dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / isdn / hardware / mISDN / hfcsusb.c
blob621364bb6b129c2bd459b1f0a13f558318e656cc
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* hfcsusb.c
3 * mISDN driver for Colognechip HFC-S USB chip
5 * Copyright 2001 by Peter Sprenger (sprenger@moving-bytes.de)
6 * Copyright 2008 by Martin Bachem (info@bachem-it.com)
8 * module params
9 * debug=<n>, default=0, with n=0xHHHHGGGG
10 * H - l1 driver flags described in hfcsusb.h
11 * G - common mISDN debug flags described at mISDNhw.h
13 * poll=<n>, default 128
14 * n : burst size of PH_DATA_IND at transparent rx data
16 * Revision: 0.3.3 (socket), 2008-11-05
19 #include <linux/module.h>
20 #include <linux/delay.h>
21 #include <linux/usb.h>
22 #include <linux/mISDNhw.h>
23 #include <linux/slab.h>
24 #include "hfcsusb.h"
26 static unsigned int debug;
27 static int poll = DEFAULT_TRANSP_BURST_SZ;
29 static LIST_HEAD(HFClist);
30 static DEFINE_RWLOCK(HFClock);
33 MODULE_AUTHOR("Martin Bachem");
34 MODULE_LICENSE("GPL");
35 module_param(debug, uint, S_IRUGO | S_IWUSR);
36 module_param(poll, int, 0);
38 static int hfcsusb_cnt;
40 /* some function prototypes */
41 static void hfcsusb_ph_command(struct hfcsusb *hw, u_char command);
42 static void release_hw(struct hfcsusb *hw);
43 static void reset_hfcsusb(struct hfcsusb *hw);
44 static void setPortMode(struct hfcsusb *hw);
45 static void hfcsusb_start_endpoint(struct hfcsusb *hw, int channel);
46 static void hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel);
47 static int hfcsusb_setup_bch(struct bchannel *bch, int protocol);
48 static void deactivate_bchannel(struct bchannel *bch);
49 static void hfcsusb_ph_info(struct hfcsusb *hw);
51 /* start next background transfer for control channel */
52 static void
53 ctrl_start_transfer(struct hfcsusb *hw)
55 if (debug & DBG_HFC_CALL_TRACE)
56 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
58 if (hw->ctrl_cnt) {
59 hw->ctrl_urb->pipe = hw->ctrl_out_pipe;
60 hw->ctrl_urb->setup_packet = (u_char *)&hw->ctrl_write;
61 hw->ctrl_urb->transfer_buffer = NULL;
62 hw->ctrl_urb->transfer_buffer_length = 0;
63 hw->ctrl_write.wIndex =
64 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].hfcs_reg);
65 hw->ctrl_write.wValue =
66 cpu_to_le16(hw->ctrl_buff[hw->ctrl_out_idx].reg_val);
68 usb_submit_urb(hw->ctrl_urb, GFP_ATOMIC);
73 * queue a control transfer request to write HFC-S USB
74 * chip register using CTRL resuest queue
76 static int write_reg(struct hfcsusb *hw, __u8 reg, __u8 val)
78 struct ctrl_buf *buf;
80 if (debug & DBG_HFC_CALL_TRACE)
81 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(0x%02x)\n",
82 hw->name, __func__, reg, val);
84 spin_lock(&hw->ctrl_lock);
85 if (hw->ctrl_cnt >= HFC_CTRL_BUFSIZE) {
86 spin_unlock(&hw->ctrl_lock);
87 return 1;
89 buf = &hw->ctrl_buff[hw->ctrl_in_idx];
90 buf->hfcs_reg = reg;
91 buf->reg_val = val;
92 if (++hw->ctrl_in_idx >= HFC_CTRL_BUFSIZE)
93 hw->ctrl_in_idx = 0;
94 if (++hw->ctrl_cnt == 1)
95 ctrl_start_transfer(hw);
96 spin_unlock(&hw->ctrl_lock);
98 return 0;
101 /* control completion routine handling background control cmds */
102 static void
103 ctrl_complete(struct urb *urb)
105 struct hfcsusb *hw = (struct hfcsusb *) urb->context;
107 if (debug & DBG_HFC_CALL_TRACE)
108 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
110 urb->dev = hw->dev;
111 if (hw->ctrl_cnt) {
112 hw->ctrl_cnt--; /* decrement actual count */
113 if (++hw->ctrl_out_idx >= HFC_CTRL_BUFSIZE)
114 hw->ctrl_out_idx = 0; /* pointer wrap */
116 ctrl_start_transfer(hw); /* start next transfer */
120 /* handle LED bits */
121 static void
122 set_led_bit(struct hfcsusb *hw, signed short led_bits, int set_on)
124 if (set_on) {
125 if (led_bits < 0)
126 hw->led_state &= ~abs(led_bits);
127 else
128 hw->led_state |= led_bits;
129 } else {
130 if (led_bits < 0)
131 hw->led_state |= abs(led_bits);
132 else
133 hw->led_state &= ~led_bits;
137 /* handle LED requests */
138 static void
139 handle_led(struct hfcsusb *hw, int event)
141 struct hfcsusb_vdata *driver_info = (struct hfcsusb_vdata *)
142 hfcsusb_idtab[hw->vend_idx].driver_info;
143 __u8 tmpled;
145 if (driver_info->led_scheme == LED_OFF)
146 return;
147 tmpled = hw->led_state;
149 switch (event) {
150 case LED_POWER_ON:
151 set_led_bit(hw, driver_info->led_bits[0], 1);
152 set_led_bit(hw, driver_info->led_bits[1], 0);
153 set_led_bit(hw, driver_info->led_bits[2], 0);
154 set_led_bit(hw, driver_info->led_bits[3], 0);
155 break;
156 case LED_POWER_OFF:
157 set_led_bit(hw, driver_info->led_bits[0], 0);
158 set_led_bit(hw, driver_info->led_bits[1], 0);
159 set_led_bit(hw, driver_info->led_bits[2], 0);
160 set_led_bit(hw, driver_info->led_bits[3], 0);
161 break;
162 case LED_S0_ON:
163 set_led_bit(hw, driver_info->led_bits[1], 1);
164 break;
165 case LED_S0_OFF:
166 set_led_bit(hw, driver_info->led_bits[1], 0);
167 break;
168 case LED_B1_ON:
169 set_led_bit(hw, driver_info->led_bits[2], 1);
170 break;
171 case LED_B1_OFF:
172 set_led_bit(hw, driver_info->led_bits[2], 0);
173 break;
174 case LED_B2_ON:
175 set_led_bit(hw, driver_info->led_bits[3], 1);
176 break;
177 case LED_B2_OFF:
178 set_led_bit(hw, driver_info->led_bits[3], 0);
179 break;
182 if (hw->led_state != tmpled) {
183 if (debug & DBG_HFC_CALL_TRACE)
184 printk(KERN_DEBUG "%s: %s reg(0x%02x) val(x%02x)\n",
185 hw->name, __func__,
186 HFCUSB_P_DATA, hw->led_state);
188 write_reg(hw, HFCUSB_P_DATA, hw->led_state);
193 * Layer2 -> Layer 1 Bchannel data
195 static int
196 hfcusb_l2l1B(struct mISDNchannel *ch, struct sk_buff *skb)
198 struct bchannel *bch = container_of(ch, struct bchannel, ch);
199 struct hfcsusb *hw = bch->hw;
200 int ret = -EINVAL;
201 struct mISDNhead *hh = mISDN_HEAD_P(skb);
202 u_long flags;
204 if (debug & DBG_HFC_CALL_TRACE)
205 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
207 switch (hh->prim) {
208 case PH_DATA_REQ:
209 spin_lock_irqsave(&hw->lock, flags);
210 ret = bchannel_senddata(bch, skb);
211 spin_unlock_irqrestore(&hw->lock, flags);
212 if (debug & DBG_HFC_CALL_TRACE)
213 printk(KERN_DEBUG "%s: %s PH_DATA_REQ ret(%i)\n",
214 hw->name, __func__, ret);
215 if (ret > 0)
216 ret = 0;
217 return ret;
218 case PH_ACTIVATE_REQ:
219 if (!test_and_set_bit(FLG_ACTIVE, &bch->Flags)) {
220 hfcsusb_start_endpoint(hw, bch->nr - 1);
221 ret = hfcsusb_setup_bch(bch, ch->protocol);
222 } else
223 ret = 0;
224 if (!ret)
225 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
226 0, NULL, GFP_KERNEL);
227 break;
228 case PH_DEACTIVATE_REQ:
229 deactivate_bchannel(bch);
230 _queue_data(ch, PH_DEACTIVATE_IND, MISDN_ID_ANY,
231 0, NULL, GFP_KERNEL);
232 ret = 0;
233 break;
235 if (!ret)
236 dev_kfree_skb(skb);
237 return ret;
241 * send full D/B channel status information
242 * as MPH_INFORMATION_IND
244 static void
245 hfcsusb_ph_info(struct hfcsusb *hw)
247 struct ph_info *phi;
248 struct dchannel *dch = &hw->dch;
249 int i;
251 phi = kzalloc(struct_size(phi, bch, dch->dev.nrbchan), GFP_ATOMIC);
252 if (!phi)
253 return;
255 phi->dch.ch.protocol = hw->protocol;
256 phi->dch.ch.Flags = dch->Flags;
257 phi->dch.state = dch->state;
258 phi->dch.num_bch = dch->dev.nrbchan;
259 for (i = 0; i < dch->dev.nrbchan; i++) {
260 phi->bch[i].protocol = hw->bch[i].ch.protocol;
261 phi->bch[i].Flags = hw->bch[i].Flags;
263 _queue_data(&dch->dev.D, MPH_INFORMATION_IND, MISDN_ID_ANY,
264 sizeof(struct ph_info_dch) + dch->dev.nrbchan *
265 sizeof(struct ph_info_ch), phi, GFP_ATOMIC);
266 kfree(phi);
270 * Layer2 -> Layer 1 Dchannel data
272 static int
273 hfcusb_l2l1D(struct mISDNchannel *ch, struct sk_buff *skb)
275 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
276 struct dchannel *dch = container_of(dev, struct dchannel, dev);
277 struct mISDNhead *hh = mISDN_HEAD_P(skb);
278 struct hfcsusb *hw = dch->hw;
279 int ret = -EINVAL;
280 u_long flags;
282 switch (hh->prim) {
283 case PH_DATA_REQ:
284 if (debug & DBG_HFC_CALL_TRACE)
285 printk(KERN_DEBUG "%s: %s: PH_DATA_REQ\n",
286 hw->name, __func__);
288 spin_lock_irqsave(&hw->lock, flags);
289 ret = dchannel_senddata(dch, skb);
290 spin_unlock_irqrestore(&hw->lock, flags);
291 if (ret > 0) {
292 ret = 0;
293 queue_ch_frame(ch, PH_DATA_CNF, hh->id, NULL);
295 break;
297 case PH_ACTIVATE_REQ:
298 if (debug & DBG_HFC_CALL_TRACE)
299 printk(KERN_DEBUG "%s: %s: PH_ACTIVATE_REQ %s\n",
300 hw->name, __func__,
301 (hw->protocol == ISDN_P_NT_S0) ? "NT" : "TE");
303 if (hw->protocol == ISDN_P_NT_S0) {
304 ret = 0;
305 if (test_bit(FLG_ACTIVE, &dch->Flags)) {
306 _queue_data(&dch->dev.D,
307 PH_ACTIVATE_IND, MISDN_ID_ANY, 0,
308 NULL, GFP_ATOMIC);
309 } else {
310 hfcsusb_ph_command(hw,
311 HFC_L1_ACTIVATE_NT);
312 test_and_set_bit(FLG_L2_ACTIVATED,
313 &dch->Flags);
315 } else {
316 hfcsusb_ph_command(hw, HFC_L1_ACTIVATE_TE);
317 ret = l1_event(dch->l1, hh->prim);
319 break;
321 case PH_DEACTIVATE_REQ:
322 if (debug & DBG_HFC_CALL_TRACE)
323 printk(KERN_DEBUG "%s: %s: PH_DEACTIVATE_REQ\n",
324 hw->name, __func__);
325 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
327 if (hw->protocol == ISDN_P_NT_S0) {
328 hfcsusb_ph_command(hw, HFC_L1_DEACTIVATE_NT);
329 spin_lock_irqsave(&hw->lock, flags);
330 skb_queue_purge(&dch->squeue);
331 if (dch->tx_skb) {
332 dev_kfree_skb(dch->tx_skb);
333 dch->tx_skb = NULL;
335 dch->tx_idx = 0;
336 if (dch->rx_skb) {
337 dev_kfree_skb(dch->rx_skb);
338 dch->rx_skb = NULL;
340 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
341 spin_unlock_irqrestore(&hw->lock, flags);
342 #ifdef FIXME
343 if (test_and_clear_bit(FLG_L1_BUSY, &dch->Flags))
344 dchannel_sched_event(&hc->dch, D_CLEARBUSY);
345 #endif
346 ret = 0;
347 } else
348 ret = l1_event(dch->l1, hh->prim);
349 break;
350 case MPH_INFORMATION_REQ:
351 hfcsusb_ph_info(hw);
352 ret = 0;
353 break;
356 return ret;
360 * Layer 1 callback function
362 static int
363 hfc_l1callback(struct dchannel *dch, u_int cmd)
365 struct hfcsusb *hw = dch->hw;
367 if (debug & DBG_HFC_CALL_TRACE)
368 printk(KERN_DEBUG "%s: %s cmd 0x%x\n",
369 hw->name, __func__, cmd);
371 switch (cmd) {
372 case INFO3_P8:
373 case INFO3_P10:
374 case HW_RESET_REQ:
375 case HW_POWERUP_REQ:
376 break;
378 case HW_DEACT_REQ:
379 skb_queue_purge(&dch->squeue);
380 if (dch->tx_skb) {
381 dev_kfree_skb(dch->tx_skb);
382 dch->tx_skb = NULL;
384 dch->tx_idx = 0;
385 if (dch->rx_skb) {
386 dev_kfree_skb(dch->rx_skb);
387 dch->rx_skb = NULL;
389 test_and_clear_bit(FLG_TX_BUSY, &dch->Flags);
390 break;
391 case PH_ACTIVATE_IND:
392 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
393 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
394 GFP_ATOMIC);
395 break;
396 case PH_DEACTIVATE_IND:
397 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
398 _queue_data(&dch->dev.D, cmd, MISDN_ID_ANY, 0, NULL,
399 GFP_ATOMIC);
400 break;
401 default:
402 if (dch->debug & DEBUG_HW)
403 printk(KERN_DEBUG "%s: %s: unknown cmd %x\n",
404 hw->name, __func__, cmd);
405 return -1;
407 hfcsusb_ph_info(hw);
408 return 0;
411 static int
412 open_dchannel(struct hfcsusb *hw, struct mISDNchannel *ch,
413 struct channel_req *rq)
415 int err = 0;
417 if (debug & DEBUG_HW_OPEN)
418 printk(KERN_DEBUG "%s: %s: dev(%d) open addr(%i) from %p\n",
419 hw->name, __func__, hw->dch.dev.id, rq->adr.channel,
420 __builtin_return_address(0));
421 if (rq->protocol == ISDN_P_NONE)
422 return -EINVAL;
424 test_and_clear_bit(FLG_ACTIVE, &hw->dch.Flags);
425 test_and_clear_bit(FLG_ACTIVE, &hw->ech.Flags);
426 hfcsusb_start_endpoint(hw, HFC_CHAN_D);
428 /* E-Channel logging */
429 if (rq->adr.channel == 1) {
430 if (hw->fifos[HFCUSB_PCM_RX].pipe) {
431 hfcsusb_start_endpoint(hw, HFC_CHAN_E);
432 set_bit(FLG_ACTIVE, &hw->ech.Flags);
433 _queue_data(&hw->ech.dev.D, PH_ACTIVATE_IND,
434 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
435 } else
436 return -EINVAL;
439 if (!hw->initdone) {
440 hw->protocol = rq->protocol;
441 if (rq->protocol == ISDN_P_TE_S0) {
442 err = create_l1(&hw->dch, hfc_l1callback);
443 if (err)
444 return err;
446 setPortMode(hw);
447 ch->protocol = rq->protocol;
448 hw->initdone = 1;
449 } else {
450 if (rq->protocol != ch->protocol)
451 return -EPROTONOSUPPORT;
454 if (((ch->protocol == ISDN_P_NT_S0) && (hw->dch.state == 3)) ||
455 ((ch->protocol == ISDN_P_TE_S0) && (hw->dch.state == 7)))
456 _queue_data(ch, PH_ACTIVATE_IND, MISDN_ID_ANY,
457 0, NULL, GFP_KERNEL);
458 rq->ch = ch;
459 if (!try_module_get(THIS_MODULE))
460 printk(KERN_WARNING "%s: %s: cannot get module\n",
461 hw->name, __func__);
462 return 0;
465 static int
466 open_bchannel(struct hfcsusb *hw, struct channel_req *rq)
468 struct bchannel *bch;
470 if (rq->adr.channel == 0 || rq->adr.channel > 2)
471 return -EINVAL;
472 if (rq->protocol == ISDN_P_NONE)
473 return -EINVAL;
475 if (debug & DBG_HFC_CALL_TRACE)
476 printk(KERN_DEBUG "%s: %s B%i\n",
477 hw->name, __func__, rq->adr.channel);
479 bch = &hw->bch[rq->adr.channel - 1];
480 if (test_and_set_bit(FLG_OPEN, &bch->Flags))
481 return -EBUSY; /* b-channel can be only open once */
482 bch->ch.protocol = rq->protocol;
483 rq->ch = &bch->ch;
485 if (!try_module_get(THIS_MODULE))
486 printk(KERN_WARNING "%s: %s:cannot get module\n",
487 hw->name, __func__);
488 return 0;
491 static int
492 channel_ctrl(struct hfcsusb *hw, struct mISDN_ctrl_req *cq)
494 int ret = 0;
496 if (debug & DBG_HFC_CALL_TRACE)
497 printk(KERN_DEBUG "%s: %s op(0x%x) channel(0x%x)\n",
498 hw->name, __func__, (cq->op), (cq->channel));
500 switch (cq->op) {
501 case MISDN_CTRL_GETOP:
502 cq->op = MISDN_CTRL_LOOP | MISDN_CTRL_CONNECT |
503 MISDN_CTRL_DISCONNECT;
504 break;
505 default:
506 printk(KERN_WARNING "%s: %s: unknown Op %x\n",
507 hw->name, __func__, cq->op);
508 ret = -EINVAL;
509 break;
511 return ret;
515 * device control function
517 static int
518 hfc_dctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
520 struct mISDNdevice *dev = container_of(ch, struct mISDNdevice, D);
521 struct dchannel *dch = container_of(dev, struct dchannel, dev);
522 struct hfcsusb *hw = dch->hw;
523 struct channel_req *rq;
524 int err = 0;
526 if (dch->debug & DEBUG_HW)
527 printk(KERN_DEBUG "%s: %s: cmd:%x %p\n",
528 hw->name, __func__, cmd, arg);
529 switch (cmd) {
530 case OPEN_CHANNEL:
531 rq = arg;
532 if ((rq->protocol == ISDN_P_TE_S0) ||
533 (rq->protocol == ISDN_P_NT_S0))
534 err = open_dchannel(hw, ch, rq);
535 else
536 err = open_bchannel(hw, rq);
537 if (!err)
538 hw->open++;
539 break;
540 case CLOSE_CHANNEL:
541 hw->open--;
542 if (debug & DEBUG_HW_OPEN)
543 printk(KERN_DEBUG
544 "%s: %s: dev(%d) close from %p (open %d)\n",
545 hw->name, __func__, hw->dch.dev.id,
546 __builtin_return_address(0), hw->open);
547 if (!hw->open) {
548 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
549 if (hw->fifos[HFCUSB_PCM_RX].pipe)
550 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
551 handle_led(hw, LED_POWER_ON);
553 module_put(THIS_MODULE);
554 break;
555 case CONTROL_CHANNEL:
556 err = channel_ctrl(hw, arg);
557 break;
558 default:
559 if (dch->debug & DEBUG_HW)
560 printk(KERN_DEBUG "%s: %s: unknown command %x\n",
561 hw->name, __func__, cmd);
562 return -EINVAL;
564 return err;
568 * S0 TE state change event handler
570 static void
571 ph_state_te(struct dchannel *dch)
573 struct hfcsusb *hw = dch->hw;
575 if (debug & DEBUG_HW) {
576 if (dch->state <= HFC_MAX_TE_LAYER1_STATE)
577 printk(KERN_DEBUG "%s: %s: %s\n", hw->name, __func__,
578 HFC_TE_LAYER1_STATES[dch->state]);
579 else
580 printk(KERN_DEBUG "%s: %s: TE F%d\n",
581 hw->name, __func__, dch->state);
584 switch (dch->state) {
585 case 0:
586 l1_event(dch->l1, HW_RESET_IND);
587 break;
588 case 3:
589 l1_event(dch->l1, HW_DEACT_IND);
590 break;
591 case 5:
592 case 8:
593 l1_event(dch->l1, ANYSIGNAL);
594 break;
595 case 6:
596 l1_event(dch->l1, INFO2);
597 break;
598 case 7:
599 l1_event(dch->l1, INFO4_P8);
600 break;
602 if (dch->state == 7)
603 handle_led(hw, LED_S0_ON);
604 else
605 handle_led(hw, LED_S0_OFF);
609 * S0 NT state change event handler
611 static void
612 ph_state_nt(struct dchannel *dch)
614 struct hfcsusb *hw = dch->hw;
616 if (debug & DEBUG_HW) {
617 if (dch->state <= HFC_MAX_NT_LAYER1_STATE)
618 printk(KERN_DEBUG "%s: %s: %s\n",
619 hw->name, __func__,
620 HFC_NT_LAYER1_STATES[dch->state]);
622 else
623 printk(KERN_INFO DRIVER_NAME "%s: %s: NT G%d\n",
624 hw->name, __func__, dch->state);
627 switch (dch->state) {
628 case (1):
629 test_and_clear_bit(FLG_ACTIVE, &dch->Flags);
630 test_and_clear_bit(FLG_L2_ACTIVATED, &dch->Flags);
631 hw->nt_timer = 0;
632 hw->timers &= ~NT_ACTIVATION_TIMER;
633 handle_led(hw, LED_S0_OFF);
634 break;
636 case (2):
637 if (hw->nt_timer < 0) {
638 hw->nt_timer = 0;
639 hw->timers &= ~NT_ACTIVATION_TIMER;
640 hfcsusb_ph_command(dch->hw, HFC_L1_DEACTIVATE_NT);
641 } else {
642 hw->timers |= NT_ACTIVATION_TIMER;
643 hw->nt_timer = NT_T1_COUNT;
644 /* allow G2 -> G3 transition */
645 write_reg(hw, HFCUSB_STATES, 2 | HFCUSB_NT_G2_G3);
647 break;
648 case (3):
649 hw->nt_timer = 0;
650 hw->timers &= ~NT_ACTIVATION_TIMER;
651 test_and_set_bit(FLG_ACTIVE, &dch->Flags);
652 _queue_data(&dch->dev.D, PH_ACTIVATE_IND,
653 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
654 handle_led(hw, LED_S0_ON);
655 break;
656 case (4):
657 hw->nt_timer = 0;
658 hw->timers &= ~NT_ACTIVATION_TIMER;
659 break;
660 default:
661 break;
663 hfcsusb_ph_info(hw);
666 static void
667 ph_state(struct dchannel *dch)
669 struct hfcsusb *hw = dch->hw;
671 if (hw->protocol == ISDN_P_NT_S0)
672 ph_state_nt(dch);
673 else if (hw->protocol == ISDN_P_TE_S0)
674 ph_state_te(dch);
678 * disable/enable BChannel for desired protocoll
680 static int
681 hfcsusb_setup_bch(struct bchannel *bch, int protocol)
683 struct hfcsusb *hw = bch->hw;
684 __u8 conhdlc, sctrl, sctrl_r;
686 if (debug & DEBUG_HW)
687 printk(KERN_DEBUG "%s: %s: protocol %x-->%x B%d\n",
688 hw->name, __func__, bch->state, protocol,
689 bch->nr);
691 /* setup val for CON_HDLC */
692 conhdlc = 0;
693 if (protocol > ISDN_P_NONE)
694 conhdlc = 8; /* enable FIFO */
696 switch (protocol) {
697 case (-1): /* used for init */
698 bch->state = -1;
699 /* fall through */
700 case (ISDN_P_NONE):
701 if (bch->state == ISDN_P_NONE)
702 return 0; /* already in idle state */
703 bch->state = ISDN_P_NONE;
704 clear_bit(FLG_HDLC, &bch->Flags);
705 clear_bit(FLG_TRANSPARENT, &bch->Flags);
706 break;
707 case (ISDN_P_B_RAW):
708 conhdlc |= 2;
709 bch->state = protocol;
710 set_bit(FLG_TRANSPARENT, &bch->Flags);
711 break;
712 case (ISDN_P_B_HDLC):
713 bch->state = protocol;
714 set_bit(FLG_HDLC, &bch->Flags);
715 break;
716 default:
717 if (debug & DEBUG_HW)
718 printk(KERN_DEBUG "%s: %s: prot not known %x\n",
719 hw->name, __func__, protocol);
720 return -ENOPROTOOPT;
723 if (protocol >= ISDN_P_NONE) {
724 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 0 : 2);
725 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
726 write_reg(hw, HFCUSB_INC_RES_F, 2);
727 write_reg(hw, HFCUSB_FIFO, (bch->nr == 1) ? 1 : 3);
728 write_reg(hw, HFCUSB_CON_HDLC, conhdlc);
729 write_reg(hw, HFCUSB_INC_RES_F, 2);
731 sctrl = 0x40 + ((hw->protocol == ISDN_P_TE_S0) ? 0x00 : 0x04);
732 sctrl_r = 0x0;
733 if (test_bit(FLG_ACTIVE, &hw->bch[0].Flags)) {
734 sctrl |= 1;
735 sctrl_r |= 1;
737 if (test_bit(FLG_ACTIVE, &hw->bch[1].Flags)) {
738 sctrl |= 2;
739 sctrl_r |= 2;
741 write_reg(hw, HFCUSB_SCTRL, sctrl);
742 write_reg(hw, HFCUSB_SCTRL_R, sctrl_r);
744 if (protocol > ISDN_P_NONE)
745 handle_led(hw, (bch->nr == 1) ? LED_B1_ON : LED_B2_ON);
746 else
747 handle_led(hw, (bch->nr == 1) ? LED_B1_OFF :
748 LED_B2_OFF);
750 hfcsusb_ph_info(hw);
751 return 0;
754 static void
755 hfcsusb_ph_command(struct hfcsusb *hw, u_char command)
757 if (debug & DEBUG_HW)
758 printk(KERN_DEBUG "%s: %s: %x\n",
759 hw->name, __func__, command);
761 switch (command) {
762 case HFC_L1_ACTIVATE_TE:
763 /* force sending sending INFO1 */
764 write_reg(hw, HFCUSB_STATES, 0x14);
765 /* start l1 activation */
766 write_reg(hw, HFCUSB_STATES, 0x04);
767 break;
769 case HFC_L1_FORCE_DEACTIVATE_TE:
770 write_reg(hw, HFCUSB_STATES, 0x10);
771 write_reg(hw, HFCUSB_STATES, 0x03);
772 break;
774 case HFC_L1_ACTIVATE_NT:
775 if (hw->dch.state == 3)
776 _queue_data(&hw->dch.dev.D, PH_ACTIVATE_IND,
777 MISDN_ID_ANY, 0, NULL, GFP_ATOMIC);
778 else
779 write_reg(hw, HFCUSB_STATES, HFCUSB_ACTIVATE |
780 HFCUSB_DO_ACTION | HFCUSB_NT_G2_G3);
781 break;
783 case HFC_L1_DEACTIVATE_NT:
784 write_reg(hw, HFCUSB_STATES,
785 HFCUSB_DO_ACTION);
786 break;
791 * Layer 1 B-channel hardware access
793 static int
794 channel_bctrl(struct bchannel *bch, struct mISDN_ctrl_req *cq)
796 return mISDN_ctrl_bchannel(bch, cq);
799 /* collect data from incoming interrupt or isochron USB data */
800 static void
801 hfcsusb_rx_frame(struct usb_fifo *fifo, __u8 *data, unsigned int len,
802 int finish)
804 struct hfcsusb *hw = fifo->hw;
805 struct sk_buff *rx_skb = NULL;
806 int maxlen = 0;
807 int fifon = fifo->fifonum;
808 int i;
809 int hdlc = 0;
810 unsigned long flags;
812 if (debug & DBG_HFC_CALL_TRACE)
813 printk(KERN_DEBUG "%s: %s: fifo(%i) len(%i) "
814 "dch(%p) bch(%p) ech(%p)\n",
815 hw->name, __func__, fifon, len,
816 fifo->dch, fifo->bch, fifo->ech);
818 if (!len)
819 return;
821 if ((!!fifo->dch + !!fifo->bch + !!fifo->ech) != 1) {
822 printk(KERN_DEBUG "%s: %s: undefined channel\n",
823 hw->name, __func__);
824 return;
827 spin_lock_irqsave(&hw->lock, flags);
828 if (fifo->dch) {
829 rx_skb = fifo->dch->rx_skb;
830 maxlen = fifo->dch->maxlen;
831 hdlc = 1;
833 if (fifo->bch) {
834 if (test_bit(FLG_RX_OFF, &fifo->bch->Flags)) {
835 fifo->bch->dropcnt += len;
836 spin_unlock_irqrestore(&hw->lock, flags);
837 return;
839 maxlen = bchannel_get_rxbuf(fifo->bch, len);
840 rx_skb = fifo->bch->rx_skb;
841 if (maxlen < 0) {
842 if (rx_skb)
843 skb_trim(rx_skb, 0);
844 pr_warn("%s.B%d: No bufferspace for %d bytes\n",
845 hw->name, fifo->bch->nr, len);
846 spin_unlock_irqrestore(&hw->lock, flags);
847 return;
849 maxlen = fifo->bch->maxlen;
850 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
852 if (fifo->ech) {
853 rx_skb = fifo->ech->rx_skb;
854 maxlen = fifo->ech->maxlen;
855 hdlc = 1;
858 if (fifo->dch || fifo->ech) {
859 if (!rx_skb) {
860 rx_skb = mI_alloc_skb(maxlen, GFP_ATOMIC);
861 if (rx_skb) {
862 if (fifo->dch)
863 fifo->dch->rx_skb = rx_skb;
864 if (fifo->ech)
865 fifo->ech->rx_skb = rx_skb;
866 skb_trim(rx_skb, 0);
867 } else {
868 printk(KERN_DEBUG "%s: %s: No mem for rx_skb\n",
869 hw->name, __func__);
870 spin_unlock_irqrestore(&hw->lock, flags);
871 return;
874 /* D/E-Channel SKB range check */
875 if ((rx_skb->len + len) >= MAX_DFRAME_LEN_L1) {
876 printk(KERN_DEBUG "%s: %s: sbk mem exceeded "
877 "for fifo(%d) HFCUSB_D_RX\n",
878 hw->name, __func__, fifon);
879 skb_trim(rx_skb, 0);
880 spin_unlock_irqrestore(&hw->lock, flags);
881 return;
885 skb_put_data(rx_skb, data, len);
887 if (hdlc) {
888 /* we have a complete hdlc packet */
889 if (finish) {
890 if ((rx_skb->len > 3) &&
891 (!(rx_skb->data[rx_skb->len - 1]))) {
892 if (debug & DBG_HFC_FIFO_VERBOSE) {
893 printk(KERN_DEBUG "%s: %s: fifon(%i)"
894 " new RX len(%i): ",
895 hw->name, __func__, fifon,
896 rx_skb->len);
897 i = 0;
898 while (i < rx_skb->len)
899 printk("%02x ",
900 rx_skb->data[i++]);
901 printk("\n");
904 /* remove CRC & status */
905 skb_trim(rx_skb, rx_skb->len - 3);
907 if (fifo->dch)
908 recv_Dchannel(fifo->dch);
909 if (fifo->bch)
910 recv_Bchannel(fifo->bch, MISDN_ID_ANY,
912 if (fifo->ech)
913 recv_Echannel(fifo->ech,
914 &hw->dch);
915 } else {
916 if (debug & DBG_HFC_FIFO_VERBOSE) {
917 printk(KERN_DEBUG
918 "%s: CRC or minlen ERROR fifon(%i) "
919 "RX len(%i): ",
920 hw->name, fifon, rx_skb->len);
921 i = 0;
922 while (i < rx_skb->len)
923 printk("%02x ",
924 rx_skb->data[i++]);
925 printk("\n");
927 skb_trim(rx_skb, 0);
930 } else {
931 /* deliver transparent data to layer2 */
932 recv_Bchannel(fifo->bch, MISDN_ID_ANY, false);
934 spin_unlock_irqrestore(&hw->lock, flags);
937 static void
938 fill_isoc_urb(struct urb *urb, struct usb_device *dev, unsigned int pipe,
939 void *buf, int num_packets, int packet_size, int interval,
940 usb_complete_t complete, void *context)
942 int k;
944 usb_fill_bulk_urb(urb, dev, pipe, buf, packet_size * num_packets,
945 complete, context);
947 urb->number_of_packets = num_packets;
948 urb->transfer_flags = URB_ISO_ASAP;
949 urb->actual_length = 0;
950 urb->interval = interval;
952 for (k = 0; k < num_packets; k++) {
953 urb->iso_frame_desc[k].offset = packet_size * k;
954 urb->iso_frame_desc[k].length = packet_size;
955 urb->iso_frame_desc[k].actual_length = 0;
959 /* receive completion routine for all ISO tx fifos */
960 static void
961 rx_iso_complete(struct urb *urb)
963 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
964 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
965 struct hfcsusb *hw = fifo->hw;
966 int k, len, errcode, offset, num_isoc_packets, fifon, maxlen,
967 status, iso_status, i;
968 __u8 *buf;
969 static __u8 eof[8];
970 __u8 s0_state;
971 unsigned long flags;
973 fifon = fifo->fifonum;
974 status = urb->status;
976 spin_lock_irqsave(&hw->lock, flags);
977 if (fifo->stop_gracefull) {
978 fifo->stop_gracefull = 0;
979 fifo->active = 0;
980 spin_unlock_irqrestore(&hw->lock, flags);
981 return;
983 spin_unlock_irqrestore(&hw->lock, flags);
986 * ISO transfer only partially completed,
987 * look at individual frame status for details
989 if (status == -EXDEV) {
990 if (debug & DEBUG_HW)
991 printk(KERN_DEBUG "%s: %s: with -EXDEV "
992 "urb->status %d, fifonum %d\n",
993 hw->name, __func__, status, fifon);
995 /* clear status, so go on with ISO transfers */
996 status = 0;
999 s0_state = 0;
1000 if (fifo->active && !status) {
1001 num_isoc_packets = iso_packets[fifon];
1002 maxlen = fifo->usb_packet_maxlen;
1004 for (k = 0; k < num_isoc_packets; ++k) {
1005 len = urb->iso_frame_desc[k].actual_length;
1006 offset = urb->iso_frame_desc[k].offset;
1007 buf = context_iso_urb->buffer + offset;
1008 iso_status = urb->iso_frame_desc[k].status;
1010 if (iso_status && (debug & DBG_HFC_FIFO_VERBOSE)) {
1011 printk(KERN_DEBUG "%s: %s: "
1012 "ISO packet %i, status: %i\n",
1013 hw->name, __func__, k, iso_status);
1016 /* USB data log for every D ISO in */
1017 if ((fifon == HFCUSB_D_RX) &&
1018 (debug & DBG_HFC_USB_VERBOSE)) {
1019 printk(KERN_DEBUG
1020 "%s: %s: %d (%d/%d) len(%d) ",
1021 hw->name, __func__, urb->start_frame,
1022 k, num_isoc_packets - 1,
1023 len);
1024 for (i = 0; i < len; i++)
1025 printk("%x ", buf[i]);
1026 printk("\n");
1029 if (!iso_status) {
1030 if (fifo->last_urblen != maxlen) {
1032 * save fifo fill-level threshold bits
1033 * to use them later in TX ISO URB
1034 * completions
1036 hw->threshold_mask = buf[1];
1038 if (fifon == HFCUSB_D_RX)
1039 s0_state = (buf[0] >> 4);
1041 eof[fifon] = buf[0] & 1;
1042 if (len > 2)
1043 hfcsusb_rx_frame(fifo, buf + 2,
1044 len - 2, (len < maxlen)
1045 ? eof[fifon] : 0);
1046 } else
1047 hfcsusb_rx_frame(fifo, buf, len,
1048 (len < maxlen) ?
1049 eof[fifon] : 0);
1050 fifo->last_urblen = len;
1054 /* signal S0 layer1 state change */
1055 if ((s0_state) && (hw->initdone) &&
1056 (s0_state != hw->dch.state)) {
1057 hw->dch.state = s0_state;
1058 schedule_event(&hw->dch, FLG_PHCHANGE);
1061 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1062 context_iso_urb->buffer, num_isoc_packets,
1063 fifo->usb_packet_maxlen, fifo->intervall,
1064 (usb_complete_t)rx_iso_complete, urb->context);
1065 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1066 if (errcode < 0) {
1067 if (debug & DEBUG_HW)
1068 printk(KERN_DEBUG "%s: %s: error submitting "
1069 "ISO URB: %d\n",
1070 hw->name, __func__, errcode);
1072 } else {
1073 if (status && (debug & DBG_HFC_URB_INFO))
1074 printk(KERN_DEBUG "%s: %s: rx_iso_complete : "
1075 "urb->status %d, fifonum %d\n",
1076 hw->name, __func__, status, fifon);
1080 /* receive completion routine for all interrupt rx fifos */
1081 static void
1082 rx_int_complete(struct urb *urb)
1084 int len, status, i;
1085 __u8 *buf, maxlen, fifon;
1086 struct usb_fifo *fifo = (struct usb_fifo *) urb->context;
1087 struct hfcsusb *hw = fifo->hw;
1088 static __u8 eof[8];
1089 unsigned long flags;
1091 spin_lock_irqsave(&hw->lock, flags);
1092 if (fifo->stop_gracefull) {
1093 fifo->stop_gracefull = 0;
1094 fifo->active = 0;
1095 spin_unlock_irqrestore(&hw->lock, flags);
1096 return;
1098 spin_unlock_irqrestore(&hw->lock, flags);
1100 fifon = fifo->fifonum;
1101 if ((!fifo->active) || (urb->status)) {
1102 if (debug & DBG_HFC_URB_ERROR)
1103 printk(KERN_DEBUG
1104 "%s: %s: RX-Fifo %i is going down (%i)\n",
1105 hw->name, __func__, fifon, urb->status);
1107 fifo->urb->interval = 0; /* cancel automatic rescheduling */
1108 return;
1110 len = urb->actual_length;
1111 buf = fifo->buffer;
1112 maxlen = fifo->usb_packet_maxlen;
1114 /* USB data log for every D INT in */
1115 if ((fifon == HFCUSB_D_RX) && (debug & DBG_HFC_USB_VERBOSE)) {
1116 printk(KERN_DEBUG "%s: %s: D RX INT len(%d) ",
1117 hw->name, __func__, len);
1118 for (i = 0; i < len; i++)
1119 printk("%02x ", buf[i]);
1120 printk("\n");
1123 if (fifo->last_urblen != fifo->usb_packet_maxlen) {
1124 /* the threshold mask is in the 2nd status byte */
1125 hw->threshold_mask = buf[1];
1127 /* signal S0 layer1 state change */
1128 if (hw->initdone && ((buf[0] >> 4) != hw->dch.state)) {
1129 hw->dch.state = (buf[0] >> 4);
1130 schedule_event(&hw->dch, FLG_PHCHANGE);
1133 eof[fifon] = buf[0] & 1;
1134 /* if we have more than the 2 status bytes -> collect data */
1135 if (len > 2)
1136 hfcsusb_rx_frame(fifo, buf + 2,
1137 urb->actual_length - 2,
1138 (len < maxlen) ? eof[fifon] : 0);
1139 } else {
1140 hfcsusb_rx_frame(fifo, buf, urb->actual_length,
1141 (len < maxlen) ? eof[fifon] : 0);
1143 fifo->last_urblen = urb->actual_length;
1145 status = usb_submit_urb(urb, GFP_ATOMIC);
1146 if (status) {
1147 if (debug & DEBUG_HW)
1148 printk(KERN_DEBUG "%s: %s: error resubmitting USB\n",
1149 hw->name, __func__);
1153 /* transmit completion routine for all ISO tx fifos */
1154 static void
1155 tx_iso_complete(struct urb *urb)
1157 struct iso_urb *context_iso_urb = (struct iso_urb *) urb->context;
1158 struct usb_fifo *fifo = context_iso_urb->owner_fifo;
1159 struct hfcsusb *hw = fifo->hw;
1160 struct sk_buff *tx_skb;
1161 int k, tx_offset, num_isoc_packets, sink, remain, current_len,
1162 errcode, hdlc, i;
1163 int *tx_idx;
1164 int frame_complete, fifon, status, fillempty = 0;
1165 __u8 threshbit, *p;
1166 unsigned long flags;
1168 spin_lock_irqsave(&hw->lock, flags);
1169 if (fifo->stop_gracefull) {
1170 fifo->stop_gracefull = 0;
1171 fifo->active = 0;
1172 spin_unlock_irqrestore(&hw->lock, flags);
1173 return;
1176 if (fifo->dch) {
1177 tx_skb = fifo->dch->tx_skb;
1178 tx_idx = &fifo->dch->tx_idx;
1179 hdlc = 1;
1180 } else if (fifo->bch) {
1181 tx_skb = fifo->bch->tx_skb;
1182 tx_idx = &fifo->bch->tx_idx;
1183 hdlc = test_bit(FLG_HDLC, &fifo->bch->Flags);
1184 if (!tx_skb && !hdlc &&
1185 test_bit(FLG_FILLEMPTY, &fifo->bch->Flags))
1186 fillempty = 1;
1187 } else {
1188 printk(KERN_DEBUG "%s: %s: neither BCH nor DCH\n",
1189 hw->name, __func__);
1190 spin_unlock_irqrestore(&hw->lock, flags);
1191 return;
1194 fifon = fifo->fifonum;
1195 status = urb->status;
1197 tx_offset = 0;
1200 * ISO transfer only partially completed,
1201 * look at individual frame status for details
1203 if (status == -EXDEV) {
1204 if (debug & DBG_HFC_URB_ERROR)
1205 printk(KERN_DEBUG "%s: %s: "
1206 "-EXDEV (%i) fifon (%d)\n",
1207 hw->name, __func__, status, fifon);
1209 /* clear status, so go on with ISO transfers */
1210 status = 0;
1213 if (fifo->active && !status) {
1214 /* is FifoFull-threshold set for our channel? */
1215 threshbit = (hw->threshold_mask & (1 << fifon));
1216 num_isoc_packets = iso_packets[fifon];
1218 /* predict dataflow to avoid fifo overflow */
1219 if (fifon >= HFCUSB_D_TX)
1220 sink = (threshbit) ? SINK_DMIN : SINK_DMAX;
1221 else
1222 sink = (threshbit) ? SINK_MIN : SINK_MAX;
1223 fill_isoc_urb(urb, fifo->hw->dev, fifo->pipe,
1224 context_iso_urb->buffer, num_isoc_packets,
1225 fifo->usb_packet_maxlen, fifo->intervall,
1226 (usb_complete_t)tx_iso_complete, urb->context);
1227 memset(context_iso_urb->buffer, 0,
1228 sizeof(context_iso_urb->buffer));
1229 frame_complete = 0;
1231 for (k = 0; k < num_isoc_packets; ++k) {
1232 /* analyze tx success of previous ISO packets */
1233 if (debug & DBG_HFC_URB_ERROR) {
1234 errcode = urb->iso_frame_desc[k].status;
1235 if (errcode) {
1236 printk(KERN_DEBUG "%s: %s: "
1237 "ISO packet %i, status: %i\n",
1238 hw->name, __func__, k, errcode);
1242 /* Generate next ISO Packets */
1243 if (tx_skb)
1244 remain = tx_skb->len - *tx_idx;
1245 else if (fillempty)
1246 remain = 15; /* > not complete */
1247 else
1248 remain = 0;
1250 if (remain > 0) {
1251 fifo->bit_line -= sink;
1252 current_len = (0 - fifo->bit_line) / 8;
1253 if (current_len > 14)
1254 current_len = 14;
1255 if (current_len < 0)
1256 current_len = 0;
1257 if (remain < current_len)
1258 current_len = remain;
1260 /* how much bit do we put on the line? */
1261 fifo->bit_line += current_len * 8;
1263 context_iso_urb->buffer[tx_offset] = 0;
1264 if (current_len == remain) {
1265 if (hdlc) {
1266 /* signal frame completion */
1267 context_iso_urb->
1268 buffer[tx_offset] = 1;
1269 /* add 2 byte flags and 16bit
1270 * CRC at end of ISDN frame */
1271 fifo->bit_line += 32;
1273 frame_complete = 1;
1276 /* copy tx data to iso-urb buffer */
1277 p = context_iso_urb->buffer + tx_offset + 1;
1278 if (fillempty) {
1279 memset(p, fifo->bch->fill[0],
1280 current_len);
1281 } else {
1282 memcpy(p, (tx_skb->data + *tx_idx),
1283 current_len);
1284 *tx_idx += current_len;
1286 urb->iso_frame_desc[k].offset = tx_offset;
1287 urb->iso_frame_desc[k].length = current_len + 1;
1289 /* USB data log for every D ISO out */
1290 if ((fifon == HFCUSB_D_RX) && !fillempty &&
1291 (debug & DBG_HFC_USB_VERBOSE)) {
1292 printk(KERN_DEBUG
1293 "%s: %s (%d/%d) offs(%d) len(%d) ",
1294 hw->name, __func__,
1295 k, num_isoc_packets - 1,
1296 urb->iso_frame_desc[k].offset,
1297 urb->iso_frame_desc[k].length);
1299 for (i = urb->iso_frame_desc[k].offset;
1300 i < (urb->iso_frame_desc[k].offset
1301 + urb->iso_frame_desc[k].length);
1302 i++)
1303 printk("%x ",
1304 context_iso_urb->buffer[i]);
1306 printk(" skb->len(%i) tx-idx(%d)\n",
1307 tx_skb->len, *tx_idx);
1310 tx_offset += (current_len + 1);
1311 } else {
1312 urb->iso_frame_desc[k].offset = tx_offset++;
1313 urb->iso_frame_desc[k].length = 1;
1314 /* we lower data margin every msec */
1315 fifo->bit_line -= sink;
1316 if (fifo->bit_line < BITLINE_INF)
1317 fifo->bit_line = BITLINE_INF;
1320 if (frame_complete) {
1321 frame_complete = 0;
1323 if (debug & DBG_HFC_FIFO_VERBOSE) {
1324 printk(KERN_DEBUG "%s: %s: "
1325 "fifon(%i) new TX len(%i): ",
1326 hw->name, __func__,
1327 fifon, tx_skb->len);
1328 i = 0;
1329 while (i < tx_skb->len)
1330 printk("%02x ",
1331 tx_skb->data[i++]);
1332 printk("\n");
1335 dev_kfree_skb(tx_skb);
1336 tx_skb = NULL;
1337 if (fifo->dch && get_next_dframe(fifo->dch))
1338 tx_skb = fifo->dch->tx_skb;
1339 else if (fifo->bch &&
1340 get_next_bframe(fifo->bch))
1341 tx_skb = fifo->bch->tx_skb;
1344 errcode = usb_submit_urb(urb, GFP_ATOMIC);
1345 if (errcode < 0) {
1346 if (debug & DEBUG_HW)
1347 printk(KERN_DEBUG
1348 "%s: %s: error submitting ISO URB: %d \n",
1349 hw->name, __func__, errcode);
1353 * abuse DChannel tx iso completion to trigger NT mode state
1354 * changes tx_iso_complete is assumed to be called every
1355 * fifo->intervall (ms)
1357 if ((fifon == HFCUSB_D_TX) && (hw->protocol == ISDN_P_NT_S0)
1358 && (hw->timers & NT_ACTIVATION_TIMER)) {
1359 if ((--hw->nt_timer) < 0)
1360 schedule_event(&hw->dch, FLG_PHCHANGE);
1363 } else {
1364 if (status && (debug & DBG_HFC_URB_ERROR))
1365 printk(KERN_DEBUG "%s: %s: urb->status %s (%i)"
1366 "fifonum=%d\n",
1367 hw->name, __func__,
1368 symbolic(urb_errlist, status), status, fifon);
1370 spin_unlock_irqrestore(&hw->lock, flags);
1374 * allocs urbs and start isoc transfer with two pending urbs to avoid
1375 * gaps in the transfer chain
1377 static int
1378 start_isoc_chain(struct usb_fifo *fifo, int num_packets_per_urb,
1379 usb_complete_t complete, int packet_size)
1381 struct hfcsusb *hw = fifo->hw;
1382 int i, k, errcode;
1384 if (debug)
1385 printk(KERN_DEBUG "%s: %s: fifo %i\n",
1386 hw->name, __func__, fifo->fifonum);
1388 /* allocate Memory for Iso out Urbs */
1389 for (i = 0; i < 2; i++) {
1390 if (!(fifo->iso[i].urb)) {
1391 fifo->iso[i].urb =
1392 usb_alloc_urb(num_packets_per_urb, GFP_KERNEL);
1393 if (!(fifo->iso[i].urb)) {
1394 printk(KERN_DEBUG
1395 "%s: %s: alloc urb for fifo %i failed",
1396 hw->name, __func__, fifo->fifonum);
1397 continue;
1399 fifo->iso[i].owner_fifo = (struct usb_fifo *) fifo;
1400 fifo->iso[i].indx = i;
1402 /* Init the first iso */
1403 if (ISO_BUFFER_SIZE >=
1404 (fifo->usb_packet_maxlen *
1405 num_packets_per_urb)) {
1406 fill_isoc_urb(fifo->iso[i].urb,
1407 fifo->hw->dev, fifo->pipe,
1408 fifo->iso[i].buffer,
1409 num_packets_per_urb,
1410 fifo->usb_packet_maxlen,
1411 fifo->intervall, complete,
1412 &fifo->iso[i]);
1413 memset(fifo->iso[i].buffer, 0,
1414 sizeof(fifo->iso[i].buffer));
1416 for (k = 0; k < num_packets_per_urb; k++) {
1417 fifo->iso[i].urb->
1418 iso_frame_desc[k].offset =
1419 k * packet_size;
1420 fifo->iso[i].urb->
1421 iso_frame_desc[k].length =
1422 packet_size;
1424 } else {
1425 printk(KERN_DEBUG
1426 "%s: %s: ISO Buffer size to small!\n",
1427 hw->name, __func__);
1430 fifo->bit_line = BITLINE_INF;
1432 errcode = usb_submit_urb(fifo->iso[i].urb, GFP_KERNEL);
1433 fifo->active = (errcode >= 0) ? 1 : 0;
1434 fifo->stop_gracefull = 0;
1435 if (errcode < 0) {
1436 printk(KERN_DEBUG "%s: %s: %s URB nr:%d\n",
1437 hw->name, __func__,
1438 symbolic(urb_errlist, errcode), i);
1441 return fifo->active;
1444 static void
1445 stop_iso_gracefull(struct usb_fifo *fifo)
1447 struct hfcsusb *hw = fifo->hw;
1448 int i, timeout;
1449 u_long flags;
1451 for (i = 0; i < 2; i++) {
1452 spin_lock_irqsave(&hw->lock, flags);
1453 if (debug)
1454 printk(KERN_DEBUG "%s: %s for fifo %i.%i\n",
1455 hw->name, __func__, fifo->fifonum, i);
1456 fifo->stop_gracefull = 1;
1457 spin_unlock_irqrestore(&hw->lock, flags);
1460 for (i = 0; i < 2; i++) {
1461 timeout = 3;
1462 while (fifo->stop_gracefull && timeout--)
1463 schedule_timeout_interruptible((HZ / 1000) * 16);
1464 if (debug && fifo->stop_gracefull)
1465 printk(KERN_DEBUG "%s: ERROR %s for fifo %i.%i\n",
1466 hw->name, __func__, fifo->fifonum, i);
1470 static void
1471 stop_int_gracefull(struct usb_fifo *fifo)
1473 struct hfcsusb *hw = fifo->hw;
1474 int timeout;
1475 u_long flags;
1477 spin_lock_irqsave(&hw->lock, flags);
1478 if (debug)
1479 printk(KERN_DEBUG "%s: %s for fifo %i\n",
1480 hw->name, __func__, fifo->fifonum);
1481 fifo->stop_gracefull = 1;
1482 spin_unlock_irqrestore(&hw->lock, flags);
1484 timeout = 3;
1485 while (fifo->stop_gracefull && timeout--)
1486 schedule_timeout_interruptible((HZ / 1000) * 3);
1487 if (debug && fifo->stop_gracefull)
1488 printk(KERN_DEBUG "%s: ERROR %s for fifo %i\n",
1489 hw->name, __func__, fifo->fifonum);
1492 /* start the interrupt transfer for the given fifo */
1493 static void
1494 start_int_fifo(struct usb_fifo *fifo)
1496 struct hfcsusb *hw = fifo->hw;
1497 int errcode;
1499 if (debug)
1500 printk(KERN_DEBUG "%s: %s: INT IN fifo:%d\n",
1501 hw->name, __func__, fifo->fifonum);
1503 if (!fifo->urb) {
1504 fifo->urb = usb_alloc_urb(0, GFP_KERNEL);
1505 if (!fifo->urb)
1506 return;
1508 usb_fill_int_urb(fifo->urb, fifo->hw->dev, fifo->pipe,
1509 fifo->buffer, fifo->usb_packet_maxlen,
1510 (usb_complete_t)rx_int_complete, fifo, fifo->intervall);
1511 fifo->active = 1;
1512 fifo->stop_gracefull = 0;
1513 errcode = usb_submit_urb(fifo->urb, GFP_KERNEL);
1514 if (errcode) {
1515 printk(KERN_DEBUG "%s: %s: submit URB: status:%i\n",
1516 hw->name, __func__, errcode);
1517 fifo->active = 0;
1521 static void
1522 setPortMode(struct hfcsusb *hw)
1524 if (debug & DEBUG_HW)
1525 printk(KERN_DEBUG "%s: %s %s\n", hw->name, __func__,
1526 (hw->protocol == ISDN_P_TE_S0) ? "TE" : "NT");
1528 if (hw->protocol == ISDN_P_TE_S0) {
1529 write_reg(hw, HFCUSB_SCTRL, 0x40);
1530 write_reg(hw, HFCUSB_SCTRL_E, 0x00);
1531 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_TE);
1532 write_reg(hw, HFCUSB_STATES, 3 | 0x10);
1533 write_reg(hw, HFCUSB_STATES, 3);
1534 } else {
1535 write_reg(hw, HFCUSB_SCTRL, 0x44);
1536 write_reg(hw, HFCUSB_SCTRL_E, 0x09);
1537 write_reg(hw, HFCUSB_CLKDEL, CLKDEL_NT);
1538 write_reg(hw, HFCUSB_STATES, 1 | 0x10);
1539 write_reg(hw, HFCUSB_STATES, 1);
1543 static void
1544 reset_hfcsusb(struct hfcsusb *hw)
1546 struct usb_fifo *fifo;
1547 int i;
1549 if (debug & DEBUG_HW)
1550 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1552 /* do Chip reset */
1553 write_reg(hw, HFCUSB_CIRM, 8);
1555 /* aux = output, reset off */
1556 write_reg(hw, HFCUSB_CIRM, 0x10);
1558 /* set USB_SIZE to match the wMaxPacketSize for INT or BULK transfers */
1559 write_reg(hw, HFCUSB_USB_SIZE, (hw->packet_size / 8) |
1560 ((hw->packet_size / 8) << 4));
1562 /* set USB_SIZE_I to match the the wMaxPacketSize for ISO transfers */
1563 write_reg(hw, HFCUSB_USB_SIZE_I, hw->iso_packet_size);
1565 /* enable PCM/GCI master mode */
1566 write_reg(hw, HFCUSB_MST_MODE1, 0); /* set default values */
1567 write_reg(hw, HFCUSB_MST_MODE0, 1); /* enable master mode */
1569 /* init the fifos */
1570 write_reg(hw, HFCUSB_F_THRES,
1571 (HFCUSB_TX_THRESHOLD / 8) | ((HFCUSB_RX_THRESHOLD / 8) << 4));
1573 fifo = hw->fifos;
1574 for (i = 0; i < HFCUSB_NUM_FIFOS; i++) {
1575 write_reg(hw, HFCUSB_FIFO, i); /* select the desired fifo */
1576 fifo[i].max_size =
1577 (i <= HFCUSB_B2_RX) ? MAX_BCH_SIZE : MAX_DFRAME_LEN;
1578 fifo[i].last_urblen = 0;
1580 /* set 2 bit for D- & E-channel */
1581 write_reg(hw, HFCUSB_HDLC_PAR, ((i <= HFCUSB_B2_RX) ? 0 : 2));
1583 /* enable all fifos */
1584 if (i == HFCUSB_D_TX)
1585 write_reg(hw, HFCUSB_CON_HDLC,
1586 (hw->protocol == ISDN_P_NT_S0) ? 0x08 : 0x09);
1587 else
1588 write_reg(hw, HFCUSB_CON_HDLC, 0x08);
1589 write_reg(hw, HFCUSB_INC_RES_F, 2); /* reset the fifo */
1592 write_reg(hw, HFCUSB_SCTRL_R, 0); /* disable both B receivers */
1593 handle_led(hw, LED_POWER_ON);
1596 /* start USB data pipes dependand on device's endpoint configuration */
1597 static void
1598 hfcsusb_start_endpoint(struct hfcsusb *hw, int channel)
1600 /* quick check if endpoint already running */
1601 if ((channel == HFC_CHAN_D) && (hw->fifos[HFCUSB_D_RX].active))
1602 return;
1603 if ((channel == HFC_CHAN_B1) && (hw->fifos[HFCUSB_B1_RX].active))
1604 return;
1605 if ((channel == HFC_CHAN_B2) && (hw->fifos[HFCUSB_B2_RX].active))
1606 return;
1607 if ((channel == HFC_CHAN_E) && (hw->fifos[HFCUSB_PCM_RX].active))
1608 return;
1610 /* start rx endpoints using USB INT IN method */
1611 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1612 start_int_fifo(hw->fifos + channel * 2 + 1);
1614 /* start rx endpoints using USB ISO IN method */
1615 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO) {
1616 switch (channel) {
1617 case HFC_CHAN_D:
1618 start_isoc_chain(hw->fifos + HFCUSB_D_RX,
1619 ISOC_PACKETS_D,
1620 (usb_complete_t)rx_iso_complete,
1621 16);
1622 break;
1623 case HFC_CHAN_E:
1624 start_isoc_chain(hw->fifos + HFCUSB_PCM_RX,
1625 ISOC_PACKETS_D,
1626 (usb_complete_t)rx_iso_complete,
1627 16);
1628 break;
1629 case HFC_CHAN_B1:
1630 start_isoc_chain(hw->fifos + HFCUSB_B1_RX,
1631 ISOC_PACKETS_B,
1632 (usb_complete_t)rx_iso_complete,
1633 16);
1634 break;
1635 case HFC_CHAN_B2:
1636 start_isoc_chain(hw->fifos + HFCUSB_B2_RX,
1637 ISOC_PACKETS_B,
1638 (usb_complete_t)rx_iso_complete,
1639 16);
1640 break;
1644 /* start tx endpoints using USB ISO OUT method */
1645 switch (channel) {
1646 case HFC_CHAN_D:
1647 start_isoc_chain(hw->fifos + HFCUSB_D_TX,
1648 ISOC_PACKETS_B,
1649 (usb_complete_t)tx_iso_complete, 1);
1650 break;
1651 case HFC_CHAN_B1:
1652 start_isoc_chain(hw->fifos + HFCUSB_B1_TX,
1653 ISOC_PACKETS_D,
1654 (usb_complete_t)tx_iso_complete, 1);
1655 break;
1656 case HFC_CHAN_B2:
1657 start_isoc_chain(hw->fifos + HFCUSB_B2_TX,
1658 ISOC_PACKETS_B,
1659 (usb_complete_t)tx_iso_complete, 1);
1660 break;
1664 /* stop USB data pipes dependand on device's endpoint configuration */
1665 static void
1666 hfcsusb_stop_endpoint(struct hfcsusb *hw, int channel)
1668 /* quick check if endpoint currently running */
1669 if ((channel == HFC_CHAN_D) && (!hw->fifos[HFCUSB_D_RX].active))
1670 return;
1671 if ((channel == HFC_CHAN_B1) && (!hw->fifos[HFCUSB_B1_RX].active))
1672 return;
1673 if ((channel == HFC_CHAN_B2) && (!hw->fifos[HFCUSB_B2_RX].active))
1674 return;
1675 if ((channel == HFC_CHAN_E) && (!hw->fifos[HFCUSB_PCM_RX].active))
1676 return;
1678 /* rx endpoints using USB INT IN method */
1679 if (hw->cfg_used == CNF_3INT3ISO || hw->cfg_used == CNF_4INT3ISO)
1680 stop_int_gracefull(hw->fifos + channel * 2 + 1);
1682 /* rx endpoints using USB ISO IN method */
1683 if (hw->cfg_used == CNF_3ISO3ISO || hw->cfg_used == CNF_4ISO3ISO)
1684 stop_iso_gracefull(hw->fifos + channel * 2 + 1);
1686 /* tx endpoints using USB ISO OUT method */
1687 if (channel != HFC_CHAN_E)
1688 stop_iso_gracefull(hw->fifos + channel * 2);
1692 /* Hardware Initialization */
1693 static int
1694 setup_hfcsusb(struct hfcsusb *hw)
1696 void *dmabuf = kmalloc(sizeof(u_char), GFP_KERNEL);
1697 u_char b;
1698 int ret;
1700 if (debug & DBG_HFC_CALL_TRACE)
1701 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1703 if (!dmabuf)
1704 return -ENOMEM;
1706 ret = read_reg_atomic(hw, HFCUSB_CHIP_ID, dmabuf);
1708 memcpy(&b, dmabuf, sizeof(u_char));
1709 kfree(dmabuf);
1711 /* check the chip id */
1712 if (ret != 1) {
1713 printk(KERN_DEBUG "%s: %s: cannot read chip id\n",
1714 hw->name, __func__);
1715 return 1;
1717 if (b != HFCUSB_CHIPID) {
1718 printk(KERN_DEBUG "%s: %s: Invalid chip id 0x%02x\n",
1719 hw->name, __func__, b);
1720 return 1;
1723 /* first set the needed config, interface and alternate */
1724 (void) usb_set_interface(hw->dev, hw->if_used, hw->alt_used);
1726 hw->led_state = 0;
1728 /* init the background machinery for control requests */
1729 hw->ctrl_read.bRequestType = 0xc0;
1730 hw->ctrl_read.bRequest = 1;
1731 hw->ctrl_read.wLength = cpu_to_le16(1);
1732 hw->ctrl_write.bRequestType = 0x40;
1733 hw->ctrl_write.bRequest = 0;
1734 hw->ctrl_write.wLength = 0;
1735 usb_fill_control_urb(hw->ctrl_urb, hw->dev, hw->ctrl_out_pipe,
1736 (u_char *)&hw->ctrl_write, NULL, 0,
1737 (usb_complete_t)ctrl_complete, hw);
1739 reset_hfcsusb(hw);
1740 return 0;
1743 static void
1744 release_hw(struct hfcsusb *hw)
1746 if (debug & DBG_HFC_CALL_TRACE)
1747 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1750 * stop all endpoints gracefully
1751 * TODO: mISDN_core should generate CLOSE_CHANNEL
1752 * signals after calling mISDN_unregister_device()
1754 hfcsusb_stop_endpoint(hw, HFC_CHAN_D);
1755 hfcsusb_stop_endpoint(hw, HFC_CHAN_B1);
1756 hfcsusb_stop_endpoint(hw, HFC_CHAN_B2);
1757 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1758 hfcsusb_stop_endpoint(hw, HFC_CHAN_E);
1759 if (hw->protocol == ISDN_P_TE_S0)
1760 l1_event(hw->dch.l1, CLOSE_CHANNEL);
1762 mISDN_unregister_device(&hw->dch.dev);
1763 mISDN_freebchannel(&hw->bch[1]);
1764 mISDN_freebchannel(&hw->bch[0]);
1765 mISDN_freedchannel(&hw->dch);
1767 if (hw->ctrl_urb) {
1768 usb_kill_urb(hw->ctrl_urb);
1769 usb_free_urb(hw->ctrl_urb);
1770 hw->ctrl_urb = NULL;
1773 if (hw->intf)
1774 usb_set_intfdata(hw->intf, NULL);
1775 list_del(&hw->list);
1776 kfree(hw);
1777 hw = NULL;
1780 static void
1781 deactivate_bchannel(struct bchannel *bch)
1783 struct hfcsusb *hw = bch->hw;
1784 u_long flags;
1786 if (bch->debug & DEBUG_HW)
1787 printk(KERN_DEBUG "%s: %s: bch->nr(%i)\n",
1788 hw->name, __func__, bch->nr);
1790 spin_lock_irqsave(&hw->lock, flags);
1791 mISDN_clear_bchannel(bch);
1792 spin_unlock_irqrestore(&hw->lock, flags);
1793 hfcsusb_setup_bch(bch, ISDN_P_NONE);
1794 hfcsusb_stop_endpoint(hw, bch->nr - 1);
1798 * Layer 1 B-channel hardware access
1800 static int
1801 hfc_bctrl(struct mISDNchannel *ch, u_int cmd, void *arg)
1803 struct bchannel *bch = container_of(ch, struct bchannel, ch);
1804 int ret = -EINVAL;
1806 if (bch->debug & DEBUG_HW)
1807 printk(KERN_DEBUG "%s: cmd:%x %p\n", __func__, cmd, arg);
1809 switch (cmd) {
1810 case HW_TESTRX_RAW:
1811 case HW_TESTRX_HDLC:
1812 case HW_TESTRX_OFF:
1813 ret = -EINVAL;
1814 break;
1816 case CLOSE_CHANNEL:
1817 test_and_clear_bit(FLG_OPEN, &bch->Flags);
1818 deactivate_bchannel(bch);
1819 ch->protocol = ISDN_P_NONE;
1820 ch->peer = NULL;
1821 module_put(THIS_MODULE);
1822 ret = 0;
1823 break;
1824 case CONTROL_CHANNEL:
1825 ret = channel_bctrl(bch, arg);
1826 break;
1827 default:
1828 printk(KERN_WARNING "%s: unknown prim(%x)\n",
1829 __func__, cmd);
1831 return ret;
1834 static int
1835 setup_instance(struct hfcsusb *hw, struct device *parent)
1837 u_long flags;
1838 int err, i;
1840 if (debug & DBG_HFC_CALL_TRACE)
1841 printk(KERN_DEBUG "%s: %s\n", hw->name, __func__);
1843 spin_lock_init(&hw->ctrl_lock);
1844 spin_lock_init(&hw->lock);
1846 mISDN_initdchannel(&hw->dch, MAX_DFRAME_LEN_L1, ph_state);
1847 hw->dch.debug = debug & 0xFFFF;
1848 hw->dch.hw = hw;
1849 hw->dch.dev.Dprotocols = (1 << ISDN_P_TE_S0) | (1 << ISDN_P_NT_S0);
1850 hw->dch.dev.D.send = hfcusb_l2l1D;
1851 hw->dch.dev.D.ctrl = hfc_dctrl;
1853 /* enable E-Channel logging */
1854 if (hw->fifos[HFCUSB_PCM_RX].pipe)
1855 mISDN_initdchannel(&hw->ech, MAX_DFRAME_LEN_L1, NULL);
1857 hw->dch.dev.Bprotocols = (1 << (ISDN_P_B_RAW & ISDN_P_B_MASK)) |
1858 (1 << (ISDN_P_B_HDLC & ISDN_P_B_MASK));
1859 hw->dch.dev.nrbchan = 2;
1860 for (i = 0; i < 2; i++) {
1861 hw->bch[i].nr = i + 1;
1862 set_channelmap(i + 1, hw->dch.dev.channelmap);
1863 hw->bch[i].debug = debug;
1864 mISDN_initbchannel(&hw->bch[i], MAX_DATA_MEM, poll >> 1);
1865 hw->bch[i].hw = hw;
1866 hw->bch[i].ch.send = hfcusb_l2l1B;
1867 hw->bch[i].ch.ctrl = hfc_bctrl;
1868 hw->bch[i].ch.nr = i + 1;
1869 list_add(&hw->bch[i].ch.list, &hw->dch.dev.bchannels);
1872 hw->fifos[HFCUSB_B1_TX].bch = &hw->bch[0];
1873 hw->fifos[HFCUSB_B1_RX].bch = &hw->bch[0];
1874 hw->fifos[HFCUSB_B2_TX].bch = &hw->bch[1];
1875 hw->fifos[HFCUSB_B2_RX].bch = &hw->bch[1];
1876 hw->fifos[HFCUSB_D_TX].dch = &hw->dch;
1877 hw->fifos[HFCUSB_D_RX].dch = &hw->dch;
1878 hw->fifos[HFCUSB_PCM_RX].ech = &hw->ech;
1879 hw->fifos[HFCUSB_PCM_TX].ech = &hw->ech;
1881 err = setup_hfcsusb(hw);
1882 if (err)
1883 goto out;
1885 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s.%d", DRIVER_NAME,
1886 hfcsusb_cnt + 1);
1887 printk(KERN_INFO "%s: registered as '%s'\n",
1888 DRIVER_NAME, hw->name);
1890 err = mISDN_register_device(&hw->dch.dev, parent, hw->name);
1891 if (err)
1892 goto out;
1894 hfcsusb_cnt++;
1895 write_lock_irqsave(&HFClock, flags);
1896 list_add_tail(&hw->list, &HFClist);
1897 write_unlock_irqrestore(&HFClock, flags);
1898 return 0;
1900 out:
1901 mISDN_freebchannel(&hw->bch[1]);
1902 mISDN_freebchannel(&hw->bch[0]);
1903 mISDN_freedchannel(&hw->dch);
1904 kfree(hw);
1905 return err;
1908 static int
1909 hfcsusb_probe(struct usb_interface *intf, const struct usb_device_id *id)
1911 struct hfcsusb *hw;
1912 struct usb_device *dev = interface_to_usbdev(intf);
1913 struct usb_host_interface *iface = intf->cur_altsetting;
1914 struct usb_host_interface *iface_used = NULL;
1915 struct usb_host_endpoint *ep;
1916 struct hfcsusb_vdata *driver_info;
1917 int ifnum = iface->desc.bInterfaceNumber, i, idx, alt_idx,
1918 probe_alt_setting, vend_idx, cfg_used, *vcf, attr, cfg_found,
1919 ep_addr, cmptbl[16], small_match, iso_packet_size, packet_size,
1920 alt_used = 0;
1922 vend_idx = 0xffff;
1923 for (i = 0; hfcsusb_idtab[i].idVendor; i++) {
1924 if ((le16_to_cpu(dev->descriptor.idVendor)
1925 == hfcsusb_idtab[i].idVendor) &&
1926 (le16_to_cpu(dev->descriptor.idProduct)
1927 == hfcsusb_idtab[i].idProduct)) {
1928 vend_idx = i;
1929 continue;
1933 printk(KERN_DEBUG
1934 "%s: interface(%d) actalt(%d) minor(%d) vend_idx(%d)\n",
1935 __func__, ifnum, iface->desc.bAlternateSetting,
1936 intf->minor, vend_idx);
1938 if (vend_idx == 0xffff) {
1939 printk(KERN_WARNING
1940 "%s: no valid vendor found in USB descriptor\n",
1941 __func__);
1942 return -EIO;
1944 /* if vendor and product ID is OK, start probing alternate settings */
1945 alt_idx = 0;
1946 small_match = -1;
1948 /* default settings */
1949 iso_packet_size = 16;
1950 packet_size = 64;
1952 while (alt_idx < intf->num_altsetting) {
1953 iface = intf->altsetting + alt_idx;
1954 probe_alt_setting = iface->desc.bAlternateSetting;
1955 cfg_used = 0;
1957 while (validconf[cfg_used][0]) {
1958 cfg_found = 1;
1959 vcf = validconf[cfg_used];
1960 ep = iface->endpoint;
1961 memcpy(cmptbl, vcf, 16 * sizeof(int));
1963 /* check for all endpoints in this alternate setting */
1964 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
1965 ep_addr = ep->desc.bEndpointAddress;
1967 /* get endpoint base */
1968 idx = ((ep_addr & 0x7f) - 1) * 2;
1969 if (idx > 15)
1970 return -EIO;
1972 if (ep_addr & 0x80)
1973 idx++;
1974 attr = ep->desc.bmAttributes;
1976 if (cmptbl[idx] != EP_NOP) {
1977 if (cmptbl[idx] == EP_NUL)
1978 cfg_found = 0;
1979 if (attr == USB_ENDPOINT_XFER_INT
1980 && cmptbl[idx] == EP_INT)
1981 cmptbl[idx] = EP_NUL;
1982 if (attr == USB_ENDPOINT_XFER_BULK
1983 && cmptbl[idx] == EP_BLK)
1984 cmptbl[idx] = EP_NUL;
1985 if (attr == USB_ENDPOINT_XFER_ISOC
1986 && cmptbl[idx] == EP_ISO)
1987 cmptbl[idx] = EP_NUL;
1989 if (attr == USB_ENDPOINT_XFER_INT &&
1990 ep->desc.bInterval < vcf[17]) {
1991 cfg_found = 0;
1994 ep++;
1997 for (i = 0; i < 16; i++)
1998 if (cmptbl[i] != EP_NOP && cmptbl[i] != EP_NUL)
1999 cfg_found = 0;
2001 if (cfg_found) {
2002 if (small_match < cfg_used) {
2003 small_match = cfg_used;
2004 alt_used = probe_alt_setting;
2005 iface_used = iface;
2008 cfg_used++;
2010 alt_idx++;
2011 } /* (alt_idx < intf->num_altsetting) */
2013 /* not found a valid USB Ta Endpoint config */
2014 if (small_match == -1)
2015 return -EIO;
2017 iface = iface_used;
2018 hw = kzalloc(sizeof(struct hfcsusb), GFP_KERNEL);
2019 if (!hw)
2020 return -ENOMEM; /* got no mem */
2021 snprintf(hw->name, MISDN_MAX_IDLEN - 1, "%s", DRIVER_NAME);
2023 ep = iface->endpoint;
2024 vcf = validconf[small_match];
2026 for (i = 0; i < iface->desc.bNumEndpoints; i++) {
2027 struct usb_fifo *f;
2029 ep_addr = ep->desc.bEndpointAddress;
2030 /* get endpoint base */
2031 idx = ((ep_addr & 0x7f) - 1) * 2;
2032 if (ep_addr & 0x80)
2033 idx++;
2034 f = &hw->fifos[idx & 7];
2036 /* init Endpoints */
2037 if (vcf[idx] == EP_NOP || vcf[idx] == EP_NUL) {
2038 ep++;
2039 continue;
2041 switch (ep->desc.bmAttributes) {
2042 case USB_ENDPOINT_XFER_INT:
2043 f->pipe = usb_rcvintpipe(dev,
2044 ep->desc.bEndpointAddress);
2045 f->usb_transfer_mode = USB_INT;
2046 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2047 break;
2048 case USB_ENDPOINT_XFER_BULK:
2049 if (ep_addr & 0x80)
2050 f->pipe = usb_rcvbulkpipe(dev,
2051 ep->desc.bEndpointAddress);
2052 else
2053 f->pipe = usb_sndbulkpipe(dev,
2054 ep->desc.bEndpointAddress);
2055 f->usb_transfer_mode = USB_BULK;
2056 packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2057 break;
2058 case USB_ENDPOINT_XFER_ISOC:
2059 if (ep_addr & 0x80)
2060 f->pipe = usb_rcvisocpipe(dev,
2061 ep->desc.bEndpointAddress);
2062 else
2063 f->pipe = usb_sndisocpipe(dev,
2064 ep->desc.bEndpointAddress);
2065 f->usb_transfer_mode = USB_ISOC;
2066 iso_packet_size = le16_to_cpu(ep->desc.wMaxPacketSize);
2067 break;
2068 default:
2069 f->pipe = 0;
2072 if (f->pipe) {
2073 f->fifonum = idx & 7;
2074 f->hw = hw;
2075 f->usb_packet_maxlen =
2076 le16_to_cpu(ep->desc.wMaxPacketSize);
2077 f->intervall = ep->desc.bInterval;
2079 ep++;
2081 hw->dev = dev; /* save device */
2082 hw->if_used = ifnum; /* save used interface */
2083 hw->alt_used = alt_used; /* and alternate config */
2084 hw->ctrl_paksize = dev->descriptor.bMaxPacketSize0; /* control size */
2085 hw->cfg_used = vcf[16]; /* store used config */
2086 hw->vend_idx = vend_idx; /* store found vendor */
2087 hw->packet_size = packet_size;
2088 hw->iso_packet_size = iso_packet_size;
2090 /* create the control pipes needed for register access */
2091 hw->ctrl_in_pipe = usb_rcvctrlpipe(hw->dev, 0);
2092 hw->ctrl_out_pipe = usb_sndctrlpipe(hw->dev, 0);
2094 driver_info = (struct hfcsusb_vdata *)
2095 hfcsusb_idtab[vend_idx].driver_info;
2097 hw->ctrl_urb = usb_alloc_urb(0, GFP_KERNEL);
2098 if (!hw->ctrl_urb) {
2099 pr_warn("%s: No memory for control urb\n",
2100 driver_info->vend_name);
2101 kfree(hw);
2102 return -ENOMEM;
2105 pr_info("%s: %s: detected \"%s\" (%s, if=%d alt=%d)\n",
2106 hw->name, __func__, driver_info->vend_name,
2107 conf_str[small_match], ifnum, alt_used);
2109 if (setup_instance(hw, dev->dev.parent))
2110 return -EIO;
2112 hw->intf = intf;
2113 usb_set_intfdata(hw->intf, hw);
2114 return 0;
2117 /* function called when an active device is removed */
2118 static void
2119 hfcsusb_disconnect(struct usb_interface *intf)
2121 struct hfcsusb *hw = usb_get_intfdata(intf);
2122 struct hfcsusb *next;
2123 int cnt = 0;
2125 printk(KERN_INFO "%s: device disconnected\n", hw->name);
2127 handle_led(hw, LED_POWER_OFF);
2128 release_hw(hw);
2130 list_for_each_entry_safe(hw, next, &HFClist, list)
2131 cnt++;
2132 if (!cnt)
2133 hfcsusb_cnt = 0;
2135 usb_set_intfdata(intf, NULL);
2138 static struct usb_driver hfcsusb_drv = {
2139 .name = DRIVER_NAME,
2140 .id_table = hfcsusb_idtab,
2141 .probe = hfcsusb_probe,
2142 .disconnect = hfcsusb_disconnect,
2143 .disable_hub_initiated_lpm = 1,
2146 module_usb_driver(hfcsusb_drv);