctl_table_hdr
;
1344 * sysctl option to allow the user to control whether kmsg data should be
1345 * reported to Hyper-V on panic.
1347 static struct ctl_table hv_ctl_table
[] = {
1349 .procname
= "hyperv_record_panic_msg",
1350 .data
= &sysctl_record_panic_msg
,
1351 .maxlen
= sizeof(int),
1353 .proc_handler
= proc_dointvec_minmax
,
1354 .extra1
= SYSCTL_ZERO
,
1355 .extra2
= SYSCTL_ONE
1360 static struct ctl_table hv_root_table
[] = {
1362 .procname
= "kernel",
1364 .child
= hv_ctl_table
1370 * vmbus_bus_init -Main vmbus driver initialization routine.
1373 * - initialize the vmbus driver context
1374 * - invoke the vmbus hv main init routine
1375 * - retrieve the channel offers
1377 static int vmbus_bus_init(void)
1381 /* Hypervisor initialization...setup hypercall page..etc */
1384 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret
);
1388 ret
= bus_register(&hv_bus
);
1392 hv_setup_vmbus_irq(vmbus_isr
);
1394 ret
= hv_synic_alloc();
1399 * Initialize the per-cpu interrupt state and stimer state.
1400 * Then connect to the host.
1402 ret
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "hyperv/vmbus:online",
1403 hv_synic_init
, hv_synic_cleanup
);
1406 hyperv_cpuhp_online
= ret
;
1408 ret
= vmbus_connect();
1413 * Only register if the crash MSRs are available
1415 if (ms_hyperv
.misc_features
& HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
) {
1416 u64 hyperv_crash_ctl
;
1418 * Sysctl registration is not fatal, since by default
1419 * reporting is enabled.
1421 hv_ctl_table_hdr
= register_sysctl_table(hv_root_table
);
1422 if (!hv_ctl_table_hdr
)
1423 pr_err("Hyper-V: sysctl table register error");
1426 * Register for panic kmsg callback only if the right
1427 * capability is supported by the hypervisor.
1429 hv_get_crash_ctl(hyperv_crash_ctl
);
1430 if (hyperv_crash_ctl
& HV_CRASH_CTL_CRASH_NOTIFY_MSG
) {
1431 hv_panic_page
= (void *)hv_alloc_hyperv_zeroed_page();
1432 if (hv_panic_page
) {
1433 ret
= kmsg_dump_register(&hv_kmsg_dumper
);
1435 pr_err("Hyper-V: kmsg dump register "
1436 "error 0x%x\n", ret
);
1437 hv_free_hyperv_page(
1438 (unsigned long)hv_panic_page
);
1439 hv_panic_page
= NULL
;
1442 pr_err("Hyper-V: panic message page memory "
1443 "allocation failed");
1446 register_die_notifier(&hyperv_die_block
);
1450 * Always register the panic notifier because we need to unload
1451 * the VMbus channel connection to prevent any VMbus
1452 * activity after the VM panics.
1454 atomic_notifier_chain_register(&panic_notifier_list
,
1455 &hyperv_panic_block
);
1457 vmbus_request_offers();
1462 cpuhp_remove_state(hyperv_cpuhp_online
);
1466 hv_remove_vmbus_irq();
1468 bus_unregister(&hv_bus
);
1469 unregister_sysctl_table(hv_ctl_table_hdr
);
1470 hv_ctl_table_hdr
= NULL
;
1475 * __vmbus_child_driver_register() - Register a vmbus's driver
1476 * @hv_driver: Pointer to driver structure you want to register
1477 * @owner: owner module of the drv
1478 * @mod_name: module name string
1480 * Registers the given driver with Linux through the 'driver_register()' call
1481 * and sets up the hyper-v vmbus handling for this driver.
1482 * It will return the state of the 'driver_register()' call.
1485 int __vmbus_driver_register(struct hv_driver
*hv_driver
, struct module
*owner
, const char *mod_name
)
1489 pr_info("registering driver %s\n", hv_driver
->name
);
1491 ret
= vmbus_exists();
1495 hv_driver
->driver
.name
= hv_driver
->name
;
1496 hv_driver
->driver
.owner
= owner
;
1497 hv_driver
->driver
.mod_name
= mod_name
;
1498 hv_driver
->driver
.bus
= &hv_bus
;
1500 spin_lock_init(&hv_driver
->dynids
.lock
);
1501 INIT_LIST_HEAD(&hv_driver
->dynids
.list
);
1503 ret
= driver_register(&hv_driver
->driver
);
1507 EXPORT_SYMBOL_GPL(__vmbus_driver_register
);
1510 * vmbus_driver_unregister() - Unregister a vmbus's driver
1511 * @hv_driver: Pointer to driver structure you want to
1514 * Un-register the given driver that was previous registered with a call to
1515 * vmbus_driver_register()
1517 void vmbus_driver_unregister(struct hv_driver
*hv_driver
)
1519 pr_info("unregistering driver %s\n", hv_driver
->name
);
1521 if (!vmbus_exists()) {
1522 driver_unregister(&hv_driver
->driver
);
1523 vmbus_free_dynids(hv_driver
);
1526 EXPORT_SYMBOL_GPL(vmbus_driver_unregister
);
1530 * Called when last reference to channel is gone.
1532 static void vmbus_chan_release(struct kobject
*kobj
)
1534 struct vmbus_channel
*channel
1535 = container_of(kobj
, struct vmbus_channel
, kobj
);
1537 kfree_rcu(channel
, rcu
);
1540 struct vmbus_chan_attribute
{
1541 struct attribute attr
;
1542 ssize_t (*show
)(struct vmbus_channel
*chan
, char *buf
);
1543 ssize_t (*store
)(struct vmbus_channel
*chan
,
1544 const char *buf
, size_t count
);
1546 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1547 struct vmbus_chan_attribute chan_attr_##_name \
1548 = __ATTR(_name, _mode, _show, _store)
1549 #define VMBUS_CHAN_ATTR_RW(_name) \
1550 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1551 #define VMBUS_CHAN_ATTR_RO(_name) \
1552 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1553 #define VMBUS_CHAN_ATTR_WO(_name) \
1554 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1556 static ssize_t
vmbus_chan_attr_show(struct kobject
*kobj
,
1557 struct attribute
*attr
, char *buf
)
1559 const struct vmbus_chan_attribute
*attribute
1560 = container_of(attr
, struct vmbus_chan_attribute
, attr
);
1561 struct vmbus_channel
*chan
1562 = container_of(kobj
, struct vmbus_channel
, kobj
);
1564 if (!attribute
->show
)
1567 return attribute
->show(chan
, buf
);
1570 static const struct sysfs_ops vmbus_chan_sysfs_ops
= {
1571 .show
= vmbus_chan_attr_show
,
1574 static ssize_t
out_mask_show(struct vmbus_channel
*channel
, char *buf
)
1576 struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
1579 mutex_lock(&rbi
->ring_buffer_mutex
);
1580 if (!rbi
->ring_buffer
) {
1581 mutex_unlock(&rbi
->ring_buffer_mutex
);
1585 ret
= sprintf(buf
, "%u\n", rbi
->ring_buffer
->interrupt_mask
);
1586 mutex_unlock(&rbi
->ring_buffer_mutex
);
1589 static VMBUS_CHAN_ATTR_RO(out_mask
);
1591 static ssize_t
in_mask_show(struct vmbus_channel
*channel
, char *buf
)
1593 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
1596 mutex_lock(&rbi
->ring_buffer_mutex
);
1597 if (!rbi
->ring_buffer
) {
1598 mutex_unlock(&rbi
->ring_buffer_mutex
);
1602 ret
= sprintf(buf
, "%u\n", rbi
->ring_buffer
->interrupt_mask
);
1603 mutex_unlock(&rbi
->ring_buffer_mutex
);
1606 static VMBUS_CHAN_ATTR_RO(in_mask
);
1608 static ssize_t
read_avail_show(struct vmbus_channel
*channel
, char *buf
)
1610 struct hv_ring_buffer_info
*rbi
= &channel
->inbound
;
1613 mutex_lock(&rbi
->ring_buffer_mutex
);
1614 if (!rbi
->ring_buffer
) {
1615 mutex_unlock(&rbi
->ring_buffer_mutex
);
1619 ret
= sprintf(buf
, "%u\n", hv_get_bytes_to_read(rbi
));
1620 mutex_unlock(&rbi
->ring_buffer_mutex
);
1623 static VMBUS_CHAN_ATTR_RO(read_avail
);
1625 static ssize_t
write_avail_show(struct vmbus_channel
*channel
, char *buf
)
1627 struct hv_ring_buffer_info
*rbi
= &channel
->outbound
;
1630 mutex_lock(&rbi
->ring_buffer_mutex
);
1631 if (!rbi
->ring_buffer
) {
1632 mutex_unlock(&rbi
->ring_buffer_mutex
);
1636 ret
= sprintf(buf
, "%u\n", hv_get_bytes_to_write(rbi
));
1637 mutex_unlock(&rbi
->ring_buffer_mutex
);
1640 static VMBUS_CHAN_ATTR_RO(write_avail
);
1642 static ssize_t
show_target_cpu(struct vmbus_channel
*channel
, char *buf
)
1644 return sprintf(buf
, "%u\n", channel
->target_cpu
);
1646 static VMBUS_CHAN_ATTR(cpu
, S_IRUGO
, show_target_cpu
, NULL
);
1648 static ssize_t
channel_pending_show(struct vmbus_channel
*channel
,
1651 return sprintf(buf
, "%d\n",
1652 channel_pending(channel
,
1653 vmbus_connection
.monitor_pages
[1]));
1655 static VMBUS_CHAN_ATTR(pending
, S_IRUGO
, channel_pending_show
, NULL
);
1657 static ssize_t
channel_latency_show(struct vmbus_channel
*channel
,
1660 return sprintf(buf
, "%d\n",
1661 channel_latency(channel
,
1662 vmbus_connection
.monitor_pages
[1]));
1664 static VMBUS_CHAN_ATTR(latency
, S_IRUGO
, channel_latency_show
, NULL
);
1666 static ssize_t
channel_interrupts_show(struct vmbus_channel
*channel
, char *buf
)
1668 return sprintf(buf
, "%llu\n", channel
->interrupts
);
1670 static VMBUS_CHAN_ATTR(interrupts
, S_IRUGO
, channel_interrupts_show
, NULL
);
1672 static ssize_t
channel_events_show(struct vmbus_channel
*channel
, char *buf
)
1674 return sprintf(buf
, "%llu\n", channel
->sig_events
);
1676 static VMBUS_CHAN_ATTR(events
, S_IRUGO
, channel_events_show
, NULL
);
1678 static ssize_t
channel_intr_in_full_show(struct vmbus_channel
*channel
,
1681 return sprintf(buf
, "%llu\n",
1682 (unsigned long long)channel
->intr_in_full
);
1684 static VMBUS_CHAN_ATTR(intr_in_full
, 0444, channel_intr_in_full_show
, NULL
);
1686 static ssize_t
channel_intr_out_empty_show(struct vmbus_channel
*channel
,
1689 return sprintf(buf
, "%llu\n",
1690 (unsigned long long)channel
->intr_out_empty
);
1692 static VMBUS_CHAN_ATTR(intr_out_empty
, 0444, channel_intr_out_empty_show
, NULL
);
1694 static ssize_t
channel_out_full_first_show(struct vmbus_channel
*channel
,
1697 return sprintf(buf
, "%llu\n",
1698 (unsigned long long)channel
->out_full_first
);
1700 static VMBUS_CHAN_ATTR(out_full_first
, 0444, channel_out_full_first_show
, NULL
);
1702 static ssize_t
channel_out_full_total_show(struct vmbus_channel
*channel
,
1705 return sprintf(buf
, "%llu\n",
1706 (unsigned long long)channel
->out_full_total
);
1708 static VMBUS_CHAN_ATTR(out_full_total
, 0444, channel_out_full_total_show
, NULL
);
1710 static ssize_t
subchannel_monitor_id_show(struct vmbus_channel
*channel
,
1713 return sprintf(buf
, "%u\n", channel
->offermsg
.monitorid
);
1715 static VMBUS_CHAN_ATTR(monitor_id
, S_IRUGO
, subchannel_monitor_id_show
, NULL
);
1717 static ssize_t
subchannel_id_show(struct vmbus_channel
*channel
,
1720 return sprintf(buf
, "%u\n",
1721 channel
->offermsg
.offer
.sub_channel_index
);
1723 static VMBUS_CHAN_ATTR_RO(subchannel_id
);
1725 static struct attribute
*vmbus_chan_attrs
[] = {
1726 &chan_attr_out_mask
.attr
,
1727 &chan_attr_in_mask
.attr
,
1728 &chan_attr_read_avail
.attr
,
1729 &chan_attr_write_avail
.attr
,
1730 &chan_attr_cpu
.attr
,
1731 &chan_attr_pending
.attr
,
1732 &chan_attr_latency
.attr
,
1733 &chan_attr_interrupts
.attr
,
1734 &chan_attr_events
.attr
,
1735 &chan_attr_intr_in_full
.attr
,
1736 &chan_attr_intr_out_empty
.attr
,
1737 &chan_attr_out_full_first
.attr
,
1738 &chan_attr_out_full_total
.attr
,
1739 &chan_attr_monitor_id
.attr
,
1740 &chan_attr_subchannel_id
.attr
,
1745 * Channel-level attribute_group callback function. Returns the permission for
1746 * each attribute, and returns 0 if an attribute is not visible.
1748 static umode_t
vmbus_chan_attr_is_visible(struct kobject
*kobj
,
1749 struct attribute
*attr
, int idx
)
1751 const struct vmbus_channel
*channel
=
1752 container_of(kobj
, struct vmbus_channel
, kobj
);
1754 /* Hide the monitor attributes if the monitor mechanism is not used. */
1755 if (!channel
->offermsg
.monitor_allocated
&&
1756 (attr
== &chan_attr_pending
.attr
||
1757 attr
== &chan_attr_latency
.attr
||
1758 attr
== &chan_attr_monitor_id
.attr
))
1764 static struct attribute_group vmbus_chan_group
= {
1765 .attrs
= vmbus_chan_attrs
,
1766 .is_visible
= vmbus_chan_attr_is_visible
1769 static struct kobj_type vmbus_chan_ktype
= {
1770 .sysfs_ops
= &vmbus_chan_sysfs_ops
,
1771 .release
= vmbus_chan_release
,
1775 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1777 int vmbus_add_channel_kobj(struct hv_device
*dev
, struct vmbus_channel
*channel
)
1779 const struct device
*device
= &dev
->device
;
1780 struct kobject
*kobj
= &channel
->kobj
;
1781 u32 relid
= channel
->offermsg
.child_relid
;
1784 kobj
->kset
= dev
->channels_kset
;
1785 ret
= kobject_init_and_add(kobj
, &vmbus_chan_ktype
, NULL
,
1790 ret
= sysfs_create_group(kobj
, &vmbus_chan_group
);
1794 * The calling functions' error handling paths will cleanup the
1795 * empty channel directory.
1797 dev_err(device
, "Unable to set up channel sysfs files\n");
1801 kobject_uevent(kobj
, KOBJ_ADD
);
1807 * vmbus_remove_channel_attr_group - remove the channel's attribute group
1809 void vmbus_remove_channel_attr_group(struct vmbus_channel
*channel
)
1811 sysfs_remove_group(&channel
->kobj
, &vmbus_chan_group
);
1815 * vmbus_device_create - Creates and registers a new child device
1818 struct hv_device
*vmbus_device_create(const guid_t
*type
,
1819 const guid_t
*instance
,
1820 struct vmbus_channel
*channel
)
1822 struct hv_device
*child_device_obj
;
1824 child_device_obj
= kzalloc(sizeof(struct hv_device
), GFP_KERNEL
);
1825 if (!child_device_obj
) {
1826 pr_err("Unable to allocate device object for child device\n");
1830 child_device_obj
->channel
= channel
;
1831 guid_copy(&child_device_obj
->dev_type
, type
);
1832 guid_copy(&child_device_obj
->dev_instance
, instance
);
1833 child_device_obj
->vendor_id
= 0x1414; /* MSFT vendor ID */
1835 return child_device_obj
;
1839 * vmbus_device_register - Register the child device
1841 int vmbus_device_register(struct hv_device
*child_device_obj
)
1843 struct kobject
*kobj
= &child_device_obj
->device
.kobj
;
1846 dev_set_name(&child_device_obj
->device
, "%pUl",
1847 child_device_obj
->channel
->offermsg
.offer
.if_instance
.b
);
1849 child_device_obj
->device
.bus
= &hv_bus
;
1850 child_device_obj
->device
.parent
= &hv_acpi_dev
->dev
;
1851 child_device_obj
->device
.release
= vmbus_device_release
;
1854 * Register with the LDM. This will kick off the driver/device
1855 * binding...which will eventually call vmbus_match() and vmbus_probe()
1857 ret
= device_register(&child_device_obj
->device
);
1859 pr_err("Unable to register child device\n");
1863 child_device_obj
->channels_kset
= kset_create_and_add("channels",
1865 if (!child_device_obj
->channels_kset
) {
1867 goto err_dev_unregister
;
1870 ret
= vmbus_add_channel_kobj(child_device_obj
,
1871 child_device_obj
->channel
);
1873 pr_err("Unable to register primary channeln");
1874 goto err_kset_unregister
;
1876 hv_debug_add_dev_dir(child_device_obj
);
1880 err_kset_unregister
:
1881 kset_unregister(child_device_obj
->channels_kset
);
1884 device_unregister(&child_device_obj
->device
);
1889 * vmbus_device_unregister - Remove the specified child device
1892 void vmbus_device_unregister(struct hv_device
*device_obj
)
1894 pr_debug("child device %s unregistered\n",
1895 dev_name(&device_obj
->device
));
1897 kset_unregister(device_obj
->channels_kset
);
1900 * Kick off the process of unregistering the device.
1901 * This will call vmbus_remove() and eventually vmbus_device_release()
1903 device_unregister(&device_obj
->device
);
1908 * VMBUS is an acpi enumerated device. Get the information we
1911 #define VTPM_BASE_ADDRESS 0xfed40000
1912 static acpi_status
vmbus_walk_resources(struct acpi_resource
*res
, void *ctx
)
1914 resource_size_t start
= 0;
1915 resource_size_t end
= 0;
1916 struct resource
*new_res
;
1917 struct resource
**old_res
= &hyperv_mmio
;
1918 struct resource
**prev_res
= NULL
;
1920 switch (res
->type
) {
1923 * "Address" descriptors are for bus windows. Ignore
1924 * "memory" descriptors, which are for registers on
1927 case ACPI_RESOURCE_TYPE_ADDRESS32
:
1928 start
= res
->data
.address32
.address
.minimum
;
1929 end
= res
->data
.address32
.address
.maximum
;
1932 case ACPI_RESOURCE_TYPE_ADDRESS64
:
1933 start
= res
->data
.address64
.address
.minimum
;
1934 end
= res
->data
.address64
.address
.maximum
;
1938 /* Unused resource type */
1943 * Ignore ranges that are below 1MB, as they're not
1944 * necessary or useful here.
1949 new_res
= kzalloc(sizeof(*new_res
), GFP_ATOMIC
);
1951 return AE_NO_MEMORY
;
1953 /* If this range overlaps the virtual TPM, truncate it. */
1954 if (end
> VTPM_BASE_ADDRESS
&& start
< VTPM_BASE_ADDRESS
)
1955 end
= VTPM_BASE_ADDRESS
;
1957 new_res
->name
= "hyperv mmio";
1958 new_res
->flags
= IORESOURCE_MEM
;
1959 new_res
->start
= start
;
1963 * If two ranges are adjacent, merge them.
1971 if (((*old_res
)->end
+ 1) == new_res
->start
) {
1972 (*old_res
)->end
= new_res
->end
;
1977 if ((*old_res
)->start
== new_res
->end
+ 1) {
1978 (*old_res
)->start
= new_res
->start
;
1983 if ((*old_res
)->start
> new_res
->end
) {
1984 new_res
->sibling
= *old_res
;
1986 (*prev_res
)->sibling
= new_res
;
1992 old_res
= &(*old_res
)->sibling
;
1999 static int vmbus_acpi_remove(struct acpi_device
*device
)
2001 struct resource
*cur_res
;
2002 struct resource
*next_res
;
2006 __release_region(hyperv_mmio
, fb_mmio
->start
,
2007 resource_size(fb_mmio
));
2011 for (cur_res
= hyperv_mmio
; cur_res
; cur_res
= next_res
) {
2012 next_res
= cur_res
->sibling
;
2020 static void vmbus_reserve_fb(void)
2024 * Make a claim for the frame buffer in the resource tree under the
2025 * first node, which will be the one below 4GB. The length seems to
2026 * be underreported, particularly in a Generation 1 VM. So start out
2027 * reserving a larger area and make it smaller until it succeeds.
2030 if (screen_info
.lfb_base
) {
2031 if (efi_enabled(EFI_BOOT
))
2032 size
= max_t(__u32
, screen_info
.lfb_size
, 0x800000);
2034 size
= max_t(__u32
, screen_info
.lfb_size
, 0x4000000);
2036 for (; !fb_mmio
&& (size
>= 0x100000); size
>>= 1) {
2037 fb_mmio
= __request_region(hyperv_mmio
,
2038 screen_info
.lfb_base
, size
,
2045 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2046 * @new: If successful, supplied a pointer to the
2047 * allocated MMIO space.
2048 * @device_obj: Identifies the caller
2049 * @min: Minimum guest physical address of the
2051 * @max: Maximum guest physical address
2052 * @size: Size of the range to be allocated
2053 * @align: Alignment of the range to be allocated
2054 * @fb_overlap_ok: Whether this allocation can be allowed
2055 * to overlap the video frame buffer.
2057 * This function walks the resources granted to VMBus by the
2058 * _CRS object in the ACPI namespace underneath the parent
2059 * "bridge" whether that's a root PCI bus in the Generation 1
2060 * case or a Module Device in the Generation 2 case. It then
2061 * attempts to allocate from the global MMIO pool in a way that
2062 * matches the constraints supplied in these parameters and by
2065 * Return: 0 on success, -errno on failure
2067 int vmbus_allocate_mmio(struct resource
**new, struct hv_device
*device_obj
,
2068 resource_size_t min
, resource_size_t max
,
2069 resource_size_t size
, resource_size_t align
,
2072 struct resource
*iter
, *shadow
;
2073 resource_size_t range_min
, range_max
, start
;
2074 const char *dev_n
= dev_name(&device_obj
->device
);
2078 mutex_lock(&hyperv_mmio_lock
);
2081 * If overlaps with frame buffers are allowed, then first attempt to
2082 * make the allocation from within the reserved region. Because it
2083 * is already reserved, no shadow allocation is necessary.
2085 if (fb_overlap_ok
&& fb_mmio
&& !(min
> fb_mmio
->end
) &&
2086 !(max
< fb_mmio
->start
)) {
2088 range_min
= fb_mmio
->start
;
2089 range_max
= fb_mmio
->end
;
2090 start
= (range_min
+ align
- 1) & ~(align
- 1);
2091 for (; start
+ size
- 1 <= range_max
; start
+= align
) {
2092 *new = request_mem_region_exclusive(start
, size
, dev_n
);
2100 for (iter
= hyperv_mmio
; iter
; iter
= iter
->sibling
) {
2101 if ((iter
->start
>= max
) || (iter
->end
<= min
))
2104 range_min
= iter
->start
;
2105 range_max
= iter
->end
;
2106 start
= (range_min
+ align
- 1) & ~(align
- 1);
2107 for (; start
+ size
- 1 <= range_max
; start
+= align
) {
2108 shadow
= __request_region(iter
, start
, size
, NULL
,
2113 *new = request_mem_region_exclusive(start
, size
, dev_n
);
2115 shadow
->name
= (char *)*new;
2120 __release_region(iter
, start
, size
);
2125 mutex_unlock(&hyperv_mmio_lock
);
2128 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio
);
2131 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2132 * @start: Base address of region to release.
2133 * @size: Size of the range to be allocated
2135 * This function releases anything requested by
2136 * vmbus_mmio_allocate().
2138 void vmbus_free_mmio(resource_size_t start
, resource_size_t size
)
2140 struct resource
*iter
;
2142 mutex_lock(&hyperv_mmio_lock
);
2143 for (iter
= hyperv_mmio
; iter
; iter
= iter
->sibling
) {
2144 if ((iter
->start
>= start
+ size
) || (iter
->end
<= start
))
2147 __release_region(iter
, start
, size
);
2149 release_mem_region(start
, size
);
2150 mutex_unlock(&hyperv_mmio_lock
);
2153 EXPORT_SYMBOL_GPL(vmbus_free_mmio
);
2155 static int vmbus_acpi_add(struct acpi_device
*device
)
2158 int ret_val
= -ENODEV
;
2159 struct acpi_device
*ancestor
;
2161 hv_acpi_dev
= device
;
2163 result
= acpi_walk_resources(device
->handle
, METHOD_NAME__CRS
,
2164 vmbus_walk_resources
, NULL
);
2166 if (ACPI_FAILURE(result
))
2169 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2170 * firmware) is the VMOD that has the mmio ranges. Get that.
2172 for (ancestor
= device
->parent
; ancestor
; ancestor
= ancestor
->parent
) {
2173 result
= acpi_walk_resources(ancestor
->handle
, METHOD_NAME__CRS
,
2174 vmbus_walk_resources
, NULL
);
2176 if (ACPI_FAILURE(result
))
2186 complete(&probe_event
);
2188 vmbus_acpi_remove(device
);
2192 #ifdef CONFIG_PM_SLEEP
2193 static int vmbus_bus_suspend(struct device
*dev
)
2195 struct vmbus_channel
*channel
, *sc
;
2196 unsigned long flags
;
2198 while (atomic_read(&vmbus_connection
.offer_in_progress
) != 0) {
2200 * We wait here until the completion of any channel
2201 * offers that are currently in progress.
2206 mutex_lock(&vmbus_connection
.channel_mutex
);
2207 list_for_each_entry(channel
, &vmbus_connection
.chn_list
, listentry
) {
2208 if (!is_hvsock_channel(channel
))
2211 vmbus_force_channel_rescinded(channel
);
2213 mutex_unlock(&vmbus_connection
.channel_mutex
);
2216 * Wait until all the sub-channels and hv_sock channels have been
2217 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2218 * they would conflict with the new sub-channels that will be created
2219 * in the resume path. hv_sock channels should also be destroyed, but
2220 * a hv_sock channel of an established hv_sock connection can not be
2221 * really destroyed since it may still be referenced by the userspace
2222 * application, so we just force the hv_sock channel to be rescinded
2223 * by vmbus_force_channel_rescinded(), and the userspace application
2224 * will thoroughly destroy the channel after hibernation.
2226 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2227 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2229 if (atomic_read(&vmbus_connection
.nr_chan_close_on_suspend
) > 0)
2230 wait_for_completion(&vmbus_connection
.ready_for_suspend_event
);
2232 WARN_ON(atomic_read(&vmbus_connection
.nr_chan_fixup_on_resume
) != 0);
2234 mutex_lock(&vmbus_connection
.channel_mutex
);
2236 list_for_each_entry(channel
, &vmbus_connection
.chn_list
, listentry
) {
2238 * Invalidate the field. Upon resume, vmbus_onoffer() will fix
2239 * up the field, and the other fields (if necessary).
2241 channel
->offermsg
.child_relid
= INVALID_RELID
;
2243 if (is_hvsock_channel(channel
)) {
2244 if (!channel
->rescind
) {
2245 pr_err("hv_sock channel not rescinded!\n");
2251 spin_lock_irqsave(&channel
->lock
, flags
);
2252 list_for_each_entry(sc
, &channel
->sc_list
, sc_list
) {
2253 pr_err("Sub-channel not deleted!\n");
2256 spin_unlock_irqrestore(&channel
->lock
, flags
);
2258 atomic_inc(&vmbus_connection
.nr_chan_fixup_on_resume
);
2261 mutex_unlock(&vmbus_connection
.channel_mutex
);
2263 vmbus_initiate_unload(false);
2265 /* Reset the event for the next resume. */
2266 reinit_completion(&vmbus_connection
.ready_for_resume_event
);
2271 static int vmbus_bus_resume(struct device
*dev
)
2273 struct vmbus_channel_msginfo
*msginfo
;
2278 * We only use the 'vmbus_proto_version', which was in use before
2279 * hibernation, to re-negotiate with the host.
2281 if (!vmbus_proto_version
) {
2282 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version
);
2286 msgsize
= sizeof(*msginfo
) +
2287 sizeof(struct vmbus_channel_initiate_contact
);
2289 msginfo
= kzalloc(msgsize
, GFP_KERNEL
);
2291 if (msginfo
== NULL
)
2294 ret
= vmbus_negotiate_version(msginfo
, vmbus_proto_version
);
2301 WARN_ON(atomic_read(&vmbus_connection
.nr_chan_fixup_on_resume
) == 0);
2303 vmbus_request_offers();
2305 wait_for_completion(&vmbus_connection
.ready_for_resume_event
);
2307 /* Reset the event for the next suspend. */
2308 reinit_completion(&vmbus_connection
.ready_for_suspend_event
);
2313 #define vmbus_bus_suspend NULL
2314 #define vmbus_bus_resume NULL
2315 #endif /* CONFIG_PM_SLEEP */
2317 static const struct acpi_device_id vmbus_acpi_device_ids
[] = {
2322 MODULE_DEVICE_TABLE(acpi
, vmbus_acpi_device_ids
);
2325 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2326 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2327 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2328 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2329 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2330 * resume callback must also run via the "noirq" ops.
2332 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2333 * earlier in this file before vmbus_pm.
2336 static const struct dev_pm_ops vmbus_bus_pm
= {
2337 .suspend_noirq
= NULL
,
2338 .resume_noirq
= NULL
,
2339 .freeze_noirq
= vmbus_bus_suspend
,
2340 .thaw_noirq
= vmbus_bus_resume
,
2341 .poweroff_noirq
= vmbus_bus_suspend
,
2342 .restore_noirq
= vmbus_bus_resume
2345 static struct acpi_driver vmbus_acpi_driver
= {
2347 .ids
= vmbus_acpi_device_ids
,
2349 .add
= vmbus_acpi_add
,
2350 .remove
= vmbus_acpi_remove
,
2352 .drv
.pm
= &vmbus_bus_pm
,
2355 static void hv_kexec_handler(void)
2357 hv_stimer_global_cleanup();
2358 vmbus_initiate_unload(false);
2359 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2361 cpuhp_remove_state(hyperv_cpuhp_online
);
2365 static void hv_crash_handler(struct pt_regs
*regs
)
2369 vmbus_initiate_unload(true);
2371 * In crash handler we can't schedule synic cleanup for all CPUs,
2372 * doing the cleanup for current CPU only. This should be sufficient
2375 cpu
= smp_processor_id();
2376 hv_stimer_cleanup(cpu
);
2377 hv_synic_disable_regs(cpu
);
2381 static int hv_synic_suspend(void)
2384 * When we reach here, all the non-boot CPUs have been offlined.
2385 * If we're in a legacy configuration where stimer Direct Mode is
2386 * not enabled, the stimers on the non-boot CPUs have been unbound
2387 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2388 * hv_stimer_cleanup() -> clockevents_unbind_device().
2390 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2391 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2392 * 1) it's unnecessary as interrupts remain disabled between
2393 * syscore_suspend() and syscore_resume(): see create_image() and
2394 * resume_target_kernel()
2395 * 2) the stimer on CPU0 is automatically disabled later by
2396 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2397 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2398 * 3) a warning would be triggered if we call
2399 * clockevents_unbind_device(), which may sleep, in an
2400 * interrupts-disabled context.
2403 hv_synic_disable_regs(0);
2408 static void hv_synic_resume(void)
2410 hv_synic_enable_regs(0);
2413 * Note: we don't need to call hv_stimer_init(0), because the timer
2414 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2415 * automatically re-enabled in timekeeping_resume().
2419 /* The callbacks run only on CPU0, with irqs_disabled. */
2420 static struct syscore_ops hv_synic_syscore_ops
= {
2421 .suspend
= hv_synic_suspend
,
2422 .resume
= hv_synic_resume
,
2425 static int __init
hv_acpi_init(void)
2429 if (!hv_is_hyperv_initialized())
2432 init_completion(&probe_event
);
2435 * Get ACPI resources first.
2437 ret
= acpi_bus_register_driver(&vmbus_acpi_driver
);
2442 t
= wait_for_completion_timeout(&probe_event
, 5*HZ
);
2449 ret
= vmbus_bus_init();
2453 hv_setup_kexec_handler(hv_kexec_handler
);
2454 hv_setup_crash_handler(hv_crash_handler
);
2456 register_syscore_ops(&hv_synic_syscore_ops
);
2461 acpi_bus_unregister_driver(&vmbus_acpi_driver
);
2466 static void __exit
vmbus_exit(void)
2470 unregister_syscore_ops(&hv_synic_syscore_ops
);
2472 hv_remove_kexec_handler();
2473 hv_remove_crash_handler();
2474 vmbus_connection
.conn_state
= DISCONNECTED
;
2475 hv_stimer_global_cleanup();
2477 hv_remove_vmbus_irq();
2478 for_each_online_cpu(cpu
) {
2479 struct hv_per_cpu_context
*hv_cpu
2480 = per_cpu_ptr(hv_context
.cpu_context
, cpu
);
2482 tasklet_kill(&hv_cpu
->msg_dpc
);
2484 hv_debug_rm_all_dir();
2486 vmbus_free_channels();
2488 if (ms_hyperv
.misc_features
& HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
) {
2489 kmsg_dump_unregister(&hv_kmsg_dumper
);
2490 unregister_die_notifier(&hyperv_die_block
);
2491 atomic_notifier_chain_unregister(&panic_notifier_list
,
2492 &hyperv_panic_block
);
2495 free_page((unsigned long)hv_panic_page
);
2496 unregister_sysctl_table(hv_ctl_table_hdr
);
2497 hv_ctl_table_hdr
= NULL
;
2498 bus_unregister(&hv_bus
);
2500 cpuhp_remove_state(hyperv_cpuhp_online
);
2502 acpi_bus_unregister_driver(&vmbus_acpi_driver
);
2506 MODULE_LICENSE("GPL");
2507 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2509 subsys_initcall(hv_acpi_init
);
2510 module_exit(vmbus_exit
);