1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (c) Microsoft Corporation.
6 * Jake Oshins <jakeo@microsoft.com>
8 * This driver acts as a paravirtual front-end for PCI Express root buses.
9 * When a PCI Express function (either an entire device or an SR-IOV
10 * Virtual Function) is being passed through to the VM, this driver exposes
11 * a new bus to the guest VM. This is modeled as a root PCI bus because
12 * no bridges are being exposed to the VM. In fact, with a "Generation 2"
13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14 * until a device as been exposed using this driver.
16 * Each root PCI bus has its own PCI domain, which is called "Segment" in
17 * the PCI Firmware Specifications. Thus while each device passed through
18 * to the VM using this front-end will appear at "device 0", the domain will
19 * be unique. Typically, each bus will have one PCI function on it, though
20 * this driver does support more than one.
22 * In order to map the interrupts from the device through to the guest VM,
23 * this driver also implements an IRQ Domain, which handles interrupts (either
24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are
25 * set up, torn down, or reaffined, this driver communicates with the
26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27 * interrupt will be delivered to the correct virtual processor at the right
28 * vector. This driver does not support level-triggered (line-based)
29 * interrupts, and will report that the Interrupt Line register in the
30 * function's configuration space is zero.
32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33 * facilities. For instance, the configuration space of a function exposed
34 * by Hyper-V is mapped into a single page of memory space, and the
35 * read and write handlers for config space must be aware of this mechanism.
36 * Similarly, device setup and teardown involves messages sent to and from
37 * the PCI back-end driver in Hyper-V.
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
55 * Protocol versions. The low word is the minor version, the high word the
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63 enum pci_protocol_version_t
{
64 PCI_PROTOCOL_VERSION_1_1
= PCI_MAKE_VERSION(1, 1), /* Win10 */
65 PCI_PROTOCOL_VERSION_1_2
= PCI_MAKE_VERSION(1, 2), /* RS1 */
66 PCI_PROTOCOL_VERSION_1_3
= PCI_MAKE_VERSION(1, 3), /* Vibranium */
69 #define CPU_AFFINITY_ALL -1ULL
72 * Supported protocol versions in the order of probing - highest go
75 static enum pci_protocol_version_t pci_protocol_versions
[] = {
76 PCI_PROTOCOL_VERSION_1_3
,
77 PCI_PROTOCOL_VERSION_1_2
,
78 PCI_PROTOCOL_VERSION_1_1
,
81 #define PCI_CONFIG_MMIO_LENGTH 0x2000
82 #define CFG_PAGE_OFFSET 0x1000
83 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
85 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
87 #define STATUS_REVISION_MISMATCH 0xC0000059
89 /* space for 32bit serial number as string */
90 #define SLOT_NAME_SIZE 11
96 enum pci_message_type
{
100 PCI_MESSAGE_BASE
= 0x42490000,
101 PCI_BUS_RELATIONS
= PCI_MESSAGE_BASE
+ 0,
102 PCI_QUERY_BUS_RELATIONS
= PCI_MESSAGE_BASE
+ 1,
103 PCI_POWER_STATE_CHANGE
= PCI_MESSAGE_BASE
+ 4,
104 PCI_QUERY_RESOURCE_REQUIREMENTS
= PCI_MESSAGE_BASE
+ 5,
105 PCI_QUERY_RESOURCE_RESOURCES
= PCI_MESSAGE_BASE
+ 6,
106 PCI_BUS_D0ENTRY
= PCI_MESSAGE_BASE
+ 7,
107 PCI_BUS_D0EXIT
= PCI_MESSAGE_BASE
+ 8,
108 PCI_READ_BLOCK
= PCI_MESSAGE_BASE
+ 9,
109 PCI_WRITE_BLOCK
= PCI_MESSAGE_BASE
+ 0xA,
110 PCI_EJECT
= PCI_MESSAGE_BASE
+ 0xB,
111 PCI_QUERY_STOP
= PCI_MESSAGE_BASE
+ 0xC,
112 PCI_REENABLE
= PCI_MESSAGE_BASE
+ 0xD,
113 PCI_QUERY_STOP_FAILED
= PCI_MESSAGE_BASE
+ 0xE,
114 PCI_EJECTION_COMPLETE
= PCI_MESSAGE_BASE
+ 0xF,
115 PCI_RESOURCES_ASSIGNED
= PCI_MESSAGE_BASE
+ 0x10,
116 PCI_RESOURCES_RELEASED
= PCI_MESSAGE_BASE
+ 0x11,
117 PCI_INVALIDATE_BLOCK
= PCI_MESSAGE_BASE
+ 0x12,
118 PCI_QUERY_PROTOCOL_VERSION
= PCI_MESSAGE_BASE
+ 0x13,
119 PCI_CREATE_INTERRUPT_MESSAGE
= PCI_MESSAGE_BASE
+ 0x14,
120 PCI_DELETE_INTERRUPT_MESSAGE
= PCI_MESSAGE_BASE
+ 0x15,
121 PCI_RESOURCES_ASSIGNED2
= PCI_MESSAGE_BASE
+ 0x16,
122 PCI_CREATE_INTERRUPT_MESSAGE2
= PCI_MESSAGE_BASE
+ 0x17,
123 PCI_DELETE_INTERRUPT_MESSAGE2
= PCI_MESSAGE_BASE
+ 0x18, /* unused */
124 PCI_BUS_RELATIONS2
= PCI_MESSAGE_BASE
+ 0x19,
129 * Structures defining the virtual PCI Express protocol.
141 * Function numbers are 8-bits wide on Express, as interpreted through ARI,
142 * which is all this driver does. This representation is the one used in
143 * Windows, which is what is expected when sending this back and forth with
144 * the Hyper-V parent partition.
146 union win_slot_encoding
{
156 * Pretty much as defined in the PCI Specifications.
158 struct pci_function_description
{
159 u16 v_id
; /* vendor ID */
160 u16 d_id
; /* device ID */
166 union win_slot_encoding win_slot
;
167 u32 ser
; /* serial number */
170 enum pci_device_description_flags
{
171 HV_PCI_DEVICE_FLAG_NONE
= 0x0,
172 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY
= 0x1,
175 struct pci_function_description2
{
176 u16 v_id
; /* vendor ID */
177 u16 d_id
; /* device ID */
183 union win_slot_encoding win_slot
;
184 u32 ser
; /* serial number */
186 u16 virtual_numa_node
;
193 * @delivery_mode: As defined in Intel's Programmer's
194 * Reference Manual, Volume 3, Chapter 8.
195 * @vector_count: Number of contiguous entries in the
196 * Interrupt Descriptor Table that are
197 * occupied by this Message-Signaled
198 * Interrupt. For "MSI", as first defined
199 * in PCI 2.2, this can be between 1 and
200 * 32. For "MSI-X," as first defined in PCI
201 * 3.0, this must be 1, as each MSI-X table
202 * entry would have its own descriptor.
203 * @reserved: Empty space
204 * @cpu_mask: All the target virtual processors.
215 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
217 * @delivery_mode: As defined in Intel's Programmer's
218 * Reference Manual, Volume 3, Chapter 8.
219 * @vector_count: Number of contiguous entries in the
220 * Interrupt Descriptor Table that are
221 * occupied by this Message-Signaled
222 * Interrupt. For "MSI", as first defined
223 * in PCI 2.2, this can be between 1 and
224 * 32. For "MSI-X," as first defined in PCI
225 * 3.0, this must be 1, as each MSI-X table
226 * entry would have its own descriptor.
227 * @processor_count: number of bits enabled in array.
228 * @processor_array: All the target virtual processors.
230 struct hv_msi_desc2
{
235 u16 processor_array
[32];
239 * struct tran_int_desc
240 * @reserved: unused, padding
241 * @vector_count: same as in hv_msi_desc
242 * @data: This is the "data payload" value that is
243 * written by the device when it generates
244 * a message-signaled interrupt, either MSI
246 * @address: This is the address to which the data
247 * payload is written on interrupt
250 struct tran_int_desc
{
258 * A generic message format for virtual PCI.
259 * Specific message formats are defined later in the file.
266 struct pci_child_message
{
267 struct pci_message message_type
;
268 union win_slot_encoding wslot
;
271 struct pci_incoming_message
{
272 struct vmpacket_descriptor hdr
;
273 struct pci_message message_type
;
276 struct pci_response
{
277 struct vmpacket_descriptor hdr
;
278 s32 status
; /* negative values are failures */
282 void (*completion_func
)(void *context
, struct pci_response
*resp
,
283 int resp_packet_size
);
286 struct pci_message message
[];
290 * Specific message types supporting the PCI protocol.
294 * Version negotiation message. Sent from the guest to the host.
295 * The guest is free to try different versions until the host
296 * accepts the version.
298 * pci_version: The protocol version requested.
299 * is_last_attempt: If TRUE, this is the last version guest will request.
300 * reservedz: Reserved field, set to zero.
303 struct pci_version_request
{
304 struct pci_message message_type
;
305 u32 protocol_version
;
309 * Bus D0 Entry. This is sent from the guest to the host when the virtual
310 * bus (PCI Express port) is ready for action.
313 struct pci_bus_d0_entry
{
314 struct pci_message message_type
;
319 struct pci_bus_relations
{
320 struct pci_incoming_message incoming
;
322 struct pci_function_description func
[];
325 struct pci_bus_relations2
{
326 struct pci_incoming_message incoming
;
328 struct pci_function_description2 func
[];
331 struct pci_q_res_req_response
{
332 struct vmpacket_descriptor hdr
;
333 s32 status
; /* negative values are failures */
334 u32 probed_bar
[PCI_STD_NUM_BARS
];
337 struct pci_set_power
{
338 struct pci_message message_type
;
339 union win_slot_encoding wslot
;
340 u32 power_state
; /* In Windows terms */
344 struct pci_set_power_response
{
345 struct vmpacket_descriptor hdr
;
346 s32 status
; /* negative values are failures */
347 union win_slot_encoding wslot
;
348 u32 resultant_state
; /* In Windows terms */
352 struct pci_resources_assigned
{
353 struct pci_message message_type
;
354 union win_slot_encoding wslot
;
355 u8 memory_range
[0x14][6]; /* not used here */
360 struct pci_resources_assigned2
{
361 struct pci_message message_type
;
362 union win_slot_encoding wslot
;
363 u8 memory_range
[0x14][6]; /* not used here */
364 u32 msi_descriptor_count
;
368 struct pci_create_interrupt
{
369 struct pci_message message_type
;
370 union win_slot_encoding wslot
;
371 struct hv_msi_desc int_desc
;
374 struct pci_create_int_response
{
375 struct pci_response response
;
377 struct tran_int_desc int_desc
;
380 struct pci_create_interrupt2
{
381 struct pci_message message_type
;
382 union win_slot_encoding wslot
;
383 struct hv_msi_desc2 int_desc
;
386 struct pci_delete_interrupt
{
387 struct pci_message message_type
;
388 union win_slot_encoding wslot
;
389 struct tran_int_desc int_desc
;
393 * Note: the VM must pass a valid block id, wslot and bytes_requested.
395 struct pci_read_block
{
396 struct pci_message message_type
;
398 union win_slot_encoding wslot
;
402 struct pci_read_block_response
{
403 struct vmpacket_descriptor hdr
;
405 u8 bytes
[HV_CONFIG_BLOCK_SIZE_MAX
];
409 * Note: the VM must pass a valid block id, wslot and byte_count.
411 struct pci_write_block
{
412 struct pci_message message_type
;
414 union win_slot_encoding wslot
;
416 u8 bytes
[HV_CONFIG_BLOCK_SIZE_MAX
];
419 struct pci_dev_inval_block
{
420 struct pci_incoming_message incoming
;
421 union win_slot_encoding wslot
;
425 struct pci_dev_incoming
{
426 struct pci_incoming_message incoming
;
427 union win_slot_encoding wslot
;
430 struct pci_eject_response
{
431 struct pci_message message_type
;
432 union win_slot_encoding wslot
;
436 static int pci_ring_size
= (4 * PAGE_SIZE
);
439 * Driver specific state.
442 enum hv_pcibus_state
{
451 struct hv_pcibus_device
{
452 struct pci_sysdata sysdata
;
453 /* Protocol version negotiated with the host */
454 enum pci_protocol_version_t protocol_version
;
455 enum hv_pcibus_state state
;
456 refcount_t remove_lock
;
457 struct hv_device
*hdev
;
458 resource_size_t low_mmio_space
;
459 resource_size_t high_mmio_space
;
460 struct resource
*mem_config
;
461 struct resource
*low_mmio_res
;
462 struct resource
*high_mmio_res
;
463 struct completion
*survey_event
;
464 struct completion remove_event
;
465 struct pci_bus
*pci_bus
;
466 spinlock_t config_lock
; /* Avoid two threads writing index page */
467 spinlock_t device_list_lock
; /* Protect lists below */
468 void __iomem
*cfg_addr
;
470 struct list_head resources_for_children
;
472 struct list_head children
;
473 struct list_head dr_list
;
475 struct msi_domain_info msi_info
;
476 struct msi_controller msi_chip
;
477 struct irq_domain
*irq_domain
;
479 spinlock_t retarget_msi_interrupt_lock
;
481 struct workqueue_struct
*wq
;
483 /* hypercall arg, must not cross page boundary */
484 struct hv_retarget_device_interrupt retarget_msi_interrupt_params
;
487 * Don't put anything here: retarget_msi_interrupt_params must be last
492 * Tracks "Device Relations" messages from the host, which must be both
493 * processed in order and deferred so that they don't run in the context
494 * of the incoming packet callback.
497 struct work_struct wrk
;
498 struct hv_pcibus_device
*bus
;
501 struct hv_pcidev_description
{
502 u16 v_id
; /* vendor ID */
503 u16 d_id
; /* device ID */
509 union win_slot_encoding win_slot
;
510 u32 ser
; /* serial number */
512 u16 virtual_numa_node
;
516 struct list_head list_entry
;
518 struct hv_pcidev_description func
[];
521 enum hv_pcichild_state
{
522 hv_pcichild_init
= 0,
523 hv_pcichild_requirements
,
524 hv_pcichild_resourced
,
525 hv_pcichild_ejecting
,
530 /* List protected by pci_rescan_remove_lock */
531 struct list_head list_entry
;
533 enum hv_pcichild_state state
;
534 struct pci_slot
*pci_slot
;
535 struct hv_pcidev_description desc
;
536 bool reported_missing
;
537 struct hv_pcibus_device
*hbus
;
538 struct work_struct wrk
;
540 void (*block_invalidate
)(void *context
, u64 block_mask
);
541 void *invalidate_context
;
544 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
545 * read it back, for each of the BAR offsets within config space.
547 u32 probed_bar
[PCI_STD_NUM_BARS
];
550 struct hv_pci_compl
{
551 struct completion host_event
;
552 s32 completion_status
;
555 static void hv_pci_onchannelcallback(void *context
);
558 * hv_pci_generic_compl() - Invoked for a completion packet
559 * @context: Set up by the sender of the packet.
560 * @resp: The response packet
561 * @resp_packet_size: Size in bytes of the packet
563 * This function is used to trigger an event and report status
564 * for any message for which the completion packet contains a
565 * status and nothing else.
567 static void hv_pci_generic_compl(void *context
, struct pci_response
*resp
,
568 int resp_packet_size
)
570 struct hv_pci_compl
*comp_pkt
= context
;
572 if (resp_packet_size
>= offsetofend(struct pci_response
, status
))
573 comp_pkt
->completion_status
= resp
->status
;
575 comp_pkt
->completion_status
= -1;
577 complete(&comp_pkt
->host_event
);
580 static struct hv_pci_dev
*get_pcichild_wslot(struct hv_pcibus_device
*hbus
,
583 static void get_pcichild(struct hv_pci_dev
*hpdev
)
585 refcount_inc(&hpdev
->refs
);
588 static void put_pcichild(struct hv_pci_dev
*hpdev
)
590 if (refcount_dec_and_test(&hpdev
->refs
))
594 static void get_hvpcibus(struct hv_pcibus_device
*hv_pcibus
);
595 static void put_hvpcibus(struct hv_pcibus_device
*hv_pcibus
);
598 * There is no good way to get notified from vmbus_onoffer_rescind(),
599 * so let's use polling here, since this is not a hot path.
601 static int wait_for_response(struct hv_device
*hdev
,
602 struct completion
*comp
)
605 if (hdev
->channel
->rescind
) {
606 dev_warn_once(&hdev
->device
, "The device is gone.\n");
610 if (wait_for_completion_timeout(comp
, HZ
/ 10))
618 * devfn_to_wslot() - Convert from Linux PCI slot to Windows
619 * @devfn: The Linux representation of PCI slot
621 * Windows uses a slightly different representation of PCI slot.
623 * Return: The Windows representation
625 static u32
devfn_to_wslot(int devfn
)
627 union win_slot_encoding wslot
;
630 wslot
.bits
.dev
= PCI_SLOT(devfn
);
631 wslot
.bits
.func
= PCI_FUNC(devfn
);
637 * wslot_to_devfn() - Convert from Windows PCI slot to Linux
638 * @wslot: The Windows representation of PCI slot
640 * Windows uses a slightly different representation of PCI slot.
642 * Return: The Linux representation
644 static int wslot_to_devfn(u32 wslot
)
646 union win_slot_encoding slot_no
;
648 slot_no
.slot
= wslot
;
649 return PCI_DEVFN(slot_no
.bits
.dev
, slot_no
.bits
.func
);
653 * PCI Configuration Space for these root PCI buses is implemented as a pair
654 * of pages in memory-mapped I/O space. Writing to the first page chooses
655 * the PCI function being written or read. Once the first page has been
656 * written to, the following page maps in the entire configuration space of
661 * _hv_pcifront_read_config() - Internal PCI config read
662 * @hpdev: The PCI driver's representation of the device
663 * @where: Offset within config space
664 * @size: Size of the transfer
665 * @val: Pointer to the buffer receiving the data
667 static void _hv_pcifront_read_config(struct hv_pci_dev
*hpdev
, int where
,
671 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+ where
;
674 * If the attempt is to read the IDs or the ROM BAR, simulate that.
676 if (where
+ size
<= PCI_COMMAND
) {
677 memcpy(val
, ((u8
*)&hpdev
->desc
.v_id
) + where
, size
);
678 } else if (where
>= PCI_CLASS_REVISION
&& where
+ size
<=
679 PCI_CACHE_LINE_SIZE
) {
680 memcpy(val
, ((u8
*)&hpdev
->desc
.rev
) + where
-
681 PCI_CLASS_REVISION
, size
);
682 } else if (where
>= PCI_SUBSYSTEM_VENDOR_ID
&& where
+ size
<=
684 memcpy(val
, (u8
*)&hpdev
->desc
.subsystem_id
+ where
-
685 PCI_SUBSYSTEM_VENDOR_ID
, size
);
686 } else if (where
>= PCI_ROM_ADDRESS
&& where
+ size
<=
687 PCI_CAPABILITY_LIST
) {
688 /* ROM BARs are unimplemented */
690 } else if (where
>= PCI_INTERRUPT_LINE
&& where
+ size
<=
693 * Interrupt Line and Interrupt PIN are hard-wired to zero
694 * because this front-end only supports message-signaled
698 } else if (where
+ size
<= CFG_PAGE_SIZE
) {
699 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
700 /* Choose the function to be read. (See comment above) */
701 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
702 /* Make sure the function was chosen before we start reading. */
704 /* Read from that function's config space. */
717 * Make sure the read was done before we release the spinlock
718 * allowing consecutive reads/writes.
721 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
723 dev_err(&hpdev
->hbus
->hdev
->device
,
724 "Attempt to read beyond a function's config space.\n");
728 static u16
hv_pcifront_get_vendor_id(struct hv_pci_dev
*hpdev
)
732 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+
735 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
737 /* Choose the function to be read. (See comment above) */
738 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
739 /* Make sure the function was chosen before we start reading. */
741 /* Read from that function's config space. */
744 * mb() is not required here, because the spin_unlock_irqrestore()
748 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
754 * _hv_pcifront_write_config() - Internal PCI config write
755 * @hpdev: The PCI driver's representation of the device
756 * @where: Offset within config space
757 * @size: Size of the transfer
758 * @val: The data being transferred
760 static void _hv_pcifront_write_config(struct hv_pci_dev
*hpdev
, int where
,
764 void __iomem
*addr
= hpdev
->hbus
->cfg_addr
+ CFG_PAGE_OFFSET
+ where
;
766 if (where
>= PCI_SUBSYSTEM_VENDOR_ID
&&
767 where
+ size
<= PCI_CAPABILITY_LIST
) {
768 /* SSIDs and ROM BARs are read-only */
769 } else if (where
>= PCI_COMMAND
&& where
+ size
<= CFG_PAGE_SIZE
) {
770 spin_lock_irqsave(&hpdev
->hbus
->config_lock
, flags
);
771 /* Choose the function to be written. (See comment above) */
772 writel(hpdev
->desc
.win_slot
.slot
, hpdev
->hbus
->cfg_addr
);
773 /* Make sure the function was chosen before we start writing. */
775 /* Write to that function's config space. */
788 * Make sure the write was done before we release the spinlock
789 * allowing consecutive reads/writes.
792 spin_unlock_irqrestore(&hpdev
->hbus
->config_lock
, flags
);
794 dev_err(&hpdev
->hbus
->hdev
->device
,
795 "Attempt to write beyond a function's config space.\n");
800 * hv_pcifront_read_config() - Read configuration space
801 * @bus: PCI Bus structure
802 * @devfn: Device/function
803 * @where: Offset from base
804 * @size: Byte/word/dword
805 * @val: Value to be read
807 * Return: PCIBIOS_SUCCESSFUL on success
808 * PCIBIOS_DEVICE_NOT_FOUND on failure
810 static int hv_pcifront_read_config(struct pci_bus
*bus
, unsigned int devfn
,
811 int where
, int size
, u32
*val
)
813 struct hv_pcibus_device
*hbus
=
814 container_of(bus
->sysdata
, struct hv_pcibus_device
, sysdata
);
815 struct hv_pci_dev
*hpdev
;
817 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(devfn
));
819 return PCIBIOS_DEVICE_NOT_FOUND
;
821 _hv_pcifront_read_config(hpdev
, where
, size
, val
);
824 return PCIBIOS_SUCCESSFUL
;
828 * hv_pcifront_write_config() - Write configuration space
829 * @bus: PCI Bus structure
830 * @devfn: Device/function
831 * @where: Offset from base
832 * @size: Byte/word/dword
833 * @val: Value to be written to device
835 * Return: PCIBIOS_SUCCESSFUL on success
836 * PCIBIOS_DEVICE_NOT_FOUND on failure
838 static int hv_pcifront_write_config(struct pci_bus
*bus
, unsigned int devfn
,
839 int where
, int size
, u32 val
)
841 struct hv_pcibus_device
*hbus
=
842 container_of(bus
->sysdata
, struct hv_pcibus_device
, sysdata
);
843 struct hv_pci_dev
*hpdev
;
845 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(devfn
));
847 return PCIBIOS_DEVICE_NOT_FOUND
;
849 _hv_pcifront_write_config(hpdev
, where
, size
, val
);
852 return PCIBIOS_SUCCESSFUL
;
855 /* PCIe operations */
856 static struct pci_ops hv_pcifront_ops
= {
857 .read
= hv_pcifront_read_config
,
858 .write
= hv_pcifront_write_config
,
862 * Paravirtual backchannel
864 * Hyper-V SR-IOV provides a backchannel mechanism in software for
865 * communication between a VF driver and a PF driver. These
866 * "configuration blocks" are similar in concept to PCI configuration space,
867 * but instead of doing reads and writes in 32-bit chunks through a very slow
868 * path, packets of up to 128 bytes can be sent or received asynchronously.
870 * Nearly every SR-IOV device contains just such a communications channel in
871 * hardware, so using this one in software is usually optional. Using the
872 * software channel, however, allows driver implementers to leverage software
873 * tools that fuzz the communications channel looking for vulnerabilities.
875 * The usage model for these packets puts the responsibility for reading or
876 * writing on the VF driver. The VF driver sends a read or a write packet,
877 * indicating which "block" is being referred to by number.
879 * If the PF driver wishes to initiate communication, it can "invalidate" one or
880 * more of the first 64 blocks. This invalidation is delivered via a callback
881 * supplied by the VF driver by this driver.
883 * No protocol is implied, except that supplied by the PF and VF drivers.
886 struct hv_read_config_compl
{
887 struct hv_pci_compl comp_pkt
;
890 unsigned int bytes_returned
;
894 * hv_pci_read_config_compl() - Invoked when a response packet
895 * for a read config block operation arrives.
896 * @context: Identifies the read config operation
897 * @resp: The response packet itself
898 * @resp_packet_size: Size in bytes of the response packet
900 static void hv_pci_read_config_compl(void *context
, struct pci_response
*resp
,
901 int resp_packet_size
)
903 struct hv_read_config_compl
*comp
= context
;
904 struct pci_read_block_response
*read_resp
=
905 (struct pci_read_block_response
*)resp
;
906 unsigned int data_len
, hdr_len
;
908 hdr_len
= offsetof(struct pci_read_block_response
, bytes
);
909 if (resp_packet_size
< hdr_len
) {
910 comp
->comp_pkt
.completion_status
= -1;
914 data_len
= resp_packet_size
- hdr_len
;
915 if (data_len
> 0 && read_resp
->status
== 0) {
916 comp
->bytes_returned
= min(comp
->len
, data_len
);
917 memcpy(comp
->buf
, read_resp
->bytes
, comp
->bytes_returned
);
919 comp
->bytes_returned
= 0;
922 comp
->comp_pkt
.completion_status
= read_resp
->status
;
924 complete(&comp
->comp_pkt
.host_event
);
928 * hv_read_config_block() - Sends a read config block request to
929 * the back-end driver running in the Hyper-V parent partition.
930 * @pdev: The PCI driver's representation for this device.
931 * @buf: Buffer into which the config block will be copied.
932 * @len: Size in bytes of buf.
933 * @block_id: Identifies the config block which has been requested.
934 * @bytes_returned: Size which came back from the back-end driver.
936 * Return: 0 on success, -errno on failure
938 int hv_read_config_block(struct pci_dev
*pdev
, void *buf
, unsigned int len
,
939 unsigned int block_id
, unsigned int *bytes_returned
)
941 struct hv_pcibus_device
*hbus
=
942 container_of(pdev
->bus
->sysdata
, struct hv_pcibus_device
,
945 struct pci_packet pkt
;
946 char buf
[sizeof(struct pci_read_block
)];
948 struct hv_read_config_compl comp_pkt
;
949 struct pci_read_block
*read_blk
;
952 if (len
== 0 || len
> HV_CONFIG_BLOCK_SIZE_MAX
)
955 init_completion(&comp_pkt
.comp_pkt
.host_event
);
959 memset(&pkt
, 0, sizeof(pkt
));
960 pkt
.pkt
.completion_func
= hv_pci_read_config_compl
;
961 pkt
.pkt
.compl_ctxt
= &comp_pkt
;
962 read_blk
= (struct pci_read_block
*)&pkt
.pkt
.message
;
963 read_blk
->message_type
.type
= PCI_READ_BLOCK
;
964 read_blk
->wslot
.slot
= devfn_to_wslot(pdev
->devfn
);
965 read_blk
->block_id
= block_id
;
966 read_blk
->bytes_requested
= len
;
968 ret
= vmbus_sendpacket(hbus
->hdev
->channel
, read_blk
,
969 sizeof(*read_blk
), (unsigned long)&pkt
.pkt
,
971 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
975 ret
= wait_for_response(hbus
->hdev
, &comp_pkt
.comp_pkt
.host_event
);
979 if (comp_pkt
.comp_pkt
.completion_status
!= 0 ||
980 comp_pkt
.bytes_returned
== 0) {
981 dev_err(&hbus
->hdev
->device
,
982 "Read Config Block failed: 0x%x, bytes_returned=%d\n",
983 comp_pkt
.comp_pkt
.completion_status
,
984 comp_pkt
.bytes_returned
);
988 *bytes_returned
= comp_pkt
.bytes_returned
;
993 * hv_pci_write_config_compl() - Invoked when a response packet for a write
994 * config block operation arrives.
995 * @context: Identifies the write config operation
996 * @resp: The response packet itself
997 * @resp_packet_size: Size in bytes of the response packet
999 static void hv_pci_write_config_compl(void *context
, struct pci_response
*resp
,
1000 int resp_packet_size
)
1002 struct hv_pci_compl
*comp_pkt
= context
;
1004 comp_pkt
->completion_status
= resp
->status
;
1005 complete(&comp_pkt
->host_event
);
1009 * hv_write_config_block() - Sends a write config block request to the
1010 * back-end driver running in the Hyper-V parent partition.
1011 * @pdev: The PCI driver's representation for this device.
1012 * @buf: Buffer from which the config block will be copied.
1013 * @len: Size in bytes of buf.
1014 * @block_id: Identifies the config block which is being written.
1016 * Return: 0 on success, -errno on failure
1018 int hv_write_config_block(struct pci_dev
*pdev
, void *buf
, unsigned int len
,
1019 unsigned int block_id
)
1021 struct hv_pcibus_device
*hbus
=
1022 container_of(pdev
->bus
->sysdata
, struct hv_pcibus_device
,
1025 struct pci_packet pkt
;
1026 char buf
[sizeof(struct pci_write_block
)];
1029 struct hv_pci_compl comp_pkt
;
1030 struct pci_write_block
*write_blk
;
1034 if (len
== 0 || len
> HV_CONFIG_BLOCK_SIZE_MAX
)
1037 init_completion(&comp_pkt
.host_event
);
1039 memset(&pkt
, 0, sizeof(pkt
));
1040 pkt
.pkt
.completion_func
= hv_pci_write_config_compl
;
1041 pkt
.pkt
.compl_ctxt
= &comp_pkt
;
1042 write_blk
= (struct pci_write_block
*)&pkt
.pkt
.message
;
1043 write_blk
->message_type
.type
= PCI_WRITE_BLOCK
;
1044 write_blk
->wslot
.slot
= devfn_to_wslot(pdev
->devfn
);
1045 write_blk
->block_id
= block_id
;
1046 write_blk
->byte_count
= len
;
1047 memcpy(write_blk
->bytes
, buf
, len
);
1048 pkt_size
= offsetof(struct pci_write_block
, bytes
) + len
;
1050 * This quirk is required on some hosts shipped around 2018, because
1051 * these hosts don't check the pkt_size correctly (new hosts have been
1052 * fixed since early 2019). The quirk is also safe on very old hosts
1053 * and new hosts, because, on them, what really matters is the length
1054 * specified in write_blk->byte_count.
1056 pkt_size
+= sizeof(pkt
.reserved
);
1058 ret
= vmbus_sendpacket(hbus
->hdev
->channel
, write_blk
, pkt_size
,
1059 (unsigned long)&pkt
.pkt
, VM_PKT_DATA_INBAND
,
1060 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
1064 ret
= wait_for_response(hbus
->hdev
, &comp_pkt
.host_event
);
1068 if (comp_pkt
.completion_status
!= 0) {
1069 dev_err(&hbus
->hdev
->device
,
1070 "Write Config Block failed: 0x%x\n",
1071 comp_pkt
.completion_status
);
1079 * hv_register_block_invalidate() - Invoked when a config block invalidation
1080 * arrives from the back-end driver.
1081 * @pdev: The PCI driver's representation for this device.
1082 * @context: Identifies the device.
1083 * @block_invalidate: Identifies all of the blocks being invalidated.
1085 * Return: 0 on success, -errno on failure
1087 int hv_register_block_invalidate(struct pci_dev
*pdev
, void *context
,
1088 void (*block_invalidate
)(void *context
,
1091 struct hv_pcibus_device
*hbus
=
1092 container_of(pdev
->bus
->sysdata
, struct hv_pcibus_device
,
1094 struct hv_pci_dev
*hpdev
;
1096 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(pdev
->devfn
));
1100 hpdev
->block_invalidate
= block_invalidate
;
1101 hpdev
->invalidate_context
= context
;
1103 put_pcichild(hpdev
);
1108 /* Interrupt management hooks */
1109 static void hv_int_desc_free(struct hv_pci_dev
*hpdev
,
1110 struct tran_int_desc
*int_desc
)
1112 struct pci_delete_interrupt
*int_pkt
;
1114 struct pci_packet pkt
;
1115 u8 buffer
[sizeof(struct pci_delete_interrupt
)];
1118 memset(&ctxt
, 0, sizeof(ctxt
));
1119 int_pkt
= (struct pci_delete_interrupt
*)&ctxt
.pkt
.message
;
1120 int_pkt
->message_type
.type
=
1121 PCI_DELETE_INTERRUPT_MESSAGE
;
1122 int_pkt
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
1123 int_pkt
->int_desc
= *int_desc
;
1124 vmbus_sendpacket(hpdev
->hbus
->hdev
->channel
, int_pkt
, sizeof(*int_pkt
),
1125 (unsigned long)&ctxt
.pkt
, VM_PKT_DATA_INBAND
, 0);
1130 * hv_msi_free() - Free the MSI.
1131 * @domain: The interrupt domain pointer
1132 * @info: Extra MSI-related context
1133 * @irq: Identifies the IRQ.
1135 * The Hyper-V parent partition and hypervisor are tracking the
1136 * messages that are in use, keeping the interrupt redirection
1137 * table up to date. This callback sends a message that frees
1138 * the IRT entry and related tracking nonsense.
1140 static void hv_msi_free(struct irq_domain
*domain
, struct msi_domain_info
*info
,
1143 struct hv_pcibus_device
*hbus
;
1144 struct hv_pci_dev
*hpdev
;
1145 struct pci_dev
*pdev
;
1146 struct tran_int_desc
*int_desc
;
1147 struct irq_data
*irq_data
= irq_domain_get_irq_data(domain
, irq
);
1148 struct msi_desc
*msi
= irq_data_get_msi_desc(irq_data
);
1150 pdev
= msi_desc_to_pci_dev(msi
);
1152 int_desc
= irq_data_get_irq_chip_data(irq_data
);
1156 irq_data
->chip_data
= NULL
;
1157 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(pdev
->devfn
));
1163 hv_int_desc_free(hpdev
, int_desc
);
1164 put_pcichild(hpdev
);
1167 static int hv_set_affinity(struct irq_data
*data
, const struct cpumask
*dest
,
1170 struct irq_data
*parent
= data
->parent_data
;
1172 return parent
->chip
->irq_set_affinity(parent
, dest
, force
);
1175 static void hv_irq_mask(struct irq_data
*data
)
1177 pci_msi_mask_irq(data
);
1181 * hv_irq_unmask() - "Unmask" the IRQ by setting its current
1183 * @data: Describes the IRQ
1185 * Build new a destination for the MSI and make a hypercall to
1186 * update the Interrupt Redirection Table. "Device Logical ID"
1187 * is built out of this PCI bus's instance GUID and the function
1188 * number of the device.
1190 static void hv_irq_unmask(struct irq_data
*data
)
1192 struct msi_desc
*msi_desc
= irq_data_get_msi_desc(data
);
1193 struct irq_cfg
*cfg
= irqd_cfg(data
);
1194 struct hv_retarget_device_interrupt
*params
;
1195 struct hv_pcibus_device
*hbus
;
1196 struct cpumask
*dest
;
1198 struct pci_bus
*pbus
;
1199 struct pci_dev
*pdev
;
1200 unsigned long flags
;
1205 dest
= irq_data_get_effective_affinity_mask(data
);
1206 pdev
= msi_desc_to_pci_dev(msi_desc
);
1208 hbus
= container_of(pbus
->sysdata
, struct hv_pcibus_device
, sysdata
);
1210 spin_lock_irqsave(&hbus
->retarget_msi_interrupt_lock
, flags
);
1212 params
= &hbus
->retarget_msi_interrupt_params
;
1213 memset(params
, 0, sizeof(*params
));
1214 params
->partition_id
= HV_PARTITION_ID_SELF
;
1215 params
->int_entry
.source
= 1; /* MSI(-X) */
1216 hv_set_msi_entry_from_desc(¶ms
->int_entry
.msi_entry
, msi_desc
);
1217 params
->device_id
= (hbus
->hdev
->dev_instance
.b
[5] << 24) |
1218 (hbus
->hdev
->dev_instance
.b
[4] << 16) |
1219 (hbus
->hdev
->dev_instance
.b
[7] << 8) |
1220 (hbus
->hdev
->dev_instance
.b
[6] & 0xf8) |
1221 PCI_FUNC(pdev
->devfn
);
1222 params
->int_target
.vector
= cfg
->vector
;
1225 * Honoring apic->irq_delivery_mode set to dest_Fixed by
1226 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
1227 * spurious interrupt storm. Not doing so does not seem to have a
1228 * negative effect (yet?).
1231 if (hbus
->protocol_version
>= PCI_PROTOCOL_VERSION_1_2
) {
1233 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
1234 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
1235 * with >64 VP support.
1236 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
1237 * is not sufficient for this hypercall.
1239 params
->int_target
.flags
|=
1240 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET
;
1242 if (!alloc_cpumask_var(&tmp
, GFP_ATOMIC
)) {
1247 cpumask_and(tmp
, dest
, cpu_online_mask
);
1248 nr_bank
= cpumask_to_vpset(¶ms
->int_target
.vp_set
, tmp
);
1249 free_cpumask_var(tmp
);
1257 * var-sized hypercall, var-size starts after vp_mask (thus
1258 * vp_set.format does not count, but vp_set.valid_bank_mask
1261 var_size
= 1 + nr_bank
;
1263 for_each_cpu_and(cpu
, dest
, cpu_online_mask
) {
1264 params
->int_target
.vp_mask
|=
1265 (1ULL << hv_cpu_number_to_vp_number(cpu
));
1269 res
= hv_do_hypercall(HVCALL_RETARGET_INTERRUPT
| (var_size
<< 17),
1273 spin_unlock_irqrestore(&hbus
->retarget_msi_interrupt_lock
, flags
);
1276 dev_err(&hbus
->hdev
->device
,
1277 "%s() failed: %#llx", __func__
, res
);
1281 pci_msi_unmask_irq(data
);
1284 struct compose_comp_ctxt
{
1285 struct hv_pci_compl comp_pkt
;
1286 struct tran_int_desc int_desc
;
1289 static void hv_pci_compose_compl(void *context
, struct pci_response
*resp
,
1290 int resp_packet_size
)
1292 struct compose_comp_ctxt
*comp_pkt
= context
;
1293 struct pci_create_int_response
*int_resp
=
1294 (struct pci_create_int_response
*)resp
;
1296 comp_pkt
->comp_pkt
.completion_status
= resp
->status
;
1297 comp_pkt
->int_desc
= int_resp
->int_desc
;
1298 complete(&comp_pkt
->comp_pkt
.host_event
);
1301 static u32
hv_compose_msi_req_v1(
1302 struct pci_create_interrupt
*int_pkt
, struct cpumask
*affinity
,
1303 u32 slot
, u8 vector
)
1305 int_pkt
->message_type
.type
= PCI_CREATE_INTERRUPT_MESSAGE
;
1306 int_pkt
->wslot
.slot
= slot
;
1307 int_pkt
->int_desc
.vector
= vector
;
1308 int_pkt
->int_desc
.vector_count
= 1;
1309 int_pkt
->int_desc
.delivery_mode
= dest_Fixed
;
1312 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1315 int_pkt
->int_desc
.cpu_mask
= CPU_AFFINITY_ALL
;
1317 return sizeof(*int_pkt
);
1320 static u32
hv_compose_msi_req_v2(
1321 struct pci_create_interrupt2
*int_pkt
, struct cpumask
*affinity
,
1322 u32 slot
, u8 vector
)
1326 int_pkt
->message_type
.type
= PCI_CREATE_INTERRUPT_MESSAGE2
;
1327 int_pkt
->wslot
.slot
= slot
;
1328 int_pkt
->int_desc
.vector
= vector
;
1329 int_pkt
->int_desc
.vector_count
= 1;
1330 int_pkt
->int_desc
.delivery_mode
= dest_Fixed
;
1333 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1334 * by subsequent retarget in hv_irq_unmask().
1336 cpu
= cpumask_first_and(affinity
, cpu_online_mask
);
1337 int_pkt
->int_desc
.processor_array
[0] =
1338 hv_cpu_number_to_vp_number(cpu
);
1339 int_pkt
->int_desc
.processor_count
= 1;
1341 return sizeof(*int_pkt
);
1345 * hv_compose_msi_msg() - Supplies a valid MSI address/data
1346 * @data: Everything about this MSI
1347 * @msg: Buffer that is filled in by this function
1349 * This function unpacks the IRQ looking for target CPU set, IDT
1350 * vector and mode and sends a message to the parent partition
1351 * asking for a mapping for that tuple in this partition. The
1352 * response supplies a data value and address to which that data
1353 * should be written to trigger that interrupt.
1355 static void hv_compose_msi_msg(struct irq_data
*data
, struct msi_msg
*msg
)
1357 struct irq_cfg
*cfg
= irqd_cfg(data
);
1358 struct hv_pcibus_device
*hbus
;
1359 struct hv_pci_dev
*hpdev
;
1360 struct pci_bus
*pbus
;
1361 struct pci_dev
*pdev
;
1362 struct cpumask
*dest
;
1363 unsigned long flags
;
1364 struct compose_comp_ctxt comp
;
1365 struct tran_int_desc
*int_desc
;
1367 struct pci_packet pci_pkt
;
1369 struct pci_create_interrupt v1
;
1370 struct pci_create_interrupt2 v2
;
1377 pdev
= msi_desc_to_pci_dev(irq_data_get_msi_desc(data
));
1378 dest
= irq_data_get_effective_affinity_mask(data
);
1380 hbus
= container_of(pbus
->sysdata
, struct hv_pcibus_device
, sysdata
);
1381 hpdev
= get_pcichild_wslot(hbus
, devfn_to_wslot(pdev
->devfn
));
1383 goto return_null_message
;
1385 /* Free any previous message that might have already been composed. */
1386 if (data
->chip_data
) {
1387 int_desc
= data
->chip_data
;
1388 data
->chip_data
= NULL
;
1389 hv_int_desc_free(hpdev
, int_desc
);
1392 int_desc
= kzalloc(sizeof(*int_desc
), GFP_ATOMIC
);
1394 goto drop_reference
;
1396 memset(&ctxt
, 0, sizeof(ctxt
));
1397 init_completion(&comp
.comp_pkt
.host_event
);
1398 ctxt
.pci_pkt
.completion_func
= hv_pci_compose_compl
;
1399 ctxt
.pci_pkt
.compl_ctxt
= &comp
;
1401 switch (hbus
->protocol_version
) {
1402 case PCI_PROTOCOL_VERSION_1_1
:
1403 size
= hv_compose_msi_req_v1(&ctxt
.int_pkts
.v1
,
1405 hpdev
->desc
.win_slot
.slot
,
1409 case PCI_PROTOCOL_VERSION_1_2
:
1410 case PCI_PROTOCOL_VERSION_1_3
:
1411 size
= hv_compose_msi_req_v2(&ctxt
.int_pkts
.v2
,
1413 hpdev
->desc
.win_slot
.slot
,
1418 /* As we only negotiate protocol versions known to this driver,
1419 * this path should never hit. However, this is it not a hot
1420 * path so we print a message to aid future updates.
1422 dev_err(&hbus
->hdev
->device
,
1423 "Unexpected vPCI protocol, update driver.");
1427 ret
= vmbus_sendpacket(hpdev
->hbus
->hdev
->channel
, &ctxt
.int_pkts
,
1428 size
, (unsigned long)&ctxt
.pci_pkt
,
1430 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
1432 dev_err(&hbus
->hdev
->device
,
1433 "Sending request for interrupt failed: 0x%x",
1434 comp
.comp_pkt
.completion_status
);
1439 * Since this function is called with IRQ locks held, can't
1440 * do normal wait for completion; instead poll.
1442 while (!try_wait_for_completion(&comp
.comp_pkt
.host_event
)) {
1443 /* 0xFFFF means an invalid PCI VENDOR ID. */
1444 if (hv_pcifront_get_vendor_id(hpdev
) == 0xFFFF) {
1445 dev_err_once(&hbus
->hdev
->device
,
1446 "the device has gone\n");
1451 * When the higher level interrupt code calls us with
1452 * interrupt disabled, we must poll the channel by calling
1453 * the channel callback directly when channel->target_cpu is
1454 * the current CPU. When the higher level interrupt code
1455 * calls us with interrupt enabled, let's add the
1456 * local_irq_save()/restore() to avoid race:
1457 * hv_pci_onchannelcallback() can also run in tasklet.
1459 local_irq_save(flags
);
1461 if (hbus
->hdev
->channel
->target_cpu
== smp_processor_id())
1462 hv_pci_onchannelcallback(hbus
);
1464 local_irq_restore(flags
);
1466 if (hpdev
->state
== hv_pcichild_ejecting
) {
1467 dev_err_once(&hbus
->hdev
->device
,
1468 "the device is being ejected\n");
1475 if (comp
.comp_pkt
.completion_status
< 0) {
1476 dev_err(&hbus
->hdev
->device
,
1477 "Request for interrupt failed: 0x%x",
1478 comp
.comp_pkt
.completion_status
);
1483 * Record the assignment so that this can be unwound later. Using
1484 * irq_set_chip_data() here would be appropriate, but the lock it takes
1487 *int_desc
= comp
.int_desc
;
1488 data
->chip_data
= int_desc
;
1490 /* Pass up the result. */
1491 msg
->address_hi
= comp
.int_desc
.address
>> 32;
1492 msg
->address_lo
= comp
.int_desc
.address
& 0xffffffff;
1493 msg
->data
= comp
.int_desc
.data
;
1495 put_pcichild(hpdev
);
1501 put_pcichild(hpdev
);
1502 return_null_message
:
1503 msg
->address_hi
= 0;
1504 msg
->address_lo
= 0;
1508 /* HW Interrupt Chip Descriptor */
1509 static struct irq_chip hv_msi_irq_chip
= {
1510 .name
= "Hyper-V PCIe MSI",
1511 .irq_compose_msi_msg
= hv_compose_msi_msg
,
1512 .irq_set_affinity
= hv_set_affinity
,
1513 .irq_ack
= irq_chip_ack_parent
,
1514 .irq_mask
= hv_irq_mask
,
1515 .irq_unmask
= hv_irq_unmask
,
1518 static irq_hw_number_t
hv_msi_domain_ops_get_hwirq(struct msi_domain_info
*info
,
1519 msi_alloc_info_t
*arg
)
1521 return arg
->msi_hwirq
;
1524 static struct msi_domain_ops hv_msi_ops
= {
1525 .get_hwirq
= hv_msi_domain_ops_get_hwirq
,
1526 .msi_prepare
= pci_msi_prepare
,
1527 .set_desc
= pci_msi_set_desc
,
1528 .msi_free
= hv_msi_free
,
1532 * hv_pcie_init_irq_domain() - Initialize IRQ domain
1533 * @hbus: The root PCI bus
1535 * This function creates an IRQ domain which will be used for
1536 * interrupts from devices that have been passed through. These
1537 * devices only support MSI and MSI-X, not line-based interrupts
1538 * or simulations of line-based interrupts through PCIe's
1539 * fabric-layer messages. Because interrupts are remapped, we
1540 * can support multi-message MSI here.
1542 * Return: '0' on success and error value on failure
1544 static int hv_pcie_init_irq_domain(struct hv_pcibus_device
*hbus
)
1546 hbus
->msi_info
.chip
= &hv_msi_irq_chip
;
1547 hbus
->msi_info
.ops
= &hv_msi_ops
;
1548 hbus
->msi_info
.flags
= (MSI_FLAG_USE_DEF_DOM_OPS
|
1549 MSI_FLAG_USE_DEF_CHIP_OPS
| MSI_FLAG_MULTI_PCI_MSI
|
1551 hbus
->msi_info
.handler
= handle_edge_irq
;
1552 hbus
->msi_info
.handler_name
= "edge";
1553 hbus
->msi_info
.data
= hbus
;
1554 hbus
->irq_domain
= pci_msi_create_irq_domain(hbus
->sysdata
.fwnode
,
1557 if (!hbus
->irq_domain
) {
1558 dev_err(&hbus
->hdev
->device
,
1559 "Failed to build an MSI IRQ domain\n");
1567 * get_bar_size() - Get the address space consumed by a BAR
1568 * @bar_val: Value that a BAR returned after -1 was written
1571 * This function returns the size of the BAR, rounded up to 1
1572 * page. It has to be rounded up because the hypervisor's page
1573 * table entry that maps the BAR into the VM can't specify an
1574 * offset within a page. The invariant is that the hypervisor
1575 * must place any BARs of smaller than page length at the
1576 * beginning of a page.
1578 * Return: Size in bytes of the consumed MMIO space.
1580 static u64
get_bar_size(u64 bar_val
)
1582 return round_up((1 + ~(bar_val
& PCI_BASE_ADDRESS_MEM_MASK
)),
1587 * survey_child_resources() - Total all MMIO requirements
1588 * @hbus: Root PCI bus, as understood by this driver
1590 static void survey_child_resources(struct hv_pcibus_device
*hbus
)
1592 struct hv_pci_dev
*hpdev
;
1593 resource_size_t bar_size
= 0;
1594 unsigned long flags
;
1595 struct completion
*event
;
1599 /* If nobody is waiting on the answer, don't compute it. */
1600 event
= xchg(&hbus
->survey_event
, NULL
);
1604 /* If the answer has already been computed, go with it. */
1605 if (hbus
->low_mmio_space
|| hbus
->high_mmio_space
) {
1610 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1613 * Due to an interesting quirk of the PCI spec, all memory regions
1614 * for a child device are a power of 2 in size and aligned in memory,
1615 * so it's sufficient to just add them up without tracking alignment.
1617 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1618 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++) {
1619 if (hpdev
->probed_bar
[i
] & PCI_BASE_ADDRESS_SPACE_IO
)
1620 dev_err(&hbus
->hdev
->device
,
1621 "There's an I/O BAR in this list!\n");
1623 if (hpdev
->probed_bar
[i
] != 0) {
1625 * A probed BAR has all the upper bits set that
1629 bar_val
= hpdev
->probed_bar
[i
];
1630 if (bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
)
1632 ((u64
)hpdev
->probed_bar
[++i
] << 32);
1634 bar_val
|= 0xffffffff00000000ULL
;
1636 bar_size
= get_bar_size(bar_val
);
1638 if (bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
)
1639 hbus
->high_mmio_space
+= bar_size
;
1641 hbus
->low_mmio_space
+= bar_size
;
1646 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1651 * prepopulate_bars() - Fill in BARs with defaults
1652 * @hbus: Root PCI bus, as understood by this driver
1654 * The core PCI driver code seems much, much happier if the BARs
1655 * for a device have values upon first scan. So fill them in.
1656 * The algorithm below works down from large sizes to small,
1657 * attempting to pack the assignments optimally. The assumption,
1658 * enforced in other parts of the code, is that the beginning of
1659 * the memory-mapped I/O space will be aligned on the largest
1662 static void prepopulate_bars(struct hv_pcibus_device
*hbus
)
1664 resource_size_t high_size
= 0;
1665 resource_size_t low_size
= 0;
1666 resource_size_t high_base
= 0;
1667 resource_size_t low_base
= 0;
1668 resource_size_t bar_size
;
1669 struct hv_pci_dev
*hpdev
;
1670 unsigned long flags
;
1676 if (hbus
->low_mmio_space
) {
1677 low_size
= 1ULL << (63 - __builtin_clzll(hbus
->low_mmio_space
));
1678 low_base
= hbus
->low_mmio_res
->start
;
1681 if (hbus
->high_mmio_space
) {
1683 (63 - __builtin_clzll(hbus
->high_mmio_space
));
1684 high_base
= hbus
->high_mmio_res
->start
;
1687 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1690 * Clear the memory enable bit, in case it's already set. This occurs
1691 * in the suspend path of hibernation, where the device is suspended,
1692 * resumed and suspended again: see hibernation_snapshot() and
1693 * hibernation_platform_enter().
1695 * If the memory enable bit is already set, Hyper-V sliently ignores
1696 * the below BAR updates, and the related PCI device driver can not
1697 * work, because reading from the device register(s) always returns
1700 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1701 _hv_pcifront_read_config(hpdev
, PCI_COMMAND
, 2, &command
);
1702 command
&= ~PCI_COMMAND_MEMORY
;
1703 _hv_pcifront_write_config(hpdev
, PCI_COMMAND
, 2, command
);
1706 /* Pick addresses for the BARs. */
1708 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1709 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++) {
1710 bar_val
= hpdev
->probed_bar
[i
];
1713 high
= bar_val
& PCI_BASE_ADDRESS_MEM_TYPE_64
;
1716 ((u64
)hpdev
->probed_bar
[i
+ 1]
1719 bar_val
|= 0xffffffffULL
<< 32;
1721 bar_size
= get_bar_size(bar_val
);
1723 if (high_size
!= bar_size
) {
1727 _hv_pcifront_write_config(hpdev
,
1728 PCI_BASE_ADDRESS_0
+ (4 * i
),
1730 (u32
)(high_base
& 0xffffff00));
1732 _hv_pcifront_write_config(hpdev
,
1733 PCI_BASE_ADDRESS_0
+ (4 * i
),
1734 4, (u32
)(high_base
>> 32));
1735 high_base
+= bar_size
;
1737 if (low_size
!= bar_size
)
1739 _hv_pcifront_write_config(hpdev
,
1740 PCI_BASE_ADDRESS_0
+ (4 * i
),
1742 (u32
)(low_base
& 0xffffff00));
1743 low_base
+= bar_size
;
1746 if (high_size
<= 1 && low_size
<= 1) {
1747 /* Set the memory enable bit. */
1748 _hv_pcifront_read_config(hpdev
, PCI_COMMAND
, 2,
1750 command
|= PCI_COMMAND_MEMORY
;
1751 _hv_pcifront_write_config(hpdev
, PCI_COMMAND
, 2,
1759 } while (high_size
|| low_size
);
1761 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1765 * Assign entries in sysfs pci slot directory.
1767 * Note that this function does not need to lock the children list
1768 * because it is called from pci_devices_present_work which
1769 * is serialized with hv_eject_device_work because they are on the
1770 * same ordered workqueue. Therefore hbus->children list will not change
1771 * even when pci_create_slot sleeps.
1773 static void hv_pci_assign_slots(struct hv_pcibus_device
*hbus
)
1775 struct hv_pci_dev
*hpdev
;
1776 char name
[SLOT_NAME_SIZE
];
1779 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1780 if (hpdev
->pci_slot
)
1783 slot_nr
= PCI_SLOT(wslot_to_devfn(hpdev
->desc
.win_slot
.slot
));
1784 snprintf(name
, SLOT_NAME_SIZE
, "%u", hpdev
->desc
.ser
);
1785 hpdev
->pci_slot
= pci_create_slot(hbus
->pci_bus
, slot_nr
,
1787 if (IS_ERR(hpdev
->pci_slot
)) {
1788 pr_warn("pci_create slot %s failed\n", name
);
1789 hpdev
->pci_slot
= NULL
;
1795 * Remove entries in sysfs pci slot directory.
1797 static void hv_pci_remove_slots(struct hv_pcibus_device
*hbus
)
1799 struct hv_pci_dev
*hpdev
;
1801 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
1802 if (!hpdev
->pci_slot
)
1804 pci_destroy_slot(hpdev
->pci_slot
);
1805 hpdev
->pci_slot
= NULL
;
1810 * Set NUMA node for the devices on the bus
1812 static void hv_pci_assign_numa_node(struct hv_pcibus_device
*hbus
)
1814 struct pci_dev
*dev
;
1815 struct pci_bus
*bus
= hbus
->pci_bus
;
1816 struct hv_pci_dev
*hv_dev
;
1818 list_for_each_entry(dev
, &bus
->devices
, bus_list
) {
1819 hv_dev
= get_pcichild_wslot(hbus
, devfn_to_wslot(dev
->devfn
));
1823 if (hv_dev
->desc
.flags
& HV_PCI_DEVICE_FLAG_NUMA_AFFINITY
)
1824 set_dev_node(&dev
->dev
, hv_dev
->desc
.virtual_numa_node
);
1826 put_pcichild(hv_dev
);
1831 * create_root_hv_pci_bus() - Expose a new root PCI bus
1832 * @hbus: Root PCI bus, as understood by this driver
1834 * Return: 0 on success, -errno on failure
1836 static int create_root_hv_pci_bus(struct hv_pcibus_device
*hbus
)
1838 /* Register the device */
1839 hbus
->pci_bus
= pci_create_root_bus(&hbus
->hdev
->device
,
1840 0, /* bus number is always zero */
1843 &hbus
->resources_for_children
);
1847 hbus
->pci_bus
->msi
= &hbus
->msi_chip
;
1848 hbus
->pci_bus
->msi
->dev
= &hbus
->hdev
->device
;
1850 pci_lock_rescan_remove();
1851 pci_scan_child_bus(hbus
->pci_bus
);
1852 hv_pci_assign_numa_node(hbus
);
1853 pci_bus_assign_resources(hbus
->pci_bus
);
1854 hv_pci_assign_slots(hbus
);
1855 pci_bus_add_devices(hbus
->pci_bus
);
1856 pci_unlock_rescan_remove();
1857 hbus
->state
= hv_pcibus_installed
;
1861 struct q_res_req_compl
{
1862 struct completion host_event
;
1863 struct hv_pci_dev
*hpdev
;
1867 * q_resource_requirements() - Query Resource Requirements
1868 * @context: The completion context.
1869 * @resp: The response that came from the host.
1870 * @resp_packet_size: The size in bytes of resp.
1872 * This function is invoked on completion of a Query Resource
1873 * Requirements packet.
1875 static void q_resource_requirements(void *context
, struct pci_response
*resp
,
1876 int resp_packet_size
)
1878 struct q_res_req_compl
*completion
= context
;
1879 struct pci_q_res_req_response
*q_res_req
=
1880 (struct pci_q_res_req_response
*)resp
;
1883 if (resp
->status
< 0) {
1884 dev_err(&completion
->hpdev
->hbus
->hdev
->device
,
1885 "query resource requirements failed: %x\n",
1888 for (i
= 0; i
< PCI_STD_NUM_BARS
; i
++) {
1889 completion
->hpdev
->probed_bar
[i
] =
1890 q_res_req
->probed_bar
[i
];
1894 complete(&completion
->host_event
);
1898 * new_pcichild_device() - Create a new child device
1899 * @hbus: The internal struct tracking this root PCI bus.
1900 * @desc: The information supplied so far from the host
1903 * This function creates the tracking structure for a new child
1904 * device and kicks off the process of figuring out what it is.
1906 * Return: Pointer to the new tracking struct
1908 static struct hv_pci_dev
*new_pcichild_device(struct hv_pcibus_device
*hbus
,
1909 struct hv_pcidev_description
*desc
)
1911 struct hv_pci_dev
*hpdev
;
1912 struct pci_child_message
*res_req
;
1913 struct q_res_req_compl comp_pkt
;
1915 struct pci_packet init_packet
;
1916 u8 buffer
[sizeof(struct pci_child_message
)];
1918 unsigned long flags
;
1921 hpdev
= kzalloc(sizeof(*hpdev
), GFP_KERNEL
);
1927 memset(&pkt
, 0, sizeof(pkt
));
1928 init_completion(&comp_pkt
.host_event
);
1929 comp_pkt
.hpdev
= hpdev
;
1930 pkt
.init_packet
.compl_ctxt
= &comp_pkt
;
1931 pkt
.init_packet
.completion_func
= q_resource_requirements
;
1932 res_req
= (struct pci_child_message
*)&pkt
.init_packet
.message
;
1933 res_req
->message_type
.type
= PCI_QUERY_RESOURCE_REQUIREMENTS
;
1934 res_req
->wslot
.slot
= desc
->win_slot
.slot
;
1936 ret
= vmbus_sendpacket(hbus
->hdev
->channel
, res_req
,
1937 sizeof(struct pci_child_message
),
1938 (unsigned long)&pkt
.init_packet
,
1940 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
1944 if (wait_for_response(hbus
->hdev
, &comp_pkt
.host_event
))
1947 hpdev
->desc
= *desc
;
1948 refcount_set(&hpdev
->refs
, 1);
1949 get_pcichild(hpdev
);
1950 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1952 list_add_tail(&hpdev
->list_entry
, &hbus
->children
);
1953 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1962 * get_pcichild_wslot() - Find device from slot
1963 * @hbus: Root PCI bus, as understood by this driver
1964 * @wslot: Location on the bus
1966 * This function looks up a PCI device and returns the internal
1967 * representation of it. It acquires a reference on it, so that
1968 * the device won't be deleted while somebody is using it. The
1969 * caller is responsible for calling put_pcichild() to release
1972 * Return: Internal representation of a PCI device
1974 static struct hv_pci_dev
*get_pcichild_wslot(struct hv_pcibus_device
*hbus
,
1977 unsigned long flags
;
1978 struct hv_pci_dev
*iter
, *hpdev
= NULL
;
1980 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
1981 list_for_each_entry(iter
, &hbus
->children
, list_entry
) {
1982 if (iter
->desc
.win_slot
.slot
== wslot
) {
1984 get_pcichild(hpdev
);
1988 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
1994 * pci_devices_present_work() - Handle new list of child devices
1995 * @work: Work struct embedded in struct hv_dr_work
1997 * "Bus Relations" is the Windows term for "children of this
1998 * bus." The terminology is preserved here for people trying to
1999 * debug the interaction between Hyper-V and Linux. This
2000 * function is called when the parent partition reports a list
2001 * of functions that should be observed under this PCI Express
2004 * This function updates the list, and must tolerate being
2005 * called multiple times with the same information. The typical
2006 * number of child devices is one, with very atypical cases
2007 * involving three or four, so the algorithms used here can be
2008 * simple and inefficient.
2010 * It must also treat the omission of a previously observed device as
2011 * notification that the device no longer exists.
2013 * Note that this function is serialized with hv_eject_device_work(),
2014 * because both are pushed to the ordered workqueue hbus->wq.
2016 static void pci_devices_present_work(struct work_struct
*work
)
2020 struct hv_pcidev_description
*new_desc
;
2021 struct hv_pci_dev
*hpdev
;
2022 struct hv_pcibus_device
*hbus
;
2023 struct list_head removed
;
2024 struct hv_dr_work
*dr_wrk
;
2025 struct hv_dr_state
*dr
= NULL
;
2026 unsigned long flags
;
2028 dr_wrk
= container_of(work
, struct hv_dr_work
, wrk
);
2032 INIT_LIST_HEAD(&removed
);
2034 /* Pull this off the queue and process it if it was the last one. */
2035 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
2036 while (!list_empty(&hbus
->dr_list
)) {
2037 dr
= list_first_entry(&hbus
->dr_list
, struct hv_dr_state
,
2039 list_del(&dr
->list_entry
);
2041 /* Throw this away if the list still has stuff in it. */
2042 if (!list_empty(&hbus
->dr_list
)) {
2047 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
2054 /* First, mark all existing children as reported missing. */
2055 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
2056 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
2057 hpdev
->reported_missing
= true;
2059 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
2061 /* Next, add back any reported devices. */
2062 for (child_no
= 0; child_no
< dr
->device_count
; child_no
++) {
2064 new_desc
= &dr
->func
[child_no
];
2066 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
2067 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
2068 if ((hpdev
->desc
.win_slot
.slot
== new_desc
->win_slot
.slot
) &&
2069 (hpdev
->desc
.v_id
== new_desc
->v_id
) &&
2070 (hpdev
->desc
.d_id
== new_desc
->d_id
) &&
2071 (hpdev
->desc
.ser
== new_desc
->ser
)) {
2072 hpdev
->reported_missing
= false;
2076 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
2079 hpdev
= new_pcichild_device(hbus
, new_desc
);
2081 dev_err(&hbus
->hdev
->device
,
2082 "couldn't record a child device.\n");
2086 /* Move missing children to a list on the stack. */
2087 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
2090 list_for_each_entry(hpdev
, &hbus
->children
, list_entry
) {
2091 if (hpdev
->reported_missing
) {
2093 put_pcichild(hpdev
);
2094 list_move_tail(&hpdev
->list_entry
, &removed
);
2099 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
2101 /* Delete everything that should no longer exist. */
2102 while (!list_empty(&removed
)) {
2103 hpdev
= list_first_entry(&removed
, struct hv_pci_dev
,
2105 list_del(&hpdev
->list_entry
);
2107 if (hpdev
->pci_slot
)
2108 pci_destroy_slot(hpdev
->pci_slot
);
2110 put_pcichild(hpdev
);
2113 switch (hbus
->state
) {
2114 case hv_pcibus_installed
:
2116 * Tell the core to rescan bus
2117 * because there may have been changes.
2119 pci_lock_rescan_remove();
2120 pci_scan_child_bus(hbus
->pci_bus
);
2121 hv_pci_assign_numa_node(hbus
);
2122 hv_pci_assign_slots(hbus
);
2123 pci_unlock_rescan_remove();
2126 case hv_pcibus_init
:
2127 case hv_pcibus_probed
:
2128 survey_child_resources(hbus
);
2140 * hv_pci_start_relations_work() - Queue work to start device discovery
2141 * @hbus: Root PCI bus, as understood by this driver
2142 * @dr: The list of children returned from host
2144 * Return: 0 on success, -errno on failure
2146 static int hv_pci_start_relations_work(struct hv_pcibus_device
*hbus
,
2147 struct hv_dr_state
*dr
)
2149 struct hv_dr_work
*dr_wrk
;
2150 unsigned long flags
;
2153 if (hbus
->state
== hv_pcibus_removing
) {
2154 dev_info(&hbus
->hdev
->device
,
2155 "PCI VMBus BUS_RELATIONS: ignored\n");
2159 dr_wrk
= kzalloc(sizeof(*dr_wrk
), GFP_NOWAIT
);
2163 INIT_WORK(&dr_wrk
->wrk
, pci_devices_present_work
);
2166 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
2168 * If pending_dr is true, we have already queued a work,
2169 * which will see the new dr. Otherwise, we need to
2172 pending_dr
= !list_empty(&hbus
->dr_list
);
2173 list_add_tail(&dr
->list_entry
, &hbus
->dr_list
);
2174 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
2180 queue_work(hbus
->wq
, &dr_wrk
->wrk
);
2187 * hv_pci_devices_present() - Handle list of new children
2188 * @hbus: Root PCI bus, as understood by this driver
2189 * @relations: Packet from host listing children
2191 * Process a new list of devices on the bus. The list of devices is
2192 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2193 * whenever a new list of devices for this bus appears.
2195 static void hv_pci_devices_present(struct hv_pcibus_device
*hbus
,
2196 struct pci_bus_relations
*relations
)
2198 struct hv_dr_state
*dr
;
2201 dr
= kzalloc(offsetof(struct hv_dr_state
, func
) +
2202 (sizeof(struct hv_pcidev_description
) *
2203 (relations
->device_count
)), GFP_NOWAIT
);
2208 dr
->device_count
= relations
->device_count
;
2209 for (i
= 0; i
< dr
->device_count
; i
++) {
2210 dr
->func
[i
].v_id
= relations
->func
[i
].v_id
;
2211 dr
->func
[i
].d_id
= relations
->func
[i
].d_id
;
2212 dr
->func
[i
].rev
= relations
->func
[i
].rev
;
2213 dr
->func
[i
].prog_intf
= relations
->func
[i
].prog_intf
;
2214 dr
->func
[i
].subclass
= relations
->func
[i
].subclass
;
2215 dr
->func
[i
].base_class
= relations
->func
[i
].base_class
;
2216 dr
->func
[i
].subsystem_id
= relations
->func
[i
].subsystem_id
;
2217 dr
->func
[i
].win_slot
= relations
->func
[i
].win_slot
;
2218 dr
->func
[i
].ser
= relations
->func
[i
].ser
;
2221 if (hv_pci_start_relations_work(hbus
, dr
))
2226 * hv_pci_devices_present2() - Handle list of new children
2227 * @hbus: Root PCI bus, as understood by this driver
2228 * @relations: Packet from host listing children
2230 * This function is the v2 version of hv_pci_devices_present()
2232 static void hv_pci_devices_present2(struct hv_pcibus_device
*hbus
,
2233 struct pci_bus_relations2
*relations
)
2235 struct hv_dr_state
*dr
;
2238 dr
= kzalloc(offsetof(struct hv_dr_state
, func
) +
2239 (sizeof(struct hv_pcidev_description
) *
2240 (relations
->device_count
)), GFP_NOWAIT
);
2245 dr
->device_count
= relations
->device_count
;
2246 for (i
= 0; i
< dr
->device_count
; i
++) {
2247 dr
->func
[i
].v_id
= relations
->func
[i
].v_id
;
2248 dr
->func
[i
].d_id
= relations
->func
[i
].d_id
;
2249 dr
->func
[i
].rev
= relations
->func
[i
].rev
;
2250 dr
->func
[i
].prog_intf
= relations
->func
[i
].prog_intf
;
2251 dr
->func
[i
].subclass
= relations
->func
[i
].subclass
;
2252 dr
->func
[i
].base_class
= relations
->func
[i
].base_class
;
2253 dr
->func
[i
].subsystem_id
= relations
->func
[i
].subsystem_id
;
2254 dr
->func
[i
].win_slot
= relations
->func
[i
].win_slot
;
2255 dr
->func
[i
].ser
= relations
->func
[i
].ser
;
2256 dr
->func
[i
].flags
= relations
->func
[i
].flags
;
2257 dr
->func
[i
].virtual_numa_node
=
2258 relations
->func
[i
].virtual_numa_node
;
2261 if (hv_pci_start_relations_work(hbus
, dr
))
2266 * hv_eject_device_work() - Asynchronously handles ejection
2267 * @work: Work struct embedded in internal device struct
2269 * This function handles ejecting a device. Windows will
2270 * attempt to gracefully eject a device, waiting 60 seconds to
2271 * hear back from the guest OS that this completed successfully.
2272 * If this timer expires, the device will be forcibly removed.
2274 static void hv_eject_device_work(struct work_struct
*work
)
2276 struct pci_eject_response
*ejct_pkt
;
2277 struct hv_pcibus_device
*hbus
;
2278 struct hv_pci_dev
*hpdev
;
2279 struct pci_dev
*pdev
;
2280 unsigned long flags
;
2283 struct pci_packet pkt
;
2284 u8 buffer
[sizeof(struct pci_eject_response
)];
2287 hpdev
= container_of(work
, struct hv_pci_dev
, wrk
);
2290 WARN_ON(hpdev
->state
!= hv_pcichild_ejecting
);
2293 * Ejection can come before or after the PCI bus has been set up, so
2294 * attempt to find it and tear down the bus state, if it exists. This
2295 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
2296 * because hbus->pci_bus may not exist yet.
2298 wslot
= wslot_to_devfn(hpdev
->desc
.win_slot
.slot
);
2299 pdev
= pci_get_domain_bus_and_slot(hbus
->sysdata
.domain
, 0, wslot
);
2301 pci_lock_rescan_remove();
2302 pci_stop_and_remove_bus_device(pdev
);
2304 pci_unlock_rescan_remove();
2307 spin_lock_irqsave(&hbus
->device_list_lock
, flags
);
2308 list_del(&hpdev
->list_entry
);
2309 spin_unlock_irqrestore(&hbus
->device_list_lock
, flags
);
2311 if (hpdev
->pci_slot
)
2312 pci_destroy_slot(hpdev
->pci_slot
);
2314 memset(&ctxt
, 0, sizeof(ctxt
));
2315 ejct_pkt
= (struct pci_eject_response
*)&ctxt
.pkt
.message
;
2316 ejct_pkt
->message_type
.type
= PCI_EJECTION_COMPLETE
;
2317 ejct_pkt
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2318 vmbus_sendpacket(hbus
->hdev
->channel
, ejct_pkt
,
2319 sizeof(*ejct_pkt
), (unsigned long)&ctxt
.pkt
,
2320 VM_PKT_DATA_INBAND
, 0);
2322 /* For the get_pcichild() in hv_pci_eject_device() */
2323 put_pcichild(hpdev
);
2324 /* For the two refs got in new_pcichild_device() */
2325 put_pcichild(hpdev
);
2326 put_pcichild(hpdev
);
2327 /* hpdev has been freed. Do not use it any more. */
2333 * hv_pci_eject_device() - Handles device ejection
2334 * @hpdev: Internal device tracking struct
2336 * This function is invoked when an ejection packet arrives. It
2337 * just schedules work so that we don't re-enter the packet
2338 * delivery code handling the ejection.
2340 static void hv_pci_eject_device(struct hv_pci_dev
*hpdev
)
2342 struct hv_pcibus_device
*hbus
= hpdev
->hbus
;
2343 struct hv_device
*hdev
= hbus
->hdev
;
2345 if (hbus
->state
== hv_pcibus_removing
) {
2346 dev_info(&hdev
->device
, "PCI VMBus EJECT: ignored\n");
2350 hpdev
->state
= hv_pcichild_ejecting
;
2351 get_pcichild(hpdev
);
2352 INIT_WORK(&hpdev
->wrk
, hv_eject_device_work
);
2354 queue_work(hbus
->wq
, &hpdev
->wrk
);
2358 * hv_pci_onchannelcallback() - Handles incoming packets
2359 * @context: Internal bus tracking struct
2361 * This function is invoked whenever the host sends a packet to
2362 * this channel (which is private to this root PCI bus).
2364 static void hv_pci_onchannelcallback(void *context
)
2366 const int packet_size
= 0x100;
2368 struct hv_pcibus_device
*hbus
= context
;
2371 struct vmpacket_descriptor
*desc
;
2372 unsigned char *buffer
;
2373 int bufferlen
= packet_size
;
2374 struct pci_packet
*comp_packet
;
2375 struct pci_response
*response
;
2376 struct pci_incoming_message
*new_message
;
2377 struct pci_bus_relations
*bus_rel
;
2378 struct pci_bus_relations2
*bus_rel2
;
2379 struct pci_dev_inval_block
*inval
;
2380 struct pci_dev_incoming
*dev_message
;
2381 struct hv_pci_dev
*hpdev
;
2383 buffer
= kmalloc(bufferlen
, GFP_ATOMIC
);
2388 ret
= vmbus_recvpacket_raw(hbus
->hdev
->channel
, buffer
,
2389 bufferlen
, &bytes_recvd
, &req_id
);
2391 if (ret
== -ENOBUFS
) {
2393 /* Handle large packet */
2394 bufferlen
= bytes_recvd
;
2395 buffer
= kmalloc(bytes_recvd
, GFP_ATOMIC
);
2401 /* Zero length indicates there are no more packets. */
2402 if (ret
|| !bytes_recvd
)
2406 * All incoming packets must be at least as large as a
2409 if (bytes_recvd
<= sizeof(struct pci_response
))
2411 desc
= (struct vmpacket_descriptor
*)buffer
;
2413 switch (desc
->type
) {
2417 * The host is trusted, and thus it's safe to interpret
2418 * this transaction ID as a pointer.
2420 comp_packet
= (struct pci_packet
*)req_id
;
2421 response
= (struct pci_response
*)buffer
;
2422 comp_packet
->completion_func(comp_packet
->compl_ctxt
,
2427 case VM_PKT_DATA_INBAND
:
2429 new_message
= (struct pci_incoming_message
*)buffer
;
2430 switch (new_message
->message_type
.type
) {
2431 case PCI_BUS_RELATIONS
:
2433 bus_rel
= (struct pci_bus_relations
*)buffer
;
2435 offsetof(struct pci_bus_relations
, func
) +
2436 (sizeof(struct pci_function_description
) *
2437 (bus_rel
->device_count
))) {
2438 dev_err(&hbus
->hdev
->device
,
2439 "bus relations too small\n");
2443 hv_pci_devices_present(hbus
, bus_rel
);
2446 case PCI_BUS_RELATIONS2
:
2448 bus_rel2
= (struct pci_bus_relations2
*)buffer
;
2450 offsetof(struct pci_bus_relations2
, func
) +
2451 (sizeof(struct pci_function_description2
) *
2452 (bus_rel2
->device_count
))) {
2453 dev_err(&hbus
->hdev
->device
,
2454 "bus relations v2 too small\n");
2458 hv_pci_devices_present2(hbus
, bus_rel2
);
2463 dev_message
= (struct pci_dev_incoming
*)buffer
;
2464 hpdev
= get_pcichild_wslot(hbus
,
2465 dev_message
->wslot
.slot
);
2467 hv_pci_eject_device(hpdev
);
2468 put_pcichild(hpdev
);
2472 case PCI_INVALIDATE_BLOCK
:
2474 inval
= (struct pci_dev_inval_block
*)buffer
;
2475 hpdev
= get_pcichild_wslot(hbus
,
2478 if (hpdev
->block_invalidate
) {
2479 hpdev
->block_invalidate(
2480 hpdev
->invalidate_context
,
2483 put_pcichild(hpdev
);
2488 dev_warn(&hbus
->hdev
->device
,
2489 "Unimplemented protocol message %x\n",
2490 new_message
->message_type
.type
);
2496 dev_err(&hbus
->hdev
->device
,
2497 "unhandled packet type %d, tid %llx len %d\n",
2498 desc
->type
, req_id
, bytes_recvd
);
2507 * hv_pci_protocol_negotiation() - Set up protocol
2508 * @hdev: VMBus's tracking struct for this root PCI bus
2510 * This driver is intended to support running on Windows 10
2511 * (server) and later versions. It will not run on earlier
2512 * versions, as they assume that many of the operations which
2513 * Linux needs accomplished with a spinlock held were done via
2514 * asynchronous messaging via VMBus. Windows 10 increases the
2515 * surface area of PCI emulation so that these actions can take
2516 * place by suspending a virtual processor for their duration.
2518 * This function negotiates the channel protocol version,
2519 * failing if the host doesn't support the necessary protocol
2522 static int hv_pci_protocol_negotiation(struct hv_device
*hdev
,
2523 enum pci_protocol_version_t version
[],
2526 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2527 struct pci_version_request
*version_req
;
2528 struct hv_pci_compl comp_pkt
;
2529 struct pci_packet
*pkt
;
2534 * Initiate the handshake with the host and negotiate
2535 * a version that the host can support. We start with the
2536 * highest version number and go down if the host cannot
2539 pkt
= kzalloc(sizeof(*pkt
) + sizeof(*version_req
), GFP_KERNEL
);
2543 init_completion(&comp_pkt
.host_event
);
2544 pkt
->completion_func
= hv_pci_generic_compl
;
2545 pkt
->compl_ctxt
= &comp_pkt
;
2546 version_req
= (struct pci_version_request
*)&pkt
->message
;
2547 version_req
->message_type
.type
= PCI_QUERY_PROTOCOL_VERSION
;
2549 for (i
= 0; i
< num_version
; i
++) {
2550 version_req
->protocol_version
= version
[i
];
2551 ret
= vmbus_sendpacket(hdev
->channel
, version_req
,
2552 sizeof(struct pci_version_request
),
2553 (unsigned long)pkt
, VM_PKT_DATA_INBAND
,
2554 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2556 ret
= wait_for_response(hdev
, &comp_pkt
.host_event
);
2559 dev_err(&hdev
->device
,
2560 "PCI Pass-through VSP failed to request version: %d",
2565 if (comp_pkt
.completion_status
>= 0) {
2566 hbus
->protocol_version
= version
[i
];
2567 dev_info(&hdev
->device
,
2568 "PCI VMBus probing: Using version %#x\n",
2569 hbus
->protocol_version
);
2573 if (comp_pkt
.completion_status
!= STATUS_REVISION_MISMATCH
) {
2574 dev_err(&hdev
->device
,
2575 "PCI Pass-through VSP failed version request: %#x",
2576 comp_pkt
.completion_status
);
2581 reinit_completion(&comp_pkt
.host_event
);
2584 dev_err(&hdev
->device
,
2585 "PCI pass-through VSP failed to find supported version");
2594 * hv_pci_free_bridge_windows() - Release memory regions for the
2596 * @hbus: Root PCI bus, as understood by this driver
2598 static void hv_pci_free_bridge_windows(struct hv_pcibus_device
*hbus
)
2601 * Set the resources back to the way they looked when they
2602 * were allocated by setting IORESOURCE_BUSY again.
2605 if (hbus
->low_mmio_space
&& hbus
->low_mmio_res
) {
2606 hbus
->low_mmio_res
->flags
|= IORESOURCE_BUSY
;
2607 vmbus_free_mmio(hbus
->low_mmio_res
->start
,
2608 resource_size(hbus
->low_mmio_res
));
2611 if (hbus
->high_mmio_space
&& hbus
->high_mmio_res
) {
2612 hbus
->high_mmio_res
->flags
|= IORESOURCE_BUSY
;
2613 vmbus_free_mmio(hbus
->high_mmio_res
->start
,
2614 resource_size(hbus
->high_mmio_res
));
2619 * hv_pci_allocate_bridge_windows() - Allocate memory regions
2621 * @hbus: Root PCI bus, as understood by this driver
2623 * This function calls vmbus_allocate_mmio(), which is itself a
2624 * bit of a compromise. Ideally, we might change the pnp layer
2625 * in the kernel such that it comprehends either PCI devices
2626 * which are "grandchildren of ACPI," with some intermediate bus
2627 * node (in this case, VMBus) or change it such that it
2628 * understands VMBus. The pnp layer, however, has been declared
2629 * deprecated, and not subject to change.
2631 * The workaround, implemented here, is to ask VMBus to allocate
2632 * MMIO space for this bus. VMBus itself knows which ranges are
2633 * appropriate by looking at its own ACPI objects. Then, after
2634 * these ranges are claimed, they're modified to look like they
2635 * would have looked if the ACPI and pnp code had allocated
2636 * bridge windows. These descriptors have to exist in this form
2637 * in order to satisfy the code which will get invoked when the
2638 * endpoint PCI function driver calls request_mem_region() or
2639 * request_mem_region_exclusive().
2641 * Return: 0 on success, -errno on failure
2643 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device
*hbus
)
2645 resource_size_t align
;
2648 if (hbus
->low_mmio_space
) {
2649 align
= 1ULL << (63 - __builtin_clzll(hbus
->low_mmio_space
));
2650 ret
= vmbus_allocate_mmio(&hbus
->low_mmio_res
, hbus
->hdev
, 0,
2651 (u64
)(u32
)0xffffffff,
2652 hbus
->low_mmio_space
,
2655 dev_err(&hbus
->hdev
->device
,
2656 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2657 hbus
->low_mmio_space
);
2661 /* Modify this resource to become a bridge window. */
2662 hbus
->low_mmio_res
->flags
|= IORESOURCE_WINDOW
;
2663 hbus
->low_mmio_res
->flags
&= ~IORESOURCE_BUSY
;
2664 pci_add_resource(&hbus
->resources_for_children
,
2665 hbus
->low_mmio_res
);
2668 if (hbus
->high_mmio_space
) {
2669 align
= 1ULL << (63 - __builtin_clzll(hbus
->high_mmio_space
));
2670 ret
= vmbus_allocate_mmio(&hbus
->high_mmio_res
, hbus
->hdev
,
2672 hbus
->high_mmio_space
, align
,
2675 dev_err(&hbus
->hdev
->device
,
2676 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2677 hbus
->high_mmio_space
);
2678 goto release_low_mmio
;
2681 /* Modify this resource to become a bridge window. */
2682 hbus
->high_mmio_res
->flags
|= IORESOURCE_WINDOW
;
2683 hbus
->high_mmio_res
->flags
&= ~IORESOURCE_BUSY
;
2684 pci_add_resource(&hbus
->resources_for_children
,
2685 hbus
->high_mmio_res
);
2691 if (hbus
->low_mmio_res
) {
2692 vmbus_free_mmio(hbus
->low_mmio_res
->start
,
2693 resource_size(hbus
->low_mmio_res
));
2700 * hv_allocate_config_window() - Find MMIO space for PCI Config
2701 * @hbus: Root PCI bus, as understood by this driver
2703 * This function claims memory-mapped I/O space for accessing
2704 * configuration space for the functions on this bus.
2706 * Return: 0 on success, -errno on failure
2708 static int hv_allocate_config_window(struct hv_pcibus_device
*hbus
)
2713 * Set up a region of MMIO space to use for accessing configuration
2716 ret
= vmbus_allocate_mmio(&hbus
->mem_config
, hbus
->hdev
, 0, -1,
2717 PCI_CONFIG_MMIO_LENGTH
, 0x1000, false);
2722 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2723 * resource claims (those which cannot be overlapped) and the ranges
2724 * which are valid for the children of this bus, which are intended
2725 * to be overlapped by those children. Set the flag on this claim
2726 * meaning that this region can't be overlapped.
2729 hbus
->mem_config
->flags
|= IORESOURCE_BUSY
;
2734 static void hv_free_config_window(struct hv_pcibus_device
*hbus
)
2736 vmbus_free_mmio(hbus
->mem_config
->start
, PCI_CONFIG_MMIO_LENGTH
);
2740 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2741 * @hdev: VMBus's tracking struct for this root PCI bus
2743 * Return: 0 on success, -errno on failure
2745 static int hv_pci_enter_d0(struct hv_device
*hdev
)
2747 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2748 struct pci_bus_d0_entry
*d0_entry
;
2749 struct hv_pci_compl comp_pkt
;
2750 struct pci_packet
*pkt
;
2754 * Tell the host that the bus is ready to use, and moved into the
2755 * powered-on state. This includes telling the host which region
2756 * of memory-mapped I/O space has been chosen for configuration space
2759 pkt
= kzalloc(sizeof(*pkt
) + sizeof(*d0_entry
), GFP_KERNEL
);
2763 init_completion(&comp_pkt
.host_event
);
2764 pkt
->completion_func
= hv_pci_generic_compl
;
2765 pkt
->compl_ctxt
= &comp_pkt
;
2766 d0_entry
= (struct pci_bus_d0_entry
*)&pkt
->message
;
2767 d0_entry
->message_type
.type
= PCI_BUS_D0ENTRY
;
2768 d0_entry
->mmio_base
= hbus
->mem_config
->start
;
2770 ret
= vmbus_sendpacket(hdev
->channel
, d0_entry
, sizeof(*d0_entry
),
2771 (unsigned long)pkt
, VM_PKT_DATA_INBAND
,
2772 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2774 ret
= wait_for_response(hdev
, &comp_pkt
.host_event
);
2779 if (comp_pkt
.completion_status
< 0) {
2780 dev_err(&hdev
->device
,
2781 "PCI Pass-through VSP failed D0 Entry with status %x\n",
2782 comp_pkt
.completion_status
);
2795 * hv_pci_query_relations() - Ask host to send list of child
2797 * @hdev: VMBus's tracking struct for this root PCI bus
2799 * Return: 0 on success, -errno on failure
2801 static int hv_pci_query_relations(struct hv_device
*hdev
)
2803 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2804 struct pci_message message
;
2805 struct completion comp
;
2808 /* Ask the host to send along the list of child devices */
2809 init_completion(&comp
);
2810 if (cmpxchg(&hbus
->survey_event
, NULL
, &comp
))
2813 memset(&message
, 0, sizeof(message
));
2814 message
.type
= PCI_QUERY_BUS_RELATIONS
;
2816 ret
= vmbus_sendpacket(hdev
->channel
, &message
, sizeof(message
),
2817 0, VM_PKT_DATA_INBAND
, 0);
2819 ret
= wait_for_response(hdev
, &comp
);
2825 * hv_send_resources_allocated() - Report local resource choices
2826 * @hdev: VMBus's tracking struct for this root PCI bus
2828 * The host OS is expecting to be sent a request as a message
2829 * which contains all the resources that the device will use.
2830 * The response contains those same resources, "translated"
2831 * which is to say, the values which should be used by the
2832 * hardware, when it delivers an interrupt. (MMIO resources are
2833 * used in local terms.) This is nice for Windows, and lines up
2834 * with the FDO/PDO split, which doesn't exist in Linux. Linux
2835 * is deeply expecting to scan an emulated PCI configuration
2836 * space. So this message is sent here only to drive the state
2837 * machine on the host forward.
2839 * Return: 0 on success, -errno on failure
2841 static int hv_send_resources_allocated(struct hv_device
*hdev
)
2843 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2844 struct pci_resources_assigned
*res_assigned
;
2845 struct pci_resources_assigned2
*res_assigned2
;
2846 struct hv_pci_compl comp_pkt
;
2847 struct hv_pci_dev
*hpdev
;
2848 struct pci_packet
*pkt
;
2853 size_res
= (hbus
->protocol_version
< PCI_PROTOCOL_VERSION_1_2
)
2854 ? sizeof(*res_assigned
) : sizeof(*res_assigned2
);
2856 pkt
= kmalloc(sizeof(*pkt
) + size_res
, GFP_KERNEL
);
2862 for (wslot
= 0; wslot
< 256; wslot
++) {
2863 hpdev
= get_pcichild_wslot(hbus
, wslot
);
2867 memset(pkt
, 0, sizeof(*pkt
) + size_res
);
2868 init_completion(&comp_pkt
.host_event
);
2869 pkt
->completion_func
= hv_pci_generic_compl
;
2870 pkt
->compl_ctxt
= &comp_pkt
;
2872 if (hbus
->protocol_version
< PCI_PROTOCOL_VERSION_1_2
) {
2874 (struct pci_resources_assigned
*)&pkt
->message
;
2875 res_assigned
->message_type
.type
=
2876 PCI_RESOURCES_ASSIGNED
;
2877 res_assigned
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2880 (struct pci_resources_assigned2
*)&pkt
->message
;
2881 res_assigned2
->message_type
.type
=
2882 PCI_RESOURCES_ASSIGNED2
;
2883 res_assigned2
->wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2885 put_pcichild(hpdev
);
2887 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
->message
,
2888 size_res
, (unsigned long)pkt
,
2890 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
2892 ret
= wait_for_response(hdev
, &comp_pkt
.host_event
);
2896 if (comp_pkt
.completion_status
< 0) {
2898 dev_err(&hdev
->device
,
2899 "resource allocated returned 0x%x",
2900 comp_pkt
.completion_status
);
2910 * hv_send_resources_released() - Report local resources
2912 * @hdev: VMBus's tracking struct for this root PCI bus
2914 * Return: 0 on success, -errno on failure
2916 static int hv_send_resources_released(struct hv_device
*hdev
)
2918 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
2919 struct pci_child_message pkt
;
2920 struct hv_pci_dev
*hpdev
;
2924 for (wslot
= 0; wslot
< 256; wslot
++) {
2925 hpdev
= get_pcichild_wslot(hbus
, wslot
);
2929 memset(&pkt
, 0, sizeof(pkt
));
2930 pkt
.message_type
.type
= PCI_RESOURCES_RELEASED
;
2931 pkt
.wslot
.slot
= hpdev
->desc
.win_slot
.slot
;
2933 put_pcichild(hpdev
);
2935 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
, sizeof(pkt
), 0,
2936 VM_PKT_DATA_INBAND
, 0);
2944 static void get_hvpcibus(struct hv_pcibus_device
*hbus
)
2946 refcount_inc(&hbus
->remove_lock
);
2949 static void put_hvpcibus(struct hv_pcibus_device
*hbus
)
2951 if (refcount_dec_and_test(&hbus
->remove_lock
))
2952 complete(&hbus
->remove_event
);
2955 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
2956 static DECLARE_BITMAP(hvpci_dom_map
, HVPCI_DOM_MAP_SIZE
);
2959 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
2960 * as invalid for passthrough PCI devices of this driver.
2962 #define HVPCI_DOM_INVALID 0
2965 * hv_get_dom_num() - Get a valid PCI domain number
2966 * Check if the PCI domain number is in use, and return another number if
2969 * @dom: Requested domain number
2971 * return: domain number on success, HVPCI_DOM_INVALID on failure
2973 static u16
hv_get_dom_num(u16 dom
)
2977 if (test_and_set_bit(dom
, hvpci_dom_map
) == 0)
2980 for_each_clear_bit(i
, hvpci_dom_map
, HVPCI_DOM_MAP_SIZE
) {
2981 if (test_and_set_bit(i
, hvpci_dom_map
) == 0)
2985 return HVPCI_DOM_INVALID
;
2989 * hv_put_dom_num() - Mark the PCI domain number as free
2990 * @dom: Domain number to be freed
2992 static void hv_put_dom_num(u16 dom
)
2994 clear_bit(dom
, hvpci_dom_map
);
2998 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2999 * @hdev: VMBus's tracking struct for this root PCI bus
3000 * @dev_id: Identifies the device itself
3002 * Return: 0 on success, -errno on failure
3004 static int hv_pci_probe(struct hv_device
*hdev
,
3005 const struct hv_vmbus_device_id
*dev_id
)
3007 struct hv_pcibus_device
*hbus
;
3013 * hv_pcibus_device contains the hypercall arguments for retargeting in
3014 * hv_irq_unmask(). Those must not cross a page boundary.
3016 BUILD_BUG_ON(sizeof(*hbus
) > HV_HYP_PAGE_SIZE
);
3019 * With the recent 59bb47985c1d ("mm, sl[aou]b: guarantee natural
3020 * alignment for kmalloc(power-of-two)"), kzalloc() is able to allocate
3021 * a 4KB buffer that is guaranteed to be 4KB-aligned. Here the size and
3022 * alignment of hbus is important because hbus's field
3023 * retarget_msi_interrupt_params must not cross a 4KB page boundary.
3025 * Here we prefer kzalloc to get_zeroed_page(), because a buffer
3026 * allocated by the latter is not tracked and scanned by kmemleak, and
3027 * hence kmemleak reports the pointer contained in the hbus buffer
3028 * (i.e. the hpdev struct, which is created in new_pcichild_device() and
3029 * is tracked by hbus->children) as memory leak (false positive).
3031 * If the kernel doesn't have 59bb47985c1d, get_zeroed_page() *must* be
3032 * used to allocate the hbus buffer and we can avoid the kmemleak false
3033 * positive by using kmemleak_alloc() and kmemleak_free() to ask
3034 * kmemleak to track and scan the hbus buffer.
3036 hbus
= kzalloc(HV_HYP_PAGE_SIZE
, GFP_KERNEL
);
3039 hbus
->state
= hv_pcibus_init
;
3042 * The PCI bus "domain" is what is called "segment" in ACPI and other
3043 * specs. Pull it from the instance ID, to get something usually
3044 * unique. In rare cases of collision, we will find out another number
3047 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3048 * together with this guest driver can guarantee that (1) The only
3049 * domain used by Gen1 VMs for something that looks like a physical
3050 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3051 * (2) There will be no overlap between domains (after fixing possible
3052 * collisions) in the same VM.
3054 dom_req
= hdev
->dev_instance
.b
[5] << 8 | hdev
->dev_instance
.b
[4];
3055 dom
= hv_get_dom_num(dom_req
);
3057 if (dom
== HVPCI_DOM_INVALID
) {
3058 dev_err(&hdev
->device
,
3059 "Unable to use dom# 0x%hx or other numbers", dom_req
);
3065 dev_info(&hdev
->device
,
3066 "PCI dom# 0x%hx has collision, using 0x%hx",
3069 hbus
->sysdata
.domain
= dom
;
3072 refcount_set(&hbus
->remove_lock
, 1);
3073 INIT_LIST_HEAD(&hbus
->children
);
3074 INIT_LIST_HEAD(&hbus
->dr_list
);
3075 INIT_LIST_HEAD(&hbus
->resources_for_children
);
3076 spin_lock_init(&hbus
->config_lock
);
3077 spin_lock_init(&hbus
->device_list_lock
);
3078 spin_lock_init(&hbus
->retarget_msi_interrupt_lock
);
3079 init_completion(&hbus
->remove_event
);
3080 hbus
->wq
= alloc_ordered_workqueue("hv_pci_%x", 0,
3081 hbus
->sysdata
.domain
);
3087 ret
= vmbus_open(hdev
->channel
, pci_ring_size
, pci_ring_size
, NULL
, 0,
3088 hv_pci_onchannelcallback
, hbus
);
3092 hv_set_drvdata(hdev
, hbus
);
3094 ret
= hv_pci_protocol_negotiation(hdev
, pci_protocol_versions
,
3095 ARRAY_SIZE(pci_protocol_versions
));
3099 ret
= hv_allocate_config_window(hbus
);
3103 hbus
->cfg_addr
= ioremap(hbus
->mem_config
->start
,
3104 PCI_CONFIG_MMIO_LENGTH
);
3105 if (!hbus
->cfg_addr
) {
3106 dev_err(&hdev
->device
,
3107 "Unable to map a virtual address for config space\n");
3112 name
= kasprintf(GFP_KERNEL
, "%pUL", &hdev
->dev_instance
);
3118 hbus
->sysdata
.fwnode
= irq_domain_alloc_named_fwnode(name
);
3120 if (!hbus
->sysdata
.fwnode
) {
3125 ret
= hv_pcie_init_irq_domain(hbus
);
3129 ret
= hv_pci_query_relations(hdev
);
3131 goto free_irq_domain
;
3133 ret
= hv_pci_enter_d0(hdev
);
3135 goto free_irq_domain
;
3137 ret
= hv_pci_allocate_bridge_windows(hbus
);
3139 goto free_irq_domain
;
3141 ret
= hv_send_resources_allocated(hdev
);
3145 prepopulate_bars(hbus
);
3147 hbus
->state
= hv_pcibus_probed
;
3149 ret
= create_root_hv_pci_bus(hbus
);
3156 hv_pci_free_bridge_windows(hbus
);
3158 irq_domain_remove(hbus
->irq_domain
);
3160 irq_domain_free_fwnode(hbus
->sysdata
.fwnode
);
3162 iounmap(hbus
->cfg_addr
);
3164 hv_free_config_window(hbus
);
3166 vmbus_close(hdev
->channel
);
3168 destroy_workqueue(hbus
->wq
);
3170 hv_put_dom_num(hbus
->sysdata
.domain
);
3176 static int hv_pci_bus_exit(struct hv_device
*hdev
, bool hibernating
)
3178 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
3180 struct pci_packet teardown_packet
;
3181 u8 buffer
[sizeof(struct pci_message
)];
3183 struct hv_dr_state
*dr
;
3184 struct hv_pci_compl comp_pkt
;
3188 * After the host sends the RESCIND_CHANNEL message, it doesn't
3189 * access the per-channel ringbuffer any longer.
3191 if (hdev
->channel
->rescind
)
3195 /* Delete any children which might still exist. */
3196 dr
= kzalloc(sizeof(*dr
), GFP_KERNEL
);
3197 if (dr
&& hv_pci_start_relations_work(hbus
, dr
))
3201 ret
= hv_send_resources_released(hdev
);
3203 dev_err(&hdev
->device
,
3204 "Couldn't send resources released packet(s)\n");
3208 memset(&pkt
.teardown_packet
, 0, sizeof(pkt
.teardown_packet
));
3209 init_completion(&comp_pkt
.host_event
);
3210 pkt
.teardown_packet
.completion_func
= hv_pci_generic_compl
;
3211 pkt
.teardown_packet
.compl_ctxt
= &comp_pkt
;
3212 pkt
.teardown_packet
.message
[0].type
= PCI_BUS_D0EXIT
;
3214 ret
= vmbus_sendpacket(hdev
->channel
, &pkt
.teardown_packet
.message
,
3215 sizeof(struct pci_message
),
3216 (unsigned long)&pkt
.teardown_packet
,
3218 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED
);
3222 if (wait_for_completion_timeout(&comp_pkt
.host_event
, 10 * HZ
) == 0)
3229 * hv_pci_remove() - Remove routine for this VMBus channel
3230 * @hdev: VMBus's tracking struct for this root PCI bus
3232 * Return: 0 on success, -errno on failure
3234 static int hv_pci_remove(struct hv_device
*hdev
)
3236 struct hv_pcibus_device
*hbus
;
3239 hbus
= hv_get_drvdata(hdev
);
3240 if (hbus
->state
== hv_pcibus_installed
) {
3241 /* Remove the bus from PCI's point of view. */
3242 pci_lock_rescan_remove();
3243 pci_stop_root_bus(hbus
->pci_bus
);
3244 hv_pci_remove_slots(hbus
);
3245 pci_remove_root_bus(hbus
->pci_bus
);
3246 pci_unlock_rescan_remove();
3247 hbus
->state
= hv_pcibus_removed
;
3250 ret
= hv_pci_bus_exit(hdev
, false);
3252 vmbus_close(hdev
->channel
);
3254 iounmap(hbus
->cfg_addr
);
3255 hv_free_config_window(hbus
);
3256 pci_free_resource_list(&hbus
->resources_for_children
);
3257 hv_pci_free_bridge_windows(hbus
);
3258 irq_domain_remove(hbus
->irq_domain
);
3259 irq_domain_free_fwnode(hbus
->sysdata
.fwnode
);
3261 wait_for_completion(&hbus
->remove_event
);
3262 destroy_workqueue(hbus
->wq
);
3264 hv_put_dom_num(hbus
->sysdata
.domain
);
3270 static int hv_pci_suspend(struct hv_device
*hdev
)
3272 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
3273 enum hv_pcibus_state old_state
;
3277 * hv_pci_suspend() must make sure there are no pending work items
3278 * before calling vmbus_close(), since it runs in a process context
3279 * as a callback in dpm_suspend(). When it starts to run, the channel
3280 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3281 * context, can be still running concurrently and scheduling new work
3282 * items onto hbus->wq in hv_pci_devices_present() and
3283 * hv_pci_eject_device(), and the work item handlers can access the
3284 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3285 * the work item handler pci_devices_present_work() ->
3286 * new_pcichild_device() writes to the vmbus channel.
3288 * To eliminate the race, hv_pci_suspend() disables the channel
3289 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3290 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3291 * it knows that no new work item can be scheduled, and then it flushes
3292 * hbus->wq and safely closes the vmbus channel.
3294 tasklet_disable(&hdev
->channel
->callback_event
);
3296 /* Change the hbus state to prevent new work items. */
3297 old_state
= hbus
->state
;
3298 if (hbus
->state
== hv_pcibus_installed
)
3299 hbus
->state
= hv_pcibus_removing
;
3301 tasklet_enable(&hdev
->channel
->callback_event
);
3303 if (old_state
!= hv_pcibus_installed
)
3306 flush_workqueue(hbus
->wq
);
3308 ret
= hv_pci_bus_exit(hdev
, true);
3312 vmbus_close(hdev
->channel
);
3317 static int hv_pci_resume(struct hv_device
*hdev
)
3319 struct hv_pcibus_device
*hbus
= hv_get_drvdata(hdev
);
3320 enum pci_protocol_version_t version
[1];
3323 hbus
->state
= hv_pcibus_init
;
3325 ret
= vmbus_open(hdev
->channel
, pci_ring_size
, pci_ring_size
, NULL
, 0,
3326 hv_pci_onchannelcallback
, hbus
);
3330 /* Only use the version that was in use before hibernation. */
3331 version
[0] = hbus
->protocol_version
;
3332 ret
= hv_pci_protocol_negotiation(hdev
, version
, 1);
3336 ret
= hv_pci_query_relations(hdev
);
3340 ret
= hv_pci_enter_d0(hdev
);
3344 ret
= hv_send_resources_allocated(hdev
);
3348 prepopulate_bars(hbus
);
3350 hbus
->state
= hv_pcibus_installed
;
3353 vmbus_close(hdev
->channel
);
3357 static const struct hv_vmbus_device_id hv_pci_id_table
[] = {
3358 /* PCI Pass-through Class ID */
3359 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */
3364 MODULE_DEVICE_TABLE(vmbus
, hv_pci_id_table
);
3366 static struct hv_driver hv_pci_drv
= {
3368 .id_table
= hv_pci_id_table
,
3369 .probe
= hv_pci_probe
,
3370 .remove
= hv_pci_remove
,
3371 .suspend
= hv_pci_suspend
,
3372 .resume
= hv_pci_resume
,
3375 static void __exit
exit_hv_pci_drv(void)
3377 vmbus_driver_unregister(&hv_pci_drv
);
3379 hvpci_block_ops
.read_block
= NULL
;
3380 hvpci_block_ops
.write_block
= NULL
;
3381 hvpci_block_ops
.reg_blk_invalidate
= NULL
;
3384 static int __init
init_hv_pci_drv(void)
3386 /* Set the invalid domain number's bit, so it will not be used */
3387 set_bit(HVPCI_DOM_INVALID
, hvpci_dom_map
);
3389 /* Initialize PCI block r/w interface */
3390 hvpci_block_ops
.read_block
= hv_read_config_block
;
3391 hvpci_block_ops
.write_block
= hv_write_config_block
;
3392 hvpci_block_ops
.reg_blk_invalidate
= hv_register_block_invalidate
;
3394 return vmbus_driver_register(&hv_pci_drv
);
3397 module_init(init_hv_pci_drv
);
3398 module_exit(exit_hv_pci_drv
);
3400 MODULE_DESCRIPTION("Hyper-V PCI");
3401 MODULE_LICENSE("GPL v2");