dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / pci / hotplug / cpqphp_ctrl.c
blob68de958a9be8d06b1c9d1516d26e6e404a49a11e
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Compaq Hot Plug Controller Driver
5 * Copyright (C) 1995,2001 Compaq Computer Corporation
6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7 * Copyright (C) 2001 IBM Corp.
9 * All rights reserved.
11 * Send feedback to <greg@kroah.com>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
26 #include "cpqphp.h"
28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29 u8 behind_bridge, struct resource_lists *resources);
30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31 u8 behind_bridge, struct resource_lists *resources);
32 static void interrupt_event_handler(struct controller *ctrl);
35 static struct task_struct *cpqhp_event_thread;
36 static struct timer_list *pushbutton_pending; /* = NULL */
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay)
42 * XXX(hch): if someone is bored please convert all callers
43 * to call msleep_interruptible directly. They really want
44 * to specify timeouts in natural units and spend a lot of
45 * effort converting them to jiffies..
47 msleep_interruptible(jiffies_to_msecs(delay));
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
55 int hp_slot;
56 u8 rc = 0;
57 u16 temp_word;
58 struct pci_func *func;
59 struct event_info *taskInfo;
61 if (!change)
62 return 0;
64 /* Switch Change */
65 dbg("cpqsbd: Switch interrupt received.\n");
67 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68 if (change & (0x1L << hp_slot)) {
70 * this one changed.
72 func = cpqhp_slot_find(ctrl->bus,
73 (hp_slot + ctrl->slot_device_offset), 0);
75 /* this is the structure that tells the worker thread
76 * what to do
78 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79 ctrl->next_event = (ctrl->next_event + 1) % 10;
80 taskInfo->hp_slot = hp_slot;
82 rc++;
84 temp_word = ctrl->ctrl_int_comp >> 16;
85 func->presence_save = (temp_word >> hp_slot) & 0x01;
86 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
88 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
90 * Switch opened
93 func->switch_save = 0;
95 taskInfo->event_type = INT_SWITCH_OPEN;
96 } else {
98 * Switch closed
101 func->switch_save = 0x10;
103 taskInfo->event_type = INT_SWITCH_CLOSE;
108 return rc;
112 * cpqhp_find_slot - find the struct slot of given device
113 * @ctrl: scan lots of this controller
114 * @device: the device id to find
116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
118 struct slot *slot = ctrl->slot;
120 while (slot && (slot->device != device))
121 slot = slot->next;
123 return slot;
127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
129 int hp_slot;
130 u8 rc = 0;
131 u8 temp_byte;
132 u16 temp_word;
133 struct pci_func *func;
134 struct event_info *taskInfo;
135 struct slot *p_slot;
137 if (!change)
138 return 0;
141 * Presence Change
143 dbg("cpqsbd: Presence/Notify input change.\n");
144 dbg(" Changed bits are 0x%4.4x\n", change);
146 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147 if (change & (0x0101 << hp_slot)) {
149 * this one changed.
151 func = cpqhp_slot_find(ctrl->bus,
152 (hp_slot + ctrl->slot_device_offset), 0);
154 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155 ctrl->next_event = (ctrl->next_event + 1) % 10;
156 taskInfo->hp_slot = hp_slot;
158 rc++;
160 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161 if (!p_slot)
162 return 0;
164 /* If the switch closed, must be a button
165 * If not in button mode, nevermind
167 if (func->switch_save && (ctrl->push_button == 1)) {
168 temp_word = ctrl->ctrl_int_comp >> 16;
169 temp_byte = (temp_word >> hp_slot) & 0x01;
170 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
172 if (temp_byte != func->presence_save) {
174 * button Pressed (doesn't do anything)
176 dbg("hp_slot %d button pressed\n", hp_slot);
177 taskInfo->event_type = INT_BUTTON_PRESS;
178 } else {
180 * button Released - TAKE ACTION!!!!
182 dbg("hp_slot %d button released\n", hp_slot);
183 taskInfo->event_type = INT_BUTTON_RELEASE;
185 /* Cancel if we are still blinking */
186 if ((p_slot->state == BLINKINGON_STATE)
187 || (p_slot->state == BLINKINGOFF_STATE)) {
188 taskInfo->event_type = INT_BUTTON_CANCEL;
189 dbg("hp_slot %d button cancel\n", hp_slot);
190 } else if ((p_slot->state == POWERON_STATE)
191 || (p_slot->state == POWEROFF_STATE)) {
192 /* info(msg_button_ignore, p_slot->number); */
193 taskInfo->event_type = INT_BUTTON_IGNORE;
194 dbg("hp_slot %d button ignore\n", hp_slot);
197 } else {
198 /* Switch is open, assume a presence change
199 * Save the presence state
201 temp_word = ctrl->ctrl_int_comp >> 16;
202 func->presence_save = (temp_word >> hp_slot) & 0x01;
203 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
205 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207 /* Present */
208 taskInfo->event_type = INT_PRESENCE_ON;
209 } else {
210 /* Not Present */
211 taskInfo->event_type = INT_PRESENCE_OFF;
217 return rc;
221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
223 int hp_slot;
224 u8 rc = 0;
225 struct pci_func *func;
226 struct event_info *taskInfo;
228 if (!change)
229 return 0;
232 * power fault
235 info("power fault interrupt\n");
237 for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238 if (change & (0x01 << hp_slot)) {
240 * this one changed.
242 func = cpqhp_slot_find(ctrl->bus,
243 (hp_slot + ctrl->slot_device_offset), 0);
245 taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246 ctrl->next_event = (ctrl->next_event + 1) % 10;
247 taskInfo->hp_slot = hp_slot;
249 rc++;
251 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
253 * power fault Cleared
255 func->status = 0x00;
257 taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258 } else {
260 * power fault
262 taskInfo->event_type = INT_POWER_FAULT;
264 if (ctrl->rev < 4) {
265 amber_LED_on(ctrl, hp_slot);
266 green_LED_off(ctrl, hp_slot);
267 set_SOGO(ctrl);
269 /* this is a fatal condition, we want
270 * to crash the machine to protect from
271 * data corruption. simulated_NMI
272 * shouldn't ever return */
273 /* FIXME
274 simulated_NMI(hp_slot, ctrl); */
276 /* The following code causes a software
277 * crash just in case simulated_NMI did
278 * return */
279 /*FIXME
280 panic(msg_power_fault); */
281 } else {
282 /* set power fault status for this board */
283 func->status = 0xFF;
284 info("power fault bit %x set\n", hp_slot);
290 return rc;
295 * sort_by_size - sort nodes on the list by their length, smallest first.
296 * @head: list to sort
298 static int sort_by_size(struct pci_resource **head)
300 struct pci_resource *current_res;
301 struct pci_resource *next_res;
302 int out_of_order = 1;
304 if (!(*head))
305 return 1;
307 if (!((*head)->next))
308 return 0;
310 while (out_of_order) {
311 out_of_order = 0;
313 /* Special case for swapping list head */
314 if (((*head)->next) &&
315 ((*head)->length > (*head)->next->length)) {
316 out_of_order++;
317 current_res = *head;
318 *head = (*head)->next;
319 current_res->next = (*head)->next;
320 (*head)->next = current_res;
323 current_res = *head;
325 while (current_res->next && current_res->next->next) {
326 if (current_res->next->length > current_res->next->next->length) {
327 out_of_order++;
328 next_res = current_res->next;
329 current_res->next = current_res->next->next;
330 current_res = current_res->next;
331 next_res->next = current_res->next;
332 current_res->next = next_res;
333 } else
334 current_res = current_res->next;
336 } /* End of out_of_order loop */
338 return 0;
343 * sort_by_max_size - sort nodes on the list by their length, largest first.
344 * @head: list to sort
346 static int sort_by_max_size(struct pci_resource **head)
348 struct pci_resource *current_res;
349 struct pci_resource *next_res;
350 int out_of_order = 1;
352 if (!(*head))
353 return 1;
355 if (!((*head)->next))
356 return 0;
358 while (out_of_order) {
359 out_of_order = 0;
361 /* Special case for swapping list head */
362 if (((*head)->next) &&
363 ((*head)->length < (*head)->next->length)) {
364 out_of_order++;
365 current_res = *head;
366 *head = (*head)->next;
367 current_res->next = (*head)->next;
368 (*head)->next = current_res;
371 current_res = *head;
373 while (current_res->next && current_res->next->next) {
374 if (current_res->next->length < current_res->next->next->length) {
375 out_of_order++;
376 next_res = current_res->next;
377 current_res->next = current_res->next->next;
378 current_res = current_res->next;
379 next_res->next = current_res->next;
380 current_res->next = next_res;
381 } else
382 current_res = current_res->next;
384 } /* End of out_of_order loop */
386 return 0;
391 * do_pre_bridge_resource_split - find node of resources that are unused
392 * @head: new list head
393 * @orig_head: original list head
394 * @alignment: max node size (?)
396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397 struct pci_resource **orig_head, u32 alignment)
399 struct pci_resource *prevnode = NULL;
400 struct pci_resource *node;
401 struct pci_resource *split_node;
402 u32 rc;
403 u32 temp_dword;
404 dbg("do_pre_bridge_resource_split\n");
406 if (!(*head) || !(*orig_head))
407 return NULL;
409 rc = cpqhp_resource_sort_and_combine(head);
411 if (rc)
412 return NULL;
414 if ((*head)->base != (*orig_head)->base)
415 return NULL;
417 if ((*head)->length == (*orig_head)->length)
418 return NULL;
421 /* If we got here, there the bridge requires some of the resource, but
422 * we may be able to split some off of the front
425 node = *head;
427 if (node->length & (alignment - 1)) {
428 /* this one isn't an aligned length, so we'll make a new entry
429 * and split it up.
431 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
433 if (!split_node)
434 return NULL;
436 temp_dword = (node->length | (alignment-1)) + 1 - alignment;
438 split_node->base = node->base;
439 split_node->length = temp_dword;
441 node->length -= temp_dword;
442 node->base += split_node->length;
444 /* Put it in the list */
445 *head = split_node;
446 split_node->next = node;
449 if (node->length < alignment)
450 return NULL;
452 /* Now unlink it */
453 if (*head == node) {
454 *head = node->next;
455 } else {
456 prevnode = *head;
457 while (prevnode->next != node)
458 prevnode = prevnode->next;
460 prevnode->next = node->next;
462 node->next = NULL;
464 return node;
469 * do_bridge_resource_split - find one node of resources that aren't in use
470 * @head: list head
471 * @alignment: max node size (?)
473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
475 struct pci_resource *prevnode = NULL;
476 struct pci_resource *node;
477 u32 rc;
478 u32 temp_dword;
480 rc = cpqhp_resource_sort_and_combine(head);
482 if (rc)
483 return NULL;
485 node = *head;
487 while (node->next) {
488 prevnode = node;
489 node = node->next;
490 kfree(prevnode);
493 if (node->length < alignment)
494 goto error;
496 if (node->base & (alignment - 1)) {
497 /* Short circuit if adjusted size is too small */
498 temp_dword = (node->base | (alignment-1)) + 1;
499 if ((node->length - (temp_dword - node->base)) < alignment)
500 goto error;
502 node->length -= (temp_dword - node->base);
503 node->base = temp_dword;
506 if (node->length & (alignment - 1))
507 /* There's stuff in use after this node */
508 goto error;
510 return node;
511 error:
512 kfree(node);
513 return NULL;
518 * get_io_resource - find first node of given size not in ISA aliasing window.
519 * @head: list to search
520 * @size: size of node to find, must be a power of two.
522 * Description: This function sorts the resource list by size and then returns
523 * returns the first node of "size" length that is not in the ISA aliasing
524 * window. If it finds a node larger than "size" it will split it up.
526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
528 struct pci_resource *prevnode;
529 struct pci_resource *node;
530 struct pci_resource *split_node;
531 u32 temp_dword;
533 if (!(*head))
534 return NULL;
536 if (cpqhp_resource_sort_and_combine(head))
537 return NULL;
539 if (sort_by_size(head))
540 return NULL;
542 for (node = *head; node; node = node->next) {
543 if (node->length < size)
544 continue;
546 if (node->base & (size - 1)) {
547 /* this one isn't base aligned properly
548 * so we'll make a new entry and split it up
550 temp_dword = (node->base | (size-1)) + 1;
552 /* Short circuit if adjusted size is too small */
553 if ((node->length - (temp_dword - node->base)) < size)
554 continue;
556 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
558 if (!split_node)
559 return NULL;
561 split_node->base = node->base;
562 split_node->length = temp_dword - node->base;
563 node->base = temp_dword;
564 node->length -= split_node->length;
566 /* Put it in the list */
567 split_node->next = node->next;
568 node->next = split_node;
569 } /* End of non-aligned base */
571 /* Don't need to check if too small since we already did */
572 if (node->length > size) {
573 /* this one is longer than we need
574 * so we'll make a new entry and split it up
576 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
578 if (!split_node)
579 return NULL;
581 split_node->base = node->base + size;
582 split_node->length = node->length - size;
583 node->length = size;
585 /* Put it in the list */
586 split_node->next = node->next;
587 node->next = split_node;
588 } /* End of too big on top end */
590 /* For IO make sure it's not in the ISA aliasing space */
591 if (node->base & 0x300L)
592 continue;
594 /* If we got here, then it is the right size
595 * Now take it out of the list and break
597 if (*head == node) {
598 *head = node->next;
599 } else {
600 prevnode = *head;
601 while (prevnode->next != node)
602 prevnode = prevnode->next;
604 prevnode->next = node->next;
606 node->next = NULL;
607 break;
610 return node;
615 * get_max_resource - get largest node which has at least the given size.
616 * @head: the list to search the node in
617 * @size: the minimum size of the node to find
619 * Description: Gets the largest node that is at least "size" big from the
620 * list pointed to by head. It aligns the node on top and bottom
621 * to "size" alignment before returning it.
623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
625 struct pci_resource *max;
626 struct pci_resource *temp;
627 struct pci_resource *split_node;
628 u32 temp_dword;
630 if (cpqhp_resource_sort_and_combine(head))
631 return NULL;
633 if (sort_by_max_size(head))
634 return NULL;
636 for (max = *head; max; max = max->next) {
637 /* If not big enough we could probably just bail,
638 * instead we'll continue to the next.
640 if (max->length < size)
641 continue;
643 if (max->base & (size - 1)) {
644 /* this one isn't base aligned properly
645 * so we'll make a new entry and split it up
647 temp_dword = (max->base | (size-1)) + 1;
649 /* Short circuit if adjusted size is too small */
650 if ((max->length - (temp_dword - max->base)) < size)
651 continue;
653 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
655 if (!split_node)
656 return NULL;
658 split_node->base = max->base;
659 split_node->length = temp_dword - max->base;
660 max->base = temp_dword;
661 max->length -= split_node->length;
663 split_node->next = max->next;
664 max->next = split_node;
667 if ((max->base + max->length) & (size - 1)) {
668 /* this one isn't end aligned properly at the top
669 * so we'll make a new entry and split it up
671 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
673 if (!split_node)
674 return NULL;
675 temp_dword = ((max->base + max->length) & ~(size - 1));
676 split_node->base = temp_dword;
677 split_node->length = max->length + max->base
678 - split_node->base;
679 max->length -= split_node->length;
681 split_node->next = max->next;
682 max->next = split_node;
685 /* Make sure it didn't shrink too much when we aligned it */
686 if (max->length < size)
687 continue;
689 /* Now take it out of the list */
690 temp = *head;
691 if (temp == max) {
692 *head = max->next;
693 } else {
694 while (temp && temp->next != max)
695 temp = temp->next;
697 if (temp)
698 temp->next = max->next;
701 max->next = NULL;
702 break;
705 return max;
710 * get_resource - find resource of given size and split up larger ones.
711 * @head: the list to search for resources
712 * @size: the size limit to use
714 * Description: This function sorts the resource list by size and then
715 * returns the first node of "size" length. If it finds a node
716 * larger than "size" it will split it up.
718 * size must be a power of two.
720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
722 struct pci_resource *prevnode;
723 struct pci_resource *node;
724 struct pci_resource *split_node;
725 u32 temp_dword;
727 if (cpqhp_resource_sort_and_combine(head))
728 return NULL;
730 if (sort_by_size(head))
731 return NULL;
733 for (node = *head; node; node = node->next) {
734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 __func__, size, node, node->base, node->length);
736 if (node->length < size)
737 continue;
739 if (node->base & (size - 1)) {
740 dbg("%s: not aligned\n", __func__);
741 /* this one isn't base aligned properly
742 * so we'll make a new entry and split it up
744 temp_dword = (node->base | (size-1)) + 1;
746 /* Short circuit if adjusted size is too small */
747 if ((node->length - (temp_dword - node->base)) < size)
748 continue;
750 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
752 if (!split_node)
753 return NULL;
755 split_node->base = node->base;
756 split_node->length = temp_dword - node->base;
757 node->base = temp_dword;
758 node->length -= split_node->length;
760 split_node->next = node->next;
761 node->next = split_node;
762 } /* End of non-aligned base */
764 /* Don't need to check if too small since we already did */
765 if (node->length > size) {
766 dbg("%s: too big\n", __func__);
767 /* this one is longer than we need
768 * so we'll make a new entry and split it up
770 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
772 if (!split_node)
773 return NULL;
775 split_node->base = node->base + size;
776 split_node->length = node->length - size;
777 node->length = size;
779 /* Put it in the list */
780 split_node->next = node->next;
781 node->next = split_node;
782 } /* End of too big on top end */
784 dbg("%s: got one!!!\n", __func__);
785 /* If we got here, then it is the right size
786 * Now take it out of the list */
787 if (*head == node) {
788 *head = node->next;
789 } else {
790 prevnode = *head;
791 while (prevnode->next != node)
792 prevnode = prevnode->next;
794 prevnode->next = node->next;
796 node->next = NULL;
797 break;
799 return node;
804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805 * @head: the list to sort and clean up
807 * Description: Sorts all of the nodes in the list in ascending order by
808 * their base addresses. Also does garbage collection by
809 * combining adjacent nodes.
811 * Returns %0 if success.
813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
815 struct pci_resource *node1;
816 struct pci_resource *node2;
817 int out_of_order = 1;
819 dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
821 if (!(*head))
822 return 1;
824 dbg("*head->next = %p\n", (*head)->next);
826 if (!(*head)->next)
827 return 0; /* only one item on the list, already sorted! */
829 dbg("*head->base = 0x%x\n", (*head)->base);
830 dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831 while (out_of_order) {
832 out_of_order = 0;
834 /* Special case for swapping list head */
835 if (((*head)->next) &&
836 ((*head)->base > (*head)->next->base)) {
837 node1 = *head;
838 (*head) = (*head)->next;
839 node1->next = (*head)->next;
840 (*head)->next = node1;
841 out_of_order++;
844 node1 = (*head);
846 while (node1->next && node1->next->next) {
847 if (node1->next->base > node1->next->next->base) {
848 out_of_order++;
849 node2 = node1->next;
850 node1->next = node1->next->next;
851 node1 = node1->next;
852 node2->next = node1->next;
853 node1->next = node2;
854 } else
855 node1 = node1->next;
857 } /* End of out_of_order loop */
859 node1 = *head;
861 while (node1 && node1->next) {
862 if ((node1->base + node1->length) == node1->next->base) {
863 /* Combine */
864 dbg("8..\n");
865 node1->length += node1->next->length;
866 node2 = node1->next;
867 node1->next = node1->next->next;
868 kfree(node2);
869 } else
870 node1 = node1->next;
873 return 0;
877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
879 struct controller *ctrl = data;
880 u8 schedule_flag = 0;
881 u8 reset;
882 u16 misc;
883 u32 Diff;
884 u32 temp_dword;
887 misc = readw(ctrl->hpc_reg + MISC);
889 * Check to see if it was our interrupt
891 if (!(misc & 0x000C))
892 return IRQ_NONE;
894 if (misc & 0x0004) {
896 * Serial Output interrupt Pending
899 /* Clear the interrupt */
900 misc |= 0x0004;
901 writew(misc, ctrl->hpc_reg + MISC);
903 /* Read to clear posted writes */
904 misc = readw(ctrl->hpc_reg + MISC);
906 dbg("%s - waking up\n", __func__);
907 wake_up_interruptible(&ctrl->queue);
910 if (misc & 0x0008) {
911 /* General-interrupt-input interrupt Pending */
912 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
914 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
916 /* Clear the interrupt */
917 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
919 /* Read it back to clear any posted writes */
920 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
922 if (!Diff)
923 /* Clear all interrupts */
924 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
926 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
927 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
928 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
931 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
932 if (reset & 0x40) {
933 /* Bus reset has completed */
934 reset &= 0xCF;
935 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
936 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
937 wake_up_interruptible(&ctrl->queue);
940 if (schedule_flag) {
941 wake_up_process(cpqhp_event_thread);
942 dbg("Waking even thread");
944 return IRQ_HANDLED;
949 * cpqhp_slot_create - Creates a node and adds it to the proper bus.
950 * @busnumber: bus where new node is to be located
952 * Returns pointer to the new node or %NULL if unsuccessful.
954 struct pci_func *cpqhp_slot_create(u8 busnumber)
956 struct pci_func *new_slot;
957 struct pci_func *next;
959 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
960 if (new_slot == NULL)
961 return new_slot;
963 new_slot->next = NULL;
964 new_slot->configured = 1;
966 if (cpqhp_slot_list[busnumber] == NULL) {
967 cpqhp_slot_list[busnumber] = new_slot;
968 } else {
969 next = cpqhp_slot_list[busnumber];
970 while (next->next != NULL)
971 next = next->next;
972 next->next = new_slot;
974 return new_slot;
979 * slot_remove - Removes a node from the linked list of slots.
980 * @old_slot: slot to remove
982 * Returns %0 if successful, !0 otherwise.
984 static int slot_remove(struct pci_func *old_slot)
986 struct pci_func *next;
988 if (old_slot == NULL)
989 return 1;
991 next = cpqhp_slot_list[old_slot->bus];
992 if (next == NULL)
993 return 1;
995 if (next == old_slot) {
996 cpqhp_slot_list[old_slot->bus] = old_slot->next;
997 cpqhp_destroy_board_resources(old_slot);
998 kfree(old_slot);
999 return 0;
1002 while ((next->next != old_slot) && (next->next != NULL))
1003 next = next->next;
1005 if (next->next == old_slot) {
1006 next->next = old_slot->next;
1007 cpqhp_destroy_board_resources(old_slot);
1008 kfree(old_slot);
1009 return 0;
1010 } else
1011 return 2;
1016 * bridge_slot_remove - Removes a node from the linked list of slots.
1017 * @bridge: bridge to remove
1019 * Returns %0 if successful, !0 otherwise.
1021 static int bridge_slot_remove(struct pci_func *bridge)
1023 u8 subordinateBus, secondaryBus;
1024 u8 tempBus;
1025 struct pci_func *next;
1027 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1028 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1030 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1031 next = cpqhp_slot_list[tempBus];
1033 while (!slot_remove(next))
1034 next = cpqhp_slot_list[tempBus];
1037 next = cpqhp_slot_list[bridge->bus];
1039 if (next == NULL)
1040 return 1;
1042 if (next == bridge) {
1043 cpqhp_slot_list[bridge->bus] = bridge->next;
1044 goto out;
1047 while ((next->next != bridge) && (next->next != NULL))
1048 next = next->next;
1050 if (next->next != bridge)
1051 return 2;
1052 next->next = bridge->next;
1053 out:
1054 kfree(bridge);
1055 return 0;
1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1061 * @bus: bus to find
1062 * @device: device to find
1063 * @index: is %0 for first function found, %1 for the second...
1065 * Returns pointer to the node if successful, %NULL otherwise.
1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1069 int found = -1;
1070 struct pci_func *func;
1072 func = cpqhp_slot_list[bus];
1074 if ((func == NULL) || ((func->device == device) && (index == 0)))
1075 return func;
1077 if (func->device == device)
1078 found++;
1080 while (func->next != NULL) {
1081 func = func->next;
1083 if (func->device == device)
1084 found++;
1086 if (found == index)
1087 return func;
1090 return NULL;
1094 /* DJZ: I don't think is_bridge will work as is.
1095 * FIXME */
1096 static int is_bridge(struct pci_func *func)
1098 /* Check the header type */
1099 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1100 return 1;
1101 else
1102 return 0;
1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1108 * @ctrl: controller to change frequency/mode for.
1109 * @adapter_speed: the speed of the adapter we want to match.
1110 * @hp_slot: the slot number where the adapter is installed.
1112 * Returns %0 if we successfully change frequency and/or mode to match the
1113 * adapter speed.
1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1117 struct slot *slot;
1118 struct pci_bus *bus = ctrl->pci_bus;
1119 u8 reg;
1120 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1121 u16 reg16;
1122 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1124 if (bus->cur_bus_speed == adapter_speed)
1125 return 0;
1127 /* We don't allow freq/mode changes if we find another adapter running
1128 * in another slot on this controller
1130 for (slot = ctrl->slot; slot; slot = slot->next) {
1131 if (slot->device == (hp_slot + ctrl->slot_device_offset))
1132 continue;
1133 if (get_presence_status(ctrl, slot) == 0)
1134 continue;
1135 /* If another adapter is running on the same segment but at a
1136 * lower speed/mode, we allow the new adapter to function at
1137 * this rate if supported
1139 if (bus->cur_bus_speed < adapter_speed)
1140 return 0;
1142 return 1;
1145 /* If the controller doesn't support freq/mode changes and the
1146 * controller is running at a higher mode, we bail
1148 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1149 return 1;
1151 /* But we allow the adapter to run at a lower rate if possible */
1152 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1153 return 0;
1155 /* We try to set the max speed supported by both the adapter and
1156 * controller
1158 if (bus->max_bus_speed < adapter_speed) {
1159 if (bus->cur_bus_speed == bus->max_bus_speed)
1160 return 0;
1161 adapter_speed = bus->max_bus_speed;
1164 writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1165 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1167 set_SOGO(ctrl);
1168 wait_for_ctrl_irq(ctrl);
1170 if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1171 reg = 0xF5;
1172 else
1173 reg = 0xF4;
1174 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1176 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1177 reg16 &= ~0x000F;
1178 switch (adapter_speed) {
1179 case(PCI_SPEED_133MHz_PCIX):
1180 reg = 0x75;
1181 reg16 |= 0xB;
1182 break;
1183 case(PCI_SPEED_100MHz_PCIX):
1184 reg = 0x74;
1185 reg16 |= 0xA;
1186 break;
1187 case(PCI_SPEED_66MHz_PCIX):
1188 reg = 0x73;
1189 reg16 |= 0x9;
1190 break;
1191 case(PCI_SPEED_66MHz):
1192 reg = 0x73;
1193 reg16 |= 0x1;
1194 break;
1195 default: /* 33MHz PCI 2.2 */
1196 reg = 0x71;
1197 break;
1200 reg16 |= 0xB << 12;
1201 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1203 mdelay(5);
1205 /* Reenable interrupts */
1206 writel(0, ctrl->hpc_reg + INT_MASK);
1208 pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1210 /* Restart state machine */
1211 reg = ~0xF;
1212 pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1213 pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1215 /* Only if mode change...*/
1216 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1217 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1218 set_SOGO(ctrl);
1220 wait_for_ctrl_irq(ctrl);
1221 mdelay(1100);
1223 /* Restore LED/Slot state */
1224 writel(leds, ctrl->hpc_reg + LED_CONTROL);
1225 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1227 set_SOGO(ctrl);
1228 wait_for_ctrl_irq(ctrl);
1230 bus->cur_bus_speed = adapter_speed;
1231 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1233 info("Successfully changed frequency/mode for adapter in slot %d\n",
1234 slot->number);
1235 return 0;
1238 /* the following routines constitute the bulk of the
1239 * hotplug controller logic
1244 * board_replaced - Called after a board has been replaced in the system.
1245 * @func: PCI device/function information
1246 * @ctrl: hotplug controller
1248 * This is only used if we don't have resources for hot add.
1249 * Turns power on for the board.
1250 * Checks to see if board is the same.
1251 * If board is same, reconfigures it.
1252 * If board isn't same, turns it back off.
1254 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1256 struct pci_bus *bus = ctrl->pci_bus;
1257 u8 hp_slot;
1258 u8 temp_byte;
1259 u8 adapter_speed;
1260 u32 rc = 0;
1262 hp_slot = func->device - ctrl->slot_device_offset;
1265 * The switch is open.
1267 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1268 rc = INTERLOCK_OPEN;
1270 * The board is already on
1272 else if (is_slot_enabled(ctrl, hp_slot))
1273 rc = CARD_FUNCTIONING;
1274 else {
1275 mutex_lock(&ctrl->crit_sect);
1277 /* turn on board without attaching to the bus */
1278 enable_slot_power(ctrl, hp_slot);
1280 set_SOGO(ctrl);
1282 /* Wait for SOBS to be unset */
1283 wait_for_ctrl_irq(ctrl);
1285 /* Change bits in slot power register to force another shift out
1286 * NOTE: this is to work around the timer bug */
1287 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1288 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1289 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1291 set_SOGO(ctrl);
1293 /* Wait for SOBS to be unset */
1294 wait_for_ctrl_irq(ctrl);
1296 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1297 if (bus->cur_bus_speed != adapter_speed)
1298 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1299 rc = WRONG_BUS_FREQUENCY;
1301 /* turn off board without attaching to the bus */
1302 disable_slot_power(ctrl, hp_slot);
1304 set_SOGO(ctrl);
1306 /* Wait for SOBS to be unset */
1307 wait_for_ctrl_irq(ctrl);
1309 mutex_unlock(&ctrl->crit_sect);
1311 if (rc)
1312 return rc;
1314 mutex_lock(&ctrl->crit_sect);
1316 slot_enable(ctrl, hp_slot);
1317 green_LED_blink(ctrl, hp_slot);
1319 amber_LED_off(ctrl, hp_slot);
1321 set_SOGO(ctrl);
1323 /* Wait for SOBS to be unset */
1324 wait_for_ctrl_irq(ctrl);
1326 mutex_unlock(&ctrl->crit_sect);
1328 /* Wait for ~1 second because of hot plug spec */
1329 long_delay(1*HZ);
1331 /* Check for a power fault */
1332 if (func->status == 0xFF) {
1333 /* power fault occurred, but it was benign */
1334 rc = POWER_FAILURE;
1335 func->status = 0;
1336 } else
1337 rc = cpqhp_valid_replace(ctrl, func);
1339 if (!rc) {
1340 /* It must be the same board */
1342 rc = cpqhp_configure_board(ctrl, func);
1344 /* If configuration fails, turn it off
1345 * Get slot won't work for devices behind
1346 * bridges, but in this case it will always be
1347 * called for the "base" bus/dev/func of an
1348 * adapter.
1351 mutex_lock(&ctrl->crit_sect);
1353 amber_LED_on(ctrl, hp_slot);
1354 green_LED_off(ctrl, hp_slot);
1355 slot_disable(ctrl, hp_slot);
1357 set_SOGO(ctrl);
1359 /* Wait for SOBS to be unset */
1360 wait_for_ctrl_irq(ctrl);
1362 mutex_unlock(&ctrl->crit_sect);
1364 if (rc)
1365 return rc;
1366 else
1367 return 1;
1369 } else {
1370 /* Something is wrong
1372 * Get slot won't work for devices behind bridges, but
1373 * in this case it will always be called for the "base"
1374 * bus/dev/func of an adapter.
1377 mutex_lock(&ctrl->crit_sect);
1379 amber_LED_on(ctrl, hp_slot);
1380 green_LED_off(ctrl, hp_slot);
1381 slot_disable(ctrl, hp_slot);
1383 set_SOGO(ctrl);
1385 /* Wait for SOBS to be unset */
1386 wait_for_ctrl_irq(ctrl);
1388 mutex_unlock(&ctrl->crit_sect);
1392 return rc;
1398 * board_added - Called after a board has been added to the system.
1399 * @func: PCI device/function info
1400 * @ctrl: hotplug controller
1402 * Turns power on for the board.
1403 * Configures board.
1405 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1407 u8 hp_slot;
1408 u8 temp_byte;
1409 u8 adapter_speed;
1410 int index;
1411 u32 temp_register = 0xFFFFFFFF;
1412 u32 rc = 0;
1413 struct pci_func *new_slot = NULL;
1414 struct pci_bus *bus = ctrl->pci_bus;
1415 struct slot *p_slot;
1416 struct resource_lists res_lists;
1418 hp_slot = func->device - ctrl->slot_device_offset;
1419 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1420 __func__, func->device, ctrl->slot_device_offset, hp_slot);
1422 mutex_lock(&ctrl->crit_sect);
1424 /* turn on board without attaching to the bus */
1425 enable_slot_power(ctrl, hp_slot);
1427 set_SOGO(ctrl);
1429 /* Wait for SOBS to be unset */
1430 wait_for_ctrl_irq(ctrl);
1432 /* Change bits in slot power register to force another shift out
1433 * NOTE: this is to work around the timer bug
1435 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1436 writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1437 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1439 set_SOGO(ctrl);
1441 /* Wait for SOBS to be unset */
1442 wait_for_ctrl_irq(ctrl);
1444 adapter_speed = get_adapter_speed(ctrl, hp_slot);
1445 if (bus->cur_bus_speed != adapter_speed)
1446 if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1447 rc = WRONG_BUS_FREQUENCY;
1449 /* turn off board without attaching to the bus */
1450 disable_slot_power(ctrl, hp_slot);
1452 set_SOGO(ctrl);
1454 /* Wait for SOBS to be unset */
1455 wait_for_ctrl_irq(ctrl);
1457 mutex_unlock(&ctrl->crit_sect);
1459 if (rc)
1460 return rc;
1462 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1464 /* turn on board and blink green LED */
1466 dbg("%s: before down\n", __func__);
1467 mutex_lock(&ctrl->crit_sect);
1468 dbg("%s: after down\n", __func__);
1470 dbg("%s: before slot_enable\n", __func__);
1471 slot_enable(ctrl, hp_slot);
1473 dbg("%s: before green_LED_blink\n", __func__);
1474 green_LED_blink(ctrl, hp_slot);
1476 dbg("%s: before amber_LED_blink\n", __func__);
1477 amber_LED_off(ctrl, hp_slot);
1479 dbg("%s: before set_SOGO\n", __func__);
1480 set_SOGO(ctrl);
1482 /* Wait for SOBS to be unset */
1483 dbg("%s: before wait_for_ctrl_irq\n", __func__);
1484 wait_for_ctrl_irq(ctrl);
1485 dbg("%s: after wait_for_ctrl_irq\n", __func__);
1487 dbg("%s: before up\n", __func__);
1488 mutex_unlock(&ctrl->crit_sect);
1489 dbg("%s: after up\n", __func__);
1491 /* Wait for ~1 second because of hot plug spec */
1492 dbg("%s: before long_delay\n", __func__);
1493 long_delay(1*HZ);
1494 dbg("%s: after long_delay\n", __func__);
1496 dbg("%s: func status = %x\n", __func__, func->status);
1497 /* Check for a power fault */
1498 if (func->status == 0xFF) {
1499 /* power fault occurred, but it was benign */
1500 temp_register = 0xFFFFFFFF;
1501 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1502 rc = POWER_FAILURE;
1503 func->status = 0;
1504 } else {
1505 /* Get vendor/device ID u32 */
1506 ctrl->pci_bus->number = func->bus;
1507 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1508 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1509 dbg("%s: temp_register is %x\n", __func__, temp_register);
1511 if (rc != 0) {
1512 /* Something's wrong here */
1513 temp_register = 0xFFFFFFFF;
1514 dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1516 /* Preset return code. It will be changed later if things go okay. */
1517 rc = NO_ADAPTER_PRESENT;
1520 /* All F's is an empty slot or an invalid board */
1521 if (temp_register != 0xFFFFFFFF) {
1522 res_lists.io_head = ctrl->io_head;
1523 res_lists.mem_head = ctrl->mem_head;
1524 res_lists.p_mem_head = ctrl->p_mem_head;
1525 res_lists.bus_head = ctrl->bus_head;
1526 res_lists.irqs = NULL;
1528 rc = configure_new_device(ctrl, func, 0, &res_lists);
1530 dbg("%s: back from configure_new_device\n", __func__);
1531 ctrl->io_head = res_lists.io_head;
1532 ctrl->mem_head = res_lists.mem_head;
1533 ctrl->p_mem_head = res_lists.p_mem_head;
1534 ctrl->bus_head = res_lists.bus_head;
1536 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1537 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1538 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1539 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1541 if (rc) {
1542 mutex_lock(&ctrl->crit_sect);
1544 amber_LED_on(ctrl, hp_slot);
1545 green_LED_off(ctrl, hp_slot);
1546 slot_disable(ctrl, hp_slot);
1548 set_SOGO(ctrl);
1550 /* Wait for SOBS to be unset */
1551 wait_for_ctrl_irq(ctrl);
1553 mutex_unlock(&ctrl->crit_sect);
1554 return rc;
1555 } else {
1556 cpqhp_save_slot_config(ctrl, func);
1560 func->status = 0;
1561 func->switch_save = 0x10;
1562 func->is_a_board = 0x01;
1564 /* next, we will instantiate the linux pci_dev structures (with
1565 * appropriate driver notification, if already present) */
1566 dbg("%s: configure linux pci_dev structure\n", __func__);
1567 index = 0;
1568 do {
1569 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1570 if (new_slot && !new_slot->pci_dev)
1571 cpqhp_configure_device(ctrl, new_slot);
1572 } while (new_slot);
1574 mutex_lock(&ctrl->crit_sect);
1576 green_LED_on(ctrl, hp_slot);
1578 set_SOGO(ctrl);
1580 /* Wait for SOBS to be unset */
1581 wait_for_ctrl_irq(ctrl);
1583 mutex_unlock(&ctrl->crit_sect);
1584 } else {
1585 mutex_lock(&ctrl->crit_sect);
1587 amber_LED_on(ctrl, hp_slot);
1588 green_LED_off(ctrl, hp_slot);
1589 slot_disable(ctrl, hp_slot);
1591 set_SOGO(ctrl);
1593 /* Wait for SOBS to be unset */
1594 wait_for_ctrl_irq(ctrl);
1596 mutex_unlock(&ctrl->crit_sect);
1598 return rc;
1600 return 0;
1605 * remove_board - Turns off slot and LEDs
1606 * @func: PCI device/function info
1607 * @replace_flag: whether replacing or adding a new device
1608 * @ctrl: target controller
1610 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1612 int index;
1613 u8 skip = 0;
1614 u8 device;
1615 u8 hp_slot;
1616 u8 temp_byte;
1617 u32 rc;
1618 struct resource_lists res_lists;
1619 struct pci_func *temp_func;
1621 if (cpqhp_unconfigure_device(func))
1622 return 1;
1624 device = func->device;
1626 hp_slot = func->device - ctrl->slot_device_offset;
1627 dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1629 /* When we get here, it is safe to change base address registers.
1630 * We will attempt to save the base address register lengths */
1631 if (replace_flag || !ctrl->add_support)
1632 rc = cpqhp_save_base_addr_length(ctrl, func);
1633 else if (!func->bus_head && !func->mem_head &&
1634 !func->p_mem_head && !func->io_head) {
1635 /* Here we check to see if we've saved any of the board's
1636 * resources already. If so, we'll skip the attempt to
1637 * determine what's being used. */
1638 index = 0;
1639 temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1640 while (temp_func) {
1641 if (temp_func->bus_head || temp_func->mem_head
1642 || temp_func->p_mem_head || temp_func->io_head) {
1643 skip = 1;
1644 break;
1646 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1649 if (!skip)
1650 rc = cpqhp_save_used_resources(ctrl, func);
1652 /* Change status to shutdown */
1653 if (func->is_a_board)
1654 func->status = 0x01;
1655 func->configured = 0;
1657 mutex_lock(&ctrl->crit_sect);
1659 green_LED_off(ctrl, hp_slot);
1660 slot_disable(ctrl, hp_slot);
1662 set_SOGO(ctrl);
1664 /* turn off SERR for slot */
1665 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1666 temp_byte &= ~(0x01 << hp_slot);
1667 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1669 /* Wait for SOBS to be unset */
1670 wait_for_ctrl_irq(ctrl);
1672 mutex_unlock(&ctrl->crit_sect);
1674 if (!replace_flag && ctrl->add_support) {
1675 while (func) {
1676 res_lists.io_head = ctrl->io_head;
1677 res_lists.mem_head = ctrl->mem_head;
1678 res_lists.p_mem_head = ctrl->p_mem_head;
1679 res_lists.bus_head = ctrl->bus_head;
1681 cpqhp_return_board_resources(func, &res_lists);
1683 ctrl->io_head = res_lists.io_head;
1684 ctrl->mem_head = res_lists.mem_head;
1685 ctrl->p_mem_head = res_lists.p_mem_head;
1686 ctrl->bus_head = res_lists.bus_head;
1688 cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1689 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1690 cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1691 cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1693 if (is_bridge(func)) {
1694 bridge_slot_remove(func);
1695 } else
1696 slot_remove(func);
1698 func = cpqhp_slot_find(ctrl->bus, device, 0);
1701 /* Setup slot structure with entry for empty slot */
1702 func = cpqhp_slot_create(ctrl->bus);
1704 if (func == NULL)
1705 return 1;
1707 func->bus = ctrl->bus;
1708 func->device = device;
1709 func->function = 0;
1710 func->configured = 0;
1711 func->switch_save = 0x10;
1712 func->is_a_board = 0;
1713 func->p_task_event = NULL;
1716 return 0;
1719 static void pushbutton_helper_thread(struct timer_list *t)
1721 pushbutton_pending = t;
1723 wake_up_process(cpqhp_event_thread);
1727 /* this is the main worker thread */
1728 static int event_thread(void *data)
1730 struct controller *ctrl;
1732 while (1) {
1733 dbg("!!!!event_thread sleeping\n");
1734 set_current_state(TASK_INTERRUPTIBLE);
1735 schedule();
1737 if (kthread_should_stop())
1738 break;
1739 /* Do stuff here */
1740 if (pushbutton_pending)
1741 cpqhp_pushbutton_thread(pushbutton_pending);
1742 else
1743 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1744 interrupt_event_handler(ctrl);
1746 dbg("event_thread signals exit\n");
1747 return 0;
1750 int cpqhp_event_start_thread(void)
1752 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1753 if (IS_ERR(cpqhp_event_thread)) {
1754 err("Can't start up our event thread\n");
1755 return PTR_ERR(cpqhp_event_thread);
1758 return 0;
1762 void cpqhp_event_stop_thread(void)
1764 kthread_stop(cpqhp_event_thread);
1768 static void interrupt_event_handler(struct controller *ctrl)
1770 int loop = 0;
1771 int change = 1;
1772 struct pci_func *func;
1773 u8 hp_slot;
1774 struct slot *p_slot;
1776 while (change) {
1777 change = 0;
1779 for (loop = 0; loop < 10; loop++) {
1780 /* dbg("loop %d\n", loop); */
1781 if (ctrl->event_queue[loop].event_type != 0) {
1782 hp_slot = ctrl->event_queue[loop].hp_slot;
1784 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1785 if (!func)
1786 return;
1788 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1789 if (!p_slot)
1790 return;
1792 dbg("hp_slot %d, func %p, p_slot %p\n",
1793 hp_slot, func, p_slot);
1795 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1796 dbg("button pressed\n");
1797 } else if (ctrl->event_queue[loop].event_type ==
1798 INT_BUTTON_CANCEL) {
1799 dbg("button cancel\n");
1800 del_timer(&p_slot->task_event);
1802 mutex_lock(&ctrl->crit_sect);
1804 if (p_slot->state == BLINKINGOFF_STATE) {
1805 /* slot is on */
1806 dbg("turn on green LED\n");
1807 green_LED_on(ctrl, hp_slot);
1808 } else if (p_slot->state == BLINKINGON_STATE) {
1809 /* slot is off */
1810 dbg("turn off green LED\n");
1811 green_LED_off(ctrl, hp_slot);
1814 info(msg_button_cancel, p_slot->number);
1816 p_slot->state = STATIC_STATE;
1818 amber_LED_off(ctrl, hp_slot);
1820 set_SOGO(ctrl);
1822 /* Wait for SOBS to be unset */
1823 wait_for_ctrl_irq(ctrl);
1825 mutex_unlock(&ctrl->crit_sect);
1827 /*** button Released (No action on press...) */
1828 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1829 dbg("button release\n");
1831 if (is_slot_enabled(ctrl, hp_slot)) {
1832 dbg("slot is on\n");
1833 p_slot->state = BLINKINGOFF_STATE;
1834 info(msg_button_off, p_slot->number);
1835 } else {
1836 dbg("slot is off\n");
1837 p_slot->state = BLINKINGON_STATE;
1838 info(msg_button_on, p_slot->number);
1840 mutex_lock(&ctrl->crit_sect);
1842 dbg("blink green LED and turn off amber\n");
1844 amber_LED_off(ctrl, hp_slot);
1845 green_LED_blink(ctrl, hp_slot);
1847 set_SOGO(ctrl);
1849 /* Wait for SOBS to be unset */
1850 wait_for_ctrl_irq(ctrl);
1852 mutex_unlock(&ctrl->crit_sect);
1853 timer_setup(&p_slot->task_event,
1854 pushbutton_helper_thread,
1856 p_slot->hp_slot = hp_slot;
1857 p_slot->ctrl = ctrl;
1858 /* p_slot->physical_slot = physical_slot; */
1859 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
1861 dbg("add_timer p_slot = %p\n", p_slot);
1862 add_timer(&p_slot->task_event);
1864 /***********POWER FAULT */
1865 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1866 dbg("power fault\n");
1869 ctrl->event_queue[loop].event_type = 0;
1871 change = 1;
1873 } /* End of FOR loop */
1879 * cpqhp_pushbutton_thread - handle pushbutton events
1880 * @slot: target slot (struct)
1882 * Scheduled procedure to handle blocking stuff for the pushbuttons.
1883 * Handles all pending events and exits.
1885 void cpqhp_pushbutton_thread(struct timer_list *t)
1887 u8 hp_slot;
1888 u8 device;
1889 struct pci_func *func;
1890 struct slot *p_slot = from_timer(p_slot, t, task_event);
1891 struct controller *ctrl = (struct controller *) p_slot->ctrl;
1893 pushbutton_pending = NULL;
1894 hp_slot = p_slot->hp_slot;
1896 device = p_slot->device;
1898 if (is_slot_enabled(ctrl, hp_slot)) {
1899 p_slot->state = POWEROFF_STATE;
1900 /* power Down board */
1901 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1902 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1903 if (!func) {
1904 dbg("Error! func NULL in %s\n", __func__);
1905 return;
1908 if (cpqhp_process_SS(ctrl, func) != 0) {
1909 amber_LED_on(ctrl, hp_slot);
1910 green_LED_on(ctrl, hp_slot);
1912 set_SOGO(ctrl);
1914 /* Wait for SOBS to be unset */
1915 wait_for_ctrl_irq(ctrl);
1918 p_slot->state = STATIC_STATE;
1919 } else {
1920 p_slot->state = POWERON_STATE;
1921 /* slot is off */
1923 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1924 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1925 if (!func) {
1926 dbg("Error! func NULL in %s\n", __func__);
1927 return;
1930 if (ctrl != NULL) {
1931 if (cpqhp_process_SI(ctrl, func) != 0) {
1932 amber_LED_on(ctrl, hp_slot);
1933 green_LED_off(ctrl, hp_slot);
1935 set_SOGO(ctrl);
1937 /* Wait for SOBS to be unset */
1938 wait_for_ctrl_irq(ctrl);
1942 p_slot->state = STATIC_STATE;
1947 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1949 u8 device, hp_slot;
1950 u16 temp_word;
1951 u32 tempdword;
1952 int rc;
1953 struct slot *p_slot;
1954 int physical_slot = 0;
1956 tempdword = 0;
1958 device = func->device;
1959 hp_slot = device - ctrl->slot_device_offset;
1960 p_slot = cpqhp_find_slot(ctrl, device);
1961 if (p_slot)
1962 physical_slot = p_slot->number;
1964 /* Check to see if the interlock is closed */
1965 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1967 if (tempdword & (0x01 << hp_slot))
1968 return 1;
1970 if (func->is_a_board) {
1971 rc = board_replaced(func, ctrl);
1972 } else {
1973 /* add board */
1974 slot_remove(func);
1976 func = cpqhp_slot_create(ctrl->bus);
1977 if (func == NULL)
1978 return 1;
1980 func->bus = ctrl->bus;
1981 func->device = device;
1982 func->function = 0;
1983 func->configured = 0;
1984 func->is_a_board = 1;
1986 /* We have to save the presence info for these slots */
1987 temp_word = ctrl->ctrl_int_comp >> 16;
1988 func->presence_save = (temp_word >> hp_slot) & 0x01;
1989 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1991 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1992 func->switch_save = 0;
1993 } else {
1994 func->switch_save = 0x10;
1997 rc = board_added(func, ctrl);
1998 if (rc) {
1999 if (is_bridge(func)) {
2000 bridge_slot_remove(func);
2001 } else
2002 slot_remove(func);
2004 /* Setup slot structure with entry for empty slot */
2005 func = cpqhp_slot_create(ctrl->bus);
2007 if (func == NULL)
2008 return 1;
2010 func->bus = ctrl->bus;
2011 func->device = device;
2012 func->function = 0;
2013 func->configured = 0;
2014 func->is_a_board = 0;
2016 /* We have to save the presence info for these slots */
2017 temp_word = ctrl->ctrl_int_comp >> 16;
2018 func->presence_save = (temp_word >> hp_slot) & 0x01;
2019 func->presence_save |=
2020 (temp_word >> (hp_slot + 7)) & 0x02;
2022 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2023 func->switch_save = 0;
2024 } else {
2025 func->switch_save = 0x10;
2030 if (rc)
2031 dbg("%s: rc = %d\n", __func__, rc);
2033 return rc;
2037 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2039 u8 device, class_code, header_type, BCR;
2040 u8 index = 0;
2041 u8 replace_flag;
2042 u32 rc = 0;
2043 unsigned int devfn;
2044 struct slot *p_slot;
2045 struct pci_bus *pci_bus = ctrl->pci_bus;
2046 int physical_slot = 0;
2048 device = func->device;
2049 func = cpqhp_slot_find(ctrl->bus, device, index++);
2050 p_slot = cpqhp_find_slot(ctrl, device);
2051 if (p_slot)
2052 physical_slot = p_slot->number;
2054 /* Make sure there are no video controllers here */
2055 while (func && !rc) {
2056 pci_bus->number = func->bus;
2057 devfn = PCI_DEVFN(func->device, func->function);
2059 /* Check the Class Code */
2060 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2061 if (rc)
2062 return rc;
2064 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2065 /* Display/Video adapter (not supported) */
2066 rc = REMOVE_NOT_SUPPORTED;
2067 } else {
2068 /* See if it's a bridge */
2069 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2070 if (rc)
2071 return rc;
2073 /* If it's a bridge, check the VGA Enable bit */
2074 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2075 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2076 if (rc)
2077 return rc;
2079 /* If the VGA Enable bit is set, remove isn't
2080 * supported */
2081 if (BCR & PCI_BRIDGE_CTL_VGA)
2082 rc = REMOVE_NOT_SUPPORTED;
2086 func = cpqhp_slot_find(ctrl->bus, device, index++);
2089 func = cpqhp_slot_find(ctrl->bus, device, 0);
2090 if ((func != NULL) && !rc) {
2091 /* FIXME: Replace flag should be passed into process_SS */
2092 replace_flag = !(ctrl->add_support);
2093 rc = remove_board(func, replace_flag, ctrl);
2094 } else if (!rc) {
2095 rc = 1;
2098 return rc;
2102 * switch_leds - switch the leds, go from one site to the other.
2103 * @ctrl: controller to use
2104 * @num_of_slots: number of slots to use
2105 * @work_LED: LED control value
2106 * @direction: 1 to start from the left side, 0 to start right.
2108 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2109 u32 *work_LED, const int direction)
2111 int loop;
2113 for (loop = 0; loop < num_of_slots; loop++) {
2114 if (direction)
2115 *work_LED = *work_LED >> 1;
2116 else
2117 *work_LED = *work_LED << 1;
2118 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2120 set_SOGO(ctrl);
2122 /* Wait for SOGO interrupt */
2123 wait_for_ctrl_irq(ctrl);
2125 /* Get ready for next iteration */
2126 long_delay((2*HZ)/10);
2131 * cpqhp_hardware_test - runs hardware tests
2132 * @ctrl: target controller
2133 * @test_num: the number written to the "test" file in sysfs.
2135 * For hot plug ctrl folks to play with.
2137 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2139 u32 save_LED;
2140 u32 work_LED;
2141 int loop;
2142 int num_of_slots;
2144 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2146 switch (test_num) {
2147 case 1:
2148 /* Do stuff here! */
2150 /* Do that funky LED thing */
2151 /* so we can restore them later */
2152 save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2153 work_LED = 0x01010101;
2154 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2155 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2156 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2157 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2159 work_LED = 0x01010000;
2160 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2161 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2162 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2163 work_LED = 0x00000101;
2164 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2165 switch_leds(ctrl, num_of_slots, &work_LED, 0);
2166 switch_leds(ctrl, num_of_slots, &work_LED, 1);
2168 work_LED = 0x01010000;
2169 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2170 for (loop = 0; loop < num_of_slots; loop++) {
2171 set_SOGO(ctrl);
2173 /* Wait for SOGO interrupt */
2174 wait_for_ctrl_irq(ctrl);
2176 /* Get ready for next iteration */
2177 long_delay((3*HZ)/10);
2178 work_LED = work_LED >> 16;
2179 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2181 set_SOGO(ctrl);
2183 /* Wait for SOGO interrupt */
2184 wait_for_ctrl_irq(ctrl);
2186 /* Get ready for next iteration */
2187 long_delay((3*HZ)/10);
2188 work_LED = work_LED << 16;
2189 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2190 work_LED = work_LED << 1;
2191 writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2194 /* put it back the way it was */
2195 writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2197 set_SOGO(ctrl);
2199 /* Wait for SOBS to be unset */
2200 wait_for_ctrl_irq(ctrl);
2201 break;
2202 case 2:
2203 /* Do other stuff here! */
2204 break;
2205 case 3:
2206 /* and more... */
2207 break;
2209 return 0;
2214 * configure_new_device - Configures the PCI header information of one board.
2215 * @ctrl: pointer to controller structure
2216 * @func: pointer to function structure
2217 * @behind_bridge: 1 if this is a recursive call, 0 if not
2218 * @resources: pointer to set of resource lists
2220 * Returns 0 if success.
2222 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
2223 u8 behind_bridge, struct resource_lists *resources)
2225 u8 temp_byte, function, max_functions, stop_it;
2226 int rc;
2227 u32 ID;
2228 struct pci_func *new_slot;
2229 int index;
2231 new_slot = func;
2233 dbg("%s\n", __func__);
2234 /* Check for Multi-function device */
2235 ctrl->pci_bus->number = func->bus;
2236 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2237 if (rc) {
2238 dbg("%s: rc = %d\n", __func__, rc);
2239 return rc;
2242 if (temp_byte & 0x80) /* Multi-function device */
2243 max_functions = 8;
2244 else
2245 max_functions = 1;
2247 function = 0;
2249 do {
2250 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2252 if (rc) {
2253 dbg("configure_new_function failed %d\n", rc);
2254 index = 0;
2256 while (new_slot) {
2257 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2259 if (new_slot)
2260 cpqhp_return_board_resources(new_slot, resources);
2263 return rc;
2266 function++;
2268 stop_it = 0;
2270 /* The following loop skips to the next present function
2271 * and creates a board structure */
2273 while ((function < max_functions) && (!stop_it)) {
2274 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2276 if (ID == 0xFFFFFFFF) {
2277 function++;
2278 } else {
2279 /* Setup slot structure. */
2280 new_slot = cpqhp_slot_create(func->bus);
2282 if (new_slot == NULL)
2283 return 1;
2285 new_slot->bus = func->bus;
2286 new_slot->device = func->device;
2287 new_slot->function = function;
2288 new_slot->is_a_board = 1;
2289 new_slot->status = 0;
2291 stop_it++;
2295 } while (function < max_functions);
2296 dbg("returning from configure_new_device\n");
2298 return 0;
2303 * Configuration logic that involves the hotplug data structures and
2304 * their bookkeeping
2309 * configure_new_function - Configures the PCI header information of one device
2310 * @ctrl: pointer to controller structure
2311 * @func: pointer to function structure
2312 * @behind_bridge: 1 if this is a recursive call, 0 if not
2313 * @resources: pointer to set of resource lists
2315 * Calls itself recursively for bridged devices.
2316 * Returns 0 if success.
2318 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2319 u8 behind_bridge,
2320 struct resource_lists *resources)
2322 int cloop;
2323 u8 IRQ = 0;
2324 u8 temp_byte;
2325 u8 device;
2326 u8 class_code;
2327 u16 command;
2328 u16 temp_word;
2329 u32 temp_dword;
2330 u32 rc;
2331 u32 temp_register;
2332 u32 base;
2333 u32 ID;
2334 unsigned int devfn;
2335 struct pci_resource *mem_node;
2336 struct pci_resource *p_mem_node;
2337 struct pci_resource *io_node;
2338 struct pci_resource *bus_node;
2339 struct pci_resource *hold_mem_node;
2340 struct pci_resource *hold_p_mem_node;
2341 struct pci_resource *hold_IO_node;
2342 struct pci_resource *hold_bus_node;
2343 struct irq_mapping irqs;
2344 struct pci_func *new_slot;
2345 struct pci_bus *pci_bus;
2346 struct resource_lists temp_resources;
2348 pci_bus = ctrl->pci_bus;
2349 pci_bus->number = func->bus;
2350 devfn = PCI_DEVFN(func->device, func->function);
2352 /* Check for Bridge */
2353 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2354 if (rc)
2355 return rc;
2357 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2358 /* set Primary bus */
2359 dbg("set Primary bus = %d\n", func->bus);
2360 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2361 if (rc)
2362 return rc;
2364 /* find range of buses to use */
2365 dbg("find ranges of buses to use\n");
2366 bus_node = get_max_resource(&(resources->bus_head), 1);
2368 /* If we don't have any buses to allocate, we can't continue */
2369 if (!bus_node)
2370 return -ENOMEM;
2372 /* set Secondary bus */
2373 temp_byte = bus_node->base;
2374 dbg("set Secondary bus = %d\n", bus_node->base);
2375 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2376 if (rc)
2377 return rc;
2379 /* set subordinate bus */
2380 temp_byte = bus_node->base + bus_node->length - 1;
2381 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2382 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2383 if (rc)
2384 return rc;
2386 /* set subordinate Latency Timer and base Latency Timer */
2387 temp_byte = 0x40;
2388 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2389 if (rc)
2390 return rc;
2391 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2392 if (rc)
2393 return rc;
2395 /* set Cache Line size */
2396 temp_byte = 0x08;
2397 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2398 if (rc)
2399 return rc;
2401 /* Setup the IO, memory, and prefetchable windows */
2402 io_node = get_max_resource(&(resources->io_head), 0x1000);
2403 if (!io_node)
2404 return -ENOMEM;
2405 mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2406 if (!mem_node)
2407 return -ENOMEM;
2408 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2409 if (!p_mem_node)
2410 return -ENOMEM;
2411 dbg("Setup the IO, memory, and prefetchable windows\n");
2412 dbg("io_node\n");
2413 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2414 io_node->length, io_node->next);
2415 dbg("mem_node\n");
2416 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2417 mem_node->length, mem_node->next);
2418 dbg("p_mem_node\n");
2419 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2420 p_mem_node->length, p_mem_node->next);
2422 /* set up the IRQ info */
2423 if (!resources->irqs) {
2424 irqs.barber_pole = 0;
2425 irqs.interrupt[0] = 0;
2426 irqs.interrupt[1] = 0;
2427 irqs.interrupt[2] = 0;
2428 irqs.interrupt[3] = 0;
2429 irqs.valid_INT = 0;
2430 } else {
2431 irqs.barber_pole = resources->irqs->barber_pole;
2432 irqs.interrupt[0] = resources->irqs->interrupt[0];
2433 irqs.interrupt[1] = resources->irqs->interrupt[1];
2434 irqs.interrupt[2] = resources->irqs->interrupt[2];
2435 irqs.interrupt[3] = resources->irqs->interrupt[3];
2436 irqs.valid_INT = resources->irqs->valid_INT;
2439 /* set up resource lists that are now aligned on top and bottom
2440 * for anything behind the bridge. */
2441 temp_resources.bus_head = bus_node;
2442 temp_resources.io_head = io_node;
2443 temp_resources.mem_head = mem_node;
2444 temp_resources.p_mem_head = p_mem_node;
2445 temp_resources.irqs = &irqs;
2447 /* Make copies of the nodes we are going to pass down so that
2448 * if there is a problem,we can just use these to free resources
2450 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2451 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2452 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2453 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2455 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2456 kfree(hold_bus_node);
2457 kfree(hold_IO_node);
2458 kfree(hold_mem_node);
2459 kfree(hold_p_mem_node);
2461 return 1;
2464 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2466 bus_node->base += 1;
2467 bus_node->length -= 1;
2468 bus_node->next = NULL;
2470 /* If we have IO resources copy them and fill in the bridge's
2471 * IO range registers */
2472 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2473 io_node->next = NULL;
2475 /* set IO base and Limit registers */
2476 temp_byte = io_node->base >> 8;
2477 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2479 temp_byte = (io_node->base + io_node->length - 1) >> 8;
2480 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2482 /* Copy the memory resources and fill in the bridge's memory
2483 * range registers.
2485 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2486 mem_node->next = NULL;
2488 /* set Mem base and Limit registers */
2489 temp_word = mem_node->base >> 16;
2490 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2492 temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2493 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2495 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2496 p_mem_node->next = NULL;
2498 /* set Pre Mem base and Limit registers */
2499 temp_word = p_mem_node->base >> 16;
2500 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2502 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2503 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2505 /* Adjust this to compensate for extra adjustment in first loop
2507 irqs.barber_pole--;
2509 rc = 0;
2511 /* Here we actually find the devices and configure them */
2512 for (device = 0; (device <= 0x1F) && !rc; device++) {
2513 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2515 ID = 0xFFFFFFFF;
2516 pci_bus->number = hold_bus_node->base;
2517 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2518 pci_bus->number = func->bus;
2520 if (ID != 0xFFFFFFFF) { /* device present */
2521 /* Setup slot structure. */
2522 new_slot = cpqhp_slot_create(hold_bus_node->base);
2524 if (new_slot == NULL) {
2525 rc = -ENOMEM;
2526 continue;
2529 new_slot->bus = hold_bus_node->base;
2530 new_slot->device = device;
2531 new_slot->function = 0;
2532 new_slot->is_a_board = 1;
2533 new_slot->status = 0;
2535 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2536 dbg("configure_new_device rc=0x%x\n", rc);
2537 } /* End of IF (device in slot?) */
2538 } /* End of FOR loop */
2540 if (rc)
2541 goto free_and_out;
2542 /* save the interrupt routing information */
2543 if (resources->irqs) {
2544 resources->irqs->interrupt[0] = irqs.interrupt[0];
2545 resources->irqs->interrupt[1] = irqs.interrupt[1];
2546 resources->irqs->interrupt[2] = irqs.interrupt[2];
2547 resources->irqs->interrupt[3] = irqs.interrupt[3];
2548 resources->irqs->valid_INT = irqs.valid_INT;
2549 } else if (!behind_bridge) {
2550 /* We need to hook up the interrupts here */
2551 for (cloop = 0; cloop < 4; cloop++) {
2552 if (irqs.valid_INT & (0x01 << cloop)) {
2553 rc = cpqhp_set_irq(func->bus, func->device,
2554 cloop + 1, irqs.interrupt[cloop]);
2555 if (rc)
2556 goto free_and_out;
2558 } /* end of for loop */
2560 /* Return unused bus resources
2561 * First use the temporary node to store information for
2562 * the board */
2563 if (bus_node && temp_resources.bus_head) {
2564 hold_bus_node->length = bus_node->base - hold_bus_node->base;
2566 hold_bus_node->next = func->bus_head;
2567 func->bus_head = hold_bus_node;
2569 temp_byte = temp_resources.bus_head->base - 1;
2571 /* set subordinate bus */
2572 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2574 if (temp_resources.bus_head->length == 0) {
2575 kfree(temp_resources.bus_head);
2576 temp_resources.bus_head = NULL;
2577 } else {
2578 return_resource(&(resources->bus_head), temp_resources.bus_head);
2582 /* If we have IO space available and there is some left,
2583 * return the unused portion */
2584 if (hold_IO_node && temp_resources.io_head) {
2585 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2586 &hold_IO_node, 0x1000);
2588 /* Check if we were able to split something off */
2589 if (io_node) {
2590 hold_IO_node->base = io_node->base + io_node->length;
2592 temp_byte = (hold_IO_node->base) >> 8;
2593 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2595 return_resource(&(resources->io_head), io_node);
2598 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2600 /* Check if we were able to split something off */
2601 if (io_node) {
2602 /* First use the temporary node to store
2603 * information for the board */
2604 hold_IO_node->length = io_node->base - hold_IO_node->base;
2606 /* If we used any, add it to the board's list */
2607 if (hold_IO_node->length) {
2608 hold_IO_node->next = func->io_head;
2609 func->io_head = hold_IO_node;
2611 temp_byte = (io_node->base - 1) >> 8;
2612 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2614 return_resource(&(resources->io_head), io_node);
2615 } else {
2616 /* it doesn't need any IO */
2617 temp_word = 0x0000;
2618 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2620 return_resource(&(resources->io_head), io_node);
2621 kfree(hold_IO_node);
2623 } else {
2624 /* it used most of the range */
2625 hold_IO_node->next = func->io_head;
2626 func->io_head = hold_IO_node;
2628 } else if (hold_IO_node) {
2629 /* it used the whole range */
2630 hold_IO_node->next = func->io_head;
2631 func->io_head = hold_IO_node;
2633 /* If we have memory space available and there is some left,
2634 * return the unused portion */
2635 if (hold_mem_node && temp_resources.mem_head) {
2636 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
2637 &hold_mem_node, 0x100000);
2639 /* Check if we were able to split something off */
2640 if (mem_node) {
2641 hold_mem_node->base = mem_node->base + mem_node->length;
2643 temp_word = (hold_mem_node->base) >> 16;
2644 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2646 return_resource(&(resources->mem_head), mem_node);
2649 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2651 /* Check if we were able to split something off */
2652 if (mem_node) {
2653 /* First use the temporary node to store
2654 * information for the board */
2655 hold_mem_node->length = mem_node->base - hold_mem_node->base;
2657 if (hold_mem_node->length) {
2658 hold_mem_node->next = func->mem_head;
2659 func->mem_head = hold_mem_node;
2661 /* configure end address */
2662 temp_word = (mem_node->base - 1) >> 16;
2663 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2665 /* Return unused resources to the pool */
2666 return_resource(&(resources->mem_head), mem_node);
2667 } else {
2668 /* it doesn't need any Mem */
2669 temp_word = 0x0000;
2670 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2672 return_resource(&(resources->mem_head), mem_node);
2673 kfree(hold_mem_node);
2675 } else {
2676 /* it used most of the range */
2677 hold_mem_node->next = func->mem_head;
2678 func->mem_head = hold_mem_node;
2680 } else if (hold_mem_node) {
2681 /* it used the whole range */
2682 hold_mem_node->next = func->mem_head;
2683 func->mem_head = hold_mem_node;
2685 /* If we have prefetchable memory space available and there
2686 * is some left at the end, return the unused portion */
2687 if (temp_resources.p_mem_head) {
2688 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2689 &hold_p_mem_node, 0x100000);
2691 /* Check if we were able to split something off */
2692 if (p_mem_node) {
2693 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2695 temp_word = (hold_p_mem_node->base) >> 16;
2696 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2698 return_resource(&(resources->p_mem_head), p_mem_node);
2701 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2703 /* Check if we were able to split something off */
2704 if (p_mem_node) {
2705 /* First use the temporary node to store
2706 * information for the board */
2707 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2709 /* If we used any, add it to the board's list */
2710 if (hold_p_mem_node->length) {
2711 hold_p_mem_node->next = func->p_mem_head;
2712 func->p_mem_head = hold_p_mem_node;
2714 temp_word = (p_mem_node->base - 1) >> 16;
2715 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2717 return_resource(&(resources->p_mem_head), p_mem_node);
2718 } else {
2719 /* it doesn't need any PMem */
2720 temp_word = 0x0000;
2721 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2723 return_resource(&(resources->p_mem_head), p_mem_node);
2724 kfree(hold_p_mem_node);
2726 } else {
2727 /* it used the most of the range */
2728 hold_p_mem_node->next = func->p_mem_head;
2729 func->p_mem_head = hold_p_mem_node;
2731 } else if (hold_p_mem_node) {
2732 /* it used the whole range */
2733 hold_p_mem_node->next = func->p_mem_head;
2734 func->p_mem_head = hold_p_mem_node;
2736 /* We should be configuring an IRQ and the bridge's base address
2737 * registers if it needs them. Although we have never seen such
2738 * a device */
2740 /* enable card */
2741 command = 0x0157; /* = PCI_COMMAND_IO |
2742 * PCI_COMMAND_MEMORY |
2743 * PCI_COMMAND_MASTER |
2744 * PCI_COMMAND_INVALIDATE |
2745 * PCI_COMMAND_PARITY |
2746 * PCI_COMMAND_SERR */
2747 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2749 /* set Bridge Control Register */
2750 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
2751 * PCI_BRIDGE_CTL_SERR |
2752 * PCI_BRIDGE_CTL_NO_ISA */
2753 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2754 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2755 /* Standard device */
2756 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2758 if (class_code == PCI_BASE_CLASS_DISPLAY) {
2759 /* Display (video) adapter (not supported) */
2760 return DEVICE_TYPE_NOT_SUPPORTED;
2762 /* Figure out IO and memory needs */
2763 for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2764 temp_register = 0xFFFFFFFF;
2766 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2767 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2769 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2770 dbg("CND: base = 0x%x\n", temp_register);
2772 if (temp_register) { /* If this register is implemented */
2773 if ((temp_register & 0x03L) == 0x01) {
2774 /* Map IO */
2776 /* set base = amount of IO space */
2777 base = temp_register & 0xFFFFFFFC;
2778 base = ~base + 1;
2780 dbg("CND: length = 0x%x\n", base);
2781 io_node = get_io_resource(&(resources->io_head), base);
2782 if (!io_node)
2783 return -ENOMEM;
2784 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2785 io_node->base, io_node->length, io_node->next);
2786 dbg("func (%p) io_head (%p)\n", func, func->io_head);
2788 /* allocate the resource to the board */
2789 base = io_node->base;
2790 io_node->next = func->io_head;
2791 func->io_head = io_node;
2792 } else if ((temp_register & 0x0BL) == 0x08) {
2793 /* Map prefetchable memory */
2794 base = temp_register & 0xFFFFFFF0;
2795 base = ~base + 1;
2797 dbg("CND: length = 0x%x\n", base);
2798 p_mem_node = get_resource(&(resources->p_mem_head), base);
2800 /* allocate the resource to the board */
2801 if (p_mem_node) {
2802 base = p_mem_node->base;
2804 p_mem_node->next = func->p_mem_head;
2805 func->p_mem_head = p_mem_node;
2806 } else
2807 return -ENOMEM;
2808 } else if ((temp_register & 0x0BL) == 0x00) {
2809 /* Map memory */
2810 base = temp_register & 0xFFFFFFF0;
2811 base = ~base + 1;
2813 dbg("CND: length = 0x%x\n", base);
2814 mem_node = get_resource(&(resources->mem_head), base);
2816 /* allocate the resource to the board */
2817 if (mem_node) {
2818 base = mem_node->base;
2820 mem_node->next = func->mem_head;
2821 func->mem_head = mem_node;
2822 } else
2823 return -ENOMEM;
2824 } else {
2825 /* Reserved bits or requesting space below 1M */
2826 return NOT_ENOUGH_RESOURCES;
2829 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2831 /* Check for 64-bit base */
2832 if ((temp_register & 0x07L) == 0x04) {
2833 cloop += 4;
2835 /* Upper 32 bits of address always zero
2836 * on today's systems */
2837 /* FIXME this is probably not true on
2838 * Alpha and ia64??? */
2839 base = 0;
2840 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2843 } /* End of base register loop */
2844 if (cpqhp_legacy_mode) {
2845 /* Figure out which interrupt pin this function uses */
2846 rc = pci_bus_read_config_byte(pci_bus, devfn,
2847 PCI_INTERRUPT_PIN, &temp_byte);
2849 /* If this function needs an interrupt and we are behind
2850 * a bridge and the pin is tied to something that's
2851 * already mapped, set this one the same */
2852 if (temp_byte && resources->irqs &&
2853 (resources->irqs->valid_INT &
2854 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2855 /* We have to share with something already set up */
2856 IRQ = resources->irqs->interrupt[(temp_byte +
2857 resources->irqs->barber_pole - 1) & 0x03];
2858 } else {
2859 /* Program IRQ based on card type */
2860 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2862 if (class_code == PCI_BASE_CLASS_STORAGE)
2863 IRQ = cpqhp_disk_irq;
2864 else
2865 IRQ = cpqhp_nic_irq;
2868 /* IRQ Line */
2869 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2872 if (!behind_bridge) {
2873 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2874 if (rc)
2875 return 1;
2876 } else {
2877 /* TBD - this code may also belong in the other clause
2878 * of this If statement */
2879 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2880 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2883 /* Latency Timer */
2884 temp_byte = 0x40;
2885 rc = pci_bus_write_config_byte(pci_bus, devfn,
2886 PCI_LATENCY_TIMER, temp_byte);
2888 /* Cache Line size */
2889 temp_byte = 0x08;
2890 rc = pci_bus_write_config_byte(pci_bus, devfn,
2891 PCI_CACHE_LINE_SIZE, temp_byte);
2893 /* disable ROM base Address */
2894 temp_dword = 0x00L;
2895 rc = pci_bus_write_config_word(pci_bus, devfn,
2896 PCI_ROM_ADDRESS, temp_dword);
2898 /* enable card */
2899 temp_word = 0x0157; /* = PCI_COMMAND_IO |
2900 * PCI_COMMAND_MEMORY |
2901 * PCI_COMMAND_MASTER |
2902 * PCI_COMMAND_INVALIDATE |
2903 * PCI_COMMAND_PARITY |
2904 * PCI_COMMAND_SERR */
2905 rc = pci_bus_write_config_word(pci_bus, devfn,
2906 PCI_COMMAND, temp_word);
2907 } else { /* End of Not-A-Bridge else */
2908 /* It's some strange type of PCI adapter (Cardbus?) */
2909 return DEVICE_TYPE_NOT_SUPPORTED;
2912 func->configured = 1;
2914 return 0;
2915 free_and_out:
2916 cpqhp_destroy_resource_list(&temp_resources);
2918 return_resource(&(resources->bus_head), hold_bus_node);
2919 return_resource(&(resources->io_head), hold_IO_node);
2920 return_resource(&(resources->mem_head), hold_mem_node);
2921 return_resource(&(resources->p_mem_head), hold_p_mem_node);
2922 return rc;