1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (c) 1999-2002 Vojtech Pavlik
9 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/idr.h>
14 #include <linux/input/mt.h>
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/random.h>
18 #include <linux/major.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/poll.h>
23 #include <linux/device.h>
24 #include <linux/mutex.h>
25 #include <linux/rcupdate.h>
26 #include "input-compat.h"
27 #include "input-poller.h"
29 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
30 MODULE_DESCRIPTION("Input core");
31 MODULE_LICENSE("GPL");
33 #define INPUT_MAX_CHAR_DEVICES 1024
34 #define INPUT_FIRST_DYNAMIC_DEV 256
35 static DEFINE_IDA(input_ida
);
37 static LIST_HEAD(input_dev_list
);
38 static LIST_HEAD(input_handler_list
);
41 * input_mutex protects access to both input_dev_list and input_handler_list.
42 * This also causes input_[un]register_device and input_[un]register_handler
43 * be mutually exclusive which simplifies locking in drivers implementing
46 static DEFINE_MUTEX(input_mutex
);
48 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
50 static inline int is_event_supported(unsigned int code
,
51 unsigned long *bm
, unsigned int max
)
53 return code
<= max
&& test_bit(code
, bm
);
56 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
59 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
62 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
63 return (old_val
* 3 + value
) / 4;
65 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
66 return (old_val
+ value
) / 2;
72 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
74 if (test_bit(EV_REP
, dev
->evbit
) &&
75 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
76 dev
->timer
.function
) {
77 dev
->repeat_key
= code
;
78 mod_timer(&dev
->timer
,
79 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
83 static void input_stop_autorepeat(struct input_dev
*dev
)
85 del_timer(&dev
->timer
);
89 * Pass event first through all filters and then, if event has not been
90 * filtered out, through all open handles. This function is called with
91 * dev->event_lock held and interrupts disabled.
93 static unsigned int input_to_handler(struct input_handle
*handle
,
94 struct input_value
*vals
, unsigned int count
)
96 struct input_handler
*handler
= handle
->handler
;
97 struct input_value
*end
= vals
;
98 struct input_value
*v
;
100 if (handler
->filter
) {
101 for (v
= vals
; v
!= vals
+ count
; v
++) {
102 if (handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
115 handler
->events(handle
, vals
, count
);
116 else if (handler
->event
)
117 for (v
= vals
; v
!= vals
+ count
; v
++)
118 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
124 * Pass values first through all filters and then, if event has not been
125 * filtered out, through all open handles. This function is called with
126 * dev->event_lock held and interrupts disabled.
128 static void input_pass_values(struct input_dev
*dev
,
129 struct input_value
*vals
, unsigned int count
)
131 struct input_handle
*handle
;
132 struct input_value
*v
;
139 handle
= rcu_dereference(dev
->grab
);
141 count
= input_to_handler(handle
, vals
, count
);
143 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
145 count
= input_to_handler(handle
, vals
, count
);
153 /* trigger auto repeat for key events */
154 if (test_bit(EV_REP
, dev
->evbit
) && test_bit(EV_KEY
, dev
->evbit
)) {
155 for (v
= vals
; v
!= vals
+ count
; v
++) {
156 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
158 input_start_autorepeat(dev
, v
->code
);
160 input_stop_autorepeat(dev
);
166 static void input_pass_event(struct input_dev
*dev
,
167 unsigned int type
, unsigned int code
, int value
)
169 struct input_value vals
[] = { { type
, code
, value
} };
171 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
175 * Generate software autorepeat event. Note that we take
176 * dev->event_lock here to avoid racing with input_event
177 * which may cause keys get "stuck".
179 static void input_repeat_key(struct timer_list
*t
)
181 struct input_dev
*dev
= from_timer(dev
, t
, timer
);
184 spin_lock_irqsave(&dev
->event_lock
, flags
);
186 if (test_bit(dev
->repeat_key
, dev
->key
) &&
187 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
188 struct input_value vals
[] = {
189 { EV_KEY
, dev
->repeat_key
, 2 },
193 input_set_timestamp(dev
, ktime_get());
194 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
196 if (dev
->rep
[REP_PERIOD
])
197 mod_timer(&dev
->timer
, jiffies
+
198 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
201 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
204 #define INPUT_IGNORE_EVENT 0
205 #define INPUT_PASS_TO_HANDLERS 1
206 #define INPUT_PASS_TO_DEVICE 2
208 #define INPUT_FLUSH 8
209 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
211 static int input_handle_abs_event(struct input_dev
*dev
,
212 unsigned int code
, int *pval
)
214 struct input_mt
*mt
= dev
->mt
;
218 if (code
== ABS_MT_SLOT
) {
220 * "Stage" the event; we'll flush it later, when we
221 * get actual touch data.
223 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
226 return INPUT_IGNORE_EVENT
;
229 is_mt_event
= input_is_mt_value(code
);
232 pold
= &dev
->absinfo
[code
].value
;
234 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
237 * Bypass filtering for multi-touch events when
238 * not employing slots.
244 *pval
= input_defuzz_abs_event(*pval
, *pold
,
245 dev
->absinfo
[code
].fuzz
);
247 return INPUT_IGNORE_EVENT
;
252 /* Flush pending "slot" event */
253 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
254 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
255 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
258 return INPUT_PASS_TO_HANDLERS
;
261 static int input_get_disposition(struct input_dev
*dev
,
262 unsigned int type
, unsigned int code
, int *pval
)
264 int disposition
= INPUT_IGNORE_EVENT
;
272 disposition
= INPUT_PASS_TO_ALL
;
276 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
279 disposition
= INPUT_PASS_TO_HANDLERS
;
285 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
287 /* auto-repeat bypasses state updates */
289 disposition
= INPUT_PASS_TO_HANDLERS
;
293 if (!!test_bit(code
, dev
->key
) != !!value
) {
295 __change_bit(code
, dev
->key
);
296 disposition
= INPUT_PASS_TO_HANDLERS
;
302 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
303 !!test_bit(code
, dev
->sw
) != !!value
) {
305 __change_bit(code
, dev
->sw
);
306 disposition
= INPUT_PASS_TO_HANDLERS
;
311 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
312 disposition
= input_handle_abs_event(dev
, code
, &value
);
317 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
318 disposition
= INPUT_PASS_TO_HANDLERS
;
323 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
324 disposition
= INPUT_PASS_TO_ALL
;
329 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
330 !!test_bit(code
, dev
->led
) != !!value
) {
332 __change_bit(code
, dev
->led
);
333 disposition
= INPUT_PASS_TO_ALL
;
338 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
340 if (!!test_bit(code
, dev
->snd
) != !!value
)
341 __change_bit(code
, dev
->snd
);
342 disposition
= INPUT_PASS_TO_ALL
;
347 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
348 dev
->rep
[code
] = value
;
349 disposition
= INPUT_PASS_TO_ALL
;
355 disposition
= INPUT_PASS_TO_ALL
;
359 disposition
= INPUT_PASS_TO_ALL
;
367 static void input_handle_event(struct input_dev
*dev
,
368 unsigned int type
, unsigned int code
, int value
)
370 int disposition
= input_get_disposition(dev
, type
, code
, &value
);
372 if (disposition
!= INPUT_IGNORE_EVENT
&& type
!= EV_SYN
)
373 add_input_randomness(type
, code
, value
);
375 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
376 dev
->event(dev
, type
, code
, value
);
381 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
382 struct input_value
*v
;
384 if (disposition
& INPUT_SLOT
) {
385 v
= &dev
->vals
[dev
->num_vals
++];
387 v
->code
= ABS_MT_SLOT
;
388 v
->value
= dev
->mt
->slot
;
391 v
= &dev
->vals
[dev
->num_vals
++];
397 if (disposition
& INPUT_FLUSH
) {
398 if (dev
->num_vals
>= 2)
399 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
402 * Reset the timestamp on flush so we won't end up
403 * with a stale one. Note we only need to reset the
404 * monolithic one as we use its presence when deciding
405 * whether to generate a synthetic timestamp.
407 dev
->timestamp
[INPUT_CLK_MONO
] = ktime_set(0, 0);
408 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
409 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
410 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
417 * input_event() - report new input event
418 * @dev: device that generated the event
419 * @type: type of the event
421 * @value: value of the event
423 * This function should be used by drivers implementing various input
424 * devices to report input events. See also input_inject_event().
426 * NOTE: input_event() may be safely used right after input device was
427 * allocated with input_allocate_device(), even before it is registered
428 * with input_register_device(), but the event will not reach any of the
429 * input handlers. Such early invocation of input_event() may be used
430 * to 'seed' initial state of a switch or initial position of absolute
433 void input_event(struct input_dev
*dev
,
434 unsigned int type
, unsigned int code
, int value
)
438 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
440 spin_lock_irqsave(&dev
->event_lock
, flags
);
441 input_handle_event(dev
, type
, code
, value
);
442 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
445 EXPORT_SYMBOL(input_event
);
448 * input_inject_event() - send input event from input handler
449 * @handle: input handle to send event through
450 * @type: type of the event
452 * @value: value of the event
454 * Similar to input_event() but will ignore event if device is
455 * "grabbed" and handle injecting event is not the one that owns
458 void input_inject_event(struct input_handle
*handle
,
459 unsigned int type
, unsigned int code
, int value
)
461 struct input_dev
*dev
= handle
->dev
;
462 struct input_handle
*grab
;
465 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
466 spin_lock_irqsave(&dev
->event_lock
, flags
);
469 grab
= rcu_dereference(dev
->grab
);
470 if (!grab
|| grab
== handle
)
471 input_handle_event(dev
, type
, code
, value
);
474 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
477 EXPORT_SYMBOL(input_inject_event
);
480 * input_alloc_absinfo - allocates array of input_absinfo structs
481 * @dev: the input device emitting absolute events
483 * If the absinfo struct the caller asked for is already allocated, this
484 * functions will not do anything.
486 void input_alloc_absinfo(struct input_dev
*dev
)
491 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(*dev
->absinfo
), GFP_KERNEL
);
493 dev_err(dev
->dev
.parent
?: &dev
->dev
,
494 "%s: unable to allocate memory\n", __func__
);
496 * We will handle this allocation failure in
497 * input_register_device() when we refuse to register input
498 * device with ABS bits but without absinfo.
502 EXPORT_SYMBOL(input_alloc_absinfo
);
504 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
505 int min
, int max
, int fuzz
, int flat
)
507 struct input_absinfo
*absinfo
;
509 input_alloc_absinfo(dev
);
513 absinfo
= &dev
->absinfo
[axis
];
514 absinfo
->minimum
= min
;
515 absinfo
->maximum
= max
;
516 absinfo
->fuzz
= fuzz
;
517 absinfo
->flat
= flat
;
519 __set_bit(EV_ABS
, dev
->evbit
);
520 __set_bit(axis
, dev
->absbit
);
522 EXPORT_SYMBOL(input_set_abs_params
);
526 * input_grab_device - grabs device for exclusive use
527 * @handle: input handle that wants to own the device
529 * When a device is grabbed by an input handle all events generated by
530 * the device are delivered only to this handle. Also events injected
531 * by other input handles are ignored while device is grabbed.
533 int input_grab_device(struct input_handle
*handle
)
535 struct input_dev
*dev
= handle
->dev
;
538 retval
= mutex_lock_interruptible(&dev
->mutex
);
547 rcu_assign_pointer(dev
->grab
, handle
);
550 mutex_unlock(&dev
->mutex
);
553 EXPORT_SYMBOL(input_grab_device
);
555 static void __input_release_device(struct input_handle
*handle
)
557 struct input_dev
*dev
= handle
->dev
;
558 struct input_handle
*grabber
;
560 grabber
= rcu_dereference_protected(dev
->grab
,
561 lockdep_is_held(&dev
->mutex
));
562 if (grabber
== handle
) {
563 rcu_assign_pointer(dev
->grab
, NULL
);
564 /* Make sure input_pass_event() notices that grab is gone */
567 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
568 if (handle
->open
&& handle
->handler
->start
)
569 handle
->handler
->start(handle
);
574 * input_release_device - release previously grabbed device
575 * @handle: input handle that owns the device
577 * Releases previously grabbed device so that other input handles can
578 * start receiving input events. Upon release all handlers attached
579 * to the device have their start() method called so they have a change
580 * to synchronize device state with the rest of the system.
582 void input_release_device(struct input_handle
*handle
)
584 struct input_dev
*dev
= handle
->dev
;
586 mutex_lock(&dev
->mutex
);
587 __input_release_device(handle
);
588 mutex_unlock(&dev
->mutex
);
590 EXPORT_SYMBOL(input_release_device
);
593 * input_open_device - open input device
594 * @handle: handle through which device is being accessed
596 * This function should be called by input handlers when they
597 * want to start receive events from given input device.
599 int input_open_device(struct input_handle
*handle
)
601 struct input_dev
*dev
= handle
->dev
;
604 retval
= mutex_lock_interruptible(&dev
->mutex
);
608 if (dev
->going_away
) {
617 * Device is already opened, so we can exit immediately and
624 retval
= dev
->open(dev
);
629 * Make sure we are not delivering any more events
630 * through this handle
638 input_dev_poller_start(dev
->poller
);
641 mutex_unlock(&dev
->mutex
);
644 EXPORT_SYMBOL(input_open_device
);
646 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
648 struct input_dev
*dev
= handle
->dev
;
651 retval
= mutex_lock_interruptible(&dev
->mutex
);
656 retval
= dev
->flush(dev
, file
);
658 mutex_unlock(&dev
->mutex
);
661 EXPORT_SYMBOL(input_flush_device
);
664 * input_close_device - close input device
665 * @handle: handle through which device is being accessed
667 * This function should be called by input handlers when they
668 * want to stop receive events from given input device.
670 void input_close_device(struct input_handle
*handle
)
672 struct input_dev
*dev
= handle
->dev
;
674 mutex_lock(&dev
->mutex
);
676 __input_release_device(handle
);
680 input_dev_poller_stop(dev
->poller
);
686 if (!--handle
->open
) {
688 * synchronize_rcu() makes sure that input_pass_event()
689 * completed and that no more input events are delivered
690 * through this handle
695 mutex_unlock(&dev
->mutex
);
697 EXPORT_SYMBOL(input_close_device
);
700 * Simulate keyup events for all keys that are marked as pressed.
701 * The function must be called with dev->event_lock held.
703 static void input_dev_release_keys(struct input_dev
*dev
)
705 bool need_sync
= false;
708 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
709 for_each_set_bit(code
, dev
->key
, KEY_CNT
) {
710 input_pass_event(dev
, EV_KEY
, code
, 0);
715 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
717 memset(dev
->key
, 0, sizeof(dev
->key
));
722 * Prepare device for unregistering
724 static void input_disconnect_device(struct input_dev
*dev
)
726 struct input_handle
*handle
;
729 * Mark device as going away. Note that we take dev->mutex here
730 * not to protect access to dev->going_away but rather to ensure
731 * that there are no threads in the middle of input_open_device()
733 mutex_lock(&dev
->mutex
);
734 dev
->going_away
= true;
735 mutex_unlock(&dev
->mutex
);
737 spin_lock_irq(&dev
->event_lock
);
740 * Simulate keyup events for all pressed keys so that handlers
741 * are not left with "stuck" keys. The driver may continue
742 * generate events even after we done here but they will not
743 * reach any handlers.
745 input_dev_release_keys(dev
);
747 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
750 spin_unlock_irq(&dev
->event_lock
);
754 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
755 * @ke: keymap entry containing scancode to be converted.
756 * @scancode: pointer to the location where converted scancode should
759 * This function is used to convert scancode stored in &struct keymap_entry
760 * into scalar form understood by legacy keymap handling methods. These
761 * methods expect scancodes to be represented as 'unsigned int'.
763 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
764 unsigned int *scancode
)
768 *scancode
= *((u8
*)ke
->scancode
);
772 *scancode
= *((u16
*)ke
->scancode
);
776 *scancode
= *((u32
*)ke
->scancode
);
785 EXPORT_SYMBOL(input_scancode_to_scalar
);
788 * Those routines handle the default case where no [gs]etkeycode() is
789 * defined. In this case, an array indexed by the scancode is used.
792 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
795 switch (dev
->keycodesize
) {
797 return ((u8
*)dev
->keycode
)[index
];
800 return ((u16
*)dev
->keycode
)[index
];
803 return ((u32
*)dev
->keycode
)[index
];
807 static int input_default_getkeycode(struct input_dev
*dev
,
808 struct input_keymap_entry
*ke
)
813 if (!dev
->keycodesize
)
816 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
819 error
= input_scancode_to_scalar(ke
, &index
);
824 if (index
>= dev
->keycodemax
)
827 ke
->keycode
= input_fetch_keycode(dev
, index
);
829 ke
->len
= sizeof(index
);
830 memcpy(ke
->scancode
, &index
, sizeof(index
));
835 static int input_default_setkeycode(struct input_dev
*dev
,
836 const struct input_keymap_entry
*ke
,
837 unsigned int *old_keycode
)
843 if (!dev
->keycodesize
)
846 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
849 error
= input_scancode_to_scalar(ke
, &index
);
854 if (index
>= dev
->keycodemax
)
857 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
858 (ke
->keycode
>> (dev
->keycodesize
* 8)))
861 switch (dev
->keycodesize
) {
863 u8
*k
= (u8
*)dev
->keycode
;
864 *old_keycode
= k
[index
];
865 k
[index
] = ke
->keycode
;
869 u16
*k
= (u16
*)dev
->keycode
;
870 *old_keycode
= k
[index
];
871 k
[index
] = ke
->keycode
;
875 u32
*k
= (u32
*)dev
->keycode
;
876 *old_keycode
= k
[index
];
877 k
[index
] = ke
->keycode
;
882 if (*old_keycode
<= KEY_MAX
) {
883 __clear_bit(*old_keycode
, dev
->keybit
);
884 for (i
= 0; i
< dev
->keycodemax
; i
++) {
885 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
886 __set_bit(*old_keycode
, dev
->keybit
);
887 /* Setting the bit twice is useless, so break */
893 __set_bit(ke
->keycode
, dev
->keybit
);
898 * input_get_keycode - retrieve keycode currently mapped to a given scancode
899 * @dev: input device which keymap is being queried
902 * This function should be called by anyone interested in retrieving current
903 * keymap. Presently evdev handlers use it.
905 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
910 spin_lock_irqsave(&dev
->event_lock
, flags
);
911 retval
= dev
->getkeycode(dev
, ke
);
912 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
916 EXPORT_SYMBOL(input_get_keycode
);
919 * input_set_keycode - attribute a keycode to a given scancode
920 * @dev: input device which keymap is being updated
921 * @ke: new keymap entry
923 * This function should be called by anyone needing to update current
924 * keymap. Presently keyboard and evdev handlers use it.
926 int input_set_keycode(struct input_dev
*dev
,
927 const struct input_keymap_entry
*ke
)
930 unsigned int old_keycode
;
933 if (ke
->keycode
> KEY_MAX
)
936 spin_lock_irqsave(&dev
->event_lock
, flags
);
938 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
942 /* Make sure KEY_RESERVED did not get enabled. */
943 __clear_bit(KEY_RESERVED
, dev
->keybit
);
946 * Simulate keyup event if keycode is not present
947 * in the keymap anymore
949 if (old_keycode
> KEY_MAX
) {
950 dev_warn(dev
->dev
.parent
?: &dev
->dev
,
951 "%s: got too big old keycode %#x\n",
952 __func__
, old_keycode
);
953 } else if (test_bit(EV_KEY
, dev
->evbit
) &&
954 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
955 __test_and_clear_bit(old_keycode
, dev
->key
)) {
956 struct input_value vals
[] = {
957 { EV_KEY
, old_keycode
, 0 },
961 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
965 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
969 EXPORT_SYMBOL(input_set_keycode
);
971 bool input_match_device_id(const struct input_dev
*dev
,
972 const struct input_device_id
*id
)
974 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
975 if (id
->bustype
!= dev
->id
.bustype
)
978 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
979 if (id
->vendor
!= dev
->id
.vendor
)
982 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
983 if (id
->product
!= dev
->id
.product
)
986 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
987 if (id
->version
!= dev
->id
.version
)
990 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
) ||
991 !bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
) ||
992 !bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
) ||
993 !bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
) ||
994 !bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
) ||
995 !bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
) ||
996 !bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
) ||
997 !bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
) ||
998 !bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
) ||
999 !bitmap_subset(id
->propbit
, dev
->propbit
, INPUT_PROP_MAX
)) {
1005 EXPORT_SYMBOL(input_match_device_id
);
1007 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
1008 struct input_dev
*dev
)
1010 const struct input_device_id
*id
;
1012 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
1013 if (input_match_device_id(dev
, id
) &&
1014 (!handler
->match
|| handler
->match(handler
, dev
))) {
1022 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
1024 const struct input_device_id
*id
;
1027 id
= input_match_device(handler
, dev
);
1031 error
= handler
->connect(handler
, dev
, id
);
1032 if (error
&& error
!= -ENODEV
)
1033 pr_err("failed to attach handler %s to device %s, error: %d\n",
1034 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1039 #ifdef CONFIG_COMPAT
1041 static int input_bits_to_string(char *buf
, int buf_size
,
1042 unsigned long bits
, bool skip_empty
)
1046 if (in_compat_syscall()) {
1047 u32 dword
= bits
>> 32;
1048 if (dword
|| !skip_empty
)
1049 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1051 dword
= bits
& 0xffffffffUL
;
1052 if (dword
|| !skip_empty
|| len
)
1053 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1056 if (bits
|| !skip_empty
)
1057 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1063 #else /* !CONFIG_COMPAT */
1065 static int input_bits_to_string(char *buf
, int buf_size
,
1066 unsigned long bits
, bool skip_empty
)
1068 return bits
|| !skip_empty
?
1069 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1074 #ifdef CONFIG_PROC_FS
1076 static struct proc_dir_entry
*proc_bus_input_dir
;
1077 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1078 static int input_devices_state
;
1080 static inline void input_wakeup_procfs_readers(void)
1082 input_devices_state
++;
1083 wake_up(&input_devices_poll_wait
);
1086 static __poll_t
input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1088 poll_wait(file
, &input_devices_poll_wait
, wait
);
1089 if (file
->f_version
!= input_devices_state
) {
1090 file
->f_version
= input_devices_state
;
1091 return EPOLLIN
| EPOLLRDNORM
;
1097 union input_seq_state
{
1100 bool mutex_acquired
;
1105 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1107 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1110 /* We need to fit into seq->private pointer */
1111 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1113 error
= mutex_lock_interruptible(&input_mutex
);
1115 state
->mutex_acquired
= false;
1116 return ERR_PTR(error
);
1119 state
->mutex_acquired
= true;
1121 return seq_list_start(&input_dev_list
, *pos
);
1124 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1126 return seq_list_next(v
, &input_dev_list
, pos
);
1129 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1131 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1133 if (state
->mutex_acquired
)
1134 mutex_unlock(&input_mutex
);
1137 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1138 unsigned long *bitmap
, int max
)
1141 bool skip_empty
= true;
1144 seq_printf(seq
, "B: %s=", name
);
1146 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1147 if (input_bits_to_string(buf
, sizeof(buf
),
1148 bitmap
[i
], skip_empty
)) {
1150 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1155 * If no output was produced print a single 0.
1160 seq_putc(seq
, '\n');
1163 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1165 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1166 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1167 struct input_handle
*handle
;
1169 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1170 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1172 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1173 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1174 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1175 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1176 seq_puts(seq
, "H: Handlers=");
1178 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1179 seq_printf(seq
, "%s ", handle
->name
);
1180 seq_putc(seq
, '\n');
1182 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1184 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1185 if (test_bit(EV_KEY
, dev
->evbit
))
1186 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1187 if (test_bit(EV_REL
, dev
->evbit
))
1188 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1189 if (test_bit(EV_ABS
, dev
->evbit
))
1190 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1191 if (test_bit(EV_MSC
, dev
->evbit
))
1192 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1193 if (test_bit(EV_LED
, dev
->evbit
))
1194 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1195 if (test_bit(EV_SND
, dev
->evbit
))
1196 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1197 if (test_bit(EV_FF
, dev
->evbit
))
1198 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1199 if (test_bit(EV_SW
, dev
->evbit
))
1200 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1202 seq_putc(seq
, '\n');
1208 static const struct seq_operations input_devices_seq_ops
= {
1209 .start
= input_devices_seq_start
,
1210 .next
= input_devices_seq_next
,
1211 .stop
= input_seq_stop
,
1212 .show
= input_devices_seq_show
,
1215 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1217 return seq_open(file
, &input_devices_seq_ops
);
1220 static const struct proc_ops input_devices_proc_ops
= {
1221 .proc_open
= input_proc_devices_open
,
1222 .proc_poll
= input_proc_devices_poll
,
1223 .proc_read
= seq_read
,
1224 .proc_lseek
= seq_lseek
,
1225 .proc_release
= seq_release
,
1228 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1230 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1233 /* We need to fit into seq->private pointer */
1234 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1236 error
= mutex_lock_interruptible(&input_mutex
);
1238 state
->mutex_acquired
= false;
1239 return ERR_PTR(error
);
1242 state
->mutex_acquired
= true;
1245 return seq_list_start(&input_handler_list
, *pos
);
1248 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1250 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1252 state
->pos
= *pos
+ 1;
1253 return seq_list_next(v
, &input_handler_list
, pos
);
1256 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1258 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1259 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1261 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1262 if (handler
->filter
)
1263 seq_puts(seq
, " (filter)");
1264 if (handler
->legacy_minors
)
1265 seq_printf(seq
, " Minor=%d", handler
->minor
);
1266 seq_putc(seq
, '\n');
1271 static const struct seq_operations input_handlers_seq_ops
= {
1272 .start
= input_handlers_seq_start
,
1273 .next
= input_handlers_seq_next
,
1274 .stop
= input_seq_stop
,
1275 .show
= input_handlers_seq_show
,
1278 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1280 return seq_open(file
, &input_handlers_seq_ops
);
1283 static const struct proc_ops input_handlers_proc_ops
= {
1284 .proc_open
= input_proc_handlers_open
,
1285 .proc_read
= seq_read
,
1286 .proc_lseek
= seq_lseek
,
1287 .proc_release
= seq_release
,
1290 static int __init
input_proc_init(void)
1292 struct proc_dir_entry
*entry
;
1294 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1295 if (!proc_bus_input_dir
)
1298 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1299 &input_devices_proc_ops
);
1303 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1304 &input_handlers_proc_ops
);
1310 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1311 fail1
: remove_proc_entry("bus/input", NULL
);
1315 static void input_proc_exit(void)
1317 remove_proc_entry("devices", proc_bus_input_dir
);
1318 remove_proc_entry("handlers", proc_bus_input_dir
);
1319 remove_proc_entry("bus/input", NULL
);
1322 #else /* !CONFIG_PROC_FS */
1323 static inline void input_wakeup_procfs_readers(void) { }
1324 static inline int input_proc_init(void) { return 0; }
1325 static inline void input_proc_exit(void) { }
1328 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1329 static ssize_t input_dev_show_##name(struct device *dev, \
1330 struct device_attribute *attr, \
1333 struct input_dev *input_dev = to_input_dev(dev); \
1335 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1336 input_dev->name ? input_dev->name : ""); \
1338 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1340 INPUT_DEV_STRING_ATTR_SHOW(name
);
1341 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1342 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1344 static int input_print_modalias_bits(char *buf
, int size
,
1345 char name
, unsigned long *bm
,
1346 unsigned int min_bit
, unsigned int max_bit
)
1350 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1351 for (i
= min_bit
; i
< max_bit
; i
++)
1352 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1353 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1357 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1362 len
= snprintf(buf
, max(size
, 0),
1363 "input:b%04Xv%04Xp%04Xe%04X-",
1364 id
->id
.bustype
, id
->id
.vendor
,
1365 id
->id
.product
, id
->id
.version
);
1367 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1368 'e', id
->evbit
, 0, EV_MAX
);
1369 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1370 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1371 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1372 'r', id
->relbit
, 0, REL_MAX
);
1373 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1374 'a', id
->absbit
, 0, ABS_MAX
);
1375 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1376 'm', id
->mscbit
, 0, MSC_MAX
);
1377 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1378 'l', id
->ledbit
, 0, LED_MAX
);
1379 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1380 's', id
->sndbit
, 0, SND_MAX
);
1381 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1382 'f', id
->ffbit
, 0, FF_MAX
);
1383 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1384 'w', id
->swbit
, 0, SW_MAX
);
1387 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1392 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1393 struct device_attribute
*attr
,
1396 struct input_dev
*id
= to_input_dev(dev
);
1399 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1401 return min_t(int, len
, PAGE_SIZE
);
1403 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1405 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1406 int max
, int add_cr
);
1408 static ssize_t
input_dev_show_properties(struct device
*dev
,
1409 struct device_attribute
*attr
,
1412 struct input_dev
*input_dev
= to_input_dev(dev
);
1413 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1414 INPUT_PROP_MAX
, true);
1415 return min_t(int, len
, PAGE_SIZE
);
1417 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1419 static struct attribute
*input_dev_attrs
[] = {
1420 &dev_attr_name
.attr
,
1421 &dev_attr_phys
.attr
,
1422 &dev_attr_uniq
.attr
,
1423 &dev_attr_modalias
.attr
,
1424 &dev_attr_properties
.attr
,
1428 static const struct attribute_group input_dev_attr_group
= {
1429 .attrs
= input_dev_attrs
,
1432 #define INPUT_DEV_ID_ATTR(name) \
1433 static ssize_t input_dev_show_id_##name(struct device *dev, \
1434 struct device_attribute *attr, \
1437 struct input_dev *input_dev = to_input_dev(dev); \
1438 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1440 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1442 INPUT_DEV_ID_ATTR(bustype
);
1443 INPUT_DEV_ID_ATTR(vendor
);
1444 INPUT_DEV_ID_ATTR(product
);
1445 INPUT_DEV_ID_ATTR(version
);
1447 static struct attribute
*input_dev_id_attrs
[] = {
1448 &dev_attr_bustype
.attr
,
1449 &dev_attr_vendor
.attr
,
1450 &dev_attr_product
.attr
,
1451 &dev_attr_version
.attr
,
1455 static const struct attribute_group input_dev_id_attr_group
= {
1457 .attrs
= input_dev_id_attrs
,
1460 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1461 int max
, int add_cr
)
1465 bool skip_empty
= true;
1467 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1468 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1469 bitmap
[i
], skip_empty
);
1473 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1478 * If no output was produced print a single 0.
1481 len
= snprintf(buf
, buf_size
, "%d", 0);
1484 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1489 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1490 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1491 struct device_attribute *attr, \
1494 struct input_dev *input_dev = to_input_dev(dev); \
1495 int len = input_print_bitmap(buf, PAGE_SIZE, \
1496 input_dev->bm##bit, ev##_MAX, \
1498 return min_t(int, len, PAGE_SIZE); \
1500 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1502 INPUT_DEV_CAP_ATTR(EV
, ev
);
1503 INPUT_DEV_CAP_ATTR(KEY
, key
);
1504 INPUT_DEV_CAP_ATTR(REL
, rel
);
1505 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1506 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1507 INPUT_DEV_CAP_ATTR(LED
, led
);
1508 INPUT_DEV_CAP_ATTR(SND
, snd
);
1509 INPUT_DEV_CAP_ATTR(FF
, ff
);
1510 INPUT_DEV_CAP_ATTR(SW
, sw
);
1512 static struct attribute
*input_dev_caps_attrs
[] = {
1525 static const struct attribute_group input_dev_caps_attr_group
= {
1526 .name
= "capabilities",
1527 .attrs
= input_dev_caps_attrs
,
1530 static const struct attribute_group
*input_dev_attr_groups
[] = {
1531 &input_dev_attr_group
,
1532 &input_dev_id_attr_group
,
1533 &input_dev_caps_attr_group
,
1534 &input_poller_attribute_group
,
1538 static void input_dev_release(struct device
*device
)
1540 struct input_dev
*dev
= to_input_dev(device
);
1542 input_ff_destroy(dev
);
1543 input_mt_destroy_slots(dev
);
1545 kfree(dev
->absinfo
);
1549 module_put(THIS_MODULE
);
1553 * Input uevent interface - loading event handlers based on
1556 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1557 const char *name
, unsigned long *bitmap
, int max
)
1561 if (add_uevent_var(env
, "%s", name
))
1564 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1565 sizeof(env
->buf
) - env
->buflen
,
1566 bitmap
, max
, false);
1567 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1574 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1575 struct input_dev
*dev
)
1579 if (add_uevent_var(env
, "MODALIAS="))
1582 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1583 sizeof(env
->buf
) - env
->buflen
,
1585 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1592 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1594 int err = add_uevent_var(env, fmt, val); \
1599 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1601 int err = input_add_uevent_bm_var(env, name, bm, max); \
1606 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1608 int err = input_add_uevent_modalias_var(env, dev); \
1613 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1615 struct input_dev
*dev
= to_input_dev(device
);
1617 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1618 dev
->id
.bustype
, dev
->id
.vendor
,
1619 dev
->id
.product
, dev
->id
.version
);
1621 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1623 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1625 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1627 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1629 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1630 if (test_bit(EV_KEY
, dev
->evbit
))
1631 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1632 if (test_bit(EV_REL
, dev
->evbit
))
1633 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1634 if (test_bit(EV_ABS
, dev
->evbit
))
1635 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1636 if (test_bit(EV_MSC
, dev
->evbit
))
1637 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1638 if (test_bit(EV_LED
, dev
->evbit
))
1639 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1640 if (test_bit(EV_SND
, dev
->evbit
))
1641 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1642 if (test_bit(EV_FF
, dev
->evbit
))
1643 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1644 if (test_bit(EV_SW
, dev
->evbit
))
1645 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1647 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1652 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1657 if (!test_bit(EV_##type, dev->evbit)) \
1660 for_each_set_bit(i, dev->bits##bit, type##_CNT) { \
1661 active = test_bit(i, dev->bits); \
1662 if (!active && !on) \
1665 dev->event(dev, EV_##type, i, on ? active : 0); \
1669 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1674 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1675 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1677 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1678 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1679 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1684 * input_reset_device() - reset/restore the state of input device
1685 * @dev: input device whose state needs to be reset
1687 * This function tries to reset the state of an opened input device and
1688 * bring internal state and state if the hardware in sync with each other.
1689 * We mark all keys as released, restore LED state, repeat rate, etc.
1691 void input_reset_device(struct input_dev
*dev
)
1693 unsigned long flags
;
1695 mutex_lock(&dev
->mutex
);
1696 spin_lock_irqsave(&dev
->event_lock
, flags
);
1698 input_dev_toggle(dev
, true);
1699 input_dev_release_keys(dev
);
1701 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1702 mutex_unlock(&dev
->mutex
);
1704 EXPORT_SYMBOL(input_reset_device
);
1706 #ifdef CONFIG_PM_SLEEP
1707 static int input_dev_suspend(struct device
*dev
)
1709 struct input_dev
*input_dev
= to_input_dev(dev
);
1711 spin_lock_irq(&input_dev
->event_lock
);
1714 * Keys that are pressed now are unlikely to be
1715 * still pressed when we resume.
1717 input_dev_release_keys(input_dev
);
1719 /* Turn off LEDs and sounds, if any are active. */
1720 input_dev_toggle(input_dev
, false);
1722 spin_unlock_irq(&input_dev
->event_lock
);
1727 static int input_dev_resume(struct device
*dev
)
1729 struct input_dev
*input_dev
= to_input_dev(dev
);
1731 spin_lock_irq(&input_dev
->event_lock
);
1733 /* Restore state of LEDs and sounds, if any were active. */
1734 input_dev_toggle(input_dev
, true);
1736 spin_unlock_irq(&input_dev
->event_lock
);
1741 static int input_dev_freeze(struct device
*dev
)
1743 struct input_dev
*input_dev
= to_input_dev(dev
);
1745 spin_lock_irq(&input_dev
->event_lock
);
1748 * Keys that are pressed now are unlikely to be
1749 * still pressed when we resume.
1751 input_dev_release_keys(input_dev
);
1753 spin_unlock_irq(&input_dev
->event_lock
);
1758 static int input_dev_poweroff(struct device
*dev
)
1760 struct input_dev
*input_dev
= to_input_dev(dev
);
1762 spin_lock_irq(&input_dev
->event_lock
);
1764 /* Turn off LEDs and sounds, if any are active. */
1765 input_dev_toggle(input_dev
, false);
1767 spin_unlock_irq(&input_dev
->event_lock
);
1772 static const struct dev_pm_ops input_dev_pm_ops
= {
1773 .suspend
= input_dev_suspend
,
1774 .resume
= input_dev_resume
,
1775 .freeze
= input_dev_freeze
,
1776 .poweroff
= input_dev_poweroff
,
1777 .restore
= input_dev_resume
,
1779 #endif /* CONFIG_PM */
1781 static const struct device_type input_dev_type
= {
1782 .groups
= input_dev_attr_groups
,
1783 .release
= input_dev_release
,
1784 .uevent
= input_dev_uevent
,
1785 #ifdef CONFIG_PM_SLEEP
1786 .pm
= &input_dev_pm_ops
,
1790 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1792 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1795 struct class input_class
= {
1797 .devnode
= input_devnode
,
1799 EXPORT_SYMBOL_GPL(input_class
);
1802 * input_allocate_device - allocate memory for new input device
1804 * Returns prepared struct input_dev or %NULL.
1806 * NOTE: Use input_free_device() to free devices that have not been
1807 * registered; input_unregister_device() should be used for already
1808 * registered devices.
1810 struct input_dev
*input_allocate_device(void)
1812 static atomic_t input_no
= ATOMIC_INIT(-1);
1813 struct input_dev
*dev
;
1815 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
1817 dev
->dev
.type
= &input_dev_type
;
1818 dev
->dev
.class = &input_class
;
1819 device_initialize(&dev
->dev
);
1820 mutex_init(&dev
->mutex
);
1821 spin_lock_init(&dev
->event_lock
);
1822 timer_setup(&dev
->timer
, NULL
, 0);
1823 INIT_LIST_HEAD(&dev
->h_list
);
1824 INIT_LIST_HEAD(&dev
->node
);
1826 dev_set_name(&dev
->dev
, "input%lu",
1827 (unsigned long)atomic_inc_return(&input_no
));
1829 __module_get(THIS_MODULE
);
1834 EXPORT_SYMBOL(input_allocate_device
);
1836 struct input_devres
{
1837 struct input_dev
*input
;
1840 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1842 struct input_devres
*devres
= res
;
1844 return devres
->input
== data
;
1847 static void devm_input_device_release(struct device
*dev
, void *res
)
1849 struct input_devres
*devres
= res
;
1850 struct input_dev
*input
= devres
->input
;
1852 dev_dbg(dev
, "%s: dropping reference to %s\n",
1853 __func__
, dev_name(&input
->dev
));
1854 input_put_device(input
);
1858 * devm_input_allocate_device - allocate managed input device
1859 * @dev: device owning the input device being created
1861 * Returns prepared struct input_dev or %NULL.
1863 * Managed input devices do not need to be explicitly unregistered or
1864 * freed as it will be done automatically when owner device unbinds from
1865 * its driver (or binding fails). Once managed input device is allocated,
1866 * it is ready to be set up and registered in the same fashion as regular
1867 * input device. There are no special devm_input_device_[un]register()
1868 * variants, regular ones work with both managed and unmanaged devices,
1869 * should you need them. In most cases however, managed input device need
1870 * not be explicitly unregistered or freed.
1872 * NOTE: the owner device is set up as parent of input device and users
1873 * should not override it.
1875 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1877 struct input_dev
*input
;
1878 struct input_devres
*devres
;
1880 devres
= devres_alloc(devm_input_device_release
,
1881 sizeof(*devres
), GFP_KERNEL
);
1885 input
= input_allocate_device();
1887 devres_free(devres
);
1891 input
->dev
.parent
= dev
;
1892 input
->devres_managed
= true;
1894 devres
->input
= input
;
1895 devres_add(dev
, devres
);
1899 EXPORT_SYMBOL(devm_input_allocate_device
);
1902 * input_free_device - free memory occupied by input_dev structure
1903 * @dev: input device to free
1905 * This function should only be used if input_register_device()
1906 * was not called yet or if it failed. Once device was registered
1907 * use input_unregister_device() and memory will be freed once last
1908 * reference to the device is dropped.
1910 * Device should be allocated by input_allocate_device().
1912 * NOTE: If there are references to the input device then memory
1913 * will not be freed until last reference is dropped.
1915 void input_free_device(struct input_dev
*dev
)
1918 if (dev
->devres_managed
)
1919 WARN_ON(devres_destroy(dev
->dev
.parent
,
1920 devm_input_device_release
,
1921 devm_input_device_match
,
1923 input_put_device(dev
);
1926 EXPORT_SYMBOL(input_free_device
);
1929 * input_set_timestamp - set timestamp for input events
1930 * @dev: input device to set timestamp for
1931 * @timestamp: the time at which the event has occurred
1932 * in CLOCK_MONOTONIC
1934 * This function is intended to provide to the input system a more
1935 * accurate time of when an event actually occurred. The driver should
1936 * call this function as soon as a timestamp is acquired ensuring
1937 * clock conversions in input_set_timestamp are done correctly.
1939 * The system entering suspend state between timestamp acquisition and
1940 * calling input_set_timestamp can result in inaccurate conversions.
1942 void input_set_timestamp(struct input_dev
*dev
, ktime_t timestamp
)
1944 dev
->timestamp
[INPUT_CLK_MONO
] = timestamp
;
1945 dev
->timestamp
[INPUT_CLK_REAL
] = ktime_mono_to_real(timestamp
);
1946 dev
->timestamp
[INPUT_CLK_BOOT
] = ktime_mono_to_any(timestamp
,
1949 EXPORT_SYMBOL(input_set_timestamp
);
1952 * input_get_timestamp - get timestamp for input events
1953 * @dev: input device to get timestamp from
1955 * A valid timestamp is a timestamp of non-zero value.
1957 ktime_t
*input_get_timestamp(struct input_dev
*dev
)
1959 const ktime_t invalid_timestamp
= ktime_set(0, 0);
1961 if (!ktime_compare(dev
->timestamp
[INPUT_CLK_MONO
], invalid_timestamp
))
1962 input_set_timestamp(dev
, ktime_get());
1964 return dev
->timestamp
;
1966 EXPORT_SYMBOL(input_get_timestamp
);
1969 * input_set_capability - mark device as capable of a certain event
1970 * @dev: device that is capable of emitting or accepting event
1971 * @type: type of the event (EV_KEY, EV_REL, etc...)
1974 * In addition to setting up corresponding bit in appropriate capability
1975 * bitmap the function also adjusts dev->evbit.
1977 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1981 __set_bit(code
, dev
->keybit
);
1985 __set_bit(code
, dev
->relbit
);
1989 input_alloc_absinfo(dev
);
1993 __set_bit(code
, dev
->absbit
);
1997 __set_bit(code
, dev
->mscbit
);
2001 __set_bit(code
, dev
->swbit
);
2005 __set_bit(code
, dev
->ledbit
);
2009 __set_bit(code
, dev
->sndbit
);
2013 __set_bit(code
, dev
->ffbit
);
2021 pr_err("%s: unknown type %u (code %u)\n", __func__
, type
, code
);
2026 __set_bit(type
, dev
->evbit
);
2028 EXPORT_SYMBOL(input_set_capability
);
2030 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
2034 unsigned int events
;
2037 mt_slots
= dev
->mt
->num_slots
;
2038 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
2039 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
2040 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
2041 mt_slots
= clamp(mt_slots
, 2, 32);
2042 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
2048 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
2050 if (test_bit(EV_ABS
, dev
->evbit
))
2051 for_each_set_bit(i
, dev
->absbit
, ABS_CNT
)
2052 events
+= input_is_mt_axis(i
) ? mt_slots
: 1;
2054 if (test_bit(EV_REL
, dev
->evbit
))
2055 events
+= bitmap_weight(dev
->relbit
, REL_CNT
);
2057 /* Make room for KEY and MSC events */
2063 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
2065 if (!test_bit(EV_##type, dev->evbit)) \
2066 memset(dev->bits##bit, 0, \
2067 sizeof(dev->bits##bit)); \
2070 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2072 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2073 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2074 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2075 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2076 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2077 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2078 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2079 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2082 static void __input_unregister_device(struct input_dev
*dev
)
2084 struct input_handle
*handle
, *next
;
2086 input_disconnect_device(dev
);
2088 mutex_lock(&input_mutex
);
2090 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2091 handle
->handler
->disconnect(handle
);
2092 WARN_ON(!list_empty(&dev
->h_list
));
2094 del_timer_sync(&dev
->timer
);
2095 list_del_init(&dev
->node
);
2097 input_wakeup_procfs_readers();
2099 mutex_unlock(&input_mutex
);
2101 device_del(&dev
->dev
);
2104 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2106 struct input_devres
*devres
= res
;
2107 struct input_dev
*input
= devres
->input
;
2109 dev_dbg(dev
, "%s: unregistering device %s\n",
2110 __func__
, dev_name(&input
->dev
));
2111 __input_unregister_device(input
);
2115 * input_enable_softrepeat - enable software autorepeat
2116 * @dev: input device
2117 * @delay: repeat delay
2118 * @period: repeat period
2120 * Enable software autorepeat on the input device.
2122 void input_enable_softrepeat(struct input_dev
*dev
, int delay
, int period
)
2124 dev
->timer
.function
= input_repeat_key
;
2125 dev
->rep
[REP_DELAY
] = delay
;
2126 dev
->rep
[REP_PERIOD
] = period
;
2128 EXPORT_SYMBOL(input_enable_softrepeat
);
2131 * input_register_device - register device with input core
2132 * @dev: device to be registered
2134 * This function registers device with input core. The device must be
2135 * allocated with input_allocate_device() and all it's capabilities
2136 * set up before registering.
2137 * If function fails the device must be freed with input_free_device().
2138 * Once device has been successfully registered it can be unregistered
2139 * with input_unregister_device(); input_free_device() should not be
2140 * called in this case.
2142 * Note that this function is also used to register managed input devices
2143 * (ones allocated with devm_input_allocate_device()). Such managed input
2144 * devices need not be explicitly unregistered or freed, their tear down
2145 * is controlled by the devres infrastructure. It is also worth noting
2146 * that tear down of managed input devices is internally a 2-step process:
2147 * registered managed input device is first unregistered, but stays in
2148 * memory and can still handle input_event() calls (although events will
2149 * not be delivered anywhere). The freeing of managed input device will
2150 * happen later, when devres stack is unwound to the point where device
2151 * allocation was made.
2153 int input_register_device(struct input_dev
*dev
)
2155 struct input_devres
*devres
= NULL
;
2156 struct input_handler
*handler
;
2157 unsigned int packet_size
;
2161 if (test_bit(EV_ABS
, dev
->evbit
) && !dev
->absinfo
) {
2163 "Absolute device without dev->absinfo, refusing to register\n");
2167 if (dev
->devres_managed
) {
2168 devres
= devres_alloc(devm_input_device_unregister
,
2169 sizeof(*devres
), GFP_KERNEL
);
2173 devres
->input
= dev
;
2176 /* Every input device generates EV_SYN/SYN_REPORT events. */
2177 __set_bit(EV_SYN
, dev
->evbit
);
2179 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2180 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2182 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2183 input_cleanse_bitmasks(dev
);
2185 packet_size
= input_estimate_events_per_packet(dev
);
2186 if (dev
->hint_events_per_packet
< packet_size
)
2187 dev
->hint_events_per_packet
= packet_size
;
2189 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2190 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2193 goto err_devres_free
;
2197 * If delay and period are pre-set by the driver, then autorepeating
2198 * is handled by the driver itself and we don't do it in input.c.
2200 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
])
2201 input_enable_softrepeat(dev
, 250, 33);
2203 if (!dev
->getkeycode
)
2204 dev
->getkeycode
= input_default_getkeycode
;
2206 if (!dev
->setkeycode
)
2207 dev
->setkeycode
= input_default_setkeycode
;
2210 input_dev_poller_finalize(dev
->poller
);
2212 error
= device_add(&dev
->dev
);
2216 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2217 pr_info("%s as %s\n",
2218 dev
->name
? dev
->name
: "Unspecified device",
2219 path
? path
: "N/A");
2222 error
= mutex_lock_interruptible(&input_mutex
);
2224 goto err_device_del
;
2226 list_add_tail(&dev
->node
, &input_dev_list
);
2228 list_for_each_entry(handler
, &input_handler_list
, node
)
2229 input_attach_handler(dev
, handler
);
2231 input_wakeup_procfs_readers();
2233 mutex_unlock(&input_mutex
);
2235 if (dev
->devres_managed
) {
2236 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2237 __func__
, dev_name(&dev
->dev
));
2238 devres_add(dev
->dev
.parent
, devres
);
2243 device_del(&dev
->dev
);
2248 devres_free(devres
);
2251 EXPORT_SYMBOL(input_register_device
);
2254 * input_unregister_device - unregister previously registered device
2255 * @dev: device to be unregistered
2257 * This function unregisters an input device. Once device is unregistered
2258 * the caller should not try to access it as it may get freed at any moment.
2260 void input_unregister_device(struct input_dev
*dev
)
2262 if (dev
->devres_managed
) {
2263 WARN_ON(devres_destroy(dev
->dev
.parent
,
2264 devm_input_device_unregister
,
2265 devm_input_device_match
,
2267 __input_unregister_device(dev
);
2269 * We do not do input_put_device() here because it will be done
2270 * when 2nd devres fires up.
2273 __input_unregister_device(dev
);
2274 input_put_device(dev
);
2277 EXPORT_SYMBOL(input_unregister_device
);
2280 * input_register_handler - register a new input handler
2281 * @handler: handler to be registered
2283 * This function registers a new input handler (interface) for input
2284 * devices in the system and attaches it to all input devices that
2285 * are compatible with the handler.
2287 int input_register_handler(struct input_handler
*handler
)
2289 struct input_dev
*dev
;
2292 error
= mutex_lock_interruptible(&input_mutex
);
2296 INIT_LIST_HEAD(&handler
->h_list
);
2298 list_add_tail(&handler
->node
, &input_handler_list
);
2300 list_for_each_entry(dev
, &input_dev_list
, node
)
2301 input_attach_handler(dev
, handler
);
2303 input_wakeup_procfs_readers();
2305 mutex_unlock(&input_mutex
);
2308 EXPORT_SYMBOL(input_register_handler
);
2311 * input_unregister_handler - unregisters an input handler
2312 * @handler: handler to be unregistered
2314 * This function disconnects a handler from its input devices and
2315 * removes it from lists of known handlers.
2317 void input_unregister_handler(struct input_handler
*handler
)
2319 struct input_handle
*handle
, *next
;
2321 mutex_lock(&input_mutex
);
2323 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2324 handler
->disconnect(handle
);
2325 WARN_ON(!list_empty(&handler
->h_list
));
2327 list_del_init(&handler
->node
);
2329 input_wakeup_procfs_readers();
2331 mutex_unlock(&input_mutex
);
2333 EXPORT_SYMBOL(input_unregister_handler
);
2336 * input_handler_for_each_handle - handle iterator
2337 * @handler: input handler to iterate
2338 * @data: data for the callback
2339 * @fn: function to be called for each handle
2341 * Iterate over @bus's list of devices, and call @fn for each, passing
2342 * it @data and stop when @fn returns a non-zero value. The function is
2343 * using RCU to traverse the list and therefore may be using in atomic
2344 * contexts. The @fn callback is invoked from RCU critical section and
2345 * thus must not sleep.
2347 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2348 int (*fn
)(struct input_handle
*, void *))
2350 struct input_handle
*handle
;
2355 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2356 retval
= fn(handle
, data
);
2365 EXPORT_SYMBOL(input_handler_for_each_handle
);
2368 * input_register_handle - register a new input handle
2369 * @handle: handle to register
2371 * This function puts a new input handle onto device's
2372 * and handler's lists so that events can flow through
2373 * it once it is opened using input_open_device().
2375 * This function is supposed to be called from handler's
2378 int input_register_handle(struct input_handle
*handle
)
2380 struct input_handler
*handler
= handle
->handler
;
2381 struct input_dev
*dev
= handle
->dev
;
2385 * We take dev->mutex here to prevent race with
2386 * input_release_device().
2388 error
= mutex_lock_interruptible(&dev
->mutex
);
2393 * Filters go to the head of the list, normal handlers
2396 if (handler
->filter
)
2397 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2399 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2401 mutex_unlock(&dev
->mutex
);
2404 * Since we are supposed to be called from ->connect()
2405 * which is mutually exclusive with ->disconnect()
2406 * we can't be racing with input_unregister_handle()
2407 * and so separate lock is not needed here.
2409 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2412 handler
->start(handle
);
2416 EXPORT_SYMBOL(input_register_handle
);
2419 * input_unregister_handle - unregister an input handle
2420 * @handle: handle to unregister
2422 * This function removes input handle from device's
2423 * and handler's lists.
2425 * This function is supposed to be called from handler's
2426 * disconnect() method.
2428 void input_unregister_handle(struct input_handle
*handle
)
2430 struct input_dev
*dev
= handle
->dev
;
2432 list_del_rcu(&handle
->h_node
);
2435 * Take dev->mutex to prevent race with input_release_device().
2437 mutex_lock(&dev
->mutex
);
2438 list_del_rcu(&handle
->d_node
);
2439 mutex_unlock(&dev
->mutex
);
2443 EXPORT_SYMBOL(input_unregister_handle
);
2446 * input_get_new_minor - allocates a new input minor number
2447 * @legacy_base: beginning or the legacy range to be searched
2448 * @legacy_num: size of legacy range
2449 * @allow_dynamic: whether we can also take ID from the dynamic range
2451 * This function allocates a new device minor for from input major namespace.
2452 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2453 * parameters and whether ID can be allocated from dynamic range if there are
2454 * no free IDs in legacy range.
2456 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2460 * This function should be called from input handler's ->connect()
2461 * methods, which are serialized with input_mutex, so no additional
2462 * locking is needed here.
2464 if (legacy_base
>= 0) {
2465 int minor
= ida_simple_get(&input_ida
,
2467 legacy_base
+ legacy_num
,
2469 if (minor
>= 0 || !allow_dynamic
)
2473 return ida_simple_get(&input_ida
,
2474 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2477 EXPORT_SYMBOL(input_get_new_minor
);
2480 * input_free_minor - release previously allocated minor
2481 * @minor: minor to be released
2483 * This function releases previously allocated input minor so that it can be
2486 void input_free_minor(unsigned int minor
)
2488 ida_simple_remove(&input_ida
, minor
);
2490 EXPORT_SYMBOL(input_free_minor
);
2492 static int __init
input_init(void)
2496 err
= class_register(&input_class
);
2498 pr_err("unable to register input_dev class\n");
2502 err
= input_proc_init();
2506 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2507 INPUT_MAX_CHAR_DEVICES
, "input");
2509 pr_err("unable to register char major %d", INPUT_MAJOR
);
2515 fail2
: input_proc_exit();
2516 fail1
: class_unregister(&input_class
);
2520 static void __exit
input_exit(void)
2523 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2524 INPUT_MAX_CHAR_DEVICES
);
2525 class_unregister(&input_class
);
2528 subsys_initcall(input_init
);
2529 module_exit(input_exit
);