dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / misc / sgi-xp / xpc_partition.c
blob21a04bc97d40ae593640371e47845a4d5e25ef8e
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved.
7 */
9 /*
10 * Cross Partition Communication (XPC) partition support.
12 * This is the part of XPC that detects the presence/absence of
13 * other partitions. It provides a heartbeat and monitors the
14 * heartbeats of other partitions.
18 #include <linux/device.h>
19 #include <linux/hardirq.h>
20 #include <linux/slab.h>
21 #include "xpc.h"
22 #include <asm/uv/uv_hub.h>
24 /* XPC is exiting flag */
25 int xpc_exiting;
27 /* this partition's reserved page pointers */
28 struct xpc_rsvd_page *xpc_rsvd_page;
29 static unsigned long *xpc_part_nasids;
30 unsigned long *xpc_mach_nasids;
32 static int xpc_nasid_mask_nbytes; /* #of bytes in nasid mask */
33 int xpc_nasid_mask_nlongs; /* #of longs in nasid mask */
35 struct xpc_partition *xpc_partitions;
38 * Guarantee that the kmalloc'd memory is cacheline aligned.
40 void *
41 xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base)
43 /* see if kmalloc will give us cachline aligned memory by default */
44 *base = kmalloc(size, flags);
45 if (*base == NULL)
46 return NULL;
48 if ((u64)*base == L1_CACHE_ALIGN((u64)*base))
49 return *base;
51 kfree(*base);
53 /* nope, we'll have to do it ourselves */
54 *base = kmalloc(size + L1_CACHE_BYTES, flags);
55 if (*base == NULL)
56 return NULL;
58 return (void *)L1_CACHE_ALIGN((u64)*base);
62 * Given a nasid, get the physical address of the partition's reserved page
63 * for that nasid. This function returns 0 on any error.
65 static unsigned long
66 xpc_get_rsvd_page_pa(int nasid)
68 enum xp_retval ret;
69 u64 cookie = 0;
70 unsigned long rp_pa = nasid; /* seed with nasid */
71 size_t len = 0;
72 size_t buf_len = 0;
73 void *buf = NULL;
74 void *buf_base = NULL;
75 enum xp_retval (*get_partition_rsvd_page_pa)
76 (void *, u64 *, unsigned long *, size_t *) =
77 xpc_arch_ops.get_partition_rsvd_page_pa;
79 while (1) {
81 /* !!! rp_pa will need to be _gpa on UV.
82 * ??? So do we save it into the architecture specific parts
83 * ??? of the xpc_partition structure? Do we rename this
84 * ??? function or have two versions? Rename rp_pa for UV to
85 * ??? rp_gpa?
87 ret = get_partition_rsvd_page_pa(buf, &cookie, &rp_pa, &len);
89 dev_dbg(xpc_part, "SAL returned with ret=%d, cookie=0x%016lx, "
90 "address=0x%016lx, len=0x%016lx\n", ret,
91 (unsigned long)cookie, rp_pa, len);
93 if (ret != xpNeedMoreInfo)
94 break;
96 if (len > buf_len) {
97 kfree(buf_base);
98 buf_len = L1_CACHE_ALIGN(len);
99 buf = xpc_kmalloc_cacheline_aligned(buf_len, GFP_KERNEL,
100 &buf_base);
101 if (buf_base == NULL) {
102 dev_err(xpc_part, "unable to kmalloc "
103 "len=0x%016lx\n", buf_len);
104 ret = xpNoMemory;
105 break;
109 ret = xp_remote_memcpy(xp_pa(buf), rp_pa, len);
110 if (ret != xpSuccess) {
111 dev_dbg(xpc_part, "xp_remote_memcpy failed %d\n", ret);
112 break;
116 kfree(buf_base);
118 if (ret != xpSuccess)
119 rp_pa = 0;
121 dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa);
122 return rp_pa;
126 * Fill the partition reserved page with the information needed by
127 * other partitions to discover we are alive and establish initial
128 * communications.
131 xpc_setup_rsvd_page(void)
133 int ret;
134 struct xpc_rsvd_page *rp;
135 unsigned long rp_pa;
136 unsigned long new_ts_jiffies;
138 /* get the local reserved page's address */
140 preempt_disable();
141 rp_pa = xpc_get_rsvd_page_pa(xp_cpu_to_nasid(smp_processor_id()));
142 preempt_enable();
143 if (rp_pa == 0) {
144 dev_err(xpc_part, "SAL failed to locate the reserved page\n");
145 return -ESRCH;
147 rp = (struct xpc_rsvd_page *)__va(xp_socket_pa(rp_pa));
149 if (rp->SAL_version < 3) {
150 /* SAL_versions < 3 had a SAL_partid defined as a u8 */
151 rp->SAL_partid &= 0xff;
153 BUG_ON(rp->SAL_partid != xp_partition_id);
155 if (rp->SAL_partid < 0 || rp->SAL_partid >= xp_max_npartitions) {
156 dev_err(xpc_part, "the reserved page's partid of %d is outside "
157 "supported range (< 0 || >= %d)\n", rp->SAL_partid,
158 xp_max_npartitions);
159 return -EINVAL;
162 rp->version = XPC_RP_VERSION;
163 rp->max_npartitions = xp_max_npartitions;
165 /* establish the actual sizes of the nasid masks */
166 if (rp->SAL_version == 1) {
167 /* SAL_version 1 didn't set the nasids_size field */
168 rp->SAL_nasids_size = 128;
170 xpc_nasid_mask_nbytes = rp->SAL_nasids_size;
171 xpc_nasid_mask_nlongs = BITS_TO_LONGS(rp->SAL_nasids_size *
172 BITS_PER_BYTE);
174 /* setup the pointers to the various items in the reserved page */
175 xpc_part_nasids = XPC_RP_PART_NASIDS(rp);
176 xpc_mach_nasids = XPC_RP_MACH_NASIDS(rp);
178 ret = xpc_arch_ops.setup_rsvd_page(rp);
179 if (ret != 0)
180 return ret;
183 * Set timestamp of when reserved page was setup by XPC.
184 * This signifies to the remote partition that our reserved
185 * page is initialized.
187 new_ts_jiffies = jiffies;
188 if (new_ts_jiffies == 0 || new_ts_jiffies == rp->ts_jiffies)
189 new_ts_jiffies++;
190 rp->ts_jiffies = new_ts_jiffies;
192 xpc_rsvd_page = rp;
193 return 0;
196 void
197 xpc_teardown_rsvd_page(void)
199 /* a zero timestamp indicates our rsvd page is not initialized */
200 xpc_rsvd_page->ts_jiffies = 0;
204 * Get a copy of a portion of the remote partition's rsvd page.
206 * remote_rp points to a buffer that is cacheline aligned for BTE copies and
207 * is large enough to contain a copy of their reserved page header and
208 * part_nasids mask.
210 enum xp_retval
211 xpc_get_remote_rp(int nasid, unsigned long *discovered_nasids,
212 struct xpc_rsvd_page *remote_rp, unsigned long *remote_rp_pa)
214 int l;
215 enum xp_retval ret;
217 /* get the reserved page's physical address */
219 *remote_rp_pa = xpc_get_rsvd_page_pa(nasid);
220 if (*remote_rp_pa == 0)
221 return xpNoRsvdPageAddr;
223 /* pull over the reserved page header and part_nasids mask */
224 ret = xp_remote_memcpy(xp_pa(remote_rp), *remote_rp_pa,
225 XPC_RP_HEADER_SIZE + xpc_nasid_mask_nbytes);
226 if (ret != xpSuccess)
227 return ret;
229 if (discovered_nasids != NULL) {
230 unsigned long *remote_part_nasids =
231 XPC_RP_PART_NASIDS(remote_rp);
233 for (l = 0; l < xpc_nasid_mask_nlongs; l++)
234 discovered_nasids[l] |= remote_part_nasids[l];
237 /* zero timestamp indicates the reserved page has not been setup */
238 if (remote_rp->ts_jiffies == 0)
239 return xpRsvdPageNotSet;
241 if (XPC_VERSION_MAJOR(remote_rp->version) !=
242 XPC_VERSION_MAJOR(XPC_RP_VERSION)) {
243 return xpBadVersion;
246 /* check that both remote and local partids are valid for each side */
247 if (remote_rp->SAL_partid < 0 ||
248 remote_rp->SAL_partid >= xp_max_npartitions ||
249 remote_rp->max_npartitions <= xp_partition_id) {
250 return xpInvalidPartid;
253 if (remote_rp->SAL_partid == xp_partition_id)
254 return xpLocalPartid;
256 return xpSuccess;
260 * See if the other side has responded to a partition deactivate request
261 * from us. Though we requested the remote partition to deactivate with regard
262 * to us, we really only need to wait for the other side to disengage from us.
265 xpc_partition_disengaged(struct xpc_partition *part)
267 short partid = XPC_PARTID(part);
268 int disengaged;
270 disengaged = !xpc_arch_ops.partition_engaged(partid);
271 if (part->disengage_timeout) {
272 if (!disengaged) {
273 if (time_is_after_jiffies(part->disengage_timeout)) {
274 /* timelimit hasn't been reached yet */
275 return 0;
279 * Other side hasn't responded to our deactivate
280 * request in a timely fashion, so assume it's dead.
283 dev_info(xpc_part, "deactivate request to remote "
284 "partition %d timed out\n", partid);
285 xpc_disengage_timedout = 1;
286 xpc_arch_ops.assume_partition_disengaged(partid);
287 disengaged = 1;
289 part->disengage_timeout = 0;
291 /* cancel the timer function, provided it's not us */
292 if (!in_interrupt())
293 del_singleshot_timer_sync(&part->disengage_timer);
295 DBUG_ON(part->act_state != XPC_P_AS_DEACTIVATING &&
296 part->act_state != XPC_P_AS_INACTIVE);
297 if (part->act_state != XPC_P_AS_INACTIVE)
298 xpc_wakeup_channel_mgr(part);
300 xpc_arch_ops.cancel_partition_deactivation_request(part);
302 return disengaged;
306 * Mark specified partition as active.
308 enum xp_retval
309 xpc_mark_partition_active(struct xpc_partition *part)
311 unsigned long irq_flags;
312 enum xp_retval ret;
314 dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part));
316 spin_lock_irqsave(&part->act_lock, irq_flags);
317 if (part->act_state == XPC_P_AS_ACTIVATING) {
318 part->act_state = XPC_P_AS_ACTIVE;
319 ret = xpSuccess;
320 } else {
321 DBUG_ON(part->reason == xpSuccess);
322 ret = part->reason;
324 spin_unlock_irqrestore(&part->act_lock, irq_flags);
326 return ret;
330 * Start the process of deactivating the specified partition.
332 void
333 xpc_deactivate_partition(const int line, struct xpc_partition *part,
334 enum xp_retval reason)
336 unsigned long irq_flags;
338 spin_lock_irqsave(&part->act_lock, irq_flags);
340 if (part->act_state == XPC_P_AS_INACTIVE) {
341 XPC_SET_REASON(part, reason, line);
342 spin_unlock_irqrestore(&part->act_lock, irq_flags);
343 if (reason == xpReactivating) {
344 /* we interrupt ourselves to reactivate partition */
345 xpc_arch_ops.request_partition_reactivation(part);
347 return;
349 if (part->act_state == XPC_P_AS_DEACTIVATING) {
350 if ((part->reason == xpUnloading && reason != xpUnloading) ||
351 reason == xpReactivating) {
352 XPC_SET_REASON(part, reason, line);
354 spin_unlock_irqrestore(&part->act_lock, irq_flags);
355 return;
358 part->act_state = XPC_P_AS_DEACTIVATING;
359 XPC_SET_REASON(part, reason, line);
361 spin_unlock_irqrestore(&part->act_lock, irq_flags);
363 /* ask remote partition to deactivate with regard to us */
364 xpc_arch_ops.request_partition_deactivation(part);
366 /* set a timelimit on the disengage phase of the deactivation request */
367 part->disengage_timeout = jiffies + (xpc_disengage_timelimit * HZ);
368 part->disengage_timer.expires = part->disengage_timeout;
369 add_timer(&part->disengage_timer);
371 dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n",
372 XPC_PARTID(part), reason);
374 xpc_partition_going_down(part, reason);
378 * Mark specified partition as inactive.
380 void
381 xpc_mark_partition_inactive(struct xpc_partition *part)
383 unsigned long irq_flags;
385 dev_dbg(xpc_part, "setting partition %d to INACTIVE\n",
386 XPC_PARTID(part));
388 spin_lock_irqsave(&part->act_lock, irq_flags);
389 part->act_state = XPC_P_AS_INACTIVE;
390 spin_unlock_irqrestore(&part->act_lock, irq_flags);
391 part->remote_rp_pa = 0;
395 * SAL has provided a partition and machine mask. The partition mask
396 * contains a bit for each even nasid in our partition. The machine
397 * mask contains a bit for each even nasid in the entire machine.
399 * Using those two bit arrays, we can determine which nasids are
400 * known in the machine. Each should also have a reserved page
401 * initialized if they are available for partitioning.
403 void
404 xpc_discovery(void)
406 void *remote_rp_base;
407 struct xpc_rsvd_page *remote_rp;
408 unsigned long remote_rp_pa;
409 int region;
410 int region_size;
411 int max_regions;
412 int nasid;
413 unsigned long *discovered_nasids;
414 enum xp_retval ret;
416 remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RP_HEADER_SIZE +
417 xpc_nasid_mask_nbytes,
418 GFP_KERNEL, &remote_rp_base);
419 if (remote_rp == NULL)
420 return;
422 discovered_nasids = kcalloc(xpc_nasid_mask_nlongs, sizeof(long),
423 GFP_KERNEL);
424 if (discovered_nasids == NULL) {
425 kfree(remote_rp_base);
426 return;
430 * The term 'region' in this context refers to the minimum number of
431 * nodes that can comprise an access protection grouping. The access
432 * protection is in regards to memory, IOI and IPI.
434 region_size = xp_region_size;
436 if (is_uv())
437 max_regions = 256;
438 else {
439 max_regions = 64;
441 switch (region_size) {
442 case 128:
443 max_regions *= 2;
444 /* fall through */
445 case 64:
446 max_regions *= 2;
447 /* fall through */
448 case 32:
449 max_regions *= 2;
450 region_size = 16;
454 for (region = 0; region < max_regions; region++) {
456 if (xpc_exiting)
457 break;
459 dev_dbg(xpc_part, "searching region %d\n", region);
461 for (nasid = (region * region_size * 2);
462 nasid < ((region + 1) * region_size * 2); nasid += 2) {
464 if (xpc_exiting)
465 break;
467 dev_dbg(xpc_part, "checking nasid %d\n", nasid);
469 if (test_bit(nasid / 2, xpc_part_nasids)) {
470 dev_dbg(xpc_part, "PROM indicates Nasid %d is "
471 "part of the local partition; skipping "
472 "region\n", nasid);
473 break;
476 if (!(test_bit(nasid / 2, xpc_mach_nasids))) {
477 dev_dbg(xpc_part, "PROM indicates Nasid %d was "
478 "not on Numa-Link network at reset\n",
479 nasid);
480 continue;
483 if (test_bit(nasid / 2, discovered_nasids)) {
484 dev_dbg(xpc_part, "Nasid %d is part of a "
485 "partition which was previously "
486 "discovered\n", nasid);
487 continue;
490 /* pull over the rsvd page header & part_nasids mask */
492 ret = xpc_get_remote_rp(nasid, discovered_nasids,
493 remote_rp, &remote_rp_pa);
494 if (ret != xpSuccess) {
495 dev_dbg(xpc_part, "unable to get reserved page "
496 "from nasid %d, reason=%d\n", nasid,
497 ret);
499 if (ret == xpLocalPartid)
500 break;
502 continue;
505 xpc_arch_ops.request_partition_activation(remote_rp,
506 remote_rp_pa, nasid);
510 kfree(discovered_nasids);
511 kfree(remote_rp_base);
515 * Given a partid, get the nasids owned by that partition from the
516 * remote partition's reserved page.
518 enum xp_retval
519 xpc_initiate_partid_to_nasids(short partid, void *nasid_mask)
521 struct xpc_partition *part;
522 unsigned long part_nasid_pa;
524 part = &xpc_partitions[partid];
525 if (part->remote_rp_pa == 0)
526 return xpPartitionDown;
528 memset(nasid_mask, 0, xpc_nasid_mask_nbytes);
530 part_nasid_pa = (unsigned long)XPC_RP_PART_NASIDS(part->remote_rp_pa);
532 return xp_remote_memcpy(xp_pa(nasid_mask), part_nasid_pa,
533 xpc_nasid_mask_nbytes);