dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / iio / adc / stm32-adc.c
blobdfc3a306c6677fe3540df532d31fc6b52c07730c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * This file is part of STM32 ADC driver
5 * Copyright (C) 2016, STMicroelectronics - All Rights Reserved
6 * Author: Fabrice Gasnier <fabrice.gasnier@st.com>.
7 */
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/dma-mapping.h>
12 #include <linux/dmaengine.h>
13 #include <linux/iio/iio.h>
14 #include <linux/iio/buffer.h>
15 #include <linux/iio/timer/stm32-lptim-trigger.h>
16 #include <linux/iio/timer/stm32-timer-trigger.h>
17 #include <linux/iio/trigger.h>
18 #include <linux/iio/trigger_consumer.h>
19 #include <linux/iio/triggered_buffer.h>
20 #include <linux/interrupt.h>
21 #include <linux/io.h>
22 #include <linux/iopoll.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/of.h>
27 #include <linux/of_device.h>
29 #include "stm32-adc-core.h"
31 /* Number of linear calibration shadow registers / LINCALRDYW control bits */
32 #define STM32H7_LINCALFACT_NUM 6
34 /* BOOST bit must be set on STM32H7 when ADC clock is above 20MHz */
35 #define STM32H7_BOOST_CLKRATE 20000000UL
37 #define STM32_ADC_CH_MAX 20 /* max number of channels */
38 #define STM32_ADC_CH_SZ 10 /* max channel name size */
39 #define STM32_ADC_MAX_SQ 16 /* SQ1..SQ16 */
40 #define STM32_ADC_MAX_SMP 7 /* SMPx range is [0..7] */
41 #define STM32_ADC_TIMEOUT_US 100000
42 #define STM32_ADC_TIMEOUT (msecs_to_jiffies(STM32_ADC_TIMEOUT_US / 1000))
43 #define STM32_ADC_HW_STOP_DELAY_MS 100
45 #define STM32_DMA_BUFFER_SIZE PAGE_SIZE
47 /* External trigger enable */
48 enum stm32_adc_exten {
49 STM32_EXTEN_SWTRIG,
50 STM32_EXTEN_HWTRIG_RISING_EDGE,
51 STM32_EXTEN_HWTRIG_FALLING_EDGE,
52 STM32_EXTEN_HWTRIG_BOTH_EDGES,
55 /* extsel - trigger mux selection value */
56 enum stm32_adc_extsel {
57 STM32_EXT0,
58 STM32_EXT1,
59 STM32_EXT2,
60 STM32_EXT3,
61 STM32_EXT4,
62 STM32_EXT5,
63 STM32_EXT6,
64 STM32_EXT7,
65 STM32_EXT8,
66 STM32_EXT9,
67 STM32_EXT10,
68 STM32_EXT11,
69 STM32_EXT12,
70 STM32_EXT13,
71 STM32_EXT14,
72 STM32_EXT15,
73 STM32_EXT16,
74 STM32_EXT17,
75 STM32_EXT18,
76 STM32_EXT19,
77 STM32_EXT20,
80 /**
81 * struct stm32_adc_trig_info - ADC trigger info
82 * @name: name of the trigger, corresponding to its source
83 * @extsel: trigger selection
85 struct stm32_adc_trig_info {
86 const char *name;
87 enum stm32_adc_extsel extsel;
90 /**
91 * struct stm32_adc_calib - optional adc calibration data
92 * @calfact_s: Calibration offset for single ended channels
93 * @calfact_d: Calibration offset in differential
94 * @lincalfact: Linearity calibration factor
95 * @calibrated: Indicates calibration status
97 struct stm32_adc_calib {
98 u32 calfact_s;
99 u32 calfact_d;
100 u32 lincalfact[STM32H7_LINCALFACT_NUM];
101 bool calibrated;
105 * struct stm32_adc_regs - stm32 ADC misc registers & bitfield desc
106 * @reg: register offset
107 * @mask: bitfield mask
108 * @shift: left shift
110 struct stm32_adc_regs {
111 int reg;
112 int mask;
113 int shift;
117 * struct stm32_adc_regspec - stm32 registers definition
118 * @dr: data register offset
119 * @ier_eoc: interrupt enable register & eocie bitfield
120 * @ier_ovr: interrupt enable register & overrun bitfield
121 * @isr_eoc: interrupt status register & eoc bitfield
122 * @isr_ovr: interrupt status register & overrun bitfield
123 * @sqr: reference to sequence registers array
124 * @exten: trigger control register & bitfield
125 * @extsel: trigger selection register & bitfield
126 * @res: resolution selection register & bitfield
127 * @smpr: smpr1 & smpr2 registers offset array
128 * @smp_bits: smpr1 & smpr2 index and bitfields
130 struct stm32_adc_regspec {
131 const u32 dr;
132 const struct stm32_adc_regs ier_eoc;
133 const struct stm32_adc_regs ier_ovr;
134 const struct stm32_adc_regs isr_eoc;
135 const struct stm32_adc_regs isr_ovr;
136 const struct stm32_adc_regs *sqr;
137 const struct stm32_adc_regs exten;
138 const struct stm32_adc_regs extsel;
139 const struct stm32_adc_regs res;
140 const u32 smpr[2];
141 const struct stm32_adc_regs *smp_bits;
144 struct stm32_adc;
147 * struct stm32_adc_cfg - stm32 compatible configuration data
148 * @regs: registers descriptions
149 * @adc_info: per instance input channels definitions
150 * @trigs: external trigger sources
151 * @clk_required: clock is required
152 * @has_vregready: vregready status flag presence
153 * @prepare: optional prepare routine (power-up, enable)
154 * @start_conv: routine to start conversions
155 * @stop_conv: routine to stop conversions
156 * @unprepare: optional unprepare routine (disable, power-down)
157 * @smp_cycles: programmable sampling time (ADC clock cycles)
159 struct stm32_adc_cfg {
160 const struct stm32_adc_regspec *regs;
161 const struct stm32_adc_info *adc_info;
162 struct stm32_adc_trig_info *trigs;
163 bool clk_required;
164 bool has_vregready;
165 int (*prepare)(struct stm32_adc *);
166 void (*start_conv)(struct stm32_adc *, bool dma);
167 void (*stop_conv)(struct stm32_adc *);
168 void (*unprepare)(struct stm32_adc *);
169 const unsigned int *smp_cycles;
173 * struct stm32_adc - private data of each ADC IIO instance
174 * @common: reference to ADC block common data
175 * @offset: ADC instance register offset in ADC block
176 * @cfg: compatible configuration data
177 * @completion: end of single conversion completion
178 * @buffer: data buffer
179 * @clk: clock for this adc instance
180 * @irq: interrupt for this adc instance
181 * @lock: spinlock
182 * @bufi: data buffer index
183 * @num_conv: expected number of scan conversions
184 * @res: data resolution (e.g. RES bitfield value)
185 * @trigger_polarity: external trigger polarity (e.g. exten)
186 * @dma_chan: dma channel
187 * @rx_buf: dma rx buffer cpu address
188 * @rx_dma_buf: dma rx buffer bus address
189 * @rx_buf_sz: dma rx buffer size
190 * @difsel: bitmask to set single-ended/differential channel
191 * @pcsel: bitmask to preselect channels on some devices
192 * @smpr_val: sampling time settings (e.g. smpr1 / smpr2)
193 * @cal: optional calibration data on some devices
194 * @chan_name: channel name array
196 struct stm32_adc {
197 struct stm32_adc_common *common;
198 u32 offset;
199 const struct stm32_adc_cfg *cfg;
200 struct completion completion;
201 u16 buffer[STM32_ADC_MAX_SQ];
202 struct clk *clk;
203 int irq;
204 spinlock_t lock; /* interrupt lock */
205 unsigned int bufi;
206 unsigned int num_conv;
207 u32 res;
208 u32 trigger_polarity;
209 struct dma_chan *dma_chan;
210 u8 *rx_buf;
211 dma_addr_t rx_dma_buf;
212 unsigned int rx_buf_sz;
213 u32 difsel;
214 u32 pcsel;
215 u32 smpr_val[2];
216 struct stm32_adc_calib cal;
217 char chan_name[STM32_ADC_CH_MAX][STM32_ADC_CH_SZ];
220 struct stm32_adc_diff_channel {
221 u32 vinp;
222 u32 vinn;
226 * struct stm32_adc_info - stm32 ADC, per instance config data
227 * @max_channels: Number of channels
228 * @resolutions: available resolutions
229 * @num_res: number of available resolutions
231 struct stm32_adc_info {
232 int max_channels;
233 const unsigned int *resolutions;
234 const unsigned int num_res;
237 static const unsigned int stm32f4_adc_resolutions[] = {
238 /* sorted values so the index matches RES[1:0] in STM32F4_ADC_CR1 */
239 12, 10, 8, 6,
242 /* stm32f4 can have up to 16 channels */
243 static const struct stm32_adc_info stm32f4_adc_info = {
244 .max_channels = 16,
245 .resolutions = stm32f4_adc_resolutions,
246 .num_res = ARRAY_SIZE(stm32f4_adc_resolutions),
249 static const unsigned int stm32h7_adc_resolutions[] = {
250 /* sorted values so the index matches RES[2:0] in STM32H7_ADC_CFGR */
251 16, 14, 12, 10, 8,
254 /* stm32h7 can have up to 20 channels */
255 static const struct stm32_adc_info stm32h7_adc_info = {
256 .max_channels = STM32_ADC_CH_MAX,
257 .resolutions = stm32h7_adc_resolutions,
258 .num_res = ARRAY_SIZE(stm32h7_adc_resolutions),
262 * stm32f4_sq - describe regular sequence registers
263 * - L: sequence len (register & bit field)
264 * - SQ1..SQ16: sequence entries (register & bit field)
266 static const struct stm32_adc_regs stm32f4_sq[STM32_ADC_MAX_SQ + 1] = {
267 /* L: len bit field description to be kept as first element */
268 { STM32F4_ADC_SQR1, GENMASK(23, 20), 20 },
269 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
270 { STM32F4_ADC_SQR3, GENMASK(4, 0), 0 },
271 { STM32F4_ADC_SQR3, GENMASK(9, 5), 5 },
272 { STM32F4_ADC_SQR3, GENMASK(14, 10), 10 },
273 { STM32F4_ADC_SQR3, GENMASK(19, 15), 15 },
274 { STM32F4_ADC_SQR3, GENMASK(24, 20), 20 },
275 { STM32F4_ADC_SQR3, GENMASK(29, 25), 25 },
276 { STM32F4_ADC_SQR2, GENMASK(4, 0), 0 },
277 { STM32F4_ADC_SQR2, GENMASK(9, 5), 5 },
278 { STM32F4_ADC_SQR2, GENMASK(14, 10), 10 },
279 { STM32F4_ADC_SQR2, GENMASK(19, 15), 15 },
280 { STM32F4_ADC_SQR2, GENMASK(24, 20), 20 },
281 { STM32F4_ADC_SQR2, GENMASK(29, 25), 25 },
282 { STM32F4_ADC_SQR1, GENMASK(4, 0), 0 },
283 { STM32F4_ADC_SQR1, GENMASK(9, 5), 5 },
284 { STM32F4_ADC_SQR1, GENMASK(14, 10), 10 },
285 { STM32F4_ADC_SQR1, GENMASK(19, 15), 15 },
288 /* STM32F4 external trigger sources for all instances */
289 static struct stm32_adc_trig_info stm32f4_adc_trigs[] = {
290 { TIM1_CH1, STM32_EXT0 },
291 { TIM1_CH2, STM32_EXT1 },
292 { TIM1_CH3, STM32_EXT2 },
293 { TIM2_CH2, STM32_EXT3 },
294 { TIM2_CH3, STM32_EXT4 },
295 { TIM2_CH4, STM32_EXT5 },
296 { TIM2_TRGO, STM32_EXT6 },
297 { TIM3_CH1, STM32_EXT7 },
298 { TIM3_TRGO, STM32_EXT8 },
299 { TIM4_CH4, STM32_EXT9 },
300 { TIM5_CH1, STM32_EXT10 },
301 { TIM5_CH2, STM32_EXT11 },
302 { TIM5_CH3, STM32_EXT12 },
303 { TIM8_CH1, STM32_EXT13 },
304 { TIM8_TRGO, STM32_EXT14 },
305 {}, /* sentinel */
309 * stm32f4_smp_bits[] - describe sampling time register index & bit fields
310 * Sorted so it can be indexed by channel number.
312 static const struct stm32_adc_regs stm32f4_smp_bits[] = {
313 /* STM32F4_ADC_SMPR2: smpr[] index, mask, shift for SMP0 to SMP9 */
314 { 1, GENMASK(2, 0), 0 },
315 { 1, GENMASK(5, 3), 3 },
316 { 1, GENMASK(8, 6), 6 },
317 { 1, GENMASK(11, 9), 9 },
318 { 1, GENMASK(14, 12), 12 },
319 { 1, GENMASK(17, 15), 15 },
320 { 1, GENMASK(20, 18), 18 },
321 { 1, GENMASK(23, 21), 21 },
322 { 1, GENMASK(26, 24), 24 },
323 { 1, GENMASK(29, 27), 27 },
324 /* STM32F4_ADC_SMPR1, smpr[] index, mask, shift for SMP10 to SMP18 */
325 { 0, GENMASK(2, 0), 0 },
326 { 0, GENMASK(5, 3), 3 },
327 { 0, GENMASK(8, 6), 6 },
328 { 0, GENMASK(11, 9), 9 },
329 { 0, GENMASK(14, 12), 12 },
330 { 0, GENMASK(17, 15), 15 },
331 { 0, GENMASK(20, 18), 18 },
332 { 0, GENMASK(23, 21), 21 },
333 { 0, GENMASK(26, 24), 24 },
336 /* STM32F4 programmable sampling time (ADC clock cycles) */
337 static const unsigned int stm32f4_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
338 3, 15, 28, 56, 84, 112, 144, 480,
341 static const struct stm32_adc_regspec stm32f4_adc_regspec = {
342 .dr = STM32F4_ADC_DR,
343 .ier_eoc = { STM32F4_ADC_CR1, STM32F4_EOCIE },
344 .ier_ovr = { STM32F4_ADC_CR1, STM32F4_OVRIE },
345 .isr_eoc = { STM32F4_ADC_SR, STM32F4_EOC },
346 .isr_ovr = { STM32F4_ADC_SR, STM32F4_OVR },
347 .sqr = stm32f4_sq,
348 .exten = { STM32F4_ADC_CR2, STM32F4_EXTEN_MASK, STM32F4_EXTEN_SHIFT },
349 .extsel = { STM32F4_ADC_CR2, STM32F4_EXTSEL_MASK,
350 STM32F4_EXTSEL_SHIFT },
351 .res = { STM32F4_ADC_CR1, STM32F4_RES_MASK, STM32F4_RES_SHIFT },
352 .smpr = { STM32F4_ADC_SMPR1, STM32F4_ADC_SMPR2 },
353 .smp_bits = stm32f4_smp_bits,
356 static const struct stm32_adc_regs stm32h7_sq[STM32_ADC_MAX_SQ + 1] = {
357 /* L: len bit field description to be kept as first element */
358 { STM32H7_ADC_SQR1, GENMASK(3, 0), 0 },
359 /* SQ1..SQ16 registers & bit fields (reg, mask, shift) */
360 { STM32H7_ADC_SQR1, GENMASK(10, 6), 6 },
361 { STM32H7_ADC_SQR1, GENMASK(16, 12), 12 },
362 { STM32H7_ADC_SQR1, GENMASK(22, 18), 18 },
363 { STM32H7_ADC_SQR1, GENMASK(28, 24), 24 },
364 { STM32H7_ADC_SQR2, GENMASK(4, 0), 0 },
365 { STM32H7_ADC_SQR2, GENMASK(10, 6), 6 },
366 { STM32H7_ADC_SQR2, GENMASK(16, 12), 12 },
367 { STM32H7_ADC_SQR2, GENMASK(22, 18), 18 },
368 { STM32H7_ADC_SQR2, GENMASK(28, 24), 24 },
369 { STM32H7_ADC_SQR3, GENMASK(4, 0), 0 },
370 { STM32H7_ADC_SQR3, GENMASK(10, 6), 6 },
371 { STM32H7_ADC_SQR3, GENMASK(16, 12), 12 },
372 { STM32H7_ADC_SQR3, GENMASK(22, 18), 18 },
373 { STM32H7_ADC_SQR3, GENMASK(28, 24), 24 },
374 { STM32H7_ADC_SQR4, GENMASK(4, 0), 0 },
375 { STM32H7_ADC_SQR4, GENMASK(10, 6), 6 },
378 /* STM32H7 external trigger sources for all instances */
379 static struct stm32_adc_trig_info stm32h7_adc_trigs[] = {
380 { TIM1_CH1, STM32_EXT0 },
381 { TIM1_CH2, STM32_EXT1 },
382 { TIM1_CH3, STM32_EXT2 },
383 { TIM2_CH2, STM32_EXT3 },
384 { TIM3_TRGO, STM32_EXT4 },
385 { TIM4_CH4, STM32_EXT5 },
386 { TIM8_TRGO, STM32_EXT7 },
387 { TIM8_TRGO2, STM32_EXT8 },
388 { TIM1_TRGO, STM32_EXT9 },
389 { TIM1_TRGO2, STM32_EXT10 },
390 { TIM2_TRGO, STM32_EXT11 },
391 { TIM4_TRGO, STM32_EXT12 },
392 { TIM6_TRGO, STM32_EXT13 },
393 { TIM15_TRGO, STM32_EXT14 },
394 { TIM3_CH4, STM32_EXT15 },
395 { LPTIM1_OUT, STM32_EXT18 },
396 { LPTIM2_OUT, STM32_EXT19 },
397 { LPTIM3_OUT, STM32_EXT20 },
402 * stm32h7_smp_bits - describe sampling time register index & bit fields
403 * Sorted so it can be indexed by channel number.
405 static const struct stm32_adc_regs stm32h7_smp_bits[] = {
406 /* STM32H7_ADC_SMPR1, smpr[] index, mask, shift for SMP0 to SMP9 */
407 { 0, GENMASK(2, 0), 0 },
408 { 0, GENMASK(5, 3), 3 },
409 { 0, GENMASK(8, 6), 6 },
410 { 0, GENMASK(11, 9), 9 },
411 { 0, GENMASK(14, 12), 12 },
412 { 0, GENMASK(17, 15), 15 },
413 { 0, GENMASK(20, 18), 18 },
414 { 0, GENMASK(23, 21), 21 },
415 { 0, GENMASK(26, 24), 24 },
416 { 0, GENMASK(29, 27), 27 },
417 /* STM32H7_ADC_SMPR2, smpr[] index, mask, shift for SMP10 to SMP19 */
418 { 1, GENMASK(2, 0), 0 },
419 { 1, GENMASK(5, 3), 3 },
420 { 1, GENMASK(8, 6), 6 },
421 { 1, GENMASK(11, 9), 9 },
422 { 1, GENMASK(14, 12), 12 },
423 { 1, GENMASK(17, 15), 15 },
424 { 1, GENMASK(20, 18), 18 },
425 { 1, GENMASK(23, 21), 21 },
426 { 1, GENMASK(26, 24), 24 },
427 { 1, GENMASK(29, 27), 27 },
430 /* STM32H7 programmable sampling time (ADC clock cycles, rounded down) */
431 static const unsigned int stm32h7_adc_smp_cycles[STM32_ADC_MAX_SMP + 1] = {
432 1, 2, 8, 16, 32, 64, 387, 810,
435 static const struct stm32_adc_regspec stm32h7_adc_regspec = {
436 .dr = STM32H7_ADC_DR,
437 .ier_eoc = { STM32H7_ADC_IER, STM32H7_EOCIE },
438 .ier_ovr = { STM32H7_ADC_IER, STM32H7_OVRIE },
439 .isr_eoc = { STM32H7_ADC_ISR, STM32H7_EOC },
440 .isr_ovr = { STM32H7_ADC_ISR, STM32H7_OVR },
441 .sqr = stm32h7_sq,
442 .exten = { STM32H7_ADC_CFGR, STM32H7_EXTEN_MASK, STM32H7_EXTEN_SHIFT },
443 .extsel = { STM32H7_ADC_CFGR, STM32H7_EXTSEL_MASK,
444 STM32H7_EXTSEL_SHIFT },
445 .res = { STM32H7_ADC_CFGR, STM32H7_RES_MASK, STM32H7_RES_SHIFT },
446 .smpr = { STM32H7_ADC_SMPR1, STM32H7_ADC_SMPR2 },
447 .smp_bits = stm32h7_smp_bits,
451 * STM32 ADC registers access routines
452 * @adc: stm32 adc instance
453 * @reg: reg offset in adc instance
455 * Note: All instances share same base, with 0x0, 0x100 or 0x200 offset resp.
456 * for adc1, adc2 and adc3.
458 static u32 stm32_adc_readl(struct stm32_adc *adc, u32 reg)
460 return readl_relaxed(adc->common->base + adc->offset + reg);
463 #define stm32_adc_readl_addr(addr) stm32_adc_readl(adc, addr)
465 #define stm32_adc_readl_poll_timeout(reg, val, cond, sleep_us, timeout_us) \
466 readx_poll_timeout(stm32_adc_readl_addr, reg, val, \
467 cond, sleep_us, timeout_us)
469 static u16 stm32_adc_readw(struct stm32_adc *adc, u32 reg)
471 return readw_relaxed(adc->common->base + adc->offset + reg);
474 static void stm32_adc_writel(struct stm32_adc *adc, u32 reg, u32 val)
476 writel_relaxed(val, adc->common->base + adc->offset + reg);
479 static void stm32_adc_set_bits(struct stm32_adc *adc, u32 reg, u32 bits)
481 unsigned long flags;
483 spin_lock_irqsave(&adc->lock, flags);
484 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) | bits);
485 spin_unlock_irqrestore(&adc->lock, flags);
488 static void stm32_adc_clr_bits(struct stm32_adc *adc, u32 reg, u32 bits)
490 unsigned long flags;
492 spin_lock_irqsave(&adc->lock, flags);
493 stm32_adc_writel(adc, reg, stm32_adc_readl(adc, reg) & ~bits);
494 spin_unlock_irqrestore(&adc->lock, flags);
498 * stm32_adc_conv_irq_enable() - Enable end of conversion interrupt
499 * @adc: stm32 adc instance
501 static void stm32_adc_conv_irq_enable(struct stm32_adc *adc)
503 stm32_adc_set_bits(adc, adc->cfg->regs->ier_eoc.reg,
504 adc->cfg->regs->ier_eoc.mask);
508 * stm32_adc_conv_irq_disable() - Disable end of conversion interrupt
509 * @adc: stm32 adc instance
511 static void stm32_adc_conv_irq_disable(struct stm32_adc *adc)
513 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_eoc.reg,
514 adc->cfg->regs->ier_eoc.mask);
517 static void stm32_adc_ovr_irq_enable(struct stm32_adc *adc)
519 stm32_adc_set_bits(adc, adc->cfg->regs->ier_ovr.reg,
520 adc->cfg->regs->ier_ovr.mask);
523 static void stm32_adc_ovr_irq_disable(struct stm32_adc *adc)
525 stm32_adc_clr_bits(adc, adc->cfg->regs->ier_ovr.reg,
526 adc->cfg->regs->ier_ovr.mask);
529 static void stm32_adc_set_res(struct stm32_adc *adc)
531 const struct stm32_adc_regs *res = &adc->cfg->regs->res;
532 u32 val;
534 val = stm32_adc_readl(adc, res->reg);
535 val = (val & ~res->mask) | (adc->res << res->shift);
536 stm32_adc_writel(adc, res->reg, val);
539 static int stm32_adc_hw_stop(struct device *dev)
541 struct stm32_adc *adc = dev_get_drvdata(dev);
543 if (adc->cfg->unprepare)
544 adc->cfg->unprepare(adc);
546 if (adc->clk)
547 clk_disable_unprepare(adc->clk);
549 return 0;
552 static int stm32_adc_hw_start(struct device *dev)
554 struct stm32_adc *adc = dev_get_drvdata(dev);
555 int ret;
557 if (adc->clk) {
558 ret = clk_prepare_enable(adc->clk);
559 if (ret)
560 return ret;
563 stm32_adc_set_res(adc);
565 if (adc->cfg->prepare) {
566 ret = adc->cfg->prepare(adc);
567 if (ret)
568 goto err_clk_dis;
571 return 0;
573 err_clk_dis:
574 if (adc->clk)
575 clk_disable_unprepare(adc->clk);
577 return ret;
581 * stm32f4_adc_start_conv() - Start conversions for regular channels.
582 * @adc: stm32 adc instance
583 * @dma: use dma to transfer conversion result
585 * Start conversions for regular channels.
586 * Also take care of normal or DMA mode. Circular DMA may be used for regular
587 * conversions, in IIO buffer modes. Otherwise, use ADC interrupt with direct
588 * DR read instead (e.g. read_raw, or triggered buffer mode without DMA).
590 static void stm32f4_adc_start_conv(struct stm32_adc *adc, bool dma)
592 stm32_adc_set_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
594 if (dma)
595 stm32_adc_set_bits(adc, STM32F4_ADC_CR2,
596 STM32F4_DMA | STM32F4_DDS);
598 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_EOCS | STM32F4_ADON);
600 /* Wait for Power-up time (tSTAB from datasheet) */
601 usleep_range(2, 3);
603 /* Software start ? (e.g. trigger detection disabled ?) */
604 if (!(stm32_adc_readl(adc, STM32F4_ADC_CR2) & STM32F4_EXTEN_MASK))
605 stm32_adc_set_bits(adc, STM32F4_ADC_CR2, STM32F4_SWSTART);
608 static void stm32f4_adc_stop_conv(struct stm32_adc *adc)
610 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2, STM32F4_EXTEN_MASK);
611 stm32_adc_clr_bits(adc, STM32F4_ADC_SR, STM32F4_STRT);
613 stm32_adc_clr_bits(adc, STM32F4_ADC_CR1, STM32F4_SCAN);
614 stm32_adc_clr_bits(adc, STM32F4_ADC_CR2,
615 STM32F4_ADON | STM32F4_DMA | STM32F4_DDS);
618 static void stm32h7_adc_start_conv(struct stm32_adc *adc, bool dma)
620 enum stm32h7_adc_dmngt dmngt;
621 unsigned long flags;
622 u32 val;
624 if (dma)
625 dmngt = STM32H7_DMNGT_DMA_CIRC;
626 else
627 dmngt = STM32H7_DMNGT_DR_ONLY;
629 spin_lock_irqsave(&adc->lock, flags);
630 val = stm32_adc_readl(adc, STM32H7_ADC_CFGR);
631 val = (val & ~STM32H7_DMNGT_MASK) | (dmngt << STM32H7_DMNGT_SHIFT);
632 stm32_adc_writel(adc, STM32H7_ADC_CFGR, val);
633 spin_unlock_irqrestore(&adc->lock, flags);
635 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTART);
638 static void stm32h7_adc_stop_conv(struct stm32_adc *adc)
640 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
641 int ret;
642 u32 val;
644 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADSTP);
646 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
647 !(val & (STM32H7_ADSTART)),
648 100, STM32_ADC_TIMEOUT_US);
649 if (ret)
650 dev_warn(&indio_dev->dev, "stop failed\n");
652 stm32_adc_clr_bits(adc, STM32H7_ADC_CFGR, STM32H7_DMNGT_MASK);
655 static int stm32h7_adc_exit_pwr_down(struct stm32_adc *adc)
657 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
658 int ret;
659 u32 val;
661 /* Exit deep power down, then enable ADC voltage regulator */
662 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
663 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADVREGEN);
665 if (adc->common->rate > STM32H7_BOOST_CLKRATE)
666 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
668 /* Wait for startup time */
669 if (!adc->cfg->has_vregready) {
670 usleep_range(10, 20);
671 return 0;
674 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
675 val & STM32MP1_VREGREADY, 100,
676 STM32_ADC_TIMEOUT_US);
677 if (ret) {
678 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
679 dev_err(&indio_dev->dev, "Failed to exit power down\n");
682 return ret;
685 static void stm32h7_adc_enter_pwr_down(struct stm32_adc *adc)
687 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_BOOST);
689 /* Setting DEEPPWD disables ADC vreg and clears ADVREGEN */
690 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_DEEPPWD);
693 static int stm32h7_adc_enable(struct stm32_adc *adc)
695 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
696 int ret;
697 u32 val;
699 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADEN);
701 /* Poll for ADRDY to be set (after adc startup time) */
702 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_ISR, val,
703 val & STM32H7_ADRDY,
704 100, STM32_ADC_TIMEOUT_US);
705 if (ret) {
706 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
707 dev_err(&indio_dev->dev, "Failed to enable ADC\n");
708 } else {
709 /* Clear ADRDY by writing one */
710 stm32_adc_set_bits(adc, STM32H7_ADC_ISR, STM32H7_ADRDY);
713 return ret;
716 static void stm32h7_adc_disable(struct stm32_adc *adc)
718 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
719 int ret;
720 u32 val;
722 /* Disable ADC and wait until it's effectively disabled */
723 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADDIS);
724 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
725 !(val & STM32H7_ADEN), 100,
726 STM32_ADC_TIMEOUT_US);
727 if (ret)
728 dev_warn(&indio_dev->dev, "Failed to disable\n");
732 * stm32h7_adc_read_selfcalib() - read calibration shadow regs, save result
733 * @adc: stm32 adc instance
734 * Note: Must be called once ADC is enabled, so LINCALRDYW[1..6] are writable
736 static int stm32h7_adc_read_selfcalib(struct stm32_adc *adc)
738 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
739 int i, ret;
740 u32 lincalrdyw_mask, val;
742 /* Read linearity calibration */
743 lincalrdyw_mask = STM32H7_LINCALRDYW6;
744 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
745 /* Clear STM32H7_LINCALRDYW[6..1]: transfer calib to CALFACT2 */
746 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
748 /* Poll: wait calib data to be ready in CALFACT2 register */
749 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
750 !(val & lincalrdyw_mask),
751 100, STM32_ADC_TIMEOUT_US);
752 if (ret) {
753 dev_err(&indio_dev->dev, "Failed to read calfact\n");
754 return ret;
757 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
758 adc->cal.lincalfact[i] = (val & STM32H7_LINCALFACT_MASK);
759 adc->cal.lincalfact[i] >>= STM32H7_LINCALFACT_SHIFT;
761 lincalrdyw_mask >>= 1;
764 /* Read offset calibration */
765 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT);
766 adc->cal.calfact_s = (val & STM32H7_CALFACT_S_MASK);
767 adc->cal.calfact_s >>= STM32H7_CALFACT_S_SHIFT;
768 adc->cal.calfact_d = (val & STM32H7_CALFACT_D_MASK);
769 adc->cal.calfact_d >>= STM32H7_CALFACT_D_SHIFT;
770 adc->cal.calibrated = true;
772 return 0;
776 * stm32h7_adc_restore_selfcalib() - Restore saved self-calibration result
777 * @adc: stm32 adc instance
778 * Note: ADC must be enabled, with no on-going conversions.
780 static int stm32h7_adc_restore_selfcalib(struct stm32_adc *adc)
782 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
783 int i, ret;
784 u32 lincalrdyw_mask, val;
786 val = (adc->cal.calfact_s << STM32H7_CALFACT_S_SHIFT) |
787 (adc->cal.calfact_d << STM32H7_CALFACT_D_SHIFT);
788 stm32_adc_writel(adc, STM32H7_ADC_CALFACT, val);
790 lincalrdyw_mask = STM32H7_LINCALRDYW6;
791 for (i = STM32H7_LINCALFACT_NUM - 1; i >= 0; i--) {
793 * Write saved calibration data to shadow registers:
794 * Write CALFACT2, and set LINCALRDYW[6..1] bit to trigger
795 * data write. Then poll to wait for complete transfer.
797 val = adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT;
798 stm32_adc_writel(adc, STM32H7_ADC_CALFACT2, val);
799 stm32_adc_set_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
800 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
801 val & lincalrdyw_mask,
802 100, STM32_ADC_TIMEOUT_US);
803 if (ret) {
804 dev_err(&indio_dev->dev, "Failed to write calfact\n");
805 return ret;
809 * Read back calibration data, has two effects:
810 * - It ensures bits LINCALRDYW[6..1] are kept cleared
811 * for next time calibration needs to be restored.
812 * - BTW, bit clear triggers a read, then check data has been
813 * correctly written.
815 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, lincalrdyw_mask);
816 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
817 !(val & lincalrdyw_mask),
818 100, STM32_ADC_TIMEOUT_US);
819 if (ret) {
820 dev_err(&indio_dev->dev, "Failed to read calfact\n");
821 return ret;
823 val = stm32_adc_readl(adc, STM32H7_ADC_CALFACT2);
824 if (val != adc->cal.lincalfact[i] << STM32H7_LINCALFACT_SHIFT) {
825 dev_err(&indio_dev->dev, "calfact not consistent\n");
826 return -EIO;
829 lincalrdyw_mask >>= 1;
832 return 0;
836 * Fixed timeout value for ADC calibration.
837 * worst cases:
838 * - low clock frequency
839 * - maximum prescalers
840 * Calibration requires:
841 * - 131,072 ADC clock cycle for the linear calibration
842 * - 20 ADC clock cycle for the offset calibration
844 * Set to 100ms for now
846 #define STM32H7_ADC_CALIB_TIMEOUT_US 100000
849 * stm32h7_adc_selfcalib() - Procedure to calibrate ADC
850 * @adc: stm32 adc instance
851 * Note: Must be called once ADC is out of power down.
853 static int stm32h7_adc_selfcalib(struct stm32_adc *adc)
855 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
856 int ret;
857 u32 val;
859 if (adc->cal.calibrated)
860 return true;
863 * Select calibration mode:
864 * - Offset calibration for single ended inputs
865 * - No linearity calibration (do it later, before reading it)
867 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALDIF);
868 stm32_adc_clr_bits(adc, STM32H7_ADC_CR, STM32H7_ADCALLIN);
870 /* Start calibration, then wait for completion */
871 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
872 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
873 !(val & STM32H7_ADCAL), 100,
874 STM32H7_ADC_CALIB_TIMEOUT_US);
875 if (ret) {
876 dev_err(&indio_dev->dev, "calibration failed\n");
877 goto out;
881 * Select calibration mode, then start calibration:
882 * - Offset calibration for differential input
883 * - Linearity calibration (needs to be done only once for single/diff)
884 * will run simultaneously with offset calibration.
886 stm32_adc_set_bits(adc, STM32H7_ADC_CR,
887 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
888 stm32_adc_set_bits(adc, STM32H7_ADC_CR, STM32H7_ADCAL);
889 ret = stm32_adc_readl_poll_timeout(STM32H7_ADC_CR, val,
890 !(val & STM32H7_ADCAL), 100,
891 STM32H7_ADC_CALIB_TIMEOUT_US);
892 if (ret) {
893 dev_err(&indio_dev->dev, "calibration failed\n");
894 goto out;
897 out:
898 stm32_adc_clr_bits(adc, STM32H7_ADC_CR,
899 STM32H7_ADCALDIF | STM32H7_ADCALLIN);
901 return ret;
905 * stm32h7_adc_prepare() - Leave power down mode to enable ADC.
906 * @adc: stm32 adc instance
907 * Leave power down mode.
908 * Configure channels as single ended or differential before enabling ADC.
909 * Enable ADC.
910 * Restore calibration data.
911 * Pre-select channels that may be used in PCSEL (required by input MUX / IO):
912 * - Only one input is selected for single ended (e.g. 'vinp')
913 * - Two inputs are selected for differential channels (e.g. 'vinp' & 'vinn')
915 static int stm32h7_adc_prepare(struct stm32_adc *adc)
917 int calib, ret;
919 ret = stm32h7_adc_exit_pwr_down(adc);
920 if (ret)
921 return ret;
923 ret = stm32h7_adc_selfcalib(adc);
924 if (ret < 0)
925 goto pwr_dwn;
926 calib = ret;
928 stm32_adc_writel(adc, STM32H7_ADC_DIFSEL, adc->difsel);
930 ret = stm32h7_adc_enable(adc);
931 if (ret)
932 goto pwr_dwn;
934 /* Either restore or read calibration result for future reference */
935 if (calib)
936 ret = stm32h7_adc_restore_selfcalib(adc);
937 else
938 ret = stm32h7_adc_read_selfcalib(adc);
939 if (ret)
940 goto disable;
942 stm32_adc_writel(adc, STM32H7_ADC_PCSEL, adc->pcsel);
944 return 0;
946 disable:
947 stm32h7_adc_disable(adc);
948 pwr_dwn:
949 stm32h7_adc_enter_pwr_down(adc);
951 return ret;
954 static void stm32h7_adc_unprepare(struct stm32_adc *adc)
956 stm32h7_adc_disable(adc);
957 stm32h7_adc_enter_pwr_down(adc);
961 * stm32_adc_conf_scan_seq() - Build regular channels scan sequence
962 * @indio_dev: IIO device
963 * @scan_mask: channels to be converted
965 * Conversion sequence :
966 * Apply sampling time settings for all channels.
967 * Configure ADC scan sequence based on selected channels in scan_mask.
968 * Add channels to SQR registers, from scan_mask LSB to MSB, then
969 * program sequence len.
971 static int stm32_adc_conf_scan_seq(struct iio_dev *indio_dev,
972 const unsigned long *scan_mask)
974 struct stm32_adc *adc = iio_priv(indio_dev);
975 const struct stm32_adc_regs *sqr = adc->cfg->regs->sqr;
976 const struct iio_chan_spec *chan;
977 u32 val, bit;
978 int i = 0;
980 /* Apply sampling time settings */
981 stm32_adc_writel(adc, adc->cfg->regs->smpr[0], adc->smpr_val[0]);
982 stm32_adc_writel(adc, adc->cfg->regs->smpr[1], adc->smpr_val[1]);
984 for_each_set_bit(bit, scan_mask, indio_dev->masklength) {
985 chan = indio_dev->channels + bit;
987 * Assign one channel per SQ entry in regular
988 * sequence, starting with SQ1.
990 i++;
991 if (i > STM32_ADC_MAX_SQ)
992 return -EINVAL;
994 dev_dbg(&indio_dev->dev, "%s chan %d to SQ%d\n",
995 __func__, chan->channel, i);
997 val = stm32_adc_readl(adc, sqr[i].reg);
998 val &= ~sqr[i].mask;
999 val |= chan->channel << sqr[i].shift;
1000 stm32_adc_writel(adc, sqr[i].reg, val);
1003 if (!i)
1004 return -EINVAL;
1006 /* Sequence len */
1007 val = stm32_adc_readl(adc, sqr[0].reg);
1008 val &= ~sqr[0].mask;
1009 val |= ((i - 1) << sqr[0].shift);
1010 stm32_adc_writel(adc, sqr[0].reg, val);
1012 return 0;
1016 * stm32_adc_get_trig_extsel() - Get external trigger selection
1017 * @indio_dev: IIO device structure
1018 * @trig: trigger
1020 * Returns trigger extsel value, if trig matches, -EINVAL otherwise.
1022 static int stm32_adc_get_trig_extsel(struct iio_dev *indio_dev,
1023 struct iio_trigger *trig)
1025 struct stm32_adc *adc = iio_priv(indio_dev);
1026 int i;
1028 /* lookup triggers registered by stm32 timer trigger driver */
1029 for (i = 0; adc->cfg->trigs[i].name; i++) {
1031 * Checking both stm32 timer trigger type and trig name
1032 * should be safe against arbitrary trigger names.
1034 if ((is_stm32_timer_trigger(trig) ||
1035 is_stm32_lptim_trigger(trig)) &&
1036 !strcmp(adc->cfg->trigs[i].name, trig->name)) {
1037 return adc->cfg->trigs[i].extsel;
1041 return -EINVAL;
1045 * stm32_adc_set_trig() - Set a regular trigger
1046 * @indio_dev: IIO device
1047 * @trig: IIO trigger
1049 * Set trigger source/polarity (e.g. SW, or HW with polarity) :
1050 * - if HW trigger disabled (e.g. trig == NULL, conversion launched by sw)
1051 * - if HW trigger enabled, set source & polarity
1053 static int stm32_adc_set_trig(struct iio_dev *indio_dev,
1054 struct iio_trigger *trig)
1056 struct stm32_adc *adc = iio_priv(indio_dev);
1057 u32 val, extsel = 0, exten = STM32_EXTEN_SWTRIG;
1058 unsigned long flags;
1059 int ret;
1061 if (trig) {
1062 ret = stm32_adc_get_trig_extsel(indio_dev, trig);
1063 if (ret < 0)
1064 return ret;
1066 /* set trigger source and polarity (default to rising edge) */
1067 extsel = ret;
1068 exten = adc->trigger_polarity + STM32_EXTEN_HWTRIG_RISING_EDGE;
1071 spin_lock_irqsave(&adc->lock, flags);
1072 val = stm32_adc_readl(adc, adc->cfg->regs->exten.reg);
1073 val &= ~(adc->cfg->regs->exten.mask | adc->cfg->regs->extsel.mask);
1074 val |= exten << adc->cfg->regs->exten.shift;
1075 val |= extsel << adc->cfg->regs->extsel.shift;
1076 stm32_adc_writel(adc, adc->cfg->regs->exten.reg, val);
1077 spin_unlock_irqrestore(&adc->lock, flags);
1079 return 0;
1082 static int stm32_adc_set_trig_pol(struct iio_dev *indio_dev,
1083 const struct iio_chan_spec *chan,
1084 unsigned int type)
1086 struct stm32_adc *adc = iio_priv(indio_dev);
1088 adc->trigger_polarity = type;
1090 return 0;
1093 static int stm32_adc_get_trig_pol(struct iio_dev *indio_dev,
1094 const struct iio_chan_spec *chan)
1096 struct stm32_adc *adc = iio_priv(indio_dev);
1098 return adc->trigger_polarity;
1101 static const char * const stm32_trig_pol_items[] = {
1102 "rising-edge", "falling-edge", "both-edges",
1105 static const struct iio_enum stm32_adc_trig_pol = {
1106 .items = stm32_trig_pol_items,
1107 .num_items = ARRAY_SIZE(stm32_trig_pol_items),
1108 .get = stm32_adc_get_trig_pol,
1109 .set = stm32_adc_set_trig_pol,
1113 * stm32_adc_single_conv() - Performs a single conversion
1114 * @indio_dev: IIO device
1115 * @chan: IIO channel
1116 * @res: conversion result
1118 * The function performs a single conversion on a given channel:
1119 * - Apply sampling time settings
1120 * - Program sequencer with one channel (e.g. in SQ1 with len = 1)
1121 * - Use SW trigger
1122 * - Start conversion, then wait for interrupt completion.
1124 static int stm32_adc_single_conv(struct iio_dev *indio_dev,
1125 const struct iio_chan_spec *chan,
1126 int *res)
1128 struct stm32_adc *adc = iio_priv(indio_dev);
1129 struct device *dev = indio_dev->dev.parent;
1130 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1131 long timeout;
1132 u32 val;
1133 int ret;
1135 reinit_completion(&adc->completion);
1137 adc->bufi = 0;
1139 ret = pm_runtime_get_sync(dev);
1140 if (ret < 0) {
1141 pm_runtime_put_noidle(dev);
1142 return ret;
1145 /* Apply sampling time settings */
1146 stm32_adc_writel(adc, regs->smpr[0], adc->smpr_val[0]);
1147 stm32_adc_writel(adc, regs->smpr[1], adc->smpr_val[1]);
1149 /* Program chan number in regular sequence (SQ1) */
1150 val = stm32_adc_readl(adc, regs->sqr[1].reg);
1151 val &= ~regs->sqr[1].mask;
1152 val |= chan->channel << regs->sqr[1].shift;
1153 stm32_adc_writel(adc, regs->sqr[1].reg, val);
1155 /* Set regular sequence len (0 for 1 conversion) */
1156 stm32_adc_clr_bits(adc, regs->sqr[0].reg, regs->sqr[0].mask);
1158 /* Trigger detection disabled (conversion can be launched in SW) */
1159 stm32_adc_clr_bits(adc, regs->exten.reg, regs->exten.mask);
1161 stm32_adc_conv_irq_enable(adc);
1163 adc->cfg->start_conv(adc, false);
1165 timeout = wait_for_completion_interruptible_timeout(
1166 &adc->completion, STM32_ADC_TIMEOUT);
1167 if (timeout == 0) {
1168 ret = -ETIMEDOUT;
1169 } else if (timeout < 0) {
1170 ret = timeout;
1171 } else {
1172 *res = adc->buffer[0];
1173 ret = IIO_VAL_INT;
1176 adc->cfg->stop_conv(adc);
1178 stm32_adc_conv_irq_disable(adc);
1180 pm_runtime_mark_last_busy(dev);
1181 pm_runtime_put_autosuspend(dev);
1183 return ret;
1186 static int stm32_adc_read_raw(struct iio_dev *indio_dev,
1187 struct iio_chan_spec const *chan,
1188 int *val, int *val2, long mask)
1190 struct stm32_adc *adc = iio_priv(indio_dev);
1191 int ret;
1193 switch (mask) {
1194 case IIO_CHAN_INFO_RAW:
1195 ret = iio_device_claim_direct_mode(indio_dev);
1196 if (ret)
1197 return ret;
1198 if (chan->type == IIO_VOLTAGE)
1199 ret = stm32_adc_single_conv(indio_dev, chan, val);
1200 else
1201 ret = -EINVAL;
1202 iio_device_release_direct_mode(indio_dev);
1203 return ret;
1205 case IIO_CHAN_INFO_SCALE:
1206 if (chan->differential) {
1207 *val = adc->common->vref_mv * 2;
1208 *val2 = chan->scan_type.realbits;
1209 } else {
1210 *val = adc->common->vref_mv;
1211 *val2 = chan->scan_type.realbits;
1213 return IIO_VAL_FRACTIONAL_LOG2;
1215 case IIO_CHAN_INFO_OFFSET:
1216 if (chan->differential)
1217 /* ADC_full_scale / 2 */
1218 *val = -((1 << chan->scan_type.realbits) / 2);
1219 else
1220 *val = 0;
1221 return IIO_VAL_INT;
1223 default:
1224 return -EINVAL;
1228 static irqreturn_t stm32_adc_threaded_isr(int irq, void *data)
1230 struct stm32_adc *adc = data;
1231 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1232 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1233 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1235 if (status & regs->isr_ovr.mask)
1236 dev_err(&indio_dev->dev, "Overrun, stopping: restart needed\n");
1238 return IRQ_HANDLED;
1241 static irqreturn_t stm32_adc_isr(int irq, void *data)
1243 struct stm32_adc *adc = data;
1244 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1245 const struct stm32_adc_regspec *regs = adc->cfg->regs;
1246 u32 status = stm32_adc_readl(adc, regs->isr_eoc.reg);
1248 if (status & regs->isr_ovr.mask) {
1250 * Overrun occurred on regular conversions: data for wrong
1251 * channel may be read. Unconditionally disable interrupts
1252 * to stop processing data and print error message.
1253 * Restarting the capture can be done by disabling, then
1254 * re-enabling it (e.g. write 0, then 1 to buffer/enable).
1256 stm32_adc_ovr_irq_disable(adc);
1257 stm32_adc_conv_irq_disable(adc);
1258 return IRQ_WAKE_THREAD;
1261 if (status & regs->isr_eoc.mask) {
1262 /* Reading DR also clears EOC status flag */
1263 adc->buffer[adc->bufi] = stm32_adc_readw(adc, regs->dr);
1264 if (iio_buffer_enabled(indio_dev)) {
1265 adc->bufi++;
1266 if (adc->bufi >= adc->num_conv) {
1267 stm32_adc_conv_irq_disable(adc);
1268 iio_trigger_poll(indio_dev->trig);
1270 } else {
1271 complete(&adc->completion);
1273 return IRQ_HANDLED;
1276 return IRQ_NONE;
1280 * stm32_adc_validate_trigger() - validate trigger for stm32 adc
1281 * @indio_dev: IIO device
1282 * @trig: new trigger
1284 * Returns: 0 if trig matches one of the triggers registered by stm32 adc
1285 * driver, -EINVAL otherwise.
1287 static int stm32_adc_validate_trigger(struct iio_dev *indio_dev,
1288 struct iio_trigger *trig)
1290 return stm32_adc_get_trig_extsel(indio_dev, trig) < 0 ? -EINVAL : 0;
1293 static int stm32_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
1295 struct stm32_adc *adc = iio_priv(indio_dev);
1296 unsigned int watermark = STM32_DMA_BUFFER_SIZE / 2;
1297 unsigned int rx_buf_sz = STM32_DMA_BUFFER_SIZE;
1300 * dma cyclic transfers are used, buffer is split into two periods.
1301 * There should be :
1302 * - always one buffer (period) dma is working on
1303 * - one buffer (period) driver can push with iio_trigger_poll().
1305 watermark = min(watermark, val * (unsigned)(sizeof(u16)));
1306 adc->rx_buf_sz = min(rx_buf_sz, watermark * 2 * adc->num_conv);
1308 return 0;
1311 static int stm32_adc_update_scan_mode(struct iio_dev *indio_dev,
1312 const unsigned long *scan_mask)
1314 struct stm32_adc *adc = iio_priv(indio_dev);
1315 struct device *dev = indio_dev->dev.parent;
1316 int ret;
1318 ret = pm_runtime_get_sync(dev);
1319 if (ret < 0) {
1320 pm_runtime_put_noidle(dev);
1321 return ret;
1324 adc->num_conv = bitmap_weight(scan_mask, indio_dev->masklength);
1326 ret = stm32_adc_conf_scan_seq(indio_dev, scan_mask);
1327 pm_runtime_mark_last_busy(dev);
1328 pm_runtime_put_autosuspend(dev);
1330 return ret;
1333 static int stm32_adc_of_xlate(struct iio_dev *indio_dev,
1334 const struct of_phandle_args *iiospec)
1336 int i;
1338 for (i = 0; i < indio_dev->num_channels; i++)
1339 if (indio_dev->channels[i].channel == iiospec->args[0])
1340 return i;
1342 return -EINVAL;
1346 * stm32_adc_debugfs_reg_access - read or write register value
1347 * @indio_dev: IIO device structure
1348 * @reg: register offset
1349 * @writeval: value to write
1350 * @readval: value to read
1352 * To read a value from an ADC register:
1353 * echo [ADC reg offset] > direct_reg_access
1354 * cat direct_reg_access
1356 * To write a value in a ADC register:
1357 * echo [ADC_reg_offset] [value] > direct_reg_access
1359 static int stm32_adc_debugfs_reg_access(struct iio_dev *indio_dev,
1360 unsigned reg, unsigned writeval,
1361 unsigned *readval)
1363 struct stm32_adc *adc = iio_priv(indio_dev);
1364 struct device *dev = indio_dev->dev.parent;
1365 int ret;
1367 ret = pm_runtime_get_sync(dev);
1368 if (ret < 0) {
1369 pm_runtime_put_noidle(dev);
1370 return ret;
1373 if (!readval)
1374 stm32_adc_writel(adc, reg, writeval);
1375 else
1376 *readval = stm32_adc_readl(adc, reg);
1378 pm_runtime_mark_last_busy(dev);
1379 pm_runtime_put_autosuspend(dev);
1381 return 0;
1384 static const struct iio_info stm32_adc_iio_info = {
1385 .read_raw = stm32_adc_read_raw,
1386 .validate_trigger = stm32_adc_validate_trigger,
1387 .hwfifo_set_watermark = stm32_adc_set_watermark,
1388 .update_scan_mode = stm32_adc_update_scan_mode,
1389 .debugfs_reg_access = stm32_adc_debugfs_reg_access,
1390 .of_xlate = stm32_adc_of_xlate,
1393 static unsigned int stm32_adc_dma_residue(struct stm32_adc *adc)
1395 struct dma_tx_state state;
1396 enum dma_status status;
1398 status = dmaengine_tx_status(adc->dma_chan,
1399 adc->dma_chan->cookie,
1400 &state);
1401 if (status == DMA_IN_PROGRESS) {
1402 /* Residue is size in bytes from end of buffer */
1403 unsigned int i = adc->rx_buf_sz - state.residue;
1404 unsigned int size;
1406 /* Return available bytes */
1407 if (i >= adc->bufi)
1408 size = i - adc->bufi;
1409 else
1410 size = adc->rx_buf_sz + i - adc->bufi;
1412 return size;
1415 return 0;
1418 static void stm32_adc_dma_buffer_done(void *data)
1420 struct iio_dev *indio_dev = data;
1421 struct stm32_adc *adc = iio_priv(indio_dev);
1422 int residue = stm32_adc_dma_residue(adc);
1425 * In DMA mode the trigger services of IIO are not used
1426 * (e.g. no call to iio_trigger_poll).
1427 * Calling irq handler associated to the hardware trigger is not
1428 * relevant as the conversions have already been done. Data
1429 * transfers are performed directly in DMA callback instead.
1430 * This implementation avoids to call trigger irq handler that
1431 * may sleep, in an atomic context (DMA irq handler context).
1433 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1435 while (residue >= indio_dev->scan_bytes) {
1436 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1438 iio_push_to_buffers(indio_dev, buffer);
1440 residue -= indio_dev->scan_bytes;
1441 adc->bufi += indio_dev->scan_bytes;
1442 if (adc->bufi >= adc->rx_buf_sz)
1443 adc->bufi = 0;
1447 static int stm32_adc_dma_start(struct iio_dev *indio_dev)
1449 struct stm32_adc *adc = iio_priv(indio_dev);
1450 struct dma_async_tx_descriptor *desc;
1451 dma_cookie_t cookie;
1452 int ret;
1454 if (!adc->dma_chan)
1455 return 0;
1457 dev_dbg(&indio_dev->dev, "%s size=%d watermark=%d\n", __func__,
1458 adc->rx_buf_sz, adc->rx_buf_sz / 2);
1460 /* Prepare a DMA cyclic transaction */
1461 desc = dmaengine_prep_dma_cyclic(adc->dma_chan,
1462 adc->rx_dma_buf,
1463 adc->rx_buf_sz, adc->rx_buf_sz / 2,
1464 DMA_DEV_TO_MEM,
1465 DMA_PREP_INTERRUPT);
1466 if (!desc)
1467 return -EBUSY;
1469 desc->callback = stm32_adc_dma_buffer_done;
1470 desc->callback_param = indio_dev;
1472 cookie = dmaengine_submit(desc);
1473 ret = dma_submit_error(cookie);
1474 if (ret) {
1475 dmaengine_terminate_sync(adc->dma_chan);
1476 return ret;
1479 /* Issue pending DMA requests */
1480 dma_async_issue_pending(adc->dma_chan);
1482 return 0;
1485 static int __stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1487 struct stm32_adc *adc = iio_priv(indio_dev);
1488 struct device *dev = indio_dev->dev.parent;
1489 int ret;
1491 ret = pm_runtime_get_sync(dev);
1492 if (ret < 0) {
1493 pm_runtime_put_noidle(dev);
1494 return ret;
1497 ret = stm32_adc_set_trig(indio_dev, indio_dev->trig);
1498 if (ret) {
1499 dev_err(&indio_dev->dev, "Can't set trigger\n");
1500 goto err_pm_put;
1503 ret = stm32_adc_dma_start(indio_dev);
1504 if (ret) {
1505 dev_err(&indio_dev->dev, "Can't start dma\n");
1506 goto err_clr_trig;
1509 /* Reset adc buffer index */
1510 adc->bufi = 0;
1512 stm32_adc_ovr_irq_enable(adc);
1514 if (!adc->dma_chan)
1515 stm32_adc_conv_irq_enable(adc);
1517 adc->cfg->start_conv(adc, !!adc->dma_chan);
1519 return 0;
1521 err_clr_trig:
1522 stm32_adc_set_trig(indio_dev, NULL);
1523 err_pm_put:
1524 pm_runtime_mark_last_busy(dev);
1525 pm_runtime_put_autosuspend(dev);
1527 return ret;
1530 static int stm32_adc_buffer_postenable(struct iio_dev *indio_dev)
1532 int ret;
1534 ret = iio_triggered_buffer_postenable(indio_dev);
1535 if (ret < 0)
1536 return ret;
1538 ret = __stm32_adc_buffer_postenable(indio_dev);
1539 if (ret < 0)
1540 iio_triggered_buffer_predisable(indio_dev);
1542 return ret;
1545 static void __stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1547 struct stm32_adc *adc = iio_priv(indio_dev);
1548 struct device *dev = indio_dev->dev.parent;
1550 adc->cfg->stop_conv(adc);
1551 if (!adc->dma_chan)
1552 stm32_adc_conv_irq_disable(adc);
1554 stm32_adc_ovr_irq_disable(adc);
1556 if (adc->dma_chan)
1557 dmaengine_terminate_sync(adc->dma_chan);
1559 if (stm32_adc_set_trig(indio_dev, NULL))
1560 dev_err(&indio_dev->dev, "Can't clear trigger\n");
1562 pm_runtime_mark_last_busy(dev);
1563 pm_runtime_put_autosuspend(dev);
1566 static int stm32_adc_buffer_predisable(struct iio_dev *indio_dev)
1568 int ret;
1570 __stm32_adc_buffer_predisable(indio_dev);
1572 ret = iio_triggered_buffer_predisable(indio_dev);
1573 if (ret < 0)
1574 dev_err(&indio_dev->dev, "predisable failed\n");
1576 return ret;
1579 static const struct iio_buffer_setup_ops stm32_adc_buffer_setup_ops = {
1580 .postenable = &stm32_adc_buffer_postenable,
1581 .predisable = &stm32_adc_buffer_predisable,
1584 static irqreturn_t stm32_adc_trigger_handler(int irq, void *p)
1586 struct iio_poll_func *pf = p;
1587 struct iio_dev *indio_dev = pf->indio_dev;
1588 struct stm32_adc *adc = iio_priv(indio_dev);
1590 dev_dbg(&indio_dev->dev, "%s bufi=%d\n", __func__, adc->bufi);
1592 if (!adc->dma_chan) {
1593 /* reset buffer index */
1594 adc->bufi = 0;
1595 iio_push_to_buffers_with_timestamp(indio_dev, adc->buffer,
1596 pf->timestamp);
1597 } else {
1598 int residue = stm32_adc_dma_residue(adc);
1600 while (residue >= indio_dev->scan_bytes) {
1601 u16 *buffer = (u16 *)&adc->rx_buf[adc->bufi];
1603 iio_push_to_buffers_with_timestamp(indio_dev, buffer,
1604 pf->timestamp);
1605 residue -= indio_dev->scan_bytes;
1606 adc->bufi += indio_dev->scan_bytes;
1607 if (adc->bufi >= adc->rx_buf_sz)
1608 adc->bufi = 0;
1612 iio_trigger_notify_done(indio_dev->trig);
1614 /* re-enable eoc irq */
1615 if (!adc->dma_chan)
1616 stm32_adc_conv_irq_enable(adc);
1618 return IRQ_HANDLED;
1621 static const struct iio_chan_spec_ext_info stm32_adc_ext_info[] = {
1622 IIO_ENUM("trigger_polarity", IIO_SHARED_BY_ALL, &stm32_adc_trig_pol),
1624 .name = "trigger_polarity_available",
1625 .shared = IIO_SHARED_BY_ALL,
1626 .read = iio_enum_available_read,
1627 .private = (uintptr_t)&stm32_adc_trig_pol,
1632 static int stm32_adc_of_get_resolution(struct iio_dev *indio_dev)
1634 struct device_node *node = indio_dev->dev.of_node;
1635 struct stm32_adc *adc = iio_priv(indio_dev);
1636 unsigned int i;
1637 u32 res;
1639 if (of_property_read_u32(node, "assigned-resolution-bits", &res))
1640 res = adc->cfg->adc_info->resolutions[0];
1642 for (i = 0; i < adc->cfg->adc_info->num_res; i++)
1643 if (res == adc->cfg->adc_info->resolutions[i])
1644 break;
1645 if (i >= adc->cfg->adc_info->num_res) {
1646 dev_err(&indio_dev->dev, "Bad resolution: %u bits\n", res);
1647 return -EINVAL;
1650 dev_dbg(&indio_dev->dev, "Using %u bits resolution\n", res);
1651 adc->res = i;
1653 return 0;
1656 static void stm32_adc_smpr_init(struct stm32_adc *adc, int channel, u32 smp_ns)
1658 const struct stm32_adc_regs *smpr = &adc->cfg->regs->smp_bits[channel];
1659 u32 period_ns, shift = smpr->shift, mask = smpr->mask;
1660 unsigned int smp, r = smpr->reg;
1662 /* Determine sampling time (ADC clock cycles) */
1663 period_ns = NSEC_PER_SEC / adc->common->rate;
1664 for (smp = 0; smp <= STM32_ADC_MAX_SMP; smp++)
1665 if ((period_ns * adc->cfg->smp_cycles[smp]) >= smp_ns)
1666 break;
1667 if (smp > STM32_ADC_MAX_SMP)
1668 smp = STM32_ADC_MAX_SMP;
1670 /* pre-build sampling time registers (e.g. smpr1, smpr2) */
1671 adc->smpr_val[r] = (adc->smpr_val[r] & ~mask) | (smp << shift);
1674 static void stm32_adc_chan_init_one(struct iio_dev *indio_dev,
1675 struct iio_chan_spec *chan, u32 vinp,
1676 u32 vinn, int scan_index, bool differential)
1678 struct stm32_adc *adc = iio_priv(indio_dev);
1679 char *name = adc->chan_name[vinp];
1681 chan->type = IIO_VOLTAGE;
1682 chan->channel = vinp;
1683 if (differential) {
1684 chan->differential = 1;
1685 chan->channel2 = vinn;
1686 snprintf(name, STM32_ADC_CH_SZ, "in%d-in%d", vinp, vinn);
1687 } else {
1688 snprintf(name, STM32_ADC_CH_SZ, "in%d", vinp);
1690 chan->datasheet_name = name;
1691 chan->scan_index = scan_index;
1692 chan->indexed = 1;
1693 chan->info_mask_separate = BIT(IIO_CHAN_INFO_RAW);
1694 chan->info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) |
1695 BIT(IIO_CHAN_INFO_OFFSET);
1696 chan->scan_type.sign = 'u';
1697 chan->scan_type.realbits = adc->cfg->adc_info->resolutions[adc->res];
1698 chan->scan_type.storagebits = 16;
1699 chan->ext_info = stm32_adc_ext_info;
1701 /* pre-build selected channels mask */
1702 adc->pcsel |= BIT(chan->channel);
1703 if (differential) {
1704 /* pre-build diff channels mask */
1705 adc->difsel |= BIT(chan->channel);
1706 /* Also add negative input to pre-selected channels */
1707 adc->pcsel |= BIT(chan->channel2);
1711 static int stm32_adc_chan_of_init(struct iio_dev *indio_dev)
1713 struct device_node *node = indio_dev->dev.of_node;
1714 struct stm32_adc *adc = iio_priv(indio_dev);
1715 const struct stm32_adc_info *adc_info = adc->cfg->adc_info;
1716 struct stm32_adc_diff_channel diff[STM32_ADC_CH_MAX];
1717 struct property *prop;
1718 const __be32 *cur;
1719 struct iio_chan_spec *channels;
1720 int scan_index = 0, num_channels = 0, num_diff = 0, ret, i;
1721 u32 val, smp = 0;
1723 ret = of_property_count_u32_elems(node, "st,adc-channels");
1724 if (ret > adc_info->max_channels) {
1725 dev_err(&indio_dev->dev, "Bad st,adc-channels?\n");
1726 return -EINVAL;
1727 } else if (ret > 0) {
1728 num_channels += ret;
1731 ret = of_property_count_elems_of_size(node, "st,adc-diff-channels",
1732 sizeof(*diff));
1733 if (ret > adc_info->max_channels) {
1734 dev_err(&indio_dev->dev, "Bad st,adc-diff-channels?\n");
1735 return -EINVAL;
1736 } else if (ret > 0) {
1737 int size = ret * sizeof(*diff) / sizeof(u32);
1739 num_diff = ret;
1740 num_channels += ret;
1741 ret = of_property_read_u32_array(node, "st,adc-diff-channels",
1742 (u32 *)diff, size);
1743 if (ret)
1744 return ret;
1747 if (!num_channels) {
1748 dev_err(&indio_dev->dev, "No channels configured\n");
1749 return -ENODATA;
1752 /* Optional sample time is provided either for each, or all channels */
1753 ret = of_property_count_u32_elems(node, "st,min-sample-time-nsecs");
1754 if (ret > 1 && ret != num_channels) {
1755 dev_err(&indio_dev->dev, "Invalid st,min-sample-time-nsecs\n");
1756 return -EINVAL;
1759 channels = devm_kcalloc(&indio_dev->dev, num_channels,
1760 sizeof(struct iio_chan_spec), GFP_KERNEL);
1761 if (!channels)
1762 return -ENOMEM;
1764 of_property_for_each_u32(node, "st,adc-channels", prop, cur, val) {
1765 if (val >= adc_info->max_channels) {
1766 dev_err(&indio_dev->dev, "Invalid channel %d\n", val);
1767 return -EINVAL;
1770 /* Channel can't be configured both as single-ended & diff */
1771 for (i = 0; i < num_diff; i++) {
1772 if (val == diff[i].vinp) {
1773 dev_err(&indio_dev->dev,
1774 "channel %d miss-configured\n", val);
1775 return -EINVAL;
1778 stm32_adc_chan_init_one(indio_dev, &channels[scan_index], val,
1779 0, scan_index, false);
1780 scan_index++;
1783 for (i = 0; i < num_diff; i++) {
1784 if (diff[i].vinp >= adc_info->max_channels ||
1785 diff[i].vinn >= adc_info->max_channels) {
1786 dev_err(&indio_dev->dev, "Invalid channel in%d-in%d\n",
1787 diff[i].vinp, diff[i].vinn);
1788 return -EINVAL;
1790 stm32_adc_chan_init_one(indio_dev, &channels[scan_index],
1791 diff[i].vinp, diff[i].vinn, scan_index,
1792 true);
1793 scan_index++;
1796 for (i = 0; i < scan_index; i++) {
1798 * Using of_property_read_u32_index(), smp value will only be
1799 * modified if valid u32 value can be decoded. This allows to
1800 * get either no value, 1 shared value for all indexes, or one
1801 * value per channel.
1803 of_property_read_u32_index(node, "st,min-sample-time-nsecs",
1804 i, &smp);
1805 /* Prepare sampling time settings */
1806 stm32_adc_smpr_init(adc, channels[i].channel, smp);
1809 indio_dev->num_channels = scan_index;
1810 indio_dev->channels = channels;
1812 return 0;
1815 static int stm32_adc_dma_request(struct device *dev, struct iio_dev *indio_dev)
1817 struct stm32_adc *adc = iio_priv(indio_dev);
1818 struct dma_slave_config config;
1819 int ret;
1821 adc->dma_chan = dma_request_chan(dev, "rx");
1822 if (IS_ERR(adc->dma_chan)) {
1823 ret = PTR_ERR(adc->dma_chan);
1824 if (ret != -ENODEV) {
1825 if (ret != -EPROBE_DEFER)
1826 dev_err(dev,
1827 "DMA channel request failed with %d\n",
1828 ret);
1829 return ret;
1832 /* DMA is optional: fall back to IRQ mode */
1833 adc->dma_chan = NULL;
1834 return 0;
1837 adc->rx_buf = dma_alloc_coherent(adc->dma_chan->device->dev,
1838 STM32_DMA_BUFFER_SIZE,
1839 &adc->rx_dma_buf, GFP_KERNEL);
1840 if (!adc->rx_buf) {
1841 ret = -ENOMEM;
1842 goto err_release;
1845 /* Configure DMA channel to read data register */
1846 memset(&config, 0, sizeof(config));
1847 config.src_addr = (dma_addr_t)adc->common->phys_base;
1848 config.src_addr += adc->offset + adc->cfg->regs->dr;
1849 config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1851 ret = dmaengine_slave_config(adc->dma_chan, &config);
1852 if (ret)
1853 goto err_free;
1855 return 0;
1857 err_free:
1858 dma_free_coherent(adc->dma_chan->device->dev, STM32_DMA_BUFFER_SIZE,
1859 adc->rx_buf, adc->rx_dma_buf);
1860 err_release:
1861 dma_release_channel(adc->dma_chan);
1863 return ret;
1866 static int stm32_adc_probe(struct platform_device *pdev)
1868 struct iio_dev *indio_dev;
1869 struct device *dev = &pdev->dev;
1870 irqreturn_t (*handler)(int irq, void *p) = NULL;
1871 struct stm32_adc *adc;
1872 int ret;
1874 if (!pdev->dev.of_node)
1875 return -ENODEV;
1877 indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*adc));
1878 if (!indio_dev)
1879 return -ENOMEM;
1881 adc = iio_priv(indio_dev);
1882 adc->common = dev_get_drvdata(pdev->dev.parent);
1883 spin_lock_init(&adc->lock);
1884 init_completion(&adc->completion);
1885 adc->cfg = (const struct stm32_adc_cfg *)
1886 of_match_device(dev->driver->of_match_table, dev)->data;
1888 indio_dev->name = dev_name(&pdev->dev);
1889 indio_dev->dev.parent = &pdev->dev;
1890 indio_dev->dev.of_node = pdev->dev.of_node;
1891 indio_dev->info = &stm32_adc_iio_info;
1892 indio_dev->modes = INDIO_DIRECT_MODE | INDIO_HARDWARE_TRIGGERED;
1894 platform_set_drvdata(pdev, adc);
1896 ret = of_property_read_u32(pdev->dev.of_node, "reg", &adc->offset);
1897 if (ret != 0) {
1898 dev_err(&pdev->dev, "missing reg property\n");
1899 return -EINVAL;
1902 adc->irq = platform_get_irq(pdev, 0);
1903 if (adc->irq < 0)
1904 return adc->irq;
1906 ret = devm_request_threaded_irq(&pdev->dev, adc->irq, stm32_adc_isr,
1907 stm32_adc_threaded_isr,
1908 0, pdev->name, adc);
1909 if (ret) {
1910 dev_err(&pdev->dev, "failed to request IRQ\n");
1911 return ret;
1914 adc->clk = devm_clk_get(&pdev->dev, NULL);
1915 if (IS_ERR(adc->clk)) {
1916 ret = PTR_ERR(adc->clk);
1917 if (ret == -ENOENT && !adc->cfg->clk_required) {
1918 adc->clk = NULL;
1919 } else {
1920 dev_err(&pdev->dev, "Can't get clock\n");
1921 return ret;
1925 ret = stm32_adc_of_get_resolution(indio_dev);
1926 if (ret < 0)
1927 return ret;
1929 ret = stm32_adc_chan_of_init(indio_dev);
1930 if (ret < 0)
1931 return ret;
1933 ret = stm32_adc_dma_request(dev, indio_dev);
1934 if (ret < 0)
1935 return ret;
1937 if (!adc->dma_chan)
1938 handler = &stm32_adc_trigger_handler;
1940 ret = iio_triggered_buffer_setup(indio_dev,
1941 &iio_pollfunc_store_time, handler,
1942 &stm32_adc_buffer_setup_ops);
1943 if (ret) {
1944 dev_err(&pdev->dev, "buffer setup failed\n");
1945 goto err_dma_disable;
1948 /* Get stm32-adc-core PM online */
1949 pm_runtime_get_noresume(dev);
1950 pm_runtime_set_active(dev);
1951 pm_runtime_set_autosuspend_delay(dev, STM32_ADC_HW_STOP_DELAY_MS);
1952 pm_runtime_use_autosuspend(dev);
1953 pm_runtime_enable(dev);
1955 ret = stm32_adc_hw_start(dev);
1956 if (ret)
1957 goto err_buffer_cleanup;
1959 ret = iio_device_register(indio_dev);
1960 if (ret) {
1961 dev_err(&pdev->dev, "iio dev register failed\n");
1962 goto err_hw_stop;
1965 pm_runtime_mark_last_busy(dev);
1966 pm_runtime_put_autosuspend(dev);
1968 return 0;
1970 err_hw_stop:
1971 stm32_adc_hw_stop(dev);
1973 err_buffer_cleanup:
1974 pm_runtime_disable(dev);
1975 pm_runtime_set_suspended(dev);
1976 pm_runtime_put_noidle(dev);
1977 iio_triggered_buffer_cleanup(indio_dev);
1979 err_dma_disable:
1980 if (adc->dma_chan) {
1981 dma_free_coherent(adc->dma_chan->device->dev,
1982 STM32_DMA_BUFFER_SIZE,
1983 adc->rx_buf, adc->rx_dma_buf);
1984 dma_release_channel(adc->dma_chan);
1987 return ret;
1990 static int stm32_adc_remove(struct platform_device *pdev)
1992 struct stm32_adc *adc = platform_get_drvdata(pdev);
1993 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
1995 pm_runtime_get_sync(&pdev->dev);
1996 iio_device_unregister(indio_dev);
1997 stm32_adc_hw_stop(&pdev->dev);
1998 pm_runtime_disable(&pdev->dev);
1999 pm_runtime_set_suspended(&pdev->dev);
2000 pm_runtime_put_noidle(&pdev->dev);
2001 iio_triggered_buffer_cleanup(indio_dev);
2002 if (adc->dma_chan) {
2003 dma_free_coherent(adc->dma_chan->device->dev,
2004 STM32_DMA_BUFFER_SIZE,
2005 adc->rx_buf, adc->rx_dma_buf);
2006 dma_release_channel(adc->dma_chan);
2009 return 0;
2012 #if defined(CONFIG_PM_SLEEP)
2013 static int stm32_adc_suspend(struct device *dev)
2015 struct stm32_adc *adc = dev_get_drvdata(dev);
2016 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2018 if (iio_buffer_enabled(indio_dev))
2019 __stm32_adc_buffer_predisable(indio_dev);
2021 return pm_runtime_force_suspend(dev);
2024 static int stm32_adc_resume(struct device *dev)
2026 struct stm32_adc *adc = dev_get_drvdata(dev);
2027 struct iio_dev *indio_dev = iio_priv_to_dev(adc);
2028 int ret;
2030 ret = pm_runtime_force_resume(dev);
2031 if (ret < 0)
2032 return ret;
2034 if (!iio_buffer_enabled(indio_dev))
2035 return 0;
2037 ret = stm32_adc_update_scan_mode(indio_dev,
2038 indio_dev->active_scan_mask);
2039 if (ret < 0)
2040 return ret;
2042 return __stm32_adc_buffer_postenable(indio_dev);
2044 #endif
2046 #if defined(CONFIG_PM)
2047 static int stm32_adc_runtime_suspend(struct device *dev)
2049 return stm32_adc_hw_stop(dev);
2052 static int stm32_adc_runtime_resume(struct device *dev)
2054 return stm32_adc_hw_start(dev);
2056 #endif
2058 static const struct dev_pm_ops stm32_adc_pm_ops = {
2059 SET_SYSTEM_SLEEP_PM_OPS(stm32_adc_suspend, stm32_adc_resume)
2060 SET_RUNTIME_PM_OPS(stm32_adc_runtime_suspend, stm32_adc_runtime_resume,
2061 NULL)
2064 static const struct stm32_adc_cfg stm32f4_adc_cfg = {
2065 .regs = &stm32f4_adc_regspec,
2066 .adc_info = &stm32f4_adc_info,
2067 .trigs = stm32f4_adc_trigs,
2068 .clk_required = true,
2069 .start_conv = stm32f4_adc_start_conv,
2070 .stop_conv = stm32f4_adc_stop_conv,
2071 .smp_cycles = stm32f4_adc_smp_cycles,
2074 static const struct stm32_adc_cfg stm32h7_adc_cfg = {
2075 .regs = &stm32h7_adc_regspec,
2076 .adc_info = &stm32h7_adc_info,
2077 .trigs = stm32h7_adc_trigs,
2078 .start_conv = stm32h7_adc_start_conv,
2079 .stop_conv = stm32h7_adc_stop_conv,
2080 .prepare = stm32h7_adc_prepare,
2081 .unprepare = stm32h7_adc_unprepare,
2082 .smp_cycles = stm32h7_adc_smp_cycles,
2085 static const struct stm32_adc_cfg stm32mp1_adc_cfg = {
2086 .regs = &stm32h7_adc_regspec,
2087 .adc_info = &stm32h7_adc_info,
2088 .trigs = stm32h7_adc_trigs,
2089 .has_vregready = true,
2090 .start_conv = stm32h7_adc_start_conv,
2091 .stop_conv = stm32h7_adc_stop_conv,
2092 .prepare = stm32h7_adc_prepare,
2093 .unprepare = stm32h7_adc_unprepare,
2094 .smp_cycles = stm32h7_adc_smp_cycles,
2097 static const struct of_device_id stm32_adc_of_match[] = {
2098 { .compatible = "st,stm32f4-adc", .data = (void *)&stm32f4_adc_cfg },
2099 { .compatible = "st,stm32h7-adc", .data = (void *)&stm32h7_adc_cfg },
2100 { .compatible = "st,stm32mp1-adc", .data = (void *)&stm32mp1_adc_cfg },
2103 MODULE_DEVICE_TABLE(of, stm32_adc_of_match);
2105 static struct platform_driver stm32_adc_driver = {
2106 .probe = stm32_adc_probe,
2107 .remove = stm32_adc_remove,
2108 .driver = {
2109 .name = "stm32-adc",
2110 .of_match_table = stm32_adc_of_match,
2111 .pm = &stm32_adc_pm_ops,
2114 module_platform_driver(stm32_adc_driver);
2116 MODULE_AUTHOR("Fabrice Gasnier <fabrice.gasnier@st.com>");
2117 MODULE_DESCRIPTION("STMicroelectronics STM32 ADC IIO driver");
2118 MODULE_LICENSE("GPL v2");
2119 MODULE_ALIAS("platform:stm32-adc");