2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
8 * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
39 #include <linux/errno.h>
40 #include <linux/err.h>
41 #include <linux/export.h>
42 #include <linux/string.h>
43 #include <linux/slab.h>
45 #include <linux/in6.h>
46 #include <net/addrconf.h>
47 #include <linux/security.h>
49 #include <rdma/ib_verbs.h>
50 #include <rdma/ib_cache.h>
51 #include <rdma/ib_addr.h>
54 #include "core_priv.h"
55 #include <trace/events/rdma_core.h>
57 static int ib_resolve_eth_dmac(struct ib_device
*device
,
58 struct rdma_ah_attr
*ah_attr
);
60 static const char * const ib_events
[] = {
61 [IB_EVENT_CQ_ERR
] = "CQ error",
62 [IB_EVENT_QP_FATAL
] = "QP fatal error",
63 [IB_EVENT_QP_REQ_ERR
] = "QP request error",
64 [IB_EVENT_QP_ACCESS_ERR
] = "QP access error",
65 [IB_EVENT_COMM_EST
] = "communication established",
66 [IB_EVENT_SQ_DRAINED
] = "send queue drained",
67 [IB_EVENT_PATH_MIG
] = "path migration successful",
68 [IB_EVENT_PATH_MIG_ERR
] = "path migration error",
69 [IB_EVENT_DEVICE_FATAL
] = "device fatal error",
70 [IB_EVENT_PORT_ACTIVE
] = "port active",
71 [IB_EVENT_PORT_ERR
] = "port error",
72 [IB_EVENT_LID_CHANGE
] = "LID change",
73 [IB_EVENT_PKEY_CHANGE
] = "P_key change",
74 [IB_EVENT_SM_CHANGE
] = "SM change",
75 [IB_EVENT_SRQ_ERR
] = "SRQ error",
76 [IB_EVENT_SRQ_LIMIT_REACHED
] = "SRQ limit reached",
77 [IB_EVENT_QP_LAST_WQE_REACHED
] = "last WQE reached",
78 [IB_EVENT_CLIENT_REREGISTER
] = "client reregister",
79 [IB_EVENT_GID_CHANGE
] = "GID changed",
82 const char *__attribute_const__
ib_event_msg(enum ib_event_type event
)
86 return (index
< ARRAY_SIZE(ib_events
) && ib_events
[index
]) ?
87 ib_events
[index
] : "unrecognized event";
89 EXPORT_SYMBOL(ib_event_msg
);
91 static const char * const wc_statuses
[] = {
92 [IB_WC_SUCCESS
] = "success",
93 [IB_WC_LOC_LEN_ERR
] = "local length error",
94 [IB_WC_LOC_QP_OP_ERR
] = "local QP operation error",
95 [IB_WC_LOC_EEC_OP_ERR
] = "local EE context operation error",
96 [IB_WC_LOC_PROT_ERR
] = "local protection error",
97 [IB_WC_WR_FLUSH_ERR
] = "WR flushed",
98 [IB_WC_MW_BIND_ERR
] = "memory management operation error",
99 [IB_WC_BAD_RESP_ERR
] = "bad response error",
100 [IB_WC_LOC_ACCESS_ERR
] = "local access error",
101 [IB_WC_REM_INV_REQ_ERR
] = "invalid request error",
102 [IB_WC_REM_ACCESS_ERR
] = "remote access error",
103 [IB_WC_REM_OP_ERR
] = "remote operation error",
104 [IB_WC_RETRY_EXC_ERR
] = "transport retry counter exceeded",
105 [IB_WC_RNR_RETRY_EXC_ERR
] = "RNR retry counter exceeded",
106 [IB_WC_LOC_RDD_VIOL_ERR
] = "local RDD violation error",
107 [IB_WC_REM_INV_RD_REQ_ERR
] = "remote invalid RD request",
108 [IB_WC_REM_ABORT_ERR
] = "operation aborted",
109 [IB_WC_INV_EECN_ERR
] = "invalid EE context number",
110 [IB_WC_INV_EEC_STATE_ERR
] = "invalid EE context state",
111 [IB_WC_FATAL_ERR
] = "fatal error",
112 [IB_WC_RESP_TIMEOUT_ERR
] = "response timeout error",
113 [IB_WC_GENERAL_ERR
] = "general error",
116 const char *__attribute_const__
ib_wc_status_msg(enum ib_wc_status status
)
118 size_t index
= status
;
120 return (index
< ARRAY_SIZE(wc_statuses
) && wc_statuses
[index
]) ?
121 wc_statuses
[index
] : "unrecognized status";
123 EXPORT_SYMBOL(ib_wc_status_msg
);
125 __attribute_const__
int ib_rate_to_mult(enum ib_rate rate
)
128 case IB_RATE_2_5_GBPS
: return 1;
129 case IB_RATE_5_GBPS
: return 2;
130 case IB_RATE_10_GBPS
: return 4;
131 case IB_RATE_20_GBPS
: return 8;
132 case IB_RATE_30_GBPS
: return 12;
133 case IB_RATE_40_GBPS
: return 16;
134 case IB_RATE_60_GBPS
: return 24;
135 case IB_RATE_80_GBPS
: return 32;
136 case IB_RATE_120_GBPS
: return 48;
137 case IB_RATE_14_GBPS
: return 6;
138 case IB_RATE_56_GBPS
: return 22;
139 case IB_RATE_112_GBPS
: return 45;
140 case IB_RATE_168_GBPS
: return 67;
141 case IB_RATE_25_GBPS
: return 10;
142 case IB_RATE_100_GBPS
: return 40;
143 case IB_RATE_200_GBPS
: return 80;
144 case IB_RATE_300_GBPS
: return 120;
145 case IB_RATE_28_GBPS
: return 11;
146 case IB_RATE_50_GBPS
: return 20;
147 case IB_RATE_400_GBPS
: return 160;
148 case IB_RATE_600_GBPS
: return 240;
152 EXPORT_SYMBOL(ib_rate_to_mult
);
154 __attribute_const__
enum ib_rate
mult_to_ib_rate(int mult
)
157 case 1: return IB_RATE_2_5_GBPS
;
158 case 2: return IB_RATE_5_GBPS
;
159 case 4: return IB_RATE_10_GBPS
;
160 case 8: return IB_RATE_20_GBPS
;
161 case 12: return IB_RATE_30_GBPS
;
162 case 16: return IB_RATE_40_GBPS
;
163 case 24: return IB_RATE_60_GBPS
;
164 case 32: return IB_RATE_80_GBPS
;
165 case 48: return IB_RATE_120_GBPS
;
166 case 6: return IB_RATE_14_GBPS
;
167 case 22: return IB_RATE_56_GBPS
;
168 case 45: return IB_RATE_112_GBPS
;
169 case 67: return IB_RATE_168_GBPS
;
170 case 10: return IB_RATE_25_GBPS
;
171 case 40: return IB_RATE_100_GBPS
;
172 case 80: return IB_RATE_200_GBPS
;
173 case 120: return IB_RATE_300_GBPS
;
174 case 11: return IB_RATE_28_GBPS
;
175 case 20: return IB_RATE_50_GBPS
;
176 case 160: return IB_RATE_400_GBPS
;
177 case 240: return IB_RATE_600_GBPS
;
178 default: return IB_RATE_PORT_CURRENT
;
181 EXPORT_SYMBOL(mult_to_ib_rate
);
183 __attribute_const__
int ib_rate_to_mbps(enum ib_rate rate
)
186 case IB_RATE_2_5_GBPS
: return 2500;
187 case IB_RATE_5_GBPS
: return 5000;
188 case IB_RATE_10_GBPS
: return 10000;
189 case IB_RATE_20_GBPS
: return 20000;
190 case IB_RATE_30_GBPS
: return 30000;
191 case IB_RATE_40_GBPS
: return 40000;
192 case IB_RATE_60_GBPS
: return 60000;
193 case IB_RATE_80_GBPS
: return 80000;
194 case IB_RATE_120_GBPS
: return 120000;
195 case IB_RATE_14_GBPS
: return 14062;
196 case IB_RATE_56_GBPS
: return 56250;
197 case IB_RATE_112_GBPS
: return 112500;
198 case IB_RATE_168_GBPS
: return 168750;
199 case IB_RATE_25_GBPS
: return 25781;
200 case IB_RATE_100_GBPS
: return 103125;
201 case IB_RATE_200_GBPS
: return 206250;
202 case IB_RATE_300_GBPS
: return 309375;
203 case IB_RATE_28_GBPS
: return 28125;
204 case IB_RATE_50_GBPS
: return 53125;
205 case IB_RATE_400_GBPS
: return 425000;
206 case IB_RATE_600_GBPS
: return 637500;
210 EXPORT_SYMBOL(ib_rate_to_mbps
);
212 __attribute_const__
enum rdma_transport_type
213 rdma_node_get_transport(unsigned int node_type
)
216 if (node_type
== RDMA_NODE_USNIC
)
217 return RDMA_TRANSPORT_USNIC
;
218 if (node_type
== RDMA_NODE_USNIC_UDP
)
219 return RDMA_TRANSPORT_USNIC_UDP
;
220 if (node_type
== RDMA_NODE_RNIC
)
221 return RDMA_TRANSPORT_IWARP
;
222 if (node_type
== RDMA_NODE_UNSPECIFIED
)
223 return RDMA_TRANSPORT_UNSPECIFIED
;
225 return RDMA_TRANSPORT_IB
;
227 EXPORT_SYMBOL(rdma_node_get_transport
);
229 enum rdma_link_layer
rdma_port_get_link_layer(struct ib_device
*device
, u8 port_num
)
231 enum rdma_transport_type lt
;
232 if (device
->ops
.get_link_layer
)
233 return device
->ops
.get_link_layer(device
, port_num
);
235 lt
= rdma_node_get_transport(device
->node_type
);
236 if (lt
== RDMA_TRANSPORT_IB
)
237 return IB_LINK_LAYER_INFINIBAND
;
239 return IB_LINK_LAYER_ETHERNET
;
241 EXPORT_SYMBOL(rdma_port_get_link_layer
);
243 /* Protection domains */
246 * ib_alloc_pd - Allocates an unused protection domain.
247 * @device: The device on which to allocate the protection domain.
248 * @flags: protection domain flags
249 * @caller: caller's build-time module name
251 * A protection domain object provides an association between QPs, shared
252 * receive queues, address handles, memory regions, and memory windows.
254 * Every PD has a local_dma_lkey which can be used as the lkey value for local
257 struct ib_pd
*__ib_alloc_pd(struct ib_device
*device
, unsigned int flags
,
261 int mr_access_flags
= 0;
264 pd
= rdma_zalloc_drv_obj(device
, ib_pd
);
266 return ERR_PTR(-ENOMEM
);
270 pd
->__internal_mr
= NULL
;
271 atomic_set(&pd
->usecnt
, 0);
274 pd
->res
.type
= RDMA_RESTRACK_PD
;
275 rdma_restrack_set_task(&pd
->res
, caller
);
277 ret
= device
->ops
.alloc_pd(pd
, NULL
);
282 rdma_restrack_kadd(&pd
->res
);
284 if (device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
)
285 pd
->local_dma_lkey
= device
->local_dma_lkey
;
287 mr_access_flags
|= IB_ACCESS_LOCAL_WRITE
;
289 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
) {
290 pr_warn("%s: enabling unsafe global rkey\n", caller
);
291 mr_access_flags
|= IB_ACCESS_REMOTE_READ
| IB_ACCESS_REMOTE_WRITE
;
294 if (mr_access_flags
) {
297 mr
= pd
->device
->ops
.get_dma_mr(pd
, mr_access_flags
);
303 mr
->device
= pd
->device
;
305 mr
->type
= IB_MR_TYPE_DMA
;
307 mr
->need_inval
= false;
309 pd
->__internal_mr
= mr
;
311 if (!(device
->attrs
.device_cap_flags
& IB_DEVICE_LOCAL_DMA_LKEY
))
312 pd
->local_dma_lkey
= pd
->__internal_mr
->lkey
;
314 if (flags
& IB_PD_UNSAFE_GLOBAL_RKEY
)
315 pd
->unsafe_global_rkey
= pd
->__internal_mr
->rkey
;
320 EXPORT_SYMBOL(__ib_alloc_pd
);
323 * ib_dealloc_pd_user - Deallocates a protection domain.
324 * @pd: The protection domain to deallocate.
325 * @udata: Valid user data or NULL for kernel object
327 * It is an error to call this function while any resources in the pd still
328 * exist. The caller is responsible to synchronously destroy them and
329 * guarantee no new allocations will happen.
331 void ib_dealloc_pd_user(struct ib_pd
*pd
, struct ib_udata
*udata
)
335 if (pd
->__internal_mr
) {
336 ret
= pd
->device
->ops
.dereg_mr(pd
->__internal_mr
, NULL
);
338 pd
->__internal_mr
= NULL
;
341 /* uverbs manipulates usecnt with proper locking, while the kabi
342 requires the caller to guarantee we can't race here. */
343 WARN_ON(atomic_read(&pd
->usecnt
));
345 rdma_restrack_del(&pd
->res
);
346 pd
->device
->ops
.dealloc_pd(pd
, udata
);
349 EXPORT_SYMBOL(ib_dealloc_pd_user
);
351 /* Address handles */
354 * rdma_copy_ah_attr - Copy rdma ah attribute from source to destination.
355 * @dest: Pointer to destination ah_attr. Contents of the destination
356 * pointer is assumed to be invalid and attribute are overwritten.
357 * @src: Pointer to source ah_attr.
359 void rdma_copy_ah_attr(struct rdma_ah_attr
*dest
,
360 const struct rdma_ah_attr
*src
)
363 if (dest
->grh
.sgid_attr
)
364 rdma_hold_gid_attr(dest
->grh
.sgid_attr
);
366 EXPORT_SYMBOL(rdma_copy_ah_attr
);
369 * rdma_replace_ah_attr - Replace valid ah_attr with new new one.
370 * @old: Pointer to existing ah_attr which needs to be replaced.
371 * old is assumed to be valid or zero'd
372 * @new: Pointer to the new ah_attr.
374 * rdma_replace_ah_attr() first releases any reference in the old ah_attr if
375 * old the ah_attr is valid; after that it copies the new attribute and holds
376 * the reference to the replaced ah_attr.
378 void rdma_replace_ah_attr(struct rdma_ah_attr
*old
,
379 const struct rdma_ah_attr
*new)
381 rdma_destroy_ah_attr(old
);
383 if (old
->grh
.sgid_attr
)
384 rdma_hold_gid_attr(old
->grh
.sgid_attr
);
386 EXPORT_SYMBOL(rdma_replace_ah_attr
);
389 * rdma_move_ah_attr - Move ah_attr pointed by source to destination.
390 * @dest: Pointer to destination ah_attr to copy to.
391 * dest is assumed to be valid or zero'd
392 * @src: Pointer to the new ah_attr.
394 * rdma_move_ah_attr() first releases any reference in the destination ah_attr
395 * if it is valid. This also transfers ownership of internal references from
396 * src to dest, making src invalid in the process. No new reference of the src
399 void rdma_move_ah_attr(struct rdma_ah_attr
*dest
, struct rdma_ah_attr
*src
)
401 rdma_destroy_ah_attr(dest
);
403 src
->grh
.sgid_attr
= NULL
;
405 EXPORT_SYMBOL(rdma_move_ah_attr
);
408 * Validate that the rdma_ah_attr is valid for the device before passing it
411 static int rdma_check_ah_attr(struct ib_device
*device
,
412 struct rdma_ah_attr
*ah_attr
)
414 if (!rdma_is_port_valid(device
, ah_attr
->port_num
))
417 if ((rdma_is_grh_required(device
, ah_attr
->port_num
) ||
418 ah_attr
->type
== RDMA_AH_ATTR_TYPE_ROCE
) &&
419 !(ah_attr
->ah_flags
& IB_AH_GRH
))
422 if (ah_attr
->grh
.sgid_attr
) {
424 * Make sure the passed sgid_attr is consistent with the
427 if (ah_attr
->grh
.sgid_attr
->index
!= ah_attr
->grh
.sgid_index
||
428 ah_attr
->grh
.sgid_attr
->port_num
!= ah_attr
->port_num
)
435 * If the ah requires a GRH then ensure that sgid_attr pointer is filled in.
436 * On success the caller is responsible to call rdma_unfill_sgid_attr().
438 static int rdma_fill_sgid_attr(struct ib_device
*device
,
439 struct rdma_ah_attr
*ah_attr
,
440 const struct ib_gid_attr
**old_sgid_attr
)
442 const struct ib_gid_attr
*sgid_attr
;
443 struct ib_global_route
*grh
;
446 *old_sgid_attr
= ah_attr
->grh
.sgid_attr
;
448 ret
= rdma_check_ah_attr(device
, ah_attr
);
452 if (!(ah_attr
->ah_flags
& IB_AH_GRH
))
455 grh
= rdma_ah_retrieve_grh(ah_attr
);
460 rdma_get_gid_attr(device
, ah_attr
->port_num
, grh
->sgid_index
);
461 if (IS_ERR(sgid_attr
))
462 return PTR_ERR(sgid_attr
);
464 /* Move ownerhip of the kref into the ah_attr */
465 grh
->sgid_attr
= sgid_attr
;
469 static void rdma_unfill_sgid_attr(struct rdma_ah_attr
*ah_attr
,
470 const struct ib_gid_attr
*old_sgid_attr
)
473 * Fill didn't change anything, the caller retains ownership of
476 if (ah_attr
->grh
.sgid_attr
== old_sgid_attr
)
480 * Otherwise, we need to undo what rdma_fill_sgid_attr so the caller
481 * doesn't see any change in the rdma_ah_attr. If we get here
482 * old_sgid_attr is NULL.
484 rdma_destroy_ah_attr(ah_attr
);
487 static const struct ib_gid_attr
*
488 rdma_update_sgid_attr(struct rdma_ah_attr
*ah_attr
,
489 const struct ib_gid_attr
*old_attr
)
492 rdma_put_gid_attr(old_attr
);
493 if (ah_attr
->ah_flags
& IB_AH_GRH
) {
494 rdma_hold_gid_attr(ah_attr
->grh
.sgid_attr
);
495 return ah_attr
->grh
.sgid_attr
;
500 static struct ib_ah
*_rdma_create_ah(struct ib_pd
*pd
,
501 struct rdma_ah_attr
*ah_attr
,
503 struct ib_udata
*udata
)
505 struct ib_device
*device
= pd
->device
;
509 might_sleep_if(flags
& RDMA_CREATE_AH_SLEEPABLE
);
511 if (!device
->ops
.create_ah
)
512 return ERR_PTR(-EOPNOTSUPP
);
514 ah
= rdma_zalloc_drv_obj_gfp(
516 (flags
& RDMA_CREATE_AH_SLEEPABLE
) ? GFP_KERNEL
: GFP_ATOMIC
);
518 return ERR_PTR(-ENOMEM
);
522 ah
->type
= ah_attr
->type
;
523 ah
->sgid_attr
= rdma_update_sgid_attr(ah_attr
, NULL
);
525 ret
= device
->ops
.create_ah(ah
, ah_attr
, flags
, udata
);
531 atomic_inc(&pd
->usecnt
);
536 * rdma_create_ah - Creates an address handle for the
537 * given address vector.
538 * @pd: The protection domain associated with the address handle.
539 * @ah_attr: The attributes of the address vector.
540 * @flags: Create address handle flags (see enum rdma_create_ah_flags).
542 * It returns 0 on success and returns appropriate error code on error.
543 * The address handle is used to reference a local or global destination
544 * in all UD QP post sends.
546 struct ib_ah
*rdma_create_ah(struct ib_pd
*pd
, struct rdma_ah_attr
*ah_attr
,
549 const struct ib_gid_attr
*old_sgid_attr
;
553 ret
= rdma_fill_sgid_attr(pd
->device
, ah_attr
, &old_sgid_attr
);
557 ah
= _rdma_create_ah(pd
, ah_attr
, flags
, NULL
);
559 rdma_unfill_sgid_attr(ah_attr
, old_sgid_attr
);
562 EXPORT_SYMBOL(rdma_create_ah
);
565 * rdma_create_user_ah - Creates an address handle for the
566 * given address vector.
567 * It resolves destination mac address for ah attribute of RoCE type.
568 * @pd: The protection domain associated with the address handle.
569 * @ah_attr: The attributes of the address vector.
570 * @udata: pointer to user's input output buffer information need by
573 * It returns 0 on success and returns appropriate error code on error.
574 * The address handle is used to reference a local or global destination
575 * in all UD QP post sends.
577 struct ib_ah
*rdma_create_user_ah(struct ib_pd
*pd
,
578 struct rdma_ah_attr
*ah_attr
,
579 struct ib_udata
*udata
)
581 const struct ib_gid_attr
*old_sgid_attr
;
585 err
= rdma_fill_sgid_attr(pd
->device
, ah_attr
, &old_sgid_attr
);
589 if (ah_attr
->type
== RDMA_AH_ATTR_TYPE_ROCE
) {
590 err
= ib_resolve_eth_dmac(pd
->device
, ah_attr
);
597 ah
= _rdma_create_ah(pd
, ah_attr
, RDMA_CREATE_AH_SLEEPABLE
, udata
);
600 rdma_unfill_sgid_attr(ah_attr
, old_sgid_attr
);
603 EXPORT_SYMBOL(rdma_create_user_ah
);
605 int ib_get_rdma_header_version(const union rdma_network_hdr
*hdr
)
607 const struct iphdr
*ip4h
= (struct iphdr
*)&hdr
->roce4grh
;
608 struct iphdr ip4h_checked
;
609 const struct ipv6hdr
*ip6h
= (struct ipv6hdr
*)&hdr
->ibgrh
;
611 /* If it's IPv6, the version must be 6, otherwise, the first
612 * 20 bytes (before the IPv4 header) are garbled.
614 if (ip6h
->version
!= 6)
615 return (ip4h
->version
== 4) ? 4 : 0;
616 /* version may be 6 or 4 because the first 20 bytes could be garbled */
618 /* RoCE v2 requires no options, thus header length
625 * We can't write on scattered buffers so we need to copy to
628 memcpy(&ip4h_checked
, ip4h
, sizeof(ip4h_checked
));
629 ip4h_checked
.check
= 0;
630 ip4h_checked
.check
= ip_fast_csum((u8
*)&ip4h_checked
, 5);
631 /* if IPv4 header checksum is OK, believe it */
632 if (ip4h
->check
== ip4h_checked
.check
)
636 EXPORT_SYMBOL(ib_get_rdma_header_version
);
638 static enum rdma_network_type
ib_get_net_type_by_grh(struct ib_device
*device
,
640 const struct ib_grh
*grh
)
644 if (rdma_protocol_ib(device
, port_num
))
645 return RDMA_NETWORK_IB
;
647 grh_version
= ib_get_rdma_header_version((union rdma_network_hdr
*)grh
);
649 if (grh_version
== 4)
650 return RDMA_NETWORK_IPV4
;
652 if (grh
->next_hdr
== IPPROTO_UDP
)
653 return RDMA_NETWORK_IPV6
;
655 return RDMA_NETWORK_ROCE_V1
;
658 struct find_gid_index_context
{
660 enum ib_gid_type gid_type
;
663 static bool find_gid_index(const union ib_gid
*gid
,
664 const struct ib_gid_attr
*gid_attr
,
667 struct find_gid_index_context
*ctx
= context
;
668 u16 vlan_id
= 0xffff;
671 if (ctx
->gid_type
!= gid_attr
->gid_type
)
674 ret
= rdma_read_gid_l2_fields(gid_attr
, &vlan_id
, NULL
);
678 return ctx
->vlan_id
== vlan_id
;
681 static const struct ib_gid_attr
*
682 get_sgid_attr_from_eth(struct ib_device
*device
, u8 port_num
,
683 u16 vlan_id
, const union ib_gid
*sgid
,
684 enum ib_gid_type gid_type
)
686 struct find_gid_index_context context
= {.vlan_id
= vlan_id
,
687 .gid_type
= gid_type
};
689 return rdma_find_gid_by_filter(device
, sgid
, port_num
, find_gid_index
,
693 int ib_get_gids_from_rdma_hdr(const union rdma_network_hdr
*hdr
,
694 enum rdma_network_type net_type
,
695 union ib_gid
*sgid
, union ib_gid
*dgid
)
697 struct sockaddr_in src_in
;
698 struct sockaddr_in dst_in
;
699 __be32 src_saddr
, dst_saddr
;
704 if (net_type
== RDMA_NETWORK_IPV4
) {
705 memcpy(&src_in
.sin_addr
.s_addr
,
706 &hdr
->roce4grh
.saddr
, 4);
707 memcpy(&dst_in
.sin_addr
.s_addr
,
708 &hdr
->roce4grh
.daddr
, 4);
709 src_saddr
= src_in
.sin_addr
.s_addr
;
710 dst_saddr
= dst_in
.sin_addr
.s_addr
;
711 ipv6_addr_set_v4mapped(src_saddr
,
712 (struct in6_addr
*)sgid
);
713 ipv6_addr_set_v4mapped(dst_saddr
,
714 (struct in6_addr
*)dgid
);
716 } else if (net_type
== RDMA_NETWORK_IPV6
||
717 net_type
== RDMA_NETWORK_IB
) {
718 *dgid
= hdr
->ibgrh
.dgid
;
719 *sgid
= hdr
->ibgrh
.sgid
;
725 EXPORT_SYMBOL(ib_get_gids_from_rdma_hdr
);
727 /* Resolve destination mac address and hop limit for unicast destination
728 * GID entry, considering the source GID entry as well.
729 * ah_attribute must have have valid port_num, sgid_index.
731 static int ib_resolve_unicast_gid_dmac(struct ib_device
*device
,
732 struct rdma_ah_attr
*ah_attr
)
734 struct ib_global_route
*grh
= rdma_ah_retrieve_grh(ah_attr
);
735 const struct ib_gid_attr
*sgid_attr
= grh
->sgid_attr
;
736 int hop_limit
= 0xff;
739 /* If destination is link local and source GID is RoCEv1,
740 * IP stack is not used.
742 if (rdma_link_local_addr((struct in6_addr
*)grh
->dgid
.raw
) &&
743 sgid_attr
->gid_type
== IB_GID_TYPE_ROCE
) {
744 rdma_get_ll_mac((struct in6_addr
*)grh
->dgid
.raw
,
749 ret
= rdma_addr_find_l2_eth_by_grh(&sgid_attr
->gid
, &grh
->dgid
,
751 sgid_attr
, &hop_limit
);
753 grh
->hop_limit
= hop_limit
;
758 * This function initializes address handle attributes from the incoming packet.
759 * Incoming packet has dgid of the receiver node on which this code is
760 * getting executed and, sgid contains the GID of the sender.
762 * When resolving mac address of destination, the arrived dgid is used
763 * as sgid and, sgid is used as dgid because sgid contains destinations
764 * GID whom to respond to.
766 * On success the caller is responsible to call rdma_destroy_ah_attr on the
769 int ib_init_ah_attr_from_wc(struct ib_device
*device
, u8 port_num
,
770 const struct ib_wc
*wc
, const struct ib_grh
*grh
,
771 struct rdma_ah_attr
*ah_attr
)
775 enum rdma_network_type net_type
= RDMA_NETWORK_IB
;
776 enum ib_gid_type gid_type
= IB_GID_TYPE_IB
;
777 const struct ib_gid_attr
*sgid_attr
;
784 memset(ah_attr
, 0, sizeof *ah_attr
);
785 ah_attr
->type
= rdma_ah_find_type(device
, port_num
);
786 if (rdma_cap_eth_ah(device
, port_num
)) {
787 if (wc
->wc_flags
& IB_WC_WITH_NETWORK_HDR_TYPE
)
788 net_type
= wc
->network_hdr_type
;
790 net_type
= ib_get_net_type_by_grh(device
, port_num
, grh
);
791 gid_type
= ib_network_to_gid_type(net_type
);
793 ret
= ib_get_gids_from_rdma_hdr((union rdma_network_hdr
*)grh
, net_type
,
798 rdma_ah_set_sl(ah_attr
, wc
->sl
);
799 rdma_ah_set_port_num(ah_attr
, port_num
);
801 if (rdma_protocol_roce(device
, port_num
)) {
802 u16 vlan_id
= wc
->wc_flags
& IB_WC_WITH_VLAN
?
803 wc
->vlan_id
: 0xffff;
805 if (!(wc
->wc_flags
& IB_WC_GRH
))
808 sgid_attr
= get_sgid_attr_from_eth(device
, port_num
,
811 if (IS_ERR(sgid_attr
))
812 return PTR_ERR(sgid_attr
);
814 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
815 rdma_move_grh_sgid_attr(ah_attr
,
817 flow_class
& 0xFFFFF,
819 (flow_class
>> 20) & 0xFF,
822 ret
= ib_resolve_unicast_gid_dmac(device
, ah_attr
);
824 rdma_destroy_ah_attr(ah_attr
);
828 rdma_ah_set_dlid(ah_attr
, wc
->slid
);
829 rdma_ah_set_path_bits(ah_attr
, wc
->dlid_path_bits
);
831 if ((wc
->wc_flags
& IB_WC_GRH
) == 0)
834 if (dgid
.global
.interface_id
!=
835 cpu_to_be64(IB_SA_WELL_KNOWN_GUID
)) {
836 sgid_attr
= rdma_find_gid_by_port(
837 device
, &dgid
, IB_GID_TYPE_IB
, port_num
, NULL
);
839 sgid_attr
= rdma_get_gid_attr(device
, port_num
, 0);
841 if (IS_ERR(sgid_attr
))
842 return PTR_ERR(sgid_attr
);
843 flow_class
= be32_to_cpu(grh
->version_tclass_flow
);
844 rdma_move_grh_sgid_attr(ah_attr
,
846 flow_class
& 0xFFFFF,
848 (flow_class
>> 20) & 0xFF,
854 EXPORT_SYMBOL(ib_init_ah_attr_from_wc
);
857 * rdma_move_grh_sgid_attr - Sets the sgid attribute of GRH, taking ownership
860 * @attr: Pointer to AH attribute structure
861 * @dgid: Destination GID
862 * @flow_label: Flow label
863 * @hop_limit: Hop limit
864 * @traffic_class: traffic class
865 * @sgid_attr: Pointer to SGID attribute
867 * This takes ownership of the sgid_attr reference. The caller must ensure
868 * rdma_destroy_ah_attr() is called before destroying the rdma_ah_attr after
869 * calling this function.
871 void rdma_move_grh_sgid_attr(struct rdma_ah_attr
*attr
, union ib_gid
*dgid
,
872 u32 flow_label
, u8 hop_limit
, u8 traffic_class
,
873 const struct ib_gid_attr
*sgid_attr
)
875 rdma_ah_set_grh(attr
, dgid
, flow_label
, sgid_attr
->index
, hop_limit
,
877 attr
->grh
.sgid_attr
= sgid_attr
;
879 EXPORT_SYMBOL(rdma_move_grh_sgid_attr
);
882 * rdma_destroy_ah_attr - Release reference to SGID attribute of
884 * @ah_attr: Pointer to ah attribute
886 * Release reference to the SGID attribute of the ah attribute if it is
887 * non NULL. It is safe to call this multiple times, and safe to call it on
888 * a zero initialized ah_attr.
890 void rdma_destroy_ah_attr(struct rdma_ah_attr
*ah_attr
)
892 if (ah_attr
->grh
.sgid_attr
) {
893 rdma_put_gid_attr(ah_attr
->grh
.sgid_attr
);
894 ah_attr
->grh
.sgid_attr
= NULL
;
897 EXPORT_SYMBOL(rdma_destroy_ah_attr
);
899 struct ib_ah
*ib_create_ah_from_wc(struct ib_pd
*pd
, const struct ib_wc
*wc
,
900 const struct ib_grh
*grh
, u8 port_num
)
902 struct rdma_ah_attr ah_attr
;
906 ret
= ib_init_ah_attr_from_wc(pd
->device
, port_num
, wc
, grh
, &ah_attr
);
910 ah
= rdma_create_ah(pd
, &ah_attr
, RDMA_CREATE_AH_SLEEPABLE
);
912 rdma_destroy_ah_attr(&ah_attr
);
915 EXPORT_SYMBOL(ib_create_ah_from_wc
);
917 int rdma_modify_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
919 const struct ib_gid_attr
*old_sgid_attr
;
922 if (ah
->type
!= ah_attr
->type
)
925 ret
= rdma_fill_sgid_attr(ah
->device
, ah_attr
, &old_sgid_attr
);
929 ret
= ah
->device
->ops
.modify_ah
?
930 ah
->device
->ops
.modify_ah(ah
, ah_attr
) :
933 ah
->sgid_attr
= rdma_update_sgid_attr(ah_attr
, ah
->sgid_attr
);
934 rdma_unfill_sgid_attr(ah_attr
, old_sgid_attr
);
937 EXPORT_SYMBOL(rdma_modify_ah
);
939 int rdma_query_ah(struct ib_ah
*ah
, struct rdma_ah_attr
*ah_attr
)
941 ah_attr
->grh
.sgid_attr
= NULL
;
943 return ah
->device
->ops
.query_ah
?
944 ah
->device
->ops
.query_ah(ah
, ah_attr
) :
947 EXPORT_SYMBOL(rdma_query_ah
);
949 int rdma_destroy_ah_user(struct ib_ah
*ah
, u32 flags
, struct ib_udata
*udata
)
951 const struct ib_gid_attr
*sgid_attr
= ah
->sgid_attr
;
954 might_sleep_if(flags
& RDMA_DESTROY_AH_SLEEPABLE
);
958 ah
->device
->ops
.destroy_ah(ah
, flags
);
959 atomic_dec(&pd
->usecnt
);
961 rdma_put_gid_attr(sgid_attr
);
966 EXPORT_SYMBOL(rdma_destroy_ah_user
);
968 /* Shared receive queues */
970 struct ib_srq
*ib_create_srq(struct ib_pd
*pd
,
971 struct ib_srq_init_attr
*srq_init_attr
)
976 if (!pd
->device
->ops
.create_srq
)
977 return ERR_PTR(-EOPNOTSUPP
);
979 srq
= rdma_zalloc_drv_obj(pd
->device
, ib_srq
);
981 return ERR_PTR(-ENOMEM
);
983 srq
->device
= pd
->device
;
985 srq
->event_handler
= srq_init_attr
->event_handler
;
986 srq
->srq_context
= srq_init_attr
->srq_context
;
987 srq
->srq_type
= srq_init_attr
->srq_type
;
989 if (ib_srq_has_cq(srq
->srq_type
)) {
990 srq
->ext
.cq
= srq_init_attr
->ext
.cq
;
991 atomic_inc(&srq
->ext
.cq
->usecnt
);
993 if (srq
->srq_type
== IB_SRQT_XRC
) {
994 srq
->ext
.xrc
.xrcd
= srq_init_attr
->ext
.xrc
.xrcd
;
995 atomic_inc(&srq
->ext
.xrc
.xrcd
->usecnt
);
997 atomic_inc(&pd
->usecnt
);
999 ret
= pd
->device
->ops
.create_srq(srq
, srq_init_attr
, NULL
);
1001 atomic_dec(&srq
->pd
->usecnt
);
1002 if (srq
->srq_type
== IB_SRQT_XRC
)
1003 atomic_dec(&srq
->ext
.xrc
.xrcd
->usecnt
);
1004 if (ib_srq_has_cq(srq
->srq_type
))
1005 atomic_dec(&srq
->ext
.cq
->usecnt
);
1007 return ERR_PTR(ret
);
1012 EXPORT_SYMBOL(ib_create_srq
);
1014 int ib_modify_srq(struct ib_srq
*srq
,
1015 struct ib_srq_attr
*srq_attr
,
1016 enum ib_srq_attr_mask srq_attr_mask
)
1018 return srq
->device
->ops
.modify_srq
?
1019 srq
->device
->ops
.modify_srq(srq
, srq_attr
, srq_attr_mask
,
1020 NULL
) : -EOPNOTSUPP
;
1022 EXPORT_SYMBOL(ib_modify_srq
);
1024 int ib_query_srq(struct ib_srq
*srq
,
1025 struct ib_srq_attr
*srq_attr
)
1027 return srq
->device
->ops
.query_srq
?
1028 srq
->device
->ops
.query_srq(srq
, srq_attr
) : -EOPNOTSUPP
;
1030 EXPORT_SYMBOL(ib_query_srq
);
1032 int ib_destroy_srq_user(struct ib_srq
*srq
, struct ib_udata
*udata
)
1034 if (atomic_read(&srq
->usecnt
))
1037 srq
->device
->ops
.destroy_srq(srq
, udata
);
1039 atomic_dec(&srq
->pd
->usecnt
);
1040 if (srq
->srq_type
== IB_SRQT_XRC
)
1041 atomic_dec(&srq
->ext
.xrc
.xrcd
->usecnt
);
1042 if (ib_srq_has_cq(srq
->srq_type
))
1043 atomic_dec(&srq
->ext
.cq
->usecnt
);
1048 EXPORT_SYMBOL(ib_destroy_srq_user
);
1052 static void __ib_shared_qp_event_handler(struct ib_event
*event
, void *context
)
1054 struct ib_qp
*qp
= context
;
1055 unsigned long flags
;
1057 spin_lock_irqsave(&qp
->device
->qp_open_list_lock
, flags
);
1058 list_for_each_entry(event
->element
.qp
, &qp
->open_list
, open_list
)
1059 if (event
->element
.qp
->event_handler
)
1060 event
->element
.qp
->event_handler(event
, event
->element
.qp
->qp_context
);
1061 spin_unlock_irqrestore(&qp
->device
->qp_open_list_lock
, flags
);
1064 static void __ib_insert_xrcd_qp(struct ib_xrcd
*xrcd
, struct ib_qp
*qp
)
1066 mutex_lock(&xrcd
->tgt_qp_mutex
);
1067 list_add(&qp
->xrcd_list
, &xrcd
->tgt_qp_list
);
1068 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1071 static struct ib_qp
*__ib_open_qp(struct ib_qp
*real_qp
,
1072 void (*event_handler
)(struct ib_event
*, void *),
1076 unsigned long flags
;
1079 qp
= kzalloc(sizeof *qp
, GFP_KERNEL
);
1081 return ERR_PTR(-ENOMEM
);
1083 qp
->real_qp
= real_qp
;
1084 err
= ib_open_shared_qp_security(qp
, real_qp
->device
);
1087 return ERR_PTR(err
);
1090 qp
->real_qp
= real_qp
;
1091 atomic_inc(&real_qp
->usecnt
);
1092 qp
->device
= real_qp
->device
;
1093 qp
->event_handler
= event_handler
;
1094 qp
->qp_context
= qp_context
;
1095 qp
->qp_num
= real_qp
->qp_num
;
1096 qp
->qp_type
= real_qp
->qp_type
;
1098 spin_lock_irqsave(&real_qp
->device
->qp_open_list_lock
, flags
);
1099 list_add(&qp
->open_list
, &real_qp
->open_list
);
1100 spin_unlock_irqrestore(&real_qp
->device
->qp_open_list_lock
, flags
);
1105 struct ib_qp
*ib_open_qp(struct ib_xrcd
*xrcd
,
1106 struct ib_qp_open_attr
*qp_open_attr
)
1108 struct ib_qp
*qp
, *real_qp
;
1110 if (qp_open_attr
->qp_type
!= IB_QPT_XRC_TGT
)
1111 return ERR_PTR(-EINVAL
);
1113 qp
= ERR_PTR(-EINVAL
);
1114 mutex_lock(&xrcd
->tgt_qp_mutex
);
1115 list_for_each_entry(real_qp
, &xrcd
->tgt_qp_list
, xrcd_list
) {
1116 if (real_qp
->qp_num
== qp_open_attr
->qp_num
) {
1117 qp
= __ib_open_qp(real_qp
, qp_open_attr
->event_handler
,
1118 qp_open_attr
->qp_context
);
1122 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1125 EXPORT_SYMBOL(ib_open_qp
);
1127 static struct ib_qp
*create_xrc_qp_user(struct ib_qp
*qp
,
1128 struct ib_qp_init_attr
*qp_init_attr
)
1130 struct ib_qp
*real_qp
= qp
;
1132 qp
->event_handler
= __ib_shared_qp_event_handler
;
1133 qp
->qp_context
= qp
;
1135 qp
->send_cq
= qp
->recv_cq
= NULL
;
1137 qp
->xrcd
= qp_init_attr
->xrcd
;
1138 atomic_inc(&qp_init_attr
->xrcd
->usecnt
);
1139 INIT_LIST_HEAD(&qp
->open_list
);
1141 qp
= __ib_open_qp(real_qp
, qp_init_attr
->event_handler
,
1142 qp_init_attr
->qp_context
);
1146 __ib_insert_xrcd_qp(qp_init_attr
->xrcd
, real_qp
);
1151 * ib_create_qp - Creates a kernel QP associated with the specified protection
1153 * @pd: The protection domain associated with the QP.
1154 * @qp_init_attr: A list of initial attributes required to create the
1155 * QP. If QP creation succeeds, then the attributes are updated to
1156 * the actual capabilities of the created QP.
1158 * NOTE: for user qp use ib_create_qp_user with valid udata!
1160 struct ib_qp
*ib_create_qp(struct ib_pd
*pd
,
1161 struct ib_qp_init_attr
*qp_init_attr
)
1163 struct ib_device
*device
= pd
? pd
->device
: qp_init_attr
->xrcd
->device
;
1167 if (qp_init_attr
->rwq_ind_tbl
&&
1168 (qp_init_attr
->recv_cq
||
1169 qp_init_attr
->srq
|| qp_init_attr
->cap
.max_recv_wr
||
1170 qp_init_attr
->cap
.max_recv_sge
))
1171 return ERR_PTR(-EINVAL
);
1173 if ((qp_init_attr
->create_flags
& IB_QP_CREATE_INTEGRITY_EN
) &&
1174 !(device
->attrs
.device_cap_flags
& IB_DEVICE_INTEGRITY_HANDOVER
))
1175 return ERR_PTR(-EINVAL
);
1178 * If the callers is using the RDMA API calculate the resources
1179 * needed for the RDMA READ/WRITE operations.
1181 * Note that these callers need to pass in a port number.
1183 if (qp_init_attr
->cap
.max_rdma_ctxs
)
1184 rdma_rw_init_qp(device
, qp_init_attr
);
1186 qp
= _ib_create_qp(device
, pd
, qp_init_attr
, NULL
, NULL
);
1190 ret
= ib_create_qp_security(qp
, device
);
1194 if (qp_init_attr
->qp_type
== IB_QPT_XRC_TGT
) {
1195 struct ib_qp
*xrc_qp
=
1196 create_xrc_qp_user(qp
, qp_init_attr
);
1198 if (IS_ERR(xrc_qp
)) {
1199 ret
= PTR_ERR(xrc_qp
);
1205 qp
->event_handler
= qp_init_attr
->event_handler
;
1206 qp
->qp_context
= qp_init_attr
->qp_context
;
1207 if (qp_init_attr
->qp_type
== IB_QPT_XRC_INI
) {
1211 qp
->recv_cq
= qp_init_attr
->recv_cq
;
1212 if (qp_init_attr
->recv_cq
)
1213 atomic_inc(&qp_init_attr
->recv_cq
->usecnt
);
1214 qp
->srq
= qp_init_attr
->srq
;
1216 atomic_inc(&qp_init_attr
->srq
->usecnt
);
1219 qp
->send_cq
= qp_init_attr
->send_cq
;
1222 atomic_inc(&pd
->usecnt
);
1223 if (qp_init_attr
->send_cq
)
1224 atomic_inc(&qp_init_attr
->send_cq
->usecnt
);
1225 if (qp_init_attr
->rwq_ind_tbl
)
1226 atomic_inc(&qp
->rwq_ind_tbl
->usecnt
);
1228 if (qp_init_attr
->cap
.max_rdma_ctxs
) {
1229 ret
= rdma_rw_init_mrs(qp
, qp_init_attr
);
1235 * Note: all hw drivers guarantee that max_send_sge is lower than
1236 * the device RDMA WRITE SGE limit but not all hw drivers ensure that
1237 * max_send_sge <= max_sge_rd.
1239 qp
->max_write_sge
= qp_init_attr
->cap
.max_send_sge
;
1240 qp
->max_read_sge
= min_t(u32
, qp_init_attr
->cap
.max_send_sge
,
1241 device
->attrs
.max_sge_rd
);
1242 if (qp_init_attr
->create_flags
& IB_QP_CREATE_INTEGRITY_EN
)
1243 qp
->integrity_en
= true;
1249 return ERR_PTR(ret
);
1252 EXPORT_SYMBOL(ib_create_qp
);
1254 static const struct {
1256 enum ib_qp_attr_mask req_param
[IB_QPT_MAX
];
1257 enum ib_qp_attr_mask opt_param
[IB_QPT_MAX
];
1258 } qp_state_table
[IB_QPS_ERR
+ 1][IB_QPS_ERR
+ 1] = {
1260 [IB_QPS_RESET
] = { .valid
= 1 },
1264 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1267 [IB_QPT_RAW_PACKET
] = IB_QP_PORT
,
1268 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
1270 IB_QP_ACCESS_FLAGS
),
1271 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
1273 IB_QP_ACCESS_FLAGS
),
1274 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
1276 IB_QP_ACCESS_FLAGS
),
1277 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
1279 IB_QP_ACCESS_FLAGS
),
1280 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1282 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1288 [IB_QPS_RESET
] = { .valid
= 1 },
1289 [IB_QPS_ERR
] = { .valid
= 1 },
1293 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1296 [IB_QPT_UC
] = (IB_QP_PKEY_INDEX
|
1298 IB_QP_ACCESS_FLAGS
),
1299 [IB_QPT_RC
] = (IB_QP_PKEY_INDEX
|
1301 IB_QP_ACCESS_FLAGS
),
1302 [IB_QPT_XRC_INI
] = (IB_QP_PKEY_INDEX
|
1304 IB_QP_ACCESS_FLAGS
),
1305 [IB_QPT_XRC_TGT
] = (IB_QP_PKEY_INDEX
|
1307 IB_QP_ACCESS_FLAGS
),
1308 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1310 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1317 [IB_QPT_UC
] = (IB_QP_AV
|
1321 [IB_QPT_RC
] = (IB_QP_AV
|
1325 IB_QP_MAX_DEST_RD_ATOMIC
|
1326 IB_QP_MIN_RNR_TIMER
),
1327 [IB_QPT_XRC_INI
] = (IB_QP_AV
|
1331 [IB_QPT_XRC_TGT
] = (IB_QP_AV
|
1335 IB_QP_MAX_DEST_RD_ATOMIC
|
1336 IB_QP_MIN_RNR_TIMER
),
1339 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1341 [IB_QPT_UC
] = (IB_QP_ALT_PATH
|
1342 IB_QP_ACCESS_FLAGS
|
1344 [IB_QPT_RC
] = (IB_QP_ALT_PATH
|
1345 IB_QP_ACCESS_FLAGS
|
1347 [IB_QPT_XRC_INI
] = (IB_QP_ALT_PATH
|
1348 IB_QP_ACCESS_FLAGS
|
1350 [IB_QPT_XRC_TGT
] = (IB_QP_ALT_PATH
|
1351 IB_QP_ACCESS_FLAGS
|
1353 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1355 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1361 [IB_QPS_RESET
] = { .valid
= 1 },
1362 [IB_QPS_ERR
] = { .valid
= 1 },
1366 [IB_QPT_UD
] = IB_QP_SQ_PSN
,
1367 [IB_QPT_UC
] = IB_QP_SQ_PSN
,
1368 [IB_QPT_RC
] = (IB_QP_TIMEOUT
|
1372 IB_QP_MAX_QP_RD_ATOMIC
),
1373 [IB_QPT_XRC_INI
] = (IB_QP_TIMEOUT
|
1377 IB_QP_MAX_QP_RD_ATOMIC
),
1378 [IB_QPT_XRC_TGT
] = (IB_QP_TIMEOUT
|
1380 [IB_QPT_SMI
] = IB_QP_SQ_PSN
,
1381 [IB_QPT_GSI
] = IB_QP_SQ_PSN
,
1384 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1386 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1388 IB_QP_ACCESS_FLAGS
|
1389 IB_QP_PATH_MIG_STATE
),
1390 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1392 IB_QP_ACCESS_FLAGS
|
1393 IB_QP_MIN_RNR_TIMER
|
1394 IB_QP_PATH_MIG_STATE
),
1395 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1397 IB_QP_ACCESS_FLAGS
|
1398 IB_QP_PATH_MIG_STATE
),
1399 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1401 IB_QP_ACCESS_FLAGS
|
1402 IB_QP_MIN_RNR_TIMER
|
1403 IB_QP_PATH_MIG_STATE
),
1404 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1406 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1408 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1413 [IB_QPS_RESET
] = { .valid
= 1 },
1414 [IB_QPS_ERR
] = { .valid
= 1 },
1418 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1420 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1421 IB_QP_ACCESS_FLAGS
|
1423 IB_QP_PATH_MIG_STATE
),
1424 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1425 IB_QP_ACCESS_FLAGS
|
1427 IB_QP_PATH_MIG_STATE
|
1428 IB_QP_MIN_RNR_TIMER
),
1429 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1430 IB_QP_ACCESS_FLAGS
|
1432 IB_QP_PATH_MIG_STATE
),
1433 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1434 IB_QP_ACCESS_FLAGS
|
1436 IB_QP_PATH_MIG_STATE
|
1437 IB_QP_MIN_RNR_TIMER
),
1438 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1440 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1442 [IB_QPT_RAW_PACKET
] = IB_QP_RATE_LIMIT
,
1448 [IB_QPT_UD
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1449 [IB_QPT_UC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1450 [IB_QPT_RC
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1451 [IB_QPT_XRC_INI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1452 [IB_QPT_XRC_TGT
] = IB_QP_EN_SQD_ASYNC_NOTIFY
, /* ??? */
1453 [IB_QPT_SMI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
,
1454 [IB_QPT_GSI
] = IB_QP_EN_SQD_ASYNC_NOTIFY
1459 [IB_QPS_RESET
] = { .valid
= 1 },
1460 [IB_QPS_ERR
] = { .valid
= 1 },
1464 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1466 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1468 IB_QP_ACCESS_FLAGS
|
1469 IB_QP_PATH_MIG_STATE
),
1470 [IB_QPT_RC
] = (IB_QP_CUR_STATE
|
1472 IB_QP_ACCESS_FLAGS
|
1473 IB_QP_MIN_RNR_TIMER
|
1474 IB_QP_PATH_MIG_STATE
),
1475 [IB_QPT_XRC_INI
] = (IB_QP_CUR_STATE
|
1477 IB_QP_ACCESS_FLAGS
|
1478 IB_QP_PATH_MIG_STATE
),
1479 [IB_QPT_XRC_TGT
] = (IB_QP_CUR_STATE
|
1481 IB_QP_ACCESS_FLAGS
|
1482 IB_QP_MIN_RNR_TIMER
|
1483 IB_QP_PATH_MIG_STATE
),
1484 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1486 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1493 [IB_QPT_UD
] = (IB_QP_PKEY_INDEX
|
1495 [IB_QPT_UC
] = (IB_QP_AV
|
1497 IB_QP_ACCESS_FLAGS
|
1499 IB_QP_PATH_MIG_STATE
),
1500 [IB_QPT_RC
] = (IB_QP_PORT
|
1505 IB_QP_MAX_QP_RD_ATOMIC
|
1506 IB_QP_MAX_DEST_RD_ATOMIC
|
1508 IB_QP_ACCESS_FLAGS
|
1510 IB_QP_MIN_RNR_TIMER
|
1511 IB_QP_PATH_MIG_STATE
),
1512 [IB_QPT_XRC_INI
] = (IB_QP_PORT
|
1517 IB_QP_MAX_QP_RD_ATOMIC
|
1519 IB_QP_ACCESS_FLAGS
|
1521 IB_QP_PATH_MIG_STATE
),
1522 [IB_QPT_XRC_TGT
] = (IB_QP_PORT
|
1525 IB_QP_MAX_DEST_RD_ATOMIC
|
1527 IB_QP_ACCESS_FLAGS
|
1529 IB_QP_MIN_RNR_TIMER
|
1530 IB_QP_PATH_MIG_STATE
),
1531 [IB_QPT_SMI
] = (IB_QP_PKEY_INDEX
|
1533 [IB_QPT_GSI
] = (IB_QP_PKEY_INDEX
|
1539 [IB_QPS_RESET
] = { .valid
= 1 },
1540 [IB_QPS_ERR
] = { .valid
= 1 },
1544 [IB_QPT_UD
] = (IB_QP_CUR_STATE
|
1546 [IB_QPT_UC
] = (IB_QP_CUR_STATE
|
1547 IB_QP_ACCESS_FLAGS
),
1548 [IB_QPT_SMI
] = (IB_QP_CUR_STATE
|
1550 [IB_QPT_GSI
] = (IB_QP_CUR_STATE
|
1556 [IB_QPS_RESET
] = { .valid
= 1 },
1557 [IB_QPS_ERR
] = { .valid
= 1 }
1561 bool ib_modify_qp_is_ok(enum ib_qp_state cur_state
, enum ib_qp_state next_state
,
1562 enum ib_qp_type type
, enum ib_qp_attr_mask mask
)
1564 enum ib_qp_attr_mask req_param
, opt_param
;
1566 if (mask
& IB_QP_CUR_STATE
&&
1567 cur_state
!= IB_QPS_RTR
&& cur_state
!= IB_QPS_RTS
&&
1568 cur_state
!= IB_QPS_SQD
&& cur_state
!= IB_QPS_SQE
)
1571 if (!qp_state_table
[cur_state
][next_state
].valid
)
1574 req_param
= qp_state_table
[cur_state
][next_state
].req_param
[type
];
1575 opt_param
= qp_state_table
[cur_state
][next_state
].opt_param
[type
];
1577 if ((mask
& req_param
) != req_param
)
1580 if (mask
& ~(req_param
| opt_param
| IB_QP_STATE
))
1585 EXPORT_SYMBOL(ib_modify_qp_is_ok
);
1588 * ib_resolve_eth_dmac - Resolve destination mac address
1589 * @device: Device to consider
1590 * @ah_attr: address handle attribute which describes the
1591 * source and destination parameters
1592 * ib_resolve_eth_dmac() resolves destination mac address and L3 hop limit It
1593 * returns 0 on success or appropriate error code. It initializes the
1594 * necessary ah_attr fields when call is successful.
1596 static int ib_resolve_eth_dmac(struct ib_device
*device
,
1597 struct rdma_ah_attr
*ah_attr
)
1601 if (rdma_is_multicast_addr((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
)) {
1602 if (ipv6_addr_v4mapped((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
)) {
1605 memcpy(&addr
, ah_attr
->grh
.dgid
.raw
+ 12, 4);
1606 ip_eth_mc_map(addr
, (char *)ah_attr
->roce
.dmac
);
1608 ipv6_eth_mc_map((struct in6_addr
*)ah_attr
->grh
.dgid
.raw
,
1609 (char *)ah_attr
->roce
.dmac
);
1612 ret
= ib_resolve_unicast_gid_dmac(device
, ah_attr
);
1617 static bool is_qp_type_connected(const struct ib_qp
*qp
)
1619 return (qp
->qp_type
== IB_QPT_UC
||
1620 qp
->qp_type
== IB_QPT_RC
||
1621 qp
->qp_type
== IB_QPT_XRC_INI
||
1622 qp
->qp_type
== IB_QPT_XRC_TGT
);
1626 * IB core internal function to perform QP attributes modification.
1628 static int _ib_modify_qp(struct ib_qp
*qp
, struct ib_qp_attr
*attr
,
1629 int attr_mask
, struct ib_udata
*udata
)
1631 u8 port
= attr_mask
& IB_QP_PORT
? attr
->port_num
: qp
->port
;
1632 const struct ib_gid_attr
*old_sgid_attr_av
;
1633 const struct ib_gid_attr
*old_sgid_attr_alt_av
;
1636 if (attr_mask
& IB_QP_AV
) {
1637 ret
= rdma_fill_sgid_attr(qp
->device
, &attr
->ah_attr
,
1642 if (attr_mask
& IB_QP_ALT_PATH
) {
1644 * FIXME: This does not track the migration state, so if the
1645 * user loads a new alternate path after the HW has migrated
1646 * from primary->alternate we will keep the wrong
1647 * references. This is OK for IB because the reference
1648 * counting does not serve any functional purpose.
1650 ret
= rdma_fill_sgid_attr(qp
->device
, &attr
->alt_ah_attr
,
1651 &old_sgid_attr_alt_av
);
1656 * Today the core code can only handle alternate paths and APM
1657 * for IB. Ban them in roce mode.
1659 if (!(rdma_protocol_ib(qp
->device
,
1660 attr
->alt_ah_attr
.port_num
) &&
1661 rdma_protocol_ib(qp
->device
, port
))) {
1668 * If the user provided the qp_attr then we have to resolve it. Kernel
1669 * users have to provide already resolved rdma_ah_attr's
1671 if (udata
&& (attr_mask
& IB_QP_AV
) &&
1672 attr
->ah_attr
.type
== RDMA_AH_ATTR_TYPE_ROCE
&&
1673 is_qp_type_connected(qp
)) {
1674 ret
= ib_resolve_eth_dmac(qp
->device
, &attr
->ah_attr
);
1679 if (rdma_ib_or_roce(qp
->device
, port
)) {
1680 if (attr_mask
& IB_QP_RQ_PSN
&& attr
->rq_psn
& ~0xffffff) {
1681 dev_warn(&qp
->device
->dev
,
1682 "%s rq_psn overflow, masking to 24 bits\n",
1684 attr
->rq_psn
&= 0xffffff;
1687 if (attr_mask
& IB_QP_SQ_PSN
&& attr
->sq_psn
& ~0xffffff) {
1688 dev_warn(&qp
->device
->dev
,
1689 " %s sq_psn overflow, masking to 24 bits\n",
1691 attr
->sq_psn
&= 0xffffff;
1696 * Bind this qp to a counter automatically based on the rdma counter
1697 * rules. This only set in RST2INIT with port specified
1699 if (!qp
->counter
&& (attr_mask
& IB_QP_PORT
) &&
1700 ((attr_mask
& IB_QP_STATE
) && attr
->qp_state
== IB_QPS_INIT
))
1701 rdma_counter_bind_qp_auto(qp
, attr
->port_num
);
1703 ret
= ib_security_modify_qp(qp
, attr
, attr_mask
, udata
);
1707 if (attr_mask
& IB_QP_PORT
)
1708 qp
->port
= attr
->port_num
;
1709 if (attr_mask
& IB_QP_AV
)
1711 rdma_update_sgid_attr(&attr
->ah_attr
, qp
->av_sgid_attr
);
1712 if (attr_mask
& IB_QP_ALT_PATH
)
1713 qp
->alt_path_sgid_attr
= rdma_update_sgid_attr(
1714 &attr
->alt_ah_attr
, qp
->alt_path_sgid_attr
);
1717 if (attr_mask
& IB_QP_ALT_PATH
)
1718 rdma_unfill_sgid_attr(&attr
->alt_ah_attr
, old_sgid_attr_alt_av
);
1720 if (attr_mask
& IB_QP_AV
)
1721 rdma_unfill_sgid_attr(&attr
->ah_attr
, old_sgid_attr_av
);
1726 * ib_modify_qp_with_udata - Modifies the attributes for the specified QP.
1727 * @ib_qp: The QP to modify.
1728 * @attr: On input, specifies the QP attributes to modify. On output,
1729 * the current values of selected QP attributes are returned.
1730 * @attr_mask: A bit-mask used to specify which attributes of the QP
1731 * are being modified.
1732 * @udata: pointer to user's input output buffer information
1733 * are being modified.
1734 * It returns 0 on success and returns appropriate error code on error.
1736 int ib_modify_qp_with_udata(struct ib_qp
*ib_qp
, struct ib_qp_attr
*attr
,
1737 int attr_mask
, struct ib_udata
*udata
)
1739 return _ib_modify_qp(ib_qp
->real_qp
, attr
, attr_mask
, udata
);
1741 EXPORT_SYMBOL(ib_modify_qp_with_udata
);
1743 int ib_get_eth_speed(struct ib_device
*dev
, u8 port_num
, u8
*speed
, u8
*width
)
1747 struct net_device
*netdev
;
1748 struct ethtool_link_ksettings lksettings
;
1750 if (rdma_port_get_link_layer(dev
, port_num
) != IB_LINK_LAYER_ETHERNET
)
1753 netdev
= ib_device_get_netdev(dev
, port_num
);
1758 rc
= __ethtool_get_link_ksettings(netdev
, &lksettings
);
1764 netdev_speed
= lksettings
.base
.speed
;
1766 netdev_speed
= SPEED_1000
;
1767 pr_warn("%s speed is unknown, defaulting to %d\n", netdev
->name
,
1771 if (netdev_speed
<= SPEED_1000
) {
1772 *width
= IB_WIDTH_1X
;
1773 *speed
= IB_SPEED_SDR
;
1774 } else if (netdev_speed
<= SPEED_10000
) {
1775 *width
= IB_WIDTH_1X
;
1776 *speed
= IB_SPEED_FDR10
;
1777 } else if (netdev_speed
<= SPEED_20000
) {
1778 *width
= IB_WIDTH_4X
;
1779 *speed
= IB_SPEED_DDR
;
1780 } else if (netdev_speed
<= SPEED_25000
) {
1781 *width
= IB_WIDTH_1X
;
1782 *speed
= IB_SPEED_EDR
;
1783 } else if (netdev_speed
<= SPEED_40000
) {
1784 *width
= IB_WIDTH_4X
;
1785 *speed
= IB_SPEED_FDR10
;
1787 *width
= IB_WIDTH_4X
;
1788 *speed
= IB_SPEED_EDR
;
1793 EXPORT_SYMBOL(ib_get_eth_speed
);
1795 int ib_modify_qp(struct ib_qp
*qp
,
1796 struct ib_qp_attr
*qp_attr
,
1799 return _ib_modify_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
, NULL
);
1801 EXPORT_SYMBOL(ib_modify_qp
);
1803 int ib_query_qp(struct ib_qp
*qp
,
1804 struct ib_qp_attr
*qp_attr
,
1806 struct ib_qp_init_attr
*qp_init_attr
)
1808 qp_attr
->ah_attr
.grh
.sgid_attr
= NULL
;
1809 qp_attr
->alt_ah_attr
.grh
.sgid_attr
= NULL
;
1811 return qp
->device
->ops
.query_qp
?
1812 qp
->device
->ops
.query_qp(qp
->real_qp
, qp_attr
, qp_attr_mask
,
1813 qp_init_attr
) : -EOPNOTSUPP
;
1815 EXPORT_SYMBOL(ib_query_qp
);
1817 int ib_close_qp(struct ib_qp
*qp
)
1819 struct ib_qp
*real_qp
;
1820 unsigned long flags
;
1822 real_qp
= qp
->real_qp
;
1826 spin_lock_irqsave(&real_qp
->device
->qp_open_list_lock
, flags
);
1827 list_del(&qp
->open_list
);
1828 spin_unlock_irqrestore(&real_qp
->device
->qp_open_list_lock
, flags
);
1830 atomic_dec(&real_qp
->usecnt
);
1832 ib_close_shared_qp_security(qp
->qp_sec
);
1837 EXPORT_SYMBOL(ib_close_qp
);
1839 static int __ib_destroy_shared_qp(struct ib_qp
*qp
)
1841 struct ib_xrcd
*xrcd
;
1842 struct ib_qp
*real_qp
;
1845 real_qp
= qp
->real_qp
;
1846 xrcd
= real_qp
->xrcd
;
1848 mutex_lock(&xrcd
->tgt_qp_mutex
);
1850 if (atomic_read(&real_qp
->usecnt
) == 0)
1851 list_del(&real_qp
->xrcd_list
);
1854 mutex_unlock(&xrcd
->tgt_qp_mutex
);
1857 ret
= ib_destroy_qp(real_qp
);
1859 atomic_dec(&xrcd
->usecnt
);
1861 __ib_insert_xrcd_qp(xrcd
, real_qp
);
1867 int ib_destroy_qp_user(struct ib_qp
*qp
, struct ib_udata
*udata
)
1869 const struct ib_gid_attr
*alt_path_sgid_attr
= qp
->alt_path_sgid_attr
;
1870 const struct ib_gid_attr
*av_sgid_attr
= qp
->av_sgid_attr
;
1872 struct ib_cq
*scq
, *rcq
;
1874 struct ib_rwq_ind_table
*ind_tbl
;
1875 struct ib_qp_security
*sec
;
1878 WARN_ON_ONCE(qp
->mrs_used
> 0);
1880 if (atomic_read(&qp
->usecnt
))
1883 if (qp
->real_qp
!= qp
)
1884 return __ib_destroy_shared_qp(qp
);
1890 ind_tbl
= qp
->rwq_ind_tbl
;
1893 ib_destroy_qp_security_begin(sec
);
1896 rdma_rw_cleanup_mrs(qp
);
1898 rdma_counter_unbind_qp(qp
, true);
1899 rdma_restrack_del(&qp
->res
);
1900 ret
= qp
->device
->ops
.destroy_qp(qp
, udata
);
1902 if (alt_path_sgid_attr
)
1903 rdma_put_gid_attr(alt_path_sgid_attr
);
1905 rdma_put_gid_attr(av_sgid_attr
);
1907 atomic_dec(&pd
->usecnt
);
1909 atomic_dec(&scq
->usecnt
);
1911 atomic_dec(&rcq
->usecnt
);
1913 atomic_dec(&srq
->usecnt
);
1915 atomic_dec(&ind_tbl
->usecnt
);
1917 ib_destroy_qp_security_end(sec
);
1920 ib_destroy_qp_security_abort(sec
);
1925 EXPORT_SYMBOL(ib_destroy_qp_user
);
1927 /* Completion queues */
1929 struct ib_cq
*__ib_create_cq(struct ib_device
*device
,
1930 ib_comp_handler comp_handler
,
1931 void (*event_handler
)(struct ib_event
*, void *),
1933 const struct ib_cq_init_attr
*cq_attr
,
1939 cq
= rdma_zalloc_drv_obj(device
, ib_cq
);
1941 return ERR_PTR(-ENOMEM
);
1943 cq
->device
= device
;
1945 cq
->comp_handler
= comp_handler
;
1946 cq
->event_handler
= event_handler
;
1947 cq
->cq_context
= cq_context
;
1948 atomic_set(&cq
->usecnt
, 0);
1949 cq
->res
.type
= RDMA_RESTRACK_CQ
;
1950 rdma_restrack_set_task(&cq
->res
, caller
);
1952 ret
= device
->ops
.create_cq(cq
, cq_attr
, NULL
);
1955 return ERR_PTR(ret
);
1958 rdma_restrack_kadd(&cq
->res
);
1961 EXPORT_SYMBOL(__ib_create_cq
);
1963 int rdma_set_cq_moderation(struct ib_cq
*cq
, u16 cq_count
, u16 cq_period
)
1965 return cq
->device
->ops
.modify_cq
?
1966 cq
->device
->ops
.modify_cq(cq
, cq_count
,
1967 cq_period
) : -EOPNOTSUPP
;
1969 EXPORT_SYMBOL(rdma_set_cq_moderation
);
1971 int ib_destroy_cq_user(struct ib_cq
*cq
, struct ib_udata
*udata
)
1973 if (atomic_read(&cq
->usecnt
))
1976 rdma_restrack_del(&cq
->res
);
1977 cq
->device
->ops
.destroy_cq(cq
, udata
);
1981 EXPORT_SYMBOL(ib_destroy_cq_user
);
1983 int ib_resize_cq(struct ib_cq
*cq
, int cqe
)
1985 return cq
->device
->ops
.resize_cq
?
1986 cq
->device
->ops
.resize_cq(cq
, cqe
, NULL
) : -EOPNOTSUPP
;
1988 EXPORT_SYMBOL(ib_resize_cq
);
1990 /* Memory regions */
1992 struct ib_mr
*ib_reg_user_mr(struct ib_pd
*pd
, u64 start
, u64 length
,
1993 u64 virt_addr
, int access_flags
)
1997 if (access_flags
& IB_ACCESS_ON_DEMAND
) {
1998 if (!(pd
->device
->attrs
.device_cap_flags
&
1999 IB_DEVICE_ON_DEMAND_PAGING
)) {
2000 pr_debug("ODP support not available\n");
2001 return ERR_PTR(-EINVAL
);
2005 mr
= pd
->device
->ops
.reg_user_mr(pd
, start
, length
, virt_addr
,
2006 access_flags
, NULL
);
2011 mr
->device
= pd
->device
;
2014 atomic_inc(&pd
->usecnt
);
2015 mr
->res
.type
= RDMA_RESTRACK_MR
;
2016 rdma_restrack_kadd(&mr
->res
);
2020 EXPORT_SYMBOL(ib_reg_user_mr
);
2022 int ib_advise_mr(struct ib_pd
*pd
, enum ib_uverbs_advise_mr_advice advice
,
2023 u32 flags
, struct ib_sge
*sg_list
, u32 num_sge
)
2025 if (!pd
->device
->ops
.advise_mr
)
2028 return pd
->device
->ops
.advise_mr(pd
, advice
, flags
, sg_list
, num_sge
,
2031 EXPORT_SYMBOL(ib_advise_mr
);
2033 int ib_dereg_mr_user(struct ib_mr
*mr
, struct ib_udata
*udata
)
2035 struct ib_pd
*pd
= mr
->pd
;
2036 struct ib_dm
*dm
= mr
->dm
;
2037 struct ib_sig_attrs
*sig_attrs
= mr
->sig_attrs
;
2041 rdma_restrack_del(&mr
->res
);
2042 ret
= mr
->device
->ops
.dereg_mr(mr
, udata
);
2044 atomic_dec(&pd
->usecnt
);
2046 atomic_dec(&dm
->usecnt
);
2052 EXPORT_SYMBOL(ib_dereg_mr_user
);
2055 * ib_alloc_mr_user() - Allocates a memory region
2056 * @pd: protection domain associated with the region
2057 * @mr_type: memory region type
2058 * @max_num_sg: maximum sg entries available for registration.
2059 * @udata: user data or null for kernel objects
2062 * Memory registeration page/sg lists must not exceed max_num_sg.
2063 * For mr_type IB_MR_TYPE_MEM_REG, the total length cannot exceed
2064 * max_num_sg * used_page_size.
2067 struct ib_mr
*ib_alloc_mr_user(struct ib_pd
*pd
, enum ib_mr_type mr_type
,
2068 u32 max_num_sg
, struct ib_udata
*udata
)
2072 if (!pd
->device
->ops
.alloc_mr
) {
2073 mr
= ERR_PTR(-EOPNOTSUPP
);
2077 if (mr_type
== IB_MR_TYPE_INTEGRITY
) {
2079 mr
= ERR_PTR(-EINVAL
);
2083 mr
= pd
->device
->ops
.alloc_mr(pd
, mr_type
, max_num_sg
, udata
);
2085 mr
->device
= pd
->device
;
2089 atomic_inc(&pd
->usecnt
);
2090 mr
->need_inval
= false;
2091 mr
->res
.type
= RDMA_RESTRACK_MR
;
2092 rdma_restrack_kadd(&mr
->res
);
2094 mr
->sig_attrs
= NULL
;
2098 trace_mr_alloc(pd
, mr_type
, max_num_sg
, mr
);
2101 EXPORT_SYMBOL(ib_alloc_mr_user
);
2104 * ib_alloc_mr_integrity() - Allocates an integrity memory region
2105 * @pd: protection domain associated with the region
2106 * @max_num_data_sg: maximum data sg entries available for registration
2107 * @max_num_meta_sg: maximum metadata sg entries available for
2111 * Memory registration page/sg lists must not exceed max_num_sg,
2112 * also the integrity page/sg lists must not exceed max_num_meta_sg.
2115 struct ib_mr
*ib_alloc_mr_integrity(struct ib_pd
*pd
,
2116 u32 max_num_data_sg
,
2117 u32 max_num_meta_sg
)
2120 struct ib_sig_attrs
*sig_attrs
;
2122 if (!pd
->device
->ops
.alloc_mr_integrity
||
2123 !pd
->device
->ops
.map_mr_sg_pi
) {
2124 mr
= ERR_PTR(-EOPNOTSUPP
);
2128 if (!max_num_meta_sg
) {
2129 mr
= ERR_PTR(-EINVAL
);
2133 sig_attrs
= kzalloc(sizeof(struct ib_sig_attrs
), GFP_KERNEL
);
2135 mr
= ERR_PTR(-ENOMEM
);
2139 mr
= pd
->device
->ops
.alloc_mr_integrity(pd
, max_num_data_sg
,
2146 mr
->device
= pd
->device
;
2150 atomic_inc(&pd
->usecnt
);
2151 mr
->need_inval
= false;
2152 mr
->res
.type
= RDMA_RESTRACK_MR
;
2153 rdma_restrack_kadd(&mr
->res
);
2154 mr
->type
= IB_MR_TYPE_INTEGRITY
;
2155 mr
->sig_attrs
= sig_attrs
;
2158 trace_mr_integ_alloc(pd
, max_num_data_sg
, max_num_meta_sg
, mr
);
2161 EXPORT_SYMBOL(ib_alloc_mr_integrity
);
2163 /* "Fast" memory regions */
2165 struct ib_fmr
*ib_alloc_fmr(struct ib_pd
*pd
,
2166 int mr_access_flags
,
2167 struct ib_fmr_attr
*fmr_attr
)
2171 if (!pd
->device
->ops
.alloc_fmr
)
2172 return ERR_PTR(-EOPNOTSUPP
);
2174 fmr
= pd
->device
->ops
.alloc_fmr(pd
, mr_access_flags
, fmr_attr
);
2176 fmr
->device
= pd
->device
;
2178 atomic_inc(&pd
->usecnt
);
2183 EXPORT_SYMBOL(ib_alloc_fmr
);
2185 int ib_unmap_fmr(struct list_head
*fmr_list
)
2189 if (list_empty(fmr_list
))
2192 fmr
= list_entry(fmr_list
->next
, struct ib_fmr
, list
);
2193 return fmr
->device
->ops
.unmap_fmr(fmr_list
);
2195 EXPORT_SYMBOL(ib_unmap_fmr
);
2197 int ib_dealloc_fmr(struct ib_fmr
*fmr
)
2203 ret
= fmr
->device
->ops
.dealloc_fmr(fmr
);
2205 atomic_dec(&pd
->usecnt
);
2209 EXPORT_SYMBOL(ib_dealloc_fmr
);
2211 /* Multicast groups */
2213 static bool is_valid_mcast_lid(struct ib_qp
*qp
, u16 lid
)
2215 struct ib_qp_init_attr init_attr
= {};
2216 struct ib_qp_attr attr
= {};
2217 int num_eth_ports
= 0;
2220 /* If QP state >= init, it is assigned to a port and we can check this
2223 if (!ib_query_qp(qp
, &attr
, IB_QP_STATE
| IB_QP_PORT
, &init_attr
)) {
2224 if (attr
.qp_state
>= IB_QPS_INIT
) {
2225 if (rdma_port_get_link_layer(qp
->device
, attr
.port_num
) !=
2226 IB_LINK_LAYER_INFINIBAND
)
2232 /* Can't get a quick answer, iterate over all ports */
2233 for (port
= 0; port
< qp
->device
->phys_port_cnt
; port
++)
2234 if (rdma_port_get_link_layer(qp
->device
, port
) !=
2235 IB_LINK_LAYER_INFINIBAND
)
2238 /* If we have at lease one Ethernet port, RoCE annex declares that
2239 * multicast LID should be ignored. We can't tell at this step if the
2240 * QP belongs to an IB or Ethernet port.
2245 /* If all the ports are IB, we can check according to IB spec. */
2247 return !(lid
< be16_to_cpu(IB_MULTICAST_LID_BASE
) ||
2248 lid
== be16_to_cpu(IB_LID_PERMISSIVE
));
2251 int ib_attach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
2255 if (!qp
->device
->ops
.attach_mcast
)
2258 if (!rdma_is_multicast_addr((struct in6_addr
*)gid
->raw
) ||
2259 qp
->qp_type
!= IB_QPT_UD
|| !is_valid_mcast_lid(qp
, lid
))
2262 ret
= qp
->device
->ops
.attach_mcast(qp
, gid
, lid
);
2264 atomic_inc(&qp
->usecnt
);
2267 EXPORT_SYMBOL(ib_attach_mcast
);
2269 int ib_detach_mcast(struct ib_qp
*qp
, union ib_gid
*gid
, u16 lid
)
2273 if (!qp
->device
->ops
.detach_mcast
)
2276 if (!rdma_is_multicast_addr((struct in6_addr
*)gid
->raw
) ||
2277 qp
->qp_type
!= IB_QPT_UD
|| !is_valid_mcast_lid(qp
, lid
))
2280 ret
= qp
->device
->ops
.detach_mcast(qp
, gid
, lid
);
2282 atomic_dec(&qp
->usecnt
);
2285 EXPORT_SYMBOL(ib_detach_mcast
);
2287 struct ib_xrcd
*__ib_alloc_xrcd(struct ib_device
*device
, const char *caller
)
2289 struct ib_xrcd
*xrcd
;
2291 if (!device
->ops
.alloc_xrcd
)
2292 return ERR_PTR(-EOPNOTSUPP
);
2294 xrcd
= device
->ops
.alloc_xrcd(device
, NULL
);
2295 if (!IS_ERR(xrcd
)) {
2296 xrcd
->device
= device
;
2298 atomic_set(&xrcd
->usecnt
, 0);
2299 mutex_init(&xrcd
->tgt_qp_mutex
);
2300 INIT_LIST_HEAD(&xrcd
->tgt_qp_list
);
2305 EXPORT_SYMBOL(__ib_alloc_xrcd
);
2307 int ib_dealloc_xrcd(struct ib_xrcd
*xrcd
, struct ib_udata
*udata
)
2312 if (atomic_read(&xrcd
->usecnt
))
2315 while (!list_empty(&xrcd
->tgt_qp_list
)) {
2316 qp
= list_entry(xrcd
->tgt_qp_list
.next
, struct ib_qp
, xrcd_list
);
2317 ret
= ib_destroy_qp(qp
);
2321 mutex_destroy(&xrcd
->tgt_qp_mutex
);
2323 return xrcd
->device
->ops
.dealloc_xrcd(xrcd
, udata
);
2325 EXPORT_SYMBOL(ib_dealloc_xrcd
);
2328 * ib_create_wq - Creates a WQ associated with the specified protection
2330 * @pd: The protection domain associated with the WQ.
2331 * @wq_attr: A list of initial attributes required to create the
2332 * WQ. If WQ creation succeeds, then the attributes are updated to
2333 * the actual capabilities of the created WQ.
2335 * wq_attr->max_wr and wq_attr->max_sge determine
2336 * the requested size of the WQ, and set to the actual values allocated
2338 * If ib_create_wq() succeeds, then max_wr and max_sge will always be
2339 * at least as large as the requested values.
2341 struct ib_wq
*ib_create_wq(struct ib_pd
*pd
,
2342 struct ib_wq_init_attr
*wq_attr
)
2346 if (!pd
->device
->ops
.create_wq
)
2347 return ERR_PTR(-EOPNOTSUPP
);
2349 wq
= pd
->device
->ops
.create_wq(pd
, wq_attr
, NULL
);
2351 wq
->event_handler
= wq_attr
->event_handler
;
2352 wq
->wq_context
= wq_attr
->wq_context
;
2353 wq
->wq_type
= wq_attr
->wq_type
;
2354 wq
->cq
= wq_attr
->cq
;
2355 wq
->device
= pd
->device
;
2358 atomic_inc(&pd
->usecnt
);
2359 atomic_inc(&wq_attr
->cq
->usecnt
);
2360 atomic_set(&wq
->usecnt
, 0);
2364 EXPORT_SYMBOL(ib_create_wq
);
2367 * ib_destroy_wq - Destroys the specified user WQ.
2368 * @wq: The WQ to destroy.
2369 * @udata: Valid user data
2371 int ib_destroy_wq(struct ib_wq
*wq
, struct ib_udata
*udata
)
2373 struct ib_cq
*cq
= wq
->cq
;
2374 struct ib_pd
*pd
= wq
->pd
;
2376 if (atomic_read(&wq
->usecnt
))
2379 wq
->device
->ops
.destroy_wq(wq
, udata
);
2380 atomic_dec(&pd
->usecnt
);
2381 atomic_dec(&cq
->usecnt
);
2385 EXPORT_SYMBOL(ib_destroy_wq
);
2388 * ib_modify_wq - Modifies the specified WQ.
2389 * @wq: The WQ to modify.
2390 * @wq_attr: On input, specifies the WQ attributes to modify.
2391 * @wq_attr_mask: A bit-mask used to specify which attributes of the WQ
2392 * are being modified.
2393 * On output, the current values of selected WQ attributes are returned.
2395 int ib_modify_wq(struct ib_wq
*wq
, struct ib_wq_attr
*wq_attr
,
2400 if (!wq
->device
->ops
.modify_wq
)
2403 err
= wq
->device
->ops
.modify_wq(wq
, wq_attr
, wq_attr_mask
, NULL
);
2406 EXPORT_SYMBOL(ib_modify_wq
);
2409 * ib_create_rwq_ind_table - Creates a RQ Indirection Table.
2410 * @device: The device on which to create the rwq indirection table.
2411 * @ib_rwq_ind_table_init_attr: A list of initial attributes required to
2412 * create the Indirection Table.
2414 * Note: The life time of ib_rwq_ind_table_init_attr->ind_tbl is not less
2415 * than the created ib_rwq_ind_table object and the caller is responsible
2416 * for its memory allocation/free.
2418 struct ib_rwq_ind_table
*ib_create_rwq_ind_table(struct ib_device
*device
,
2419 struct ib_rwq_ind_table_init_attr
*init_attr
)
2421 struct ib_rwq_ind_table
*rwq_ind_table
;
2425 if (!device
->ops
.create_rwq_ind_table
)
2426 return ERR_PTR(-EOPNOTSUPP
);
2428 table_size
= (1 << init_attr
->log_ind_tbl_size
);
2429 rwq_ind_table
= device
->ops
.create_rwq_ind_table(device
,
2431 if (IS_ERR(rwq_ind_table
))
2432 return rwq_ind_table
;
2434 rwq_ind_table
->ind_tbl
= init_attr
->ind_tbl
;
2435 rwq_ind_table
->log_ind_tbl_size
= init_attr
->log_ind_tbl_size
;
2436 rwq_ind_table
->device
= device
;
2437 rwq_ind_table
->uobject
= NULL
;
2438 atomic_set(&rwq_ind_table
->usecnt
, 0);
2440 for (i
= 0; i
< table_size
; i
++)
2441 atomic_inc(&rwq_ind_table
->ind_tbl
[i
]->usecnt
);
2443 return rwq_ind_table
;
2445 EXPORT_SYMBOL(ib_create_rwq_ind_table
);
2448 * ib_destroy_rwq_ind_table - Destroys the specified Indirection Table.
2449 * @wq_ind_table: The Indirection Table to destroy.
2451 int ib_destroy_rwq_ind_table(struct ib_rwq_ind_table
*rwq_ind_table
)
2454 u32 table_size
= (1 << rwq_ind_table
->log_ind_tbl_size
);
2455 struct ib_wq
**ind_tbl
= rwq_ind_table
->ind_tbl
;
2457 if (atomic_read(&rwq_ind_table
->usecnt
))
2460 err
= rwq_ind_table
->device
->ops
.destroy_rwq_ind_table(rwq_ind_table
);
2462 for (i
= 0; i
< table_size
; i
++)
2463 atomic_dec(&ind_tbl
[i
]->usecnt
);
2468 EXPORT_SYMBOL(ib_destroy_rwq_ind_table
);
2470 int ib_check_mr_status(struct ib_mr
*mr
, u32 check_mask
,
2471 struct ib_mr_status
*mr_status
)
2473 if (!mr
->device
->ops
.check_mr_status
)
2476 return mr
->device
->ops
.check_mr_status(mr
, check_mask
, mr_status
);
2478 EXPORT_SYMBOL(ib_check_mr_status
);
2480 int ib_set_vf_link_state(struct ib_device
*device
, int vf
, u8 port
,
2483 if (!device
->ops
.set_vf_link_state
)
2486 return device
->ops
.set_vf_link_state(device
, vf
, port
, state
);
2488 EXPORT_SYMBOL(ib_set_vf_link_state
);
2490 int ib_get_vf_config(struct ib_device
*device
, int vf
, u8 port
,
2491 struct ifla_vf_info
*info
)
2493 if (!device
->ops
.get_vf_config
)
2496 return device
->ops
.get_vf_config(device
, vf
, port
, info
);
2498 EXPORT_SYMBOL(ib_get_vf_config
);
2500 int ib_get_vf_stats(struct ib_device
*device
, int vf
, u8 port
,
2501 struct ifla_vf_stats
*stats
)
2503 if (!device
->ops
.get_vf_stats
)
2506 return device
->ops
.get_vf_stats(device
, vf
, port
, stats
);
2508 EXPORT_SYMBOL(ib_get_vf_stats
);
2510 int ib_set_vf_guid(struct ib_device
*device
, int vf
, u8 port
, u64 guid
,
2513 if (!device
->ops
.set_vf_guid
)
2516 return device
->ops
.set_vf_guid(device
, vf
, port
, guid
, type
);
2518 EXPORT_SYMBOL(ib_set_vf_guid
);
2520 int ib_get_vf_guid(struct ib_device
*device
, int vf
, u8 port
,
2521 struct ifla_vf_guid
*node_guid
,
2522 struct ifla_vf_guid
*port_guid
)
2524 if (!device
->ops
.get_vf_guid
)
2527 return device
->ops
.get_vf_guid(device
, vf
, port
, node_guid
, port_guid
);
2529 EXPORT_SYMBOL(ib_get_vf_guid
);
2531 * ib_map_mr_sg_pi() - Map the dma mapped SG lists for PI (protection
2532 * information) and set an appropriate memory region for registration.
2533 * @mr: memory region
2534 * @data_sg: dma mapped scatterlist for data
2535 * @data_sg_nents: number of entries in data_sg
2536 * @data_sg_offset: offset in bytes into data_sg
2537 * @meta_sg: dma mapped scatterlist for metadata
2538 * @meta_sg_nents: number of entries in meta_sg
2539 * @meta_sg_offset: offset in bytes into meta_sg
2540 * @page_size: page vector desired page size
2543 * - The MR must be allocated with type IB_MR_TYPE_INTEGRITY.
2545 * Return: 0 on success.
2547 * After this completes successfully, the memory region
2548 * is ready for registration.
2550 int ib_map_mr_sg_pi(struct ib_mr
*mr
, struct scatterlist
*data_sg
,
2551 int data_sg_nents
, unsigned int *data_sg_offset
,
2552 struct scatterlist
*meta_sg
, int meta_sg_nents
,
2553 unsigned int *meta_sg_offset
, unsigned int page_size
)
2555 if (unlikely(!mr
->device
->ops
.map_mr_sg_pi
||
2556 WARN_ON_ONCE(mr
->type
!= IB_MR_TYPE_INTEGRITY
)))
2559 mr
->page_size
= page_size
;
2561 return mr
->device
->ops
.map_mr_sg_pi(mr
, data_sg
, data_sg_nents
,
2562 data_sg_offset
, meta_sg
,
2563 meta_sg_nents
, meta_sg_offset
);
2565 EXPORT_SYMBOL(ib_map_mr_sg_pi
);
2568 * ib_map_mr_sg() - Map the largest prefix of a dma mapped SG list
2569 * and set it the memory region.
2570 * @mr: memory region
2571 * @sg: dma mapped scatterlist
2572 * @sg_nents: number of entries in sg
2573 * @sg_offset: offset in bytes into sg
2574 * @page_size: page vector desired page size
2577 * - The first sg element is allowed to have an offset.
2578 * - Each sg element must either be aligned to page_size or virtually
2579 * contiguous to the previous element. In case an sg element has a
2580 * non-contiguous offset, the mapping prefix will not include it.
2581 * - The last sg element is allowed to have length less than page_size.
2582 * - If sg_nents total byte length exceeds the mr max_num_sge * page_size
2583 * then only max_num_sg entries will be mapped.
2584 * - If the MR was allocated with type IB_MR_TYPE_SG_GAPS, none of these
2585 * constraints holds and the page_size argument is ignored.
2587 * Returns the number of sg elements that were mapped to the memory region.
2589 * After this completes successfully, the memory region
2590 * is ready for registration.
2592 int ib_map_mr_sg(struct ib_mr
*mr
, struct scatterlist
*sg
, int sg_nents
,
2593 unsigned int *sg_offset
, unsigned int page_size
)
2595 if (unlikely(!mr
->device
->ops
.map_mr_sg
))
2598 mr
->page_size
= page_size
;
2600 return mr
->device
->ops
.map_mr_sg(mr
, sg
, sg_nents
, sg_offset
);
2602 EXPORT_SYMBOL(ib_map_mr_sg
);
2605 * ib_sg_to_pages() - Convert the largest prefix of a sg list
2607 * @mr: memory region
2608 * @sgl: dma mapped scatterlist
2609 * @sg_nents: number of entries in sg
2610 * @sg_offset_p: IN: start offset in bytes into sg
2611 * OUT: offset in bytes for element n of the sg of the first
2612 * byte that has not been processed where n is the return
2613 * value of this function.
2614 * @set_page: driver page assignment function pointer
2616 * Core service helper for drivers to convert the largest
2617 * prefix of given sg list to a page vector. The sg list
2618 * prefix converted is the prefix that meet the requirements
2621 * Returns the number of sg elements that were assigned to
2624 int ib_sg_to_pages(struct ib_mr
*mr
, struct scatterlist
*sgl
, int sg_nents
,
2625 unsigned int *sg_offset_p
, int (*set_page
)(struct ib_mr
*, u64
))
2627 struct scatterlist
*sg
;
2628 u64 last_end_dma_addr
= 0;
2629 unsigned int sg_offset
= sg_offset_p
? *sg_offset_p
: 0;
2630 unsigned int last_page_off
= 0;
2631 u64 page_mask
= ~((u64
)mr
->page_size
- 1);
2634 if (unlikely(sg_nents
<= 0 || sg_offset
> sg_dma_len(&sgl
[0])))
2637 mr
->iova
= sg_dma_address(&sgl
[0]) + sg_offset
;
2640 for_each_sg(sgl
, sg
, sg_nents
, i
) {
2641 u64 dma_addr
= sg_dma_address(sg
) + sg_offset
;
2642 u64 prev_addr
= dma_addr
;
2643 unsigned int dma_len
= sg_dma_len(sg
) - sg_offset
;
2644 u64 end_dma_addr
= dma_addr
+ dma_len
;
2645 u64 page_addr
= dma_addr
& page_mask
;
2648 * For the second and later elements, check whether either the
2649 * end of element i-1 or the start of element i is not aligned
2650 * on a page boundary.
2652 if (i
&& (last_page_off
!= 0 || page_addr
!= dma_addr
)) {
2653 /* Stop mapping if there is a gap. */
2654 if (last_end_dma_addr
!= dma_addr
)
2658 * Coalesce this element with the last. If it is small
2659 * enough just update mr->length. Otherwise start
2660 * mapping from the next page.
2666 ret
= set_page(mr
, page_addr
);
2667 if (unlikely(ret
< 0)) {
2668 sg_offset
= prev_addr
- sg_dma_address(sg
);
2669 mr
->length
+= prev_addr
- dma_addr
;
2671 *sg_offset_p
= sg_offset
;
2672 return i
|| sg_offset
? i
: ret
;
2674 prev_addr
= page_addr
;
2676 page_addr
+= mr
->page_size
;
2677 } while (page_addr
< end_dma_addr
);
2679 mr
->length
+= dma_len
;
2680 last_end_dma_addr
= end_dma_addr
;
2681 last_page_off
= end_dma_addr
& ~page_mask
;
2690 EXPORT_SYMBOL(ib_sg_to_pages
);
2692 struct ib_drain_cqe
{
2694 struct completion done
;
2697 static void ib_drain_qp_done(struct ib_cq
*cq
, struct ib_wc
*wc
)
2699 struct ib_drain_cqe
*cqe
= container_of(wc
->wr_cqe
, struct ib_drain_cqe
,
2702 complete(&cqe
->done
);
2706 * Post a WR and block until its completion is reaped for the SQ.
2708 static void __ib_drain_sq(struct ib_qp
*qp
)
2710 struct ib_cq
*cq
= qp
->send_cq
;
2711 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
2712 struct ib_drain_cqe sdrain
;
2713 struct ib_rdma_wr swr
= {
2716 { .wr_cqe
= &sdrain
.cqe
, },
2717 .opcode
= IB_WR_RDMA_WRITE
,
2722 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
2724 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2728 sdrain
.cqe
.done
= ib_drain_qp_done
;
2729 init_completion(&sdrain
.done
);
2731 ret
= ib_post_send(qp
, &swr
.wr
, NULL
);
2733 WARN_ONCE(ret
, "failed to drain send queue: %d\n", ret
);
2737 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2738 while (wait_for_completion_timeout(&sdrain
.done
, HZ
/ 10) <= 0)
2739 ib_process_cq_direct(cq
, -1);
2741 wait_for_completion(&sdrain
.done
);
2745 * Post a WR and block until its completion is reaped for the RQ.
2747 static void __ib_drain_rq(struct ib_qp
*qp
)
2749 struct ib_cq
*cq
= qp
->recv_cq
;
2750 struct ib_qp_attr attr
= { .qp_state
= IB_QPS_ERR
};
2751 struct ib_drain_cqe rdrain
;
2752 struct ib_recv_wr rwr
= {};
2755 ret
= ib_modify_qp(qp
, &attr
, IB_QP_STATE
);
2757 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2761 rwr
.wr_cqe
= &rdrain
.cqe
;
2762 rdrain
.cqe
.done
= ib_drain_qp_done
;
2763 init_completion(&rdrain
.done
);
2765 ret
= ib_post_recv(qp
, &rwr
, NULL
);
2767 WARN_ONCE(ret
, "failed to drain recv queue: %d\n", ret
);
2771 if (cq
->poll_ctx
== IB_POLL_DIRECT
)
2772 while (wait_for_completion_timeout(&rdrain
.done
, HZ
/ 10) <= 0)
2773 ib_process_cq_direct(cq
, -1);
2775 wait_for_completion(&rdrain
.done
);
2779 * ib_drain_sq() - Block until all SQ CQEs have been consumed by the
2781 * @qp: queue pair to drain
2783 * If the device has a provider-specific drain function, then
2784 * call that. Otherwise call the generic drain function
2789 * ensure there is room in the CQ and SQ for the drain work request and
2792 * allocate the CQ using ib_alloc_cq().
2794 * ensure that there are no other contexts that are posting WRs concurrently.
2795 * Otherwise the drain is not guaranteed.
2797 void ib_drain_sq(struct ib_qp
*qp
)
2799 if (qp
->device
->ops
.drain_sq
)
2800 qp
->device
->ops
.drain_sq(qp
);
2803 trace_cq_drain_complete(qp
->send_cq
);
2805 EXPORT_SYMBOL(ib_drain_sq
);
2808 * ib_drain_rq() - Block until all RQ CQEs have been consumed by the
2810 * @qp: queue pair to drain
2812 * If the device has a provider-specific drain function, then
2813 * call that. Otherwise call the generic drain function
2818 * ensure there is room in the CQ and RQ for the drain work request and
2821 * allocate the CQ using ib_alloc_cq().
2823 * ensure that there are no other contexts that are posting WRs concurrently.
2824 * Otherwise the drain is not guaranteed.
2826 void ib_drain_rq(struct ib_qp
*qp
)
2828 if (qp
->device
->ops
.drain_rq
)
2829 qp
->device
->ops
.drain_rq(qp
);
2832 trace_cq_drain_complete(qp
->recv_cq
);
2834 EXPORT_SYMBOL(ib_drain_rq
);
2837 * ib_drain_qp() - Block until all CQEs have been consumed by the
2838 * application on both the RQ and SQ.
2839 * @qp: queue pair to drain
2843 * ensure there is room in the CQ(s), SQ, and RQ for drain work requests
2846 * allocate the CQs using ib_alloc_cq().
2848 * ensure that there are no other contexts that are posting WRs concurrently.
2849 * Otherwise the drain is not guaranteed.
2851 void ib_drain_qp(struct ib_qp
*qp
)
2857 EXPORT_SYMBOL(ib_drain_qp
);
2859 struct net_device
*rdma_alloc_netdev(struct ib_device
*device
, u8 port_num
,
2860 enum rdma_netdev_t type
, const char *name
,
2861 unsigned char name_assign_type
,
2862 void (*setup
)(struct net_device
*))
2864 struct rdma_netdev_alloc_params params
;
2865 struct net_device
*netdev
;
2868 if (!device
->ops
.rdma_netdev_get_params
)
2869 return ERR_PTR(-EOPNOTSUPP
);
2871 rc
= device
->ops
.rdma_netdev_get_params(device
, port_num
, type
,
2876 netdev
= alloc_netdev_mqs(params
.sizeof_priv
, name
, name_assign_type
,
2877 setup
, params
.txqs
, params
.rxqs
);
2879 return ERR_PTR(-ENOMEM
);
2883 EXPORT_SYMBOL(rdma_alloc_netdev
);
2885 int rdma_init_netdev(struct ib_device
*device
, u8 port_num
,
2886 enum rdma_netdev_t type
, const char *name
,
2887 unsigned char name_assign_type
,
2888 void (*setup
)(struct net_device
*),
2889 struct net_device
*netdev
)
2891 struct rdma_netdev_alloc_params params
;
2894 if (!device
->ops
.rdma_netdev_get_params
)
2897 rc
= device
->ops
.rdma_netdev_get_params(device
, port_num
, type
,
2902 return params
.initialize_rdma_netdev(device
, port_num
,
2903 netdev
, params
.param
);
2905 EXPORT_SYMBOL(rdma_init_netdev
);
2907 void __rdma_block_iter_start(struct ib_block_iter
*biter
,
2908 struct scatterlist
*sglist
, unsigned int nents
,
2911 memset(biter
, 0, sizeof(struct ib_block_iter
));
2912 biter
->__sg
= sglist
;
2913 biter
->__sg_nents
= nents
;
2915 /* Driver provides best block size to use */
2916 biter
->__pg_bit
= __fls(pgsz
);
2918 EXPORT_SYMBOL(__rdma_block_iter_start
);
2920 bool __rdma_block_iter_next(struct ib_block_iter
*biter
)
2922 unsigned int block_offset
;
2924 if (!biter
->__sg_nents
|| !biter
->__sg
)
2927 biter
->__dma_addr
= sg_dma_address(biter
->__sg
) + biter
->__sg_advance
;
2928 block_offset
= biter
->__dma_addr
& (BIT_ULL(biter
->__pg_bit
) - 1);
2929 biter
->__sg_advance
+= BIT_ULL(biter
->__pg_bit
) - block_offset
;
2931 if (biter
->__sg_advance
>= sg_dma_len(biter
->__sg
)) {
2932 biter
->__sg_advance
= 0;
2933 biter
->__sg
= sg_next(biter
->__sg
);
2934 biter
->__sg_nents
--;
2939 EXPORT_SYMBOL(__rdma_block_iter_next
);