dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / infiniband / hw / mlx5 / odp.c
blob3de7606d4a1a79573345bddcf17d6c4da8a033ef
1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <rdma/ib_umem.h>
34 #include <rdma/ib_umem_odp.h>
35 #include <linux/kernel.h>
37 #include "mlx5_ib.h"
38 #include "cmd.h"
40 #include <linux/mlx5/eq.h>
42 /* Contains the details of a pagefault. */
43 struct mlx5_pagefault {
44 u32 bytes_committed;
45 u32 token;
46 u8 event_subtype;
47 u8 type;
48 union {
49 /* Initiator or send message responder pagefault details. */
50 struct {
51 /* Received packet size, only valid for responders. */
52 u32 packet_size;
54 * Number of resource holding WQE, depends on type.
56 u32 wq_num;
58 * WQE index. Refers to either the send queue or
59 * receive queue, according to event_subtype.
61 u16 wqe_index;
62 } wqe;
63 /* RDMA responder pagefault details */
64 struct {
65 u32 r_key;
67 * Received packet size, minimal size page fault
68 * resolution required for forward progress.
70 u32 packet_size;
71 u32 rdma_op_len;
72 u64 rdma_va;
73 } rdma;
76 struct mlx5_ib_pf_eq *eq;
77 struct work_struct work;
80 #define MAX_PREFETCH_LEN (4*1024*1024U)
82 /* Timeout in ms to wait for an active mmu notifier to complete when handling
83 * a pagefault. */
84 #define MMU_NOTIFIER_TIMEOUT 1000
86 #define MLX5_IMR_MTT_BITS (30 - PAGE_SHIFT)
87 #define MLX5_IMR_MTT_SHIFT (MLX5_IMR_MTT_BITS + PAGE_SHIFT)
88 #define MLX5_IMR_MTT_ENTRIES BIT_ULL(MLX5_IMR_MTT_BITS)
89 #define MLX5_IMR_MTT_SIZE BIT_ULL(MLX5_IMR_MTT_SHIFT)
90 #define MLX5_IMR_MTT_MASK (~(MLX5_IMR_MTT_SIZE - 1))
92 #define MLX5_KSM_PAGE_SHIFT MLX5_IMR_MTT_SHIFT
94 static u64 mlx5_imr_ksm_entries;
96 static void populate_klm(struct mlx5_klm *pklm, size_t idx, size_t nentries,
97 struct mlx5_ib_mr *imr, int flags)
99 struct mlx5_klm *end = pklm + nentries;
101 if (flags & MLX5_IB_UPD_XLT_ZAP) {
102 for (; pklm != end; pklm++, idx++) {
103 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
104 pklm->key = cpu_to_be32(imr->dev->null_mkey);
105 pklm->va = 0;
107 return;
111 * The locking here is pretty subtle. Ideally the implicit_children
112 * xarray would be protected by the umem_mutex, however that is not
113 * possible. Instead this uses a weaker update-then-lock pattern:
115 * srcu_read_lock()
116 * xa_store()
117 * mutex_lock(umem_mutex)
118 * mlx5_ib_update_xlt()
119 * mutex_unlock(umem_mutex)
120 * destroy lkey
122 * ie any change the xarray must be followed by the locked update_xlt
123 * before destroying.
125 * The umem_mutex provides the acquire/release semantic needed to make
126 * the xa_store() visible to a racing thread. While SRCU is not
127 * technically required, using it gives consistent use of the SRCU
128 * locking around the xarray.
130 lockdep_assert_held(&to_ib_umem_odp(imr->umem)->umem_mutex);
131 lockdep_assert_held(&imr->dev->odp_srcu);
133 for (; pklm != end; pklm++, idx++) {
134 struct mlx5_ib_mr *mtt = xa_load(&imr->implicit_children, idx);
136 pklm->bcount = cpu_to_be32(MLX5_IMR_MTT_SIZE);
137 if (mtt) {
138 pklm->key = cpu_to_be32(mtt->ibmr.lkey);
139 pklm->va = cpu_to_be64(idx * MLX5_IMR_MTT_SIZE);
140 } else {
141 pklm->key = cpu_to_be32(imr->dev->null_mkey);
142 pklm->va = 0;
147 static u64 umem_dma_to_mtt(dma_addr_t umem_dma)
149 u64 mtt_entry = umem_dma & ODP_DMA_ADDR_MASK;
151 if (umem_dma & ODP_READ_ALLOWED_BIT)
152 mtt_entry |= MLX5_IB_MTT_READ;
153 if (umem_dma & ODP_WRITE_ALLOWED_BIT)
154 mtt_entry |= MLX5_IB_MTT_WRITE;
156 return mtt_entry;
159 static void populate_mtt(__be64 *pas, size_t idx, size_t nentries,
160 struct mlx5_ib_mr *mr, int flags)
162 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
163 dma_addr_t pa;
164 size_t i;
166 if (flags & MLX5_IB_UPD_XLT_ZAP)
167 return;
169 for (i = 0; i < nentries; i++) {
170 pa = odp->dma_list[idx + i];
171 pas[i] = cpu_to_be64(umem_dma_to_mtt(pa));
175 void mlx5_odp_populate_xlt(void *xlt, size_t idx, size_t nentries,
176 struct mlx5_ib_mr *mr, int flags)
178 if (flags & MLX5_IB_UPD_XLT_INDIRECT) {
179 populate_klm(xlt, idx, nentries, mr, flags);
180 } else {
181 populate_mtt(xlt, idx, nentries, mr, flags);
185 static void dma_fence_odp_mr(struct mlx5_ib_mr *mr)
187 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
189 /* Ensure mlx5_ib_invalidate_range() will not touch the MR any more */
190 mutex_lock(&odp->umem_mutex);
191 if (odp->npages) {
192 mlx5_mr_cache_invalidate(mr);
193 ib_umem_odp_unmap_dma_pages(odp, ib_umem_start(odp),
194 ib_umem_end(odp));
195 WARN_ON(odp->npages);
197 odp->private = NULL;
198 mutex_unlock(&odp->umem_mutex);
200 if (!mr->cache_ent) {
201 mlx5_core_destroy_mkey(mr->dev->mdev, &mr->mmkey);
202 WARN_ON(mr->descs);
207 * This must be called after the mr has been removed from implicit_children
208 * and the SRCU synchronized. NOTE: The MR does not necessarily have to be
209 * empty here, parallel page faults could have raced with the free process and
210 * added pages to it.
212 static void free_implicit_child_mr(struct mlx5_ib_mr *mr, bool need_imr_xlt)
214 struct mlx5_ib_mr *imr = mr->parent;
215 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
216 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
217 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
218 int srcu_key;
220 /* implicit_child_mr's are not allowed to have deferred work */
221 WARN_ON(atomic_read(&mr->num_deferred_work));
223 if (need_imr_xlt) {
224 srcu_key = srcu_read_lock(&mr->dev->odp_srcu);
225 mutex_lock(&odp_imr->umem_mutex);
226 mlx5_ib_update_xlt(mr->parent, idx, 1, 0,
227 MLX5_IB_UPD_XLT_INDIRECT |
228 MLX5_IB_UPD_XLT_ATOMIC);
229 mutex_unlock(&odp_imr->umem_mutex);
230 srcu_read_unlock(&mr->dev->odp_srcu, srcu_key);
233 dma_fence_odp_mr(mr);
235 mr->parent = NULL;
236 mlx5_mr_cache_free(mr->dev, mr);
237 ib_umem_odp_release(odp);
238 if (atomic_dec_and_test(&imr->num_deferred_work))
239 wake_up(&imr->q_deferred_work);
242 static void free_implicit_child_mr_work(struct work_struct *work)
244 struct mlx5_ib_mr *mr =
245 container_of(work, struct mlx5_ib_mr, odp_destroy.work);
247 free_implicit_child_mr(mr, true);
250 static void free_implicit_child_mr_rcu(struct rcu_head *head)
252 struct mlx5_ib_mr *mr =
253 container_of(head, struct mlx5_ib_mr, odp_destroy.rcu);
255 /* Freeing a MR is a sleeping operation, so bounce to a work queue */
256 INIT_WORK(&mr->odp_destroy.work, free_implicit_child_mr_work);
257 queue_work(system_unbound_wq, &mr->odp_destroy.work);
260 static void destroy_unused_implicit_child_mr(struct mlx5_ib_mr *mr)
262 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
263 unsigned long idx = ib_umem_start(odp) >> MLX5_IMR_MTT_SHIFT;
264 struct mlx5_ib_mr *imr = mr->parent;
266 xa_lock(&imr->implicit_children);
268 * This can race with mlx5_ib_free_implicit_mr(), the first one to
269 * reach the xa lock wins the race and destroys the MR.
271 if (__xa_cmpxchg(&imr->implicit_children, idx, mr, NULL, GFP_ATOMIC) !=
273 goto out_unlock;
275 atomic_inc(&imr->num_deferred_work);
276 call_srcu(&mr->dev->odp_srcu, &mr->odp_destroy.rcu,
277 free_implicit_child_mr_rcu);
279 out_unlock:
280 xa_unlock(&imr->implicit_children);
283 static bool mlx5_ib_invalidate_range(struct mmu_interval_notifier *mni,
284 const struct mmu_notifier_range *range,
285 unsigned long cur_seq)
287 struct ib_umem_odp *umem_odp =
288 container_of(mni, struct ib_umem_odp, notifier);
289 struct mlx5_ib_mr *mr;
290 const u64 umr_block_mask = (MLX5_UMR_MTT_ALIGNMENT /
291 sizeof(struct mlx5_mtt)) - 1;
292 u64 idx = 0, blk_start_idx = 0;
293 u64 invalidations = 0;
294 unsigned long start;
295 unsigned long end;
296 int in_block = 0;
297 u64 addr;
299 if (!mmu_notifier_range_blockable(range))
300 return false;
302 mutex_lock(&umem_odp->umem_mutex);
303 mmu_interval_set_seq(mni, cur_seq);
305 * If npages is zero then umem_odp->private may not be setup yet. This
306 * does not complete until after the first page is mapped for DMA.
308 if (!umem_odp->npages)
309 goto out;
310 mr = umem_odp->private;
312 start = max_t(u64, ib_umem_start(umem_odp), range->start);
313 end = min_t(u64, ib_umem_end(umem_odp), range->end);
316 * Iteration one - zap the HW's MTTs. The notifiers_count ensures that
317 * while we are doing the invalidation, no page fault will attempt to
318 * overwrite the same MTTs. Concurent invalidations might race us,
319 * but they will write 0s as well, so no difference in the end result.
321 for (addr = start; addr < end; addr += BIT(umem_odp->page_shift)) {
322 idx = (addr - ib_umem_start(umem_odp)) >> umem_odp->page_shift;
324 * Strive to write the MTTs in chunks, but avoid overwriting
325 * non-existing MTTs. The huristic here can be improved to
326 * estimate the cost of another UMR vs. the cost of bigger
327 * UMR.
329 if (umem_odp->dma_list[idx] &
330 (ODP_READ_ALLOWED_BIT | ODP_WRITE_ALLOWED_BIT)) {
331 if (!in_block) {
332 blk_start_idx = idx;
333 in_block = 1;
336 /* Count page invalidations */
337 invalidations += idx - blk_start_idx + 1;
338 } else {
339 u64 umr_offset = idx & umr_block_mask;
341 if (in_block && umr_offset == 0) {
342 mlx5_ib_update_xlt(mr, blk_start_idx,
343 idx - blk_start_idx, 0,
344 MLX5_IB_UPD_XLT_ZAP |
345 MLX5_IB_UPD_XLT_ATOMIC);
346 in_block = 0;
350 if (in_block)
351 mlx5_ib_update_xlt(mr, blk_start_idx,
352 idx - blk_start_idx + 1, 0,
353 MLX5_IB_UPD_XLT_ZAP |
354 MLX5_IB_UPD_XLT_ATOMIC);
356 mlx5_update_odp_stats(mr, invalidations, invalidations);
359 * We are now sure that the device will not access the
360 * memory. We can safely unmap it, and mark it as dirty if
361 * needed.
364 ib_umem_odp_unmap_dma_pages(umem_odp, start, end);
366 if (unlikely(!umem_odp->npages && mr->parent))
367 destroy_unused_implicit_child_mr(mr);
368 out:
369 mutex_unlock(&umem_odp->umem_mutex);
370 return true;
373 const struct mmu_interval_notifier_ops mlx5_mn_ops = {
374 .invalidate = mlx5_ib_invalidate_range,
377 void mlx5_ib_internal_fill_odp_caps(struct mlx5_ib_dev *dev)
379 struct ib_odp_caps *caps = &dev->odp_caps;
381 memset(caps, 0, sizeof(*caps));
383 if (!MLX5_CAP_GEN(dev->mdev, pg) ||
384 !mlx5_ib_can_use_umr(dev, true, 0))
385 return;
387 caps->general_caps = IB_ODP_SUPPORT;
389 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
390 dev->odp_max_size = U64_MAX;
391 else
392 dev->odp_max_size = BIT_ULL(MLX5_MAX_UMR_SHIFT + PAGE_SHIFT);
394 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.send))
395 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SEND;
397 if (MLX5_CAP_ODP(dev->mdev, ud_odp_caps.srq_receive))
398 caps->per_transport_caps.ud_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
400 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.send))
401 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SEND;
403 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.receive))
404 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_RECV;
406 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.write))
407 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_WRITE;
409 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.read))
410 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_READ;
412 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.atomic))
413 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
415 if (MLX5_CAP_ODP(dev->mdev, rc_odp_caps.srq_receive))
416 caps->per_transport_caps.rc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
418 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.send))
419 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SEND;
421 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.receive))
422 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_RECV;
424 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.write))
425 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_WRITE;
427 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.read))
428 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_READ;
430 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.atomic))
431 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_ATOMIC;
433 if (MLX5_CAP_ODP(dev->mdev, xrc_odp_caps.srq_receive))
434 caps->per_transport_caps.xrc_odp_caps |= IB_ODP_SUPPORT_SRQ_RECV;
436 if (MLX5_CAP_GEN(dev->mdev, fixed_buffer_size) &&
437 MLX5_CAP_GEN(dev->mdev, null_mkey) &&
438 MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset) &&
439 !MLX5_CAP_GEN(dev->mdev, umr_indirect_mkey_disabled))
440 caps->general_caps |= IB_ODP_SUPPORT_IMPLICIT;
443 static void mlx5_ib_page_fault_resume(struct mlx5_ib_dev *dev,
444 struct mlx5_pagefault *pfault,
445 int error)
447 int wq_num = pfault->event_subtype == MLX5_PFAULT_SUBTYPE_WQE ?
448 pfault->wqe.wq_num : pfault->token;
449 u32 out[MLX5_ST_SZ_DW(page_fault_resume_out)] = { };
450 u32 in[MLX5_ST_SZ_DW(page_fault_resume_in)] = { };
451 int err;
453 MLX5_SET(page_fault_resume_in, in, opcode, MLX5_CMD_OP_PAGE_FAULT_RESUME);
454 MLX5_SET(page_fault_resume_in, in, page_fault_type, pfault->type);
455 MLX5_SET(page_fault_resume_in, in, token, pfault->token);
456 MLX5_SET(page_fault_resume_in, in, wq_number, wq_num);
457 MLX5_SET(page_fault_resume_in, in, error, !!error);
459 err = mlx5_cmd_exec(dev->mdev, in, sizeof(in), out, sizeof(out));
460 if (err)
461 mlx5_ib_err(dev, "Failed to resolve the page fault on WQ 0x%x err %d\n",
462 wq_num, err);
465 static struct mlx5_ib_mr *implicit_get_child_mr(struct mlx5_ib_mr *imr,
466 unsigned long idx)
468 struct ib_umem_odp *odp;
469 struct mlx5_ib_mr *mr;
470 struct mlx5_ib_mr *ret;
471 int err;
473 odp = ib_umem_odp_alloc_child(to_ib_umem_odp(imr->umem),
474 idx * MLX5_IMR_MTT_SIZE,
475 MLX5_IMR_MTT_SIZE, &mlx5_mn_ops);
476 if (IS_ERR(odp))
477 return ERR_CAST(odp);
479 ret = mr = mlx5_mr_cache_alloc(imr->dev, MLX5_IMR_MTT_CACHE_ENTRY);
480 if (IS_ERR(mr))
481 goto out_umem;
483 mr->ibmr.pd = imr->ibmr.pd;
484 mr->access_flags = imr->access_flags;
485 mr->umem = &odp->umem;
486 mr->ibmr.lkey = mr->mmkey.key;
487 mr->ibmr.rkey = mr->mmkey.key;
488 mr->mmkey.iova = idx * MLX5_IMR_MTT_SIZE;
489 mr->parent = imr;
490 odp->private = mr;
492 err = mlx5_ib_update_xlt(mr, 0,
493 MLX5_IMR_MTT_ENTRIES,
494 PAGE_SHIFT,
495 MLX5_IB_UPD_XLT_ZAP |
496 MLX5_IB_UPD_XLT_ENABLE);
497 if (err) {
498 ret = ERR_PTR(err);
499 goto out_mr;
503 * Once the store to either xarray completes any error unwind has to
504 * use synchronize_srcu(). Avoid this with xa_reserve()
506 ret = xa_cmpxchg(&imr->implicit_children, idx, NULL, mr,
507 GFP_KERNEL);
508 if (unlikely(ret)) {
509 if (xa_is_err(ret)) {
510 ret = ERR_PTR(xa_err(ret));
511 goto out_mr;
514 * Another thread beat us to creating the child mr, use
515 * theirs.
517 goto out_mr;
520 mlx5_ib_dbg(imr->dev, "key %x mr %p\n", mr->mmkey.key, mr);
521 return mr;
523 out_mr:
524 mlx5_mr_cache_free(imr->dev, mr);
525 out_umem:
526 ib_umem_odp_release(odp);
527 return ret;
530 struct mlx5_ib_mr *mlx5_ib_alloc_implicit_mr(struct mlx5_ib_pd *pd,
531 struct ib_udata *udata,
532 int access_flags)
534 struct mlx5_ib_dev *dev = to_mdev(pd->ibpd.device);
535 struct ib_umem_odp *umem_odp;
536 struct mlx5_ib_mr *imr;
537 int err;
539 umem_odp = ib_umem_odp_alloc_implicit(&dev->ib_dev, access_flags);
540 if (IS_ERR(umem_odp))
541 return ERR_CAST(umem_odp);
543 imr = mlx5_mr_cache_alloc(dev, MLX5_IMR_KSM_CACHE_ENTRY);
544 if (IS_ERR(imr)) {
545 err = PTR_ERR(imr);
546 goto out_umem;
549 imr->ibmr.pd = &pd->ibpd;
550 imr->access_flags = access_flags;
551 imr->mmkey.iova = 0;
552 imr->umem = &umem_odp->umem;
553 imr->ibmr.lkey = imr->mmkey.key;
554 imr->ibmr.rkey = imr->mmkey.key;
555 imr->umem = &umem_odp->umem;
556 imr->is_odp_implicit = true;
557 atomic_set(&imr->num_deferred_work, 0);
558 init_waitqueue_head(&imr->q_deferred_work);
559 xa_init(&imr->implicit_children);
561 err = mlx5_ib_update_xlt(imr, 0,
562 mlx5_imr_ksm_entries,
563 MLX5_KSM_PAGE_SHIFT,
564 MLX5_IB_UPD_XLT_INDIRECT |
565 MLX5_IB_UPD_XLT_ZAP |
566 MLX5_IB_UPD_XLT_ENABLE);
567 if (err)
568 goto out_mr;
570 err = xa_err(xa_store(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key),
571 &imr->mmkey, GFP_KERNEL));
572 if (err)
573 goto out_mr;
575 mlx5_ib_dbg(dev, "key %x mr %p\n", imr->mmkey.key, imr);
576 return imr;
577 out_mr:
578 mlx5_ib_err(dev, "Failed to register MKEY %d\n", err);
579 mlx5_mr_cache_free(dev, imr);
580 out_umem:
581 ib_umem_odp_release(umem_odp);
582 return ERR_PTR(err);
585 void mlx5_ib_free_implicit_mr(struct mlx5_ib_mr *imr)
587 struct ib_umem_odp *odp_imr = to_ib_umem_odp(imr->umem);
588 struct mlx5_ib_dev *dev = imr->dev;
589 struct list_head destroy_list;
590 struct mlx5_ib_mr *mtt;
591 struct mlx5_ib_mr *tmp;
592 unsigned long idx;
594 INIT_LIST_HEAD(&destroy_list);
596 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(imr->mmkey.key));
598 * This stops the SRCU protected page fault path from touching either
599 * the imr or any children. The page fault path can only reach the
600 * children xarray via the imr.
602 synchronize_srcu(&dev->odp_srcu);
604 xa_lock(&imr->implicit_children);
605 xa_for_each (&imr->implicit_children, idx, mtt) {
606 __xa_erase(&imr->implicit_children, idx);
607 list_add(&mtt->odp_destroy.elm, &destroy_list);
609 xa_unlock(&imr->implicit_children);
612 * num_deferred_work can only be incremented inside the odp_srcu, or
613 * under xa_lock while the child is in the xarray. Thus at this point
614 * it is only decreasing, and all work holding it is now on the wq.
616 wait_event(imr->q_deferred_work, !atomic_read(&imr->num_deferred_work));
619 * Fence the imr before we destroy the children. This allows us to
620 * skip updating the XLT of the imr during destroy of the child mkey
621 * the imr points to.
623 mlx5_mr_cache_invalidate(imr);
625 list_for_each_entry_safe (mtt, tmp, &destroy_list, odp_destroy.elm)
626 free_implicit_child_mr(mtt, false);
628 mlx5_mr_cache_free(dev, imr);
629 ib_umem_odp_release(odp_imr);
633 * mlx5_ib_fence_odp_mr - Stop all access to the ODP MR
634 * @mr: to fence
636 * On return no parallel threads will be touching this MR and no DMA will be
637 * active.
639 void mlx5_ib_fence_odp_mr(struct mlx5_ib_mr *mr)
641 /* Prevent new page faults and prefetch requests from succeeding */
642 xa_erase(&mr->dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key));
644 /* Wait for all running page-fault handlers to finish. */
645 synchronize_srcu(&mr->dev->odp_srcu);
647 wait_event(mr->q_deferred_work, !atomic_read(&mr->num_deferred_work));
649 dma_fence_odp_mr(mr);
652 #define MLX5_PF_FLAGS_DOWNGRADE BIT(1)
653 static int pagefault_real_mr(struct mlx5_ib_mr *mr, struct ib_umem_odp *odp,
654 u64 user_va, size_t bcnt, u32 *bytes_mapped,
655 u32 flags)
657 int page_shift, ret, np;
658 bool downgrade = flags & MLX5_PF_FLAGS_DOWNGRADE;
659 unsigned long current_seq;
660 u64 access_mask;
661 u64 start_idx;
663 page_shift = odp->page_shift;
664 start_idx = (user_va - ib_umem_start(odp)) >> page_shift;
665 access_mask = ODP_READ_ALLOWED_BIT;
667 if (odp->umem.writable && !downgrade)
668 access_mask |= ODP_WRITE_ALLOWED_BIT;
670 current_seq = mmu_interval_read_begin(&odp->notifier);
672 np = ib_umem_odp_map_dma_pages(odp, user_va, bcnt, access_mask,
673 current_seq);
674 if (np < 0)
675 return np;
677 mutex_lock(&odp->umem_mutex);
678 if (!mmu_interval_read_retry(&odp->notifier, current_seq)) {
680 * No need to check whether the MTTs really belong to
681 * this MR, since ib_umem_odp_map_dma_pages already
682 * checks this.
684 ret = mlx5_ib_update_xlt(mr, start_idx, np,
685 page_shift, MLX5_IB_UPD_XLT_ATOMIC);
686 } else {
687 ret = -EAGAIN;
689 mutex_unlock(&odp->umem_mutex);
691 if (ret < 0) {
692 if (ret != -EAGAIN)
693 mlx5_ib_err(mr->dev,
694 "Failed to update mkey page tables\n");
695 goto out;
698 if (bytes_mapped) {
699 u32 new_mappings = (np << page_shift) -
700 (user_va - round_down(user_va, 1 << page_shift));
702 *bytes_mapped += min_t(u32, new_mappings, bcnt);
705 return np << (page_shift - PAGE_SHIFT);
707 out:
708 return ret;
711 static int pagefault_implicit_mr(struct mlx5_ib_mr *imr,
712 struct ib_umem_odp *odp_imr, u64 user_va,
713 size_t bcnt, u32 *bytes_mapped, u32 flags)
715 unsigned long end_idx = (user_va + bcnt - 1) >> MLX5_IMR_MTT_SHIFT;
716 unsigned long upd_start_idx = end_idx + 1;
717 unsigned long upd_len = 0;
718 unsigned long npages = 0;
719 int err;
720 int ret;
722 if (unlikely(user_va >= mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE ||
723 mlx5_imr_ksm_entries * MLX5_IMR_MTT_SIZE - user_va < bcnt))
724 return -EFAULT;
726 /* Fault each child mr that intersects with our interval. */
727 while (bcnt) {
728 unsigned long idx = user_va >> MLX5_IMR_MTT_SHIFT;
729 struct ib_umem_odp *umem_odp;
730 struct mlx5_ib_mr *mtt;
731 u64 len;
733 mtt = xa_load(&imr->implicit_children, idx);
734 if (unlikely(!mtt)) {
735 mtt = implicit_get_child_mr(imr, idx);
736 if (IS_ERR(mtt)) {
737 ret = PTR_ERR(mtt);
738 goto out;
740 upd_start_idx = min(upd_start_idx, idx);
741 upd_len = idx - upd_start_idx + 1;
744 umem_odp = to_ib_umem_odp(mtt->umem);
745 len = min_t(u64, user_va + bcnt, ib_umem_end(umem_odp)) -
746 user_va;
748 ret = pagefault_real_mr(mtt, umem_odp, user_va, len,
749 bytes_mapped, flags);
750 if (ret < 0)
751 goto out;
752 user_va += len;
753 bcnt -= len;
754 npages += ret;
757 ret = npages;
760 * Any time the implicit_children are changed we must perform an
761 * update of the xlt before exiting to ensure the HW and the
762 * implicit_children remains synchronized.
764 out:
765 if (likely(!upd_len))
766 return ret;
769 * Notice this is not strictly ordered right, the KSM is updated after
770 * the implicit_children is updated, so a parallel page fault could
771 * see a MR that is not yet visible in the KSM. This is similar to a
772 * parallel page fault seeing a MR that is being concurrently removed
773 * from the KSM. Both of these improbable situations are resolved
774 * safely by resuming the HW and then taking another page fault. The
775 * next pagefault handler will see the new information.
777 mutex_lock(&odp_imr->umem_mutex);
778 err = mlx5_ib_update_xlt(imr, upd_start_idx, upd_len, 0,
779 MLX5_IB_UPD_XLT_INDIRECT |
780 MLX5_IB_UPD_XLT_ATOMIC);
781 mutex_unlock(&odp_imr->umem_mutex);
782 if (err) {
783 mlx5_ib_err(imr->dev, "Failed to update PAS\n");
784 return err;
786 return ret;
790 * Returns:
791 * -EFAULT: The io_virt->bcnt is not within the MR, it covers pages that are
792 * not accessible, or the MR is no longer valid.
793 * -EAGAIN/-ENOMEM: The operation should be retried
795 * -EINVAL/others: General internal malfunction
796 * >0: Number of pages mapped
798 static int pagefault_mr(struct mlx5_ib_mr *mr, u64 io_virt, size_t bcnt,
799 u32 *bytes_mapped, u32 flags)
801 struct ib_umem_odp *odp = to_ib_umem_odp(mr->umem);
803 if (unlikely(io_virt < mr->mmkey.iova))
804 return -EFAULT;
806 if (!odp->is_implicit_odp) {
807 u64 user_va;
809 if (check_add_overflow(io_virt - mr->mmkey.iova,
810 (u64)odp->umem.address, &user_va))
811 return -EFAULT;
812 if (unlikely(user_va >= ib_umem_end(odp) ||
813 ib_umem_end(odp) - user_va < bcnt))
814 return -EFAULT;
815 return pagefault_real_mr(mr, odp, user_va, bcnt, bytes_mapped,
816 flags);
818 return pagefault_implicit_mr(mr, odp, io_virt, bcnt, bytes_mapped,
819 flags);
822 struct pf_frame {
823 struct pf_frame *next;
824 u32 key;
825 u64 io_virt;
826 size_t bcnt;
827 int depth;
830 static bool mkey_is_eq(struct mlx5_core_mkey *mmkey, u32 key)
832 if (!mmkey)
833 return false;
834 if (mmkey->type == MLX5_MKEY_MW)
835 return mlx5_base_mkey(mmkey->key) == mlx5_base_mkey(key);
836 return mmkey->key == key;
839 static int get_indirect_num_descs(struct mlx5_core_mkey *mmkey)
841 struct mlx5_ib_mw *mw;
842 struct mlx5_ib_devx_mr *devx_mr;
844 if (mmkey->type == MLX5_MKEY_MW) {
845 mw = container_of(mmkey, struct mlx5_ib_mw, mmkey);
846 return mw->ndescs;
849 devx_mr = container_of(mmkey, struct mlx5_ib_devx_mr,
850 mmkey);
851 return devx_mr->ndescs;
855 * Handle a single data segment in a page-fault WQE or RDMA region.
857 * Returns number of OS pages retrieved on success. The caller may continue to
858 * the next data segment.
859 * Can return the following error codes:
860 * -EAGAIN to designate a temporary error. The caller will abort handling the
861 * page fault and resolve it.
862 * -EFAULT when there's an error mapping the requested pages. The caller will
863 * abort the page fault handling.
865 static int pagefault_single_data_segment(struct mlx5_ib_dev *dev,
866 struct ib_pd *pd, u32 key,
867 u64 io_virt, size_t bcnt,
868 u32 *bytes_committed,
869 u32 *bytes_mapped)
871 int npages = 0, srcu_key, ret, i, outlen, cur_outlen = 0, depth = 0;
872 struct pf_frame *head = NULL, *frame;
873 struct mlx5_core_mkey *mmkey;
874 struct mlx5_ib_mr *mr;
875 struct mlx5_klm *pklm;
876 u32 *out = NULL;
877 size_t offset;
878 int ndescs;
880 srcu_key = srcu_read_lock(&dev->odp_srcu);
882 io_virt += *bytes_committed;
883 bcnt -= *bytes_committed;
885 next_mr:
886 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(key));
887 if (!mmkey) {
888 mlx5_ib_dbg(
889 dev,
890 "skipping non ODP MR (lkey=0x%06x) in page fault handler.\n",
891 key);
892 if (bytes_mapped)
893 *bytes_mapped += bcnt;
895 * The user could specify a SGL with multiple lkeys and only
896 * some of them are ODP. Treat the non-ODP ones as fully
897 * faulted.
899 ret = 0;
900 goto srcu_unlock;
902 if (!mkey_is_eq(mmkey, key)) {
903 mlx5_ib_dbg(dev, "failed to find mkey %x\n", key);
904 ret = -EFAULT;
905 goto srcu_unlock;
908 switch (mmkey->type) {
909 case MLX5_MKEY_MR:
910 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
912 ret = pagefault_mr(mr, io_virt, bcnt, bytes_mapped, 0);
913 if (ret < 0)
914 goto srcu_unlock;
917 * When prefetching a page, page fault is generated
918 * in order to bring the page to the main memory.
919 * In the current flow, page faults are being counted.
921 mlx5_update_odp_stats(mr, faults, ret);
923 npages += ret;
924 ret = 0;
925 break;
927 case MLX5_MKEY_MW:
928 case MLX5_MKEY_INDIRECT_DEVX:
929 ndescs = get_indirect_num_descs(mmkey);
931 if (depth >= MLX5_CAP_GEN(dev->mdev, max_indirection)) {
932 mlx5_ib_dbg(dev, "indirection level exceeded\n");
933 ret = -EFAULT;
934 goto srcu_unlock;
937 outlen = MLX5_ST_SZ_BYTES(query_mkey_out) +
938 sizeof(*pklm) * (ndescs - 2);
940 if (outlen > cur_outlen) {
941 kfree(out);
942 out = kzalloc(outlen, GFP_KERNEL);
943 if (!out) {
944 ret = -ENOMEM;
945 goto srcu_unlock;
947 cur_outlen = outlen;
950 pklm = (struct mlx5_klm *)MLX5_ADDR_OF(query_mkey_out, out,
951 bsf0_klm0_pas_mtt0_1);
953 ret = mlx5_core_query_mkey(dev->mdev, mmkey, out, outlen);
954 if (ret)
955 goto srcu_unlock;
957 offset = io_virt - MLX5_GET64(query_mkey_out, out,
958 memory_key_mkey_entry.start_addr);
960 for (i = 0; bcnt && i < ndescs; i++, pklm++) {
961 if (offset >= be32_to_cpu(pklm->bcount)) {
962 offset -= be32_to_cpu(pklm->bcount);
963 continue;
966 frame = kzalloc(sizeof(*frame), GFP_KERNEL);
967 if (!frame) {
968 ret = -ENOMEM;
969 goto srcu_unlock;
972 frame->key = be32_to_cpu(pklm->key);
973 frame->io_virt = be64_to_cpu(pklm->va) + offset;
974 frame->bcnt = min_t(size_t, bcnt,
975 be32_to_cpu(pklm->bcount) - offset);
976 frame->depth = depth + 1;
977 frame->next = head;
978 head = frame;
980 bcnt -= frame->bcnt;
981 offset = 0;
983 break;
985 default:
986 mlx5_ib_dbg(dev, "wrong mkey type %d\n", mmkey->type);
987 ret = -EFAULT;
988 goto srcu_unlock;
991 if (head) {
992 frame = head;
993 head = frame->next;
995 key = frame->key;
996 io_virt = frame->io_virt;
997 bcnt = frame->bcnt;
998 depth = frame->depth;
999 kfree(frame);
1001 goto next_mr;
1004 srcu_unlock:
1005 while (head) {
1006 frame = head;
1007 head = frame->next;
1008 kfree(frame);
1010 kfree(out);
1012 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1013 *bytes_committed = 0;
1014 return ret ? ret : npages;
1018 * Parse a series of data segments for page fault handling.
1020 * @pfault contains page fault information.
1021 * @wqe points at the first data segment in the WQE.
1022 * @wqe_end points after the end of the WQE.
1023 * @bytes_mapped receives the number of bytes that the function was able to
1024 * map. This allows the caller to decide intelligently whether
1025 * enough memory was mapped to resolve the page fault
1026 * successfully (e.g. enough for the next MTU, or the entire
1027 * WQE).
1028 * @total_wqe_bytes receives the total data size of this WQE in bytes (minus
1029 * the committed bytes).
1031 * Returns the number of pages loaded if positive, zero for an empty WQE, or a
1032 * negative error code.
1034 static int pagefault_data_segments(struct mlx5_ib_dev *dev,
1035 struct mlx5_pagefault *pfault,
1036 void *wqe,
1037 void *wqe_end, u32 *bytes_mapped,
1038 u32 *total_wqe_bytes, bool receive_queue)
1040 int ret = 0, npages = 0;
1041 u64 io_virt;
1042 u32 key;
1043 u32 byte_count;
1044 size_t bcnt;
1045 int inline_segment;
1047 if (bytes_mapped)
1048 *bytes_mapped = 0;
1049 if (total_wqe_bytes)
1050 *total_wqe_bytes = 0;
1052 while (wqe < wqe_end) {
1053 struct mlx5_wqe_data_seg *dseg = wqe;
1055 io_virt = be64_to_cpu(dseg->addr);
1056 key = be32_to_cpu(dseg->lkey);
1057 byte_count = be32_to_cpu(dseg->byte_count);
1058 inline_segment = !!(byte_count & MLX5_INLINE_SEG);
1059 bcnt = byte_count & ~MLX5_INLINE_SEG;
1061 if (inline_segment) {
1062 bcnt = bcnt & MLX5_WQE_INLINE_SEG_BYTE_COUNT_MASK;
1063 wqe += ALIGN(sizeof(struct mlx5_wqe_inline_seg) + bcnt,
1064 16);
1065 } else {
1066 wqe += sizeof(*dseg);
1069 /* receive WQE end of sg list. */
1070 if (receive_queue && bcnt == 0 && key == MLX5_INVALID_LKEY &&
1071 io_virt == 0)
1072 break;
1074 if (!inline_segment && total_wqe_bytes) {
1075 *total_wqe_bytes += bcnt - min_t(size_t, bcnt,
1076 pfault->bytes_committed);
1079 /* A zero length data segment designates a length of 2GB. */
1080 if (bcnt == 0)
1081 bcnt = 1U << 31;
1083 if (inline_segment || bcnt <= pfault->bytes_committed) {
1084 pfault->bytes_committed -=
1085 min_t(size_t, bcnt,
1086 pfault->bytes_committed);
1087 continue;
1090 ret = pagefault_single_data_segment(dev, NULL, key,
1091 io_virt, bcnt,
1092 &pfault->bytes_committed,
1093 bytes_mapped);
1094 if (ret < 0)
1095 break;
1096 npages += ret;
1099 return ret < 0 ? ret : npages;
1103 * Parse initiator WQE. Advances the wqe pointer to point at the
1104 * scatter-gather list, and set wqe_end to the end of the WQE.
1106 static int mlx5_ib_mr_initiator_pfault_handler(
1107 struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault,
1108 struct mlx5_ib_qp *qp, void **wqe, void **wqe_end, int wqe_length)
1110 struct mlx5_wqe_ctrl_seg *ctrl = *wqe;
1111 u16 wqe_index = pfault->wqe.wqe_index;
1112 struct mlx5_base_av *av;
1113 unsigned ds, opcode;
1114 u32 qpn = qp->trans_qp.base.mqp.qpn;
1116 ds = be32_to_cpu(ctrl->qpn_ds) & MLX5_WQE_CTRL_DS_MASK;
1117 if (ds * MLX5_WQE_DS_UNITS > wqe_length) {
1118 mlx5_ib_err(dev, "Unable to read the complete WQE. ds = 0x%x, ret = 0x%x\n",
1119 ds, wqe_length);
1120 return -EFAULT;
1123 if (ds == 0) {
1124 mlx5_ib_err(dev, "Got WQE with zero DS. wqe_index=%x, qpn=%x\n",
1125 wqe_index, qpn);
1126 return -EFAULT;
1129 *wqe_end = *wqe + ds * MLX5_WQE_DS_UNITS;
1130 *wqe += sizeof(*ctrl);
1132 opcode = be32_to_cpu(ctrl->opmod_idx_opcode) &
1133 MLX5_WQE_CTRL_OPCODE_MASK;
1135 if (qp->ibqp.qp_type == IB_QPT_XRC_INI)
1136 *wqe += sizeof(struct mlx5_wqe_xrc_seg);
1138 if (qp->ibqp.qp_type == IB_QPT_UD ||
1139 qp->qp_sub_type == MLX5_IB_QPT_DCI) {
1140 av = *wqe;
1141 if (av->dqp_dct & cpu_to_be32(MLX5_EXTENDED_UD_AV))
1142 *wqe += sizeof(struct mlx5_av);
1143 else
1144 *wqe += sizeof(struct mlx5_base_av);
1147 switch (opcode) {
1148 case MLX5_OPCODE_RDMA_WRITE:
1149 case MLX5_OPCODE_RDMA_WRITE_IMM:
1150 case MLX5_OPCODE_RDMA_READ:
1151 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1152 break;
1153 case MLX5_OPCODE_ATOMIC_CS:
1154 case MLX5_OPCODE_ATOMIC_FA:
1155 *wqe += sizeof(struct mlx5_wqe_raddr_seg);
1156 *wqe += sizeof(struct mlx5_wqe_atomic_seg);
1157 break;
1160 return 0;
1164 * Parse responder WQE and set wqe_end to the end of the WQE.
1166 static int mlx5_ib_mr_responder_pfault_handler_srq(struct mlx5_ib_dev *dev,
1167 struct mlx5_ib_srq *srq,
1168 void **wqe, void **wqe_end,
1169 int wqe_length)
1171 int wqe_size = 1 << srq->msrq.wqe_shift;
1173 if (wqe_size > wqe_length) {
1174 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1175 return -EFAULT;
1178 *wqe_end = *wqe + wqe_size;
1179 *wqe += sizeof(struct mlx5_wqe_srq_next_seg);
1181 return 0;
1184 static int mlx5_ib_mr_responder_pfault_handler_rq(struct mlx5_ib_dev *dev,
1185 struct mlx5_ib_qp *qp,
1186 void *wqe, void **wqe_end,
1187 int wqe_length)
1189 struct mlx5_ib_wq *wq = &qp->rq;
1190 int wqe_size = 1 << wq->wqe_shift;
1192 if (qp->wq_sig) {
1193 mlx5_ib_err(dev, "ODP fault with WQE signatures is not supported\n");
1194 return -EFAULT;
1197 if (wqe_size > wqe_length) {
1198 mlx5_ib_err(dev, "Couldn't read all of the receive WQE's content\n");
1199 return -EFAULT;
1202 *wqe_end = wqe + wqe_size;
1204 return 0;
1207 static inline struct mlx5_core_rsc_common *odp_get_rsc(struct mlx5_ib_dev *dev,
1208 u32 wq_num, int pf_type)
1210 struct mlx5_core_rsc_common *common = NULL;
1211 struct mlx5_core_srq *srq;
1213 switch (pf_type) {
1214 case MLX5_WQE_PF_TYPE_RMP:
1215 srq = mlx5_cmd_get_srq(dev, wq_num);
1216 if (srq)
1217 common = &srq->common;
1218 break;
1219 case MLX5_WQE_PF_TYPE_REQ_SEND_OR_WRITE:
1220 case MLX5_WQE_PF_TYPE_RESP:
1221 case MLX5_WQE_PF_TYPE_REQ_READ_OR_ATOMIC:
1222 common = mlx5_core_res_hold(dev->mdev, wq_num, MLX5_RES_QP);
1223 break;
1224 default:
1225 break;
1228 return common;
1231 static inline struct mlx5_ib_qp *res_to_qp(struct mlx5_core_rsc_common *res)
1233 struct mlx5_core_qp *mqp = (struct mlx5_core_qp *)res;
1235 return to_mibqp(mqp);
1238 static inline struct mlx5_ib_srq *res_to_srq(struct mlx5_core_rsc_common *res)
1240 struct mlx5_core_srq *msrq =
1241 container_of(res, struct mlx5_core_srq, common);
1243 return to_mibsrq(msrq);
1246 static void mlx5_ib_mr_wqe_pfault_handler(struct mlx5_ib_dev *dev,
1247 struct mlx5_pagefault *pfault)
1249 bool sq = pfault->type & MLX5_PFAULT_REQUESTOR;
1250 u16 wqe_index = pfault->wqe.wqe_index;
1251 void *wqe, *wqe_start = NULL, *wqe_end = NULL;
1252 u32 bytes_mapped, total_wqe_bytes;
1253 struct mlx5_core_rsc_common *res;
1254 int resume_with_error = 1;
1255 struct mlx5_ib_qp *qp;
1256 size_t bytes_copied;
1257 int ret = 0;
1259 res = odp_get_rsc(dev, pfault->wqe.wq_num, pfault->type);
1260 if (!res) {
1261 mlx5_ib_dbg(dev, "wqe page fault for missing resource %d\n", pfault->wqe.wq_num);
1262 return;
1265 if (res->res != MLX5_RES_QP && res->res != MLX5_RES_SRQ &&
1266 res->res != MLX5_RES_XSRQ) {
1267 mlx5_ib_err(dev, "wqe page fault for unsupported type %d\n",
1268 pfault->type);
1269 goto resolve_page_fault;
1272 wqe_start = (void *)__get_free_page(GFP_KERNEL);
1273 if (!wqe_start) {
1274 mlx5_ib_err(dev, "Error allocating memory for IO page fault handling.\n");
1275 goto resolve_page_fault;
1278 wqe = wqe_start;
1279 qp = (res->res == MLX5_RES_QP) ? res_to_qp(res) : NULL;
1280 if (qp && sq) {
1281 ret = mlx5_ib_read_wqe_sq(qp, wqe_index, wqe, PAGE_SIZE,
1282 &bytes_copied);
1283 if (ret)
1284 goto read_user;
1285 ret = mlx5_ib_mr_initiator_pfault_handler(
1286 dev, pfault, qp, &wqe, &wqe_end, bytes_copied);
1287 } else if (qp && !sq) {
1288 ret = mlx5_ib_read_wqe_rq(qp, wqe_index, wqe, PAGE_SIZE,
1289 &bytes_copied);
1290 if (ret)
1291 goto read_user;
1292 ret = mlx5_ib_mr_responder_pfault_handler_rq(
1293 dev, qp, wqe, &wqe_end, bytes_copied);
1294 } else if (!qp) {
1295 struct mlx5_ib_srq *srq = res_to_srq(res);
1297 ret = mlx5_ib_read_wqe_srq(srq, wqe_index, wqe, PAGE_SIZE,
1298 &bytes_copied);
1299 if (ret)
1300 goto read_user;
1301 ret = mlx5_ib_mr_responder_pfault_handler_srq(
1302 dev, srq, &wqe, &wqe_end, bytes_copied);
1305 if (ret < 0 || wqe >= wqe_end)
1306 goto resolve_page_fault;
1308 ret = pagefault_data_segments(dev, pfault, wqe, wqe_end, &bytes_mapped,
1309 &total_wqe_bytes, !sq);
1310 if (ret == -EAGAIN)
1311 goto out;
1313 if (ret < 0 || total_wqe_bytes > bytes_mapped)
1314 goto resolve_page_fault;
1316 out:
1317 ret = 0;
1318 resume_with_error = 0;
1320 read_user:
1321 if (ret)
1322 mlx5_ib_err(
1323 dev,
1324 "Failed reading a WQE following page fault, error %d, wqe_index %x, qpn %x\n",
1325 ret, wqe_index, pfault->token);
1327 resolve_page_fault:
1328 mlx5_ib_page_fault_resume(dev, pfault, resume_with_error);
1329 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x resume_with_error=%d, type: 0x%x\n",
1330 pfault->wqe.wq_num, resume_with_error,
1331 pfault->type);
1332 mlx5_core_res_put(res);
1333 free_page((unsigned long)wqe_start);
1336 static int pages_in_range(u64 address, u32 length)
1338 return (ALIGN(address + length, PAGE_SIZE) -
1339 (address & PAGE_MASK)) >> PAGE_SHIFT;
1342 static void mlx5_ib_mr_rdma_pfault_handler(struct mlx5_ib_dev *dev,
1343 struct mlx5_pagefault *pfault)
1345 u64 address;
1346 u32 length;
1347 u32 prefetch_len = pfault->bytes_committed;
1348 int prefetch_activated = 0;
1349 u32 rkey = pfault->rdma.r_key;
1350 int ret;
1352 /* The RDMA responder handler handles the page fault in two parts.
1353 * First it brings the necessary pages for the current packet
1354 * (and uses the pfault context), and then (after resuming the QP)
1355 * prefetches more pages. The second operation cannot use the pfault
1356 * context and therefore uses the dummy_pfault context allocated on
1357 * the stack */
1358 pfault->rdma.rdma_va += pfault->bytes_committed;
1359 pfault->rdma.rdma_op_len -= min(pfault->bytes_committed,
1360 pfault->rdma.rdma_op_len);
1361 pfault->bytes_committed = 0;
1363 address = pfault->rdma.rdma_va;
1364 length = pfault->rdma.rdma_op_len;
1366 /* For some operations, the hardware cannot tell the exact message
1367 * length, and in those cases it reports zero. Use prefetch
1368 * logic. */
1369 if (length == 0) {
1370 prefetch_activated = 1;
1371 length = pfault->rdma.packet_size;
1372 prefetch_len = min(MAX_PREFETCH_LEN, prefetch_len);
1375 ret = pagefault_single_data_segment(dev, NULL, rkey, address, length,
1376 &pfault->bytes_committed, NULL);
1377 if (ret == -EAGAIN) {
1378 /* We're racing with an invalidation, don't prefetch */
1379 prefetch_activated = 0;
1380 } else if (ret < 0 || pages_in_range(address, length) > ret) {
1381 mlx5_ib_page_fault_resume(dev, pfault, 1);
1382 if (ret != -ENOENT)
1383 mlx5_ib_dbg(dev, "PAGE FAULT error %d. QP 0x%x, type: 0x%x\n",
1384 ret, pfault->token, pfault->type);
1385 return;
1388 mlx5_ib_page_fault_resume(dev, pfault, 0);
1389 mlx5_ib_dbg(dev, "PAGE FAULT completed. QP 0x%x, type: 0x%x, prefetch_activated: %d\n",
1390 pfault->token, pfault->type,
1391 prefetch_activated);
1393 /* At this point, there might be a new pagefault already arriving in
1394 * the eq, switch to the dummy pagefault for the rest of the
1395 * processing. We're still OK with the objects being alive as the
1396 * work-queue is being fenced. */
1398 if (prefetch_activated) {
1399 u32 bytes_committed = 0;
1401 ret = pagefault_single_data_segment(dev, NULL, rkey, address,
1402 prefetch_len,
1403 &bytes_committed, NULL);
1404 if (ret < 0 && ret != -EAGAIN) {
1405 mlx5_ib_dbg(dev, "Prefetch failed. ret: %d, QP 0x%x, address: 0x%.16llx, length = 0x%.16x\n",
1406 ret, pfault->token, address, prefetch_len);
1411 static void mlx5_ib_pfault(struct mlx5_ib_dev *dev, struct mlx5_pagefault *pfault)
1413 u8 event_subtype = pfault->event_subtype;
1415 switch (event_subtype) {
1416 case MLX5_PFAULT_SUBTYPE_WQE:
1417 mlx5_ib_mr_wqe_pfault_handler(dev, pfault);
1418 break;
1419 case MLX5_PFAULT_SUBTYPE_RDMA:
1420 mlx5_ib_mr_rdma_pfault_handler(dev, pfault);
1421 break;
1422 default:
1423 mlx5_ib_err(dev, "Invalid page fault event subtype: 0x%x\n",
1424 event_subtype);
1425 mlx5_ib_page_fault_resume(dev, pfault, 1);
1429 static void mlx5_ib_eqe_pf_action(struct work_struct *work)
1431 struct mlx5_pagefault *pfault = container_of(work,
1432 struct mlx5_pagefault,
1433 work);
1434 struct mlx5_ib_pf_eq *eq = pfault->eq;
1436 mlx5_ib_pfault(eq->dev, pfault);
1437 mempool_free(pfault, eq->pool);
1440 static void mlx5_ib_eq_pf_process(struct mlx5_ib_pf_eq *eq)
1442 struct mlx5_eqe_page_fault *pf_eqe;
1443 struct mlx5_pagefault *pfault;
1444 struct mlx5_eqe *eqe;
1445 int cc = 0;
1447 while ((eqe = mlx5_eq_get_eqe(eq->core, cc))) {
1448 pfault = mempool_alloc(eq->pool, GFP_ATOMIC);
1449 if (!pfault) {
1450 schedule_work(&eq->work);
1451 break;
1454 pf_eqe = &eqe->data.page_fault;
1455 pfault->event_subtype = eqe->sub_type;
1456 pfault->bytes_committed = be32_to_cpu(pf_eqe->bytes_committed);
1458 mlx5_ib_dbg(eq->dev,
1459 "PAGE_FAULT: subtype: 0x%02x, bytes_committed: 0x%06x\n",
1460 eqe->sub_type, pfault->bytes_committed);
1462 switch (eqe->sub_type) {
1463 case MLX5_PFAULT_SUBTYPE_RDMA:
1464 /* RDMA based event */
1465 pfault->type =
1466 be32_to_cpu(pf_eqe->rdma.pftype_token) >> 24;
1467 pfault->token =
1468 be32_to_cpu(pf_eqe->rdma.pftype_token) &
1469 MLX5_24BIT_MASK;
1470 pfault->rdma.r_key =
1471 be32_to_cpu(pf_eqe->rdma.r_key);
1472 pfault->rdma.packet_size =
1473 be16_to_cpu(pf_eqe->rdma.packet_length);
1474 pfault->rdma.rdma_op_len =
1475 be32_to_cpu(pf_eqe->rdma.rdma_op_len);
1476 pfault->rdma.rdma_va =
1477 be64_to_cpu(pf_eqe->rdma.rdma_va);
1478 mlx5_ib_dbg(eq->dev,
1479 "PAGE_FAULT: type:0x%x, token: 0x%06x, r_key: 0x%08x\n",
1480 pfault->type, pfault->token,
1481 pfault->rdma.r_key);
1482 mlx5_ib_dbg(eq->dev,
1483 "PAGE_FAULT: rdma_op_len: 0x%08x, rdma_va: 0x%016llx\n",
1484 pfault->rdma.rdma_op_len,
1485 pfault->rdma.rdma_va);
1486 break;
1488 case MLX5_PFAULT_SUBTYPE_WQE:
1489 /* WQE based event */
1490 pfault->type =
1491 (be32_to_cpu(pf_eqe->wqe.pftype_wq) >> 24) & 0x7;
1492 pfault->token =
1493 be32_to_cpu(pf_eqe->wqe.token);
1494 pfault->wqe.wq_num =
1495 be32_to_cpu(pf_eqe->wqe.pftype_wq) &
1496 MLX5_24BIT_MASK;
1497 pfault->wqe.wqe_index =
1498 be16_to_cpu(pf_eqe->wqe.wqe_index);
1499 pfault->wqe.packet_size =
1500 be16_to_cpu(pf_eqe->wqe.packet_length);
1501 mlx5_ib_dbg(eq->dev,
1502 "PAGE_FAULT: type:0x%x, token: 0x%06x, wq_num: 0x%06x, wqe_index: 0x%04x\n",
1503 pfault->type, pfault->token,
1504 pfault->wqe.wq_num,
1505 pfault->wqe.wqe_index);
1506 break;
1508 default:
1509 mlx5_ib_warn(eq->dev,
1510 "Unsupported page fault event sub-type: 0x%02hhx\n",
1511 eqe->sub_type);
1512 /* Unsupported page faults should still be
1513 * resolved by the page fault handler
1517 pfault->eq = eq;
1518 INIT_WORK(&pfault->work, mlx5_ib_eqe_pf_action);
1519 queue_work(eq->wq, &pfault->work);
1521 cc = mlx5_eq_update_cc(eq->core, ++cc);
1524 mlx5_eq_update_ci(eq->core, cc, 1);
1527 static int mlx5_ib_eq_pf_int(struct notifier_block *nb, unsigned long type,
1528 void *data)
1530 struct mlx5_ib_pf_eq *eq =
1531 container_of(nb, struct mlx5_ib_pf_eq, irq_nb);
1532 unsigned long flags;
1534 if (spin_trylock_irqsave(&eq->lock, flags)) {
1535 mlx5_ib_eq_pf_process(eq);
1536 spin_unlock_irqrestore(&eq->lock, flags);
1537 } else {
1538 schedule_work(&eq->work);
1541 return IRQ_HANDLED;
1544 /* mempool_refill() was proposed but unfortunately wasn't accepted
1545 * http://lkml.iu.edu/hypermail/linux/kernel/1512.1/05073.html
1546 * Cheap workaround.
1548 static void mempool_refill(mempool_t *pool)
1550 while (pool->curr_nr < pool->min_nr)
1551 mempool_free(mempool_alloc(pool, GFP_KERNEL), pool);
1554 static void mlx5_ib_eq_pf_action(struct work_struct *work)
1556 struct mlx5_ib_pf_eq *eq =
1557 container_of(work, struct mlx5_ib_pf_eq, work);
1559 mempool_refill(eq->pool);
1561 spin_lock_irq(&eq->lock);
1562 mlx5_ib_eq_pf_process(eq);
1563 spin_unlock_irq(&eq->lock);
1566 enum {
1567 MLX5_IB_NUM_PF_EQE = 0x1000,
1568 MLX5_IB_NUM_PF_DRAIN = 64,
1571 static int
1572 mlx5_ib_create_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1574 struct mlx5_eq_param param = {};
1575 int err;
1577 INIT_WORK(&eq->work, mlx5_ib_eq_pf_action);
1578 spin_lock_init(&eq->lock);
1579 eq->dev = dev;
1581 eq->pool = mempool_create_kmalloc_pool(MLX5_IB_NUM_PF_DRAIN,
1582 sizeof(struct mlx5_pagefault));
1583 if (!eq->pool)
1584 return -ENOMEM;
1586 eq->wq = alloc_workqueue("mlx5_ib_page_fault",
1587 WQ_HIGHPRI | WQ_UNBOUND | WQ_MEM_RECLAIM,
1588 MLX5_NUM_CMD_EQE);
1589 if (!eq->wq) {
1590 err = -ENOMEM;
1591 goto err_mempool;
1594 eq->irq_nb.notifier_call = mlx5_ib_eq_pf_int;
1595 param = (struct mlx5_eq_param) {
1596 .irq_index = 0,
1597 .nent = MLX5_IB_NUM_PF_EQE,
1599 param.mask[0] = 1ull << MLX5_EVENT_TYPE_PAGE_FAULT;
1600 eq->core = mlx5_eq_create_generic(dev->mdev, &param);
1601 if (IS_ERR(eq->core)) {
1602 err = PTR_ERR(eq->core);
1603 goto err_wq;
1605 err = mlx5_eq_enable(dev->mdev, eq->core, &eq->irq_nb);
1606 if (err) {
1607 mlx5_ib_err(dev, "failed to enable odp EQ %d\n", err);
1608 goto err_eq;
1611 return 0;
1612 err_eq:
1613 mlx5_eq_destroy_generic(dev->mdev, eq->core);
1614 err_wq:
1615 destroy_workqueue(eq->wq);
1616 err_mempool:
1617 mempool_destroy(eq->pool);
1618 return err;
1621 static int
1622 mlx5_ib_destroy_pf_eq(struct mlx5_ib_dev *dev, struct mlx5_ib_pf_eq *eq)
1624 int err;
1626 mlx5_eq_disable(dev->mdev, eq->core, &eq->irq_nb);
1627 err = mlx5_eq_destroy_generic(dev->mdev, eq->core);
1628 cancel_work_sync(&eq->work);
1629 destroy_workqueue(eq->wq);
1630 mempool_destroy(eq->pool);
1632 return err;
1635 void mlx5_odp_init_mr_cache_entry(struct mlx5_cache_ent *ent)
1637 if (!(ent->dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1638 return;
1640 switch (ent->order - 2) {
1641 case MLX5_IMR_MTT_CACHE_ENTRY:
1642 ent->page = PAGE_SHIFT;
1643 ent->xlt = MLX5_IMR_MTT_ENTRIES *
1644 sizeof(struct mlx5_mtt) /
1645 MLX5_IB_UMR_OCTOWORD;
1646 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
1647 ent->limit = 0;
1648 break;
1650 case MLX5_IMR_KSM_CACHE_ENTRY:
1651 ent->page = MLX5_KSM_PAGE_SHIFT;
1652 ent->xlt = mlx5_imr_ksm_entries *
1653 sizeof(struct mlx5_klm) /
1654 MLX5_IB_UMR_OCTOWORD;
1655 ent->access_mode = MLX5_MKC_ACCESS_MODE_KSM;
1656 ent->limit = 0;
1657 break;
1661 static const struct ib_device_ops mlx5_ib_dev_odp_ops = {
1662 .advise_mr = mlx5_ib_advise_mr,
1665 int mlx5_ib_odp_init_one(struct mlx5_ib_dev *dev)
1667 int ret = 0;
1669 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1670 return ret;
1672 ib_set_device_ops(&dev->ib_dev, &mlx5_ib_dev_odp_ops);
1674 if (dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT) {
1675 ret = mlx5_cmd_null_mkey(dev->mdev, &dev->null_mkey);
1676 if (ret) {
1677 mlx5_ib_err(dev, "Error getting null_mkey %d\n", ret);
1678 return ret;
1682 ret = mlx5_ib_create_pf_eq(dev, &dev->odp_pf_eq);
1684 return ret;
1687 void mlx5_ib_odp_cleanup_one(struct mlx5_ib_dev *dev)
1689 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT))
1690 return;
1692 mlx5_ib_destroy_pf_eq(dev, &dev->odp_pf_eq);
1695 int mlx5_ib_odp_init(void)
1697 mlx5_imr_ksm_entries = BIT_ULL(get_order(TASK_SIZE) -
1698 MLX5_IMR_MTT_BITS);
1700 return 0;
1703 struct prefetch_mr_work {
1704 struct work_struct work;
1705 u32 pf_flags;
1706 u32 num_sge;
1707 struct {
1708 u64 io_virt;
1709 struct mlx5_ib_mr *mr;
1710 size_t length;
1711 } frags[];
1714 static void destroy_prefetch_work(struct prefetch_mr_work *work)
1716 u32 i;
1718 for (i = 0; i < work->num_sge; ++i)
1719 if (atomic_dec_and_test(&work->frags[i].mr->num_deferred_work))
1720 wake_up(&work->frags[i].mr->q_deferred_work);
1721 kvfree(work);
1724 static struct mlx5_ib_mr *
1725 get_prefetchable_mr(struct ib_pd *pd, enum ib_uverbs_advise_mr_advice advice,
1726 u32 lkey)
1728 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1729 struct mlx5_core_mkey *mmkey;
1730 struct ib_umem_odp *odp;
1731 struct mlx5_ib_mr *mr;
1733 lockdep_assert_held(&dev->odp_srcu);
1735 mmkey = xa_load(&dev->odp_mkeys, mlx5_base_mkey(lkey));
1736 if (!mmkey || mmkey->key != lkey || mmkey->type != MLX5_MKEY_MR)
1737 return NULL;
1739 mr = container_of(mmkey, struct mlx5_ib_mr, mmkey);
1741 if (mr->ibmr.pd != pd)
1742 return NULL;
1744 odp = to_ib_umem_odp(mr->umem);
1746 /* prefetch with write-access must be supported by the MR */
1747 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1748 !odp->umem.writable)
1749 return NULL;
1751 return mr;
1754 static void mlx5_ib_prefetch_mr_work(struct work_struct *w)
1756 struct prefetch_mr_work *work =
1757 container_of(w, struct prefetch_mr_work, work);
1758 u32 bytes_mapped = 0;
1759 u32 i;
1761 for (i = 0; i < work->num_sge; ++i)
1762 pagefault_mr(work->frags[i].mr, work->frags[i].io_virt,
1763 work->frags[i].length, &bytes_mapped,
1764 work->pf_flags);
1766 destroy_prefetch_work(work);
1769 static bool init_prefetch_work(struct ib_pd *pd,
1770 enum ib_uverbs_advise_mr_advice advice,
1771 u32 pf_flags, struct prefetch_mr_work *work,
1772 struct ib_sge *sg_list, u32 num_sge)
1774 u32 i;
1776 INIT_WORK(&work->work, mlx5_ib_prefetch_mr_work);
1777 work->pf_flags = pf_flags;
1779 for (i = 0; i < num_sge; ++i) {
1780 work->frags[i].io_virt = sg_list[i].addr;
1781 work->frags[i].length = sg_list[i].length;
1782 work->frags[i].mr =
1783 get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1784 if (!work->frags[i].mr) {
1785 work->num_sge = i - 1;
1786 if (i)
1787 destroy_prefetch_work(work);
1788 return false;
1791 /* Keep the MR pointer will valid outside the SRCU */
1792 atomic_inc(&work->frags[i].mr->num_deferred_work);
1794 work->num_sge = num_sge;
1795 return true;
1798 static int mlx5_ib_prefetch_sg_list(struct ib_pd *pd,
1799 enum ib_uverbs_advise_mr_advice advice,
1800 u32 pf_flags, struct ib_sge *sg_list,
1801 u32 num_sge)
1803 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1804 u32 bytes_mapped = 0;
1805 int srcu_key;
1806 int ret = 0;
1807 u32 i;
1809 srcu_key = srcu_read_lock(&dev->odp_srcu);
1810 for (i = 0; i < num_sge; ++i) {
1811 struct mlx5_ib_mr *mr;
1813 mr = get_prefetchable_mr(pd, advice, sg_list[i].lkey);
1814 if (!mr) {
1815 ret = -ENOENT;
1816 goto out;
1818 ret = pagefault_mr(mr, sg_list[i].addr, sg_list[i].length,
1819 &bytes_mapped, pf_flags);
1820 if (ret < 0)
1821 goto out;
1823 ret = 0;
1825 out:
1826 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1827 return ret;
1830 int mlx5_ib_advise_mr_prefetch(struct ib_pd *pd,
1831 enum ib_uverbs_advise_mr_advice advice,
1832 u32 flags, struct ib_sge *sg_list, u32 num_sge)
1834 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1835 u32 pf_flags = 0;
1836 struct prefetch_mr_work *work;
1837 int srcu_key;
1839 if (advice == IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH)
1840 pf_flags |= MLX5_PF_FLAGS_DOWNGRADE;
1842 if (flags & IB_UVERBS_ADVISE_MR_FLAG_FLUSH)
1843 return mlx5_ib_prefetch_sg_list(pd, advice, pf_flags, sg_list,
1844 num_sge);
1846 work = kvzalloc(struct_size(work, frags, num_sge), GFP_KERNEL);
1847 if (!work)
1848 return -ENOMEM;
1850 srcu_key = srcu_read_lock(&dev->odp_srcu);
1851 if (!init_prefetch_work(pd, advice, pf_flags, work, sg_list, num_sge)) {
1852 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1853 return -EINVAL;
1855 queue_work(system_unbound_wq, &work->work);
1856 srcu_read_unlock(&dev->odp_srcu, srcu_key);
1857 return 0;