dm writecache: add cond_resched to loop in persistent_memory_claim()
[linux/fpc-iii.git] / drivers / platform / chrome / cros_ec_sensorhub_ring.c
blob24e48d96ed7663f3f8fda74b7ace2b71c93181f1
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Driver for Chrome OS EC Sensor hub FIFO.
5 * Copyright 2020 Google LLC
6 */
8 #include <linux/delay.h>
9 #include <linux/device.h>
10 #include <linux/iio/iio.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/platform_data/cros_ec_commands.h>
14 #include <linux/platform_data/cros_ec_proto.h>
15 #include <linux/platform_data/cros_ec_sensorhub.h>
16 #include <linux/platform_device.h>
17 #include <linux/sort.h>
18 #include <linux/slab.h>
20 /* Precision of fixed point for the m values from the filter */
21 #define M_PRECISION BIT(23)
23 /* Only activate the filter once we have at least this many elements. */
24 #define TS_HISTORY_THRESHOLD 8
27 * If we don't have any history entries for this long, empty the filter to
28 * make sure there are no big discontinuities.
30 #define TS_HISTORY_BORED_US 500000
32 /* To measure by how much the filter is overshooting, if it happens. */
33 #define FUTURE_TS_ANALYTICS_COUNT_MAX 100
35 static inline int
36 cros_sensorhub_send_sample(struct cros_ec_sensorhub *sensorhub,
37 struct cros_ec_sensors_ring_sample *sample)
39 cros_ec_sensorhub_push_data_cb_t cb;
40 int id = sample->sensor_id;
41 struct iio_dev *indio_dev;
43 if (id >= sensorhub->sensor_num)
44 return -EINVAL;
46 cb = sensorhub->push_data[id].push_data_cb;
47 if (!cb)
48 return 0;
50 indio_dev = sensorhub->push_data[id].indio_dev;
52 if (sample->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
53 return 0;
55 return cb(indio_dev, sample->vector, sample->timestamp);
58 /**
59 * cros_ec_sensorhub_register_push_data() - register the callback to the hub.
61 * @sensorhub : Sensor Hub object
62 * @sensor_num : The sensor the caller is interested in.
63 * @indio_dev : The iio device to use when a sample arrives.
64 * @cb : The callback to call when a sample arrives.
66 * The callback cb will be used by cros_ec_sensorhub_ring to distribute events
67 * from the EC.
69 * Return: 0 when callback is registered.
70 * EINVAL is the sensor number is invalid or the slot already used.
72 int cros_ec_sensorhub_register_push_data(struct cros_ec_sensorhub *sensorhub,
73 u8 sensor_num,
74 struct iio_dev *indio_dev,
75 cros_ec_sensorhub_push_data_cb_t cb)
77 if (sensor_num >= sensorhub->sensor_num)
78 return -EINVAL;
79 if (sensorhub->push_data[sensor_num].indio_dev)
80 return -EINVAL;
82 sensorhub->push_data[sensor_num].indio_dev = indio_dev;
83 sensorhub->push_data[sensor_num].push_data_cb = cb;
85 return 0;
87 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_register_push_data);
89 void cros_ec_sensorhub_unregister_push_data(struct cros_ec_sensorhub *sensorhub,
90 u8 sensor_num)
92 sensorhub->push_data[sensor_num].indio_dev = NULL;
93 sensorhub->push_data[sensor_num].push_data_cb = NULL;
95 EXPORT_SYMBOL_GPL(cros_ec_sensorhub_unregister_push_data);
97 /**
98 * cros_ec_sensorhub_ring_fifo_enable() - Enable or disable interrupt generation
99 * for FIFO events.
100 * @sensorhub: Sensor Hub object
101 * @on: true when events are requested.
103 * To be called before sleeping or when noone is listening.
104 * Return: 0 on success, or an error when we can not communicate with the EC.
107 int cros_ec_sensorhub_ring_fifo_enable(struct cros_ec_sensorhub *sensorhub,
108 bool on)
110 int ret, i;
112 mutex_lock(&sensorhub->cmd_lock);
113 if (sensorhub->tight_timestamps)
114 for (i = 0; i < sensorhub->sensor_num; i++)
115 sensorhub->batch_state[i].last_len = 0;
117 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INT_ENABLE;
118 sensorhub->params->fifo_int_enable.enable = on;
120 sensorhub->msg->outsize = sizeof(struct ec_params_motion_sense);
121 sensorhub->msg->insize = sizeof(struct ec_response_motion_sense);
123 ret = cros_ec_cmd_xfer_status(sensorhub->ec->ec_dev, sensorhub->msg);
124 mutex_unlock(&sensorhub->cmd_lock);
126 /* We expect to receive a payload of 4 bytes, ignore. */
127 if (ret > 0)
128 ret = 0;
130 return ret;
133 static int cros_ec_sensor_ring_median_cmp(const void *pv1, const void *pv2)
135 s64 v1 = *(s64 *)pv1;
136 s64 v2 = *(s64 *)pv2;
138 if (v1 > v2)
139 return 1;
140 else if (v1 < v2)
141 return -1;
142 else
143 return 0;
147 * cros_ec_sensor_ring_median: Gets median of an array of numbers
149 * For now it's implemented using an inefficient > O(n) sort then return
150 * the middle element. A more optimal method would be something like
151 * quickselect, but given that n = 64 we can probably live with it in the
152 * name of clarity.
154 * Warning: the input array gets modified (sorted)!
156 static s64 cros_ec_sensor_ring_median(s64 *array, size_t length)
158 sort(array, length, sizeof(s64), cros_ec_sensor_ring_median_cmp, NULL);
159 return array[length / 2];
163 * IRQ Timestamp Filtering
165 * Lower down in cros_ec_sensor_ring_process_event(), for each sensor event
166 * we have to calculate it's timestamp in the AP timebase. There are 3 time
167 * points:
168 * a - EC timebase, sensor event
169 * b - EC timebase, IRQ
170 * c - AP timebase, IRQ
171 * a' - what we want: sensor even in AP timebase
173 * While a and b are recorded at accurate times (due to the EC real time
174 * nature); c is pretty untrustworthy, even though it's recorded the
175 * first thing in ec_irq_handler(). There is a very good change we'll get
176 * added lantency due to:
177 * other irqs
178 * ddrfreq
179 * cpuidle
181 * Normally a' = c - b + a, but if we do that naive math any jitter in c
182 * will get coupled in a', which we don't want. We want a function
183 * a' = cros_ec_sensor_ring_ts_filter(a) which will filter out outliers in c.
185 * Think of a graph of AP time(b) on the y axis vs EC time(c) on the x axis.
186 * The slope of the line won't be exactly 1, there will be some clock drift
187 * between the 2 chips for various reasons (mechanical stress, temperature,
188 * voltage). We need to extrapolate values for a future x, without trusting
189 * recent y values too much.
191 * We use a median filter for the slope, then another median filter for the
192 * y-intercept to calculate this function:
193 * dx[n] = x[n-1] - x[n]
194 * dy[n] = x[n-1] - x[n]
195 * m[n] = dy[n] / dx[n]
196 * median_m = median(m[n-k:n])
197 * error[i] = y[n-i] - median_m * x[n-i]
198 * median_error = median(error[:k])
199 * predicted_y = median_m * x + median_error
201 * Implementation differences from above:
202 * - Redefined y to be actually c - b, this gives us a lot more precision
203 * to do the math. (c-b)/b variations are more obvious than c/b variations.
204 * - Since we don't have floating point, any operations involving slope are
205 * done using fixed point math (*M_PRECISION)
206 * - Since x and y grow with time, we keep zeroing the graph (relative to
207 * the last sample), this way math involving *x[n-i] will not overflow
208 * - EC timestamps are kept in us, it improves the slope calculation precision
212 * cros_ec_sensor_ring_ts_filter_update() - Update filter history.
214 * @state: Filter information.
215 * @b: IRQ timestamp, EC timebase (us)
216 * @c: IRQ timestamp, AP timebase (ns)
218 * Given a new IRQ timestamp pair (EC and AP timebases), add it to the filter
219 * history.
221 static void
222 cros_ec_sensor_ring_ts_filter_update(struct cros_ec_sensors_ts_filter_state
223 *state,
224 s64 b, s64 c)
226 s64 x, y;
227 s64 dx, dy;
228 s64 m; /* stored as *M_PRECISION */
229 s64 *m_history_copy = state->temp_buf;
230 s64 *error = state->temp_buf;
231 int i;
233 /* we trust b the most, that'll be our independent variable */
234 x = b;
235 /* y is the offset between AP and EC times, in ns */
236 y = c - b * 1000;
238 dx = (state->x_history[0] + state->x_offset) - x;
239 if (dx == 0)
240 return; /* we already have this irq in the history */
241 dy = (state->y_history[0] + state->y_offset) - y;
242 m = div64_s64(dy * M_PRECISION, dx);
244 /* Empty filter if we haven't seen any action in a while. */
245 if (-dx > TS_HISTORY_BORED_US)
246 state->history_len = 0;
248 /* Move everything over, also update offset to all absolute coords .*/
249 for (i = state->history_len - 1; i >= 1; i--) {
250 state->x_history[i] = state->x_history[i - 1] + dx;
251 state->y_history[i] = state->y_history[i - 1] + dy;
253 state->m_history[i] = state->m_history[i - 1];
255 * Also use the same loop to copy m_history for future
256 * median extraction.
258 m_history_copy[i] = state->m_history[i - 1];
261 /* Store the x and y, but remember offset is actually last sample. */
262 state->x_offset = x;
263 state->y_offset = y;
264 state->x_history[0] = 0;
265 state->y_history[0] = 0;
267 state->m_history[0] = m;
268 m_history_copy[0] = m;
270 if (state->history_len < CROS_EC_SENSORHUB_TS_HISTORY_SIZE)
271 state->history_len++;
273 /* Precalculate things for the filter. */
274 if (state->history_len > TS_HISTORY_THRESHOLD) {
275 state->median_m =
276 cros_ec_sensor_ring_median(m_history_copy,
277 state->history_len - 1);
280 * Calculate y-intercepts as if m_median is the slope and
281 * points in the history are on the line. median_error will
282 * still be in the offset coordinate system.
284 for (i = 0; i < state->history_len; i++)
285 error[i] = state->y_history[i] -
286 div_s64(state->median_m * state->x_history[i],
287 M_PRECISION);
288 state->median_error =
289 cros_ec_sensor_ring_median(error, state->history_len);
290 } else {
291 state->median_m = 0;
292 state->median_error = 0;
297 * cros_ec_sensor_ring_ts_filter() - Translate EC timebase timestamp to AP
298 * timebase
300 * @state: filter information.
301 * @x: any ec timestamp (us):
303 * cros_ec_sensor_ring_ts_filter(a) => a' event timestamp, AP timebase
304 * cros_ec_sensor_ring_ts_filter(b) => calculated timestamp when the EC IRQ
305 * should have happened on the AP, with low jitter
307 * Note: The filter will only activate once state->history_len goes
308 * over TS_HISTORY_THRESHOLD. Otherwise it'll just do the naive c - b + a
309 * transform.
311 * How to derive the formula, starting from:
312 * f(x) = median_m * x + median_error
313 * That's the calculated AP - EC offset (at the x point in time)
314 * Undo the coordinate system transform:
315 * f(x) = median_m * (x - x_offset) + median_error + y_offset
316 * Remember to undo the "y = c - b * 1000" modification:
317 * f(x) = median_m * (x - x_offset) + median_error + y_offset + x * 1000
319 * Return: timestamp in AP timebase (ns)
321 static s64
322 cros_ec_sensor_ring_ts_filter(struct cros_ec_sensors_ts_filter_state *state,
323 s64 x)
325 return div_s64(state->median_m * (x - state->x_offset), M_PRECISION)
326 + state->median_error + state->y_offset + x * 1000;
330 * Since a and b were originally 32 bit values from the EC,
331 * they overflow relatively often, casting is not enough, so we need to
332 * add an offset.
334 static void
335 cros_ec_sensor_ring_fix_overflow(s64 *ts,
336 const s64 overflow_period,
337 struct cros_ec_sensors_ec_overflow_state
338 *state)
340 s64 adjust;
342 *ts += state->offset;
343 if (abs(state->last - *ts) > (overflow_period / 2)) {
344 adjust = state->last > *ts ? overflow_period : -overflow_period;
345 state->offset += adjust;
346 *ts += adjust;
348 state->last = *ts;
351 static void
352 cros_ec_sensor_ring_check_for_past_timestamp(struct cros_ec_sensorhub
353 *sensorhub,
354 struct cros_ec_sensors_ring_sample
355 *sample)
357 const u8 sensor_id = sample->sensor_id;
359 /* If this event is earlier than one we saw before... */
360 if (sensorhub->batch_state[sensor_id].newest_sensor_event >
361 sample->timestamp)
362 /* mark it for spreading. */
363 sample->timestamp =
364 sensorhub->batch_state[sensor_id].last_ts;
365 else
366 sensorhub->batch_state[sensor_id].newest_sensor_event =
367 sample->timestamp;
371 * cros_ec_sensor_ring_process_event() - Process one EC FIFO event
373 * @sensorhub: Sensor Hub object.
374 * @fifo_info: FIFO information from the EC (includes b point, EC timebase).
375 * @fifo_timestamp: EC IRQ, kernel timebase (aka c).
376 * @current_timestamp: calculated event timestamp, kernel timebase (aka a').
377 * @in: incoming FIFO event from EC (includes a point, EC timebase).
378 * @out: outgoing event to user space (includes a').
380 * Process one EC event, add it in the ring if necessary.
382 * Return: true if out event has been populated.
384 static bool
385 cros_ec_sensor_ring_process_event(struct cros_ec_sensorhub *sensorhub,
386 const struct ec_response_motion_sense_fifo_info
387 *fifo_info,
388 const ktime_t fifo_timestamp,
389 ktime_t *current_timestamp,
390 struct ec_response_motion_sensor_data *in,
391 struct cros_ec_sensors_ring_sample *out)
393 const s64 now = cros_ec_get_time_ns();
394 int axis, async_flags;
396 /* Do not populate the filter based on asynchronous events. */
397 async_flags = in->flags &
398 (MOTIONSENSE_SENSOR_FLAG_ODR | MOTIONSENSE_SENSOR_FLAG_FLUSH);
400 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP && !async_flags) {
401 s64 a = in->timestamp;
402 s64 b = fifo_info->timestamp;
403 s64 c = fifo_timestamp;
405 cros_ec_sensor_ring_fix_overflow(&a, 1LL << 32,
406 &sensorhub->overflow_a);
407 cros_ec_sensor_ring_fix_overflow(&b, 1LL << 32,
408 &sensorhub->overflow_b);
410 if (sensorhub->tight_timestamps) {
411 cros_ec_sensor_ring_ts_filter_update(
412 &sensorhub->filter, b, c);
413 *current_timestamp = cros_ec_sensor_ring_ts_filter(
414 &sensorhub->filter, a);
415 } else {
416 s64 new_timestamp;
419 * Disable filtering since we might add more jitter
420 * if b is in a random point in time.
422 new_timestamp = fifo_timestamp -
423 fifo_info->timestamp * 1000 +
424 in->timestamp * 1000;
426 * The timestamp can be stale if we had to use the fifo
427 * info timestamp.
429 if (new_timestamp - *current_timestamp > 0)
430 *current_timestamp = new_timestamp;
434 if (in->flags & MOTIONSENSE_SENSOR_FLAG_ODR) {
435 if (sensorhub->tight_timestamps) {
436 sensorhub->batch_state[in->sensor_num].last_len = 0;
437 sensorhub->batch_state[in->sensor_num].penul_len = 0;
440 * ODR change is only useful for the sensor_ring, it does not
441 * convey information to clients.
443 return false;
446 if (in->flags & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
447 out->sensor_id = in->sensor_num;
448 out->timestamp = *current_timestamp;
449 out->flag = in->flags;
450 if (sensorhub->tight_timestamps)
451 sensorhub->batch_state[out->sensor_id].last_len = 0;
453 * No other payload information provided with
454 * flush ack.
456 return true;
459 if (in->flags & MOTIONSENSE_SENSOR_FLAG_TIMESTAMP)
460 /* If we just have a timestamp, skip this entry. */
461 return false;
463 /* Regular sample */
464 out->sensor_id = in->sensor_num;
465 if (*current_timestamp - now > 0) {
467 * This fix is needed to overcome the timestamp filter putting
468 * events in the future.
470 sensorhub->future_timestamp_total_ns +=
471 *current_timestamp - now;
472 if (++sensorhub->future_timestamp_count ==
473 FUTURE_TS_ANALYTICS_COUNT_MAX) {
474 s64 avg = div_s64(sensorhub->future_timestamp_total_ns,
475 sensorhub->future_timestamp_count);
476 dev_warn_ratelimited(sensorhub->dev,
477 "100 timestamps in the future, %lldns shaved on average\n",
478 avg);
479 sensorhub->future_timestamp_count = 0;
480 sensorhub->future_timestamp_total_ns = 0;
482 out->timestamp = now;
483 } else {
484 out->timestamp = *current_timestamp;
487 out->flag = in->flags;
488 for (axis = 0; axis < 3; axis++)
489 out->vector[axis] = in->data[axis];
491 if (sensorhub->tight_timestamps)
492 cros_ec_sensor_ring_check_for_past_timestamp(sensorhub, out);
493 return true;
497 * cros_ec_sensor_ring_spread_add: Calculate proper timestamps then add to
498 * ringbuffer.
500 * This is the new spreading code, assumes every sample's timestamp
501 * preceeds the sample. Run if tight_timestamps == true.
503 * Sometimes the EC receives only one interrupt (hence timestamp) for
504 * a batch of samples. Only the first sample will have the correct
505 * timestamp. So we must interpolate the other samples.
506 * We use the previous batch timestamp and our current batch timestamp
507 * as a way to calculate period, then spread the samples evenly.
509 * s0 int, 0ms
510 * s1 int, 10ms
511 * s2 int, 20ms
512 * 30ms point goes by, no interrupt, previous one is still asserted
513 * downloading s2 and s3
514 * s3 sample, 20ms (incorrect timestamp)
515 * s4 int, 40ms
517 * The batches are [(s0), (s1), (s2, s3), (s4)]. Since the 3rd batch
518 * has 2 samples in them, we adjust the timestamp of s3.
519 * s2 - s1 = 10ms, so s3 must be s2 + 10ms => 20ms. If s1 would have
520 * been part of a bigger batch things would have gotten a little
521 * more complicated.
523 * Note: we also assume another sensor sample doesn't break up a batch
524 * in 2 or more partitions. Example, there can't ever be a sync sensor
525 * in between S2 and S3. This simplifies the following code.
527 static void
528 cros_ec_sensor_ring_spread_add(struct cros_ec_sensorhub *sensorhub,
529 unsigned long sensor_mask,
530 struct cros_ec_sensors_ring_sample *last_out)
532 struct cros_ec_sensors_ring_sample *batch_start, *next_batch_start;
533 int id;
535 for_each_set_bit(id, &sensor_mask, sensorhub->sensor_num) {
536 for (batch_start = sensorhub->ring; batch_start < last_out;
537 batch_start = next_batch_start) {
539 * For each batch (where all samples have the same
540 * timestamp).
542 int batch_len, sample_idx;
543 struct cros_ec_sensors_ring_sample *batch_end =
544 batch_start;
545 struct cros_ec_sensors_ring_sample *s;
546 s64 batch_timestamp = batch_start->timestamp;
547 s64 sample_period;
550 * Skip over batches that start with the sensor types
551 * we're not looking at right now.
553 if (batch_start->sensor_id != id) {
554 next_batch_start = batch_start + 1;
555 continue;
559 * Do not start a batch
560 * from a flush, as it happens asynchronously to the
561 * regular flow of events.
563 if (batch_start->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH) {
564 cros_sensorhub_send_sample(sensorhub,
565 batch_start);
566 next_batch_start = batch_start + 1;
567 continue;
570 if (batch_start->timestamp <=
571 sensorhub->batch_state[id].last_ts) {
572 batch_timestamp =
573 sensorhub->batch_state[id].last_ts;
574 batch_len = sensorhub->batch_state[id].last_len;
576 sample_idx = batch_len;
578 sensorhub->batch_state[id].last_ts =
579 sensorhub->batch_state[id].penul_ts;
580 sensorhub->batch_state[id].last_len =
581 sensorhub->batch_state[id].penul_len;
582 } else {
584 * Push first sample in the batch to the,
585 * kifo, it's guaranteed to be correct, the
586 * rest will follow later on.
588 sample_idx = 1;
589 batch_len = 1;
590 cros_sensorhub_send_sample(sensorhub,
591 batch_start);
592 batch_start++;
595 /* Find all samples have the same timestamp. */
596 for (s = batch_start; s < last_out; s++) {
597 if (s->sensor_id != id)
599 * Skip over other sensor types that
600 * are interleaved, don't count them.
602 continue;
603 if (s->timestamp != batch_timestamp)
604 /* we discovered the next batch */
605 break;
606 if (s->flag & MOTIONSENSE_SENSOR_FLAG_FLUSH)
607 /* break on flush packets */
608 break;
609 batch_end = s;
610 batch_len++;
613 if (batch_len == 1)
614 goto done_with_this_batch;
616 /* Can we calculate period? */
617 if (sensorhub->batch_state[id].last_len == 0) {
618 dev_warn(sensorhub->dev, "Sensor %d: lost %d samples when spreading\n",
619 id, batch_len - 1);
620 goto done_with_this_batch;
622 * Note: we're dropping the rest of the samples
623 * in this batch since we have no idea where
624 * they're supposed to go without a period
625 * calculation.
629 sample_period = div_s64(batch_timestamp -
630 sensorhub->batch_state[id].last_ts,
631 sensorhub->batch_state[id].last_len);
632 dev_dbg(sensorhub->dev,
633 "Adjusting %d samples, sensor %d last_batch @%lld (%d samples) batch_timestamp=%lld => period=%lld\n",
634 batch_len, id,
635 sensorhub->batch_state[id].last_ts,
636 sensorhub->batch_state[id].last_len,
637 batch_timestamp,
638 sample_period);
641 * Adjust timestamps of the samples then push them to
642 * kfifo.
644 for (s = batch_start; s <= batch_end; s++) {
645 if (s->sensor_id != id)
647 * Skip over other sensor types that
648 * are interleaved, don't change them.
650 continue;
652 s->timestamp = batch_timestamp +
653 sample_period * sample_idx;
654 sample_idx++;
656 cros_sensorhub_send_sample(sensorhub, s);
659 done_with_this_batch:
660 sensorhub->batch_state[id].penul_ts =
661 sensorhub->batch_state[id].last_ts;
662 sensorhub->batch_state[id].penul_len =
663 sensorhub->batch_state[id].last_len;
665 sensorhub->batch_state[id].last_ts =
666 batch_timestamp;
667 sensorhub->batch_state[id].last_len = batch_len;
669 next_batch_start = batch_end + 1;
675 * cros_ec_sensor_ring_spread_add_legacy: Calculate proper timestamps then
676 * add to ringbuffer (legacy).
678 * Note: This assumes we're running old firmware, where every sample's timestamp
679 * is after the sample. Run if tight_timestamps == false.
681 * If there is a sample with a proper timestamp
683 * timestamp | count
684 * -----------------
685 * older_unprocess_out --> TS1 | 1
686 * TS1 | 2
687 * out --> TS1 | 3
688 * next_out --> TS2 |
690 * We spread time for the samples [older_unprocess_out .. out]
691 * between TS1 and TS2: [TS1+1/4, TS1+2/4, TS1+3/4, TS2].
693 * If we reach the end of the samples, we compare with the
694 * current timestamp:
696 * older_unprocess_out --> TS1 | 1
697 * TS1 | 2
698 * out --> TS1 | 3
700 * We know have [TS1+1/3, TS1+2/3, current timestamp]
702 static void
703 cros_ec_sensor_ring_spread_add_legacy(struct cros_ec_sensorhub *sensorhub,
704 unsigned long sensor_mask,
705 s64 current_timestamp,
706 struct cros_ec_sensors_ring_sample
707 *last_out)
709 struct cros_ec_sensors_ring_sample *out;
710 int i;
712 for_each_set_bit(i, &sensor_mask, sensorhub->sensor_num) {
713 s64 older_timestamp;
714 s64 timestamp;
715 struct cros_ec_sensors_ring_sample *older_unprocess_out =
716 sensorhub->ring;
717 struct cros_ec_sensors_ring_sample *next_out;
718 int count = 1;
720 for (out = sensorhub->ring; out < last_out; out = next_out) {
721 s64 time_period;
723 next_out = out + 1;
724 if (out->sensor_id != i)
725 continue;
727 /* Timestamp to start with */
728 older_timestamp = out->timestamp;
730 /* Find next sample. */
731 while (next_out < last_out && next_out->sensor_id != i)
732 next_out++;
734 if (next_out >= last_out) {
735 timestamp = current_timestamp;
736 } else {
737 timestamp = next_out->timestamp;
738 if (timestamp == older_timestamp) {
739 count++;
740 continue;
745 * The next sample has a new timestamp, spread the
746 * unprocessed samples.
748 if (next_out < last_out)
749 count++;
750 time_period = div_s64(timestamp - older_timestamp,
751 count);
753 for (; older_unprocess_out <= out;
754 older_unprocess_out++) {
755 if (older_unprocess_out->sensor_id != i)
756 continue;
757 older_timestamp += time_period;
758 older_unprocess_out->timestamp =
759 older_timestamp;
761 count = 1;
762 /* The next_out sample has a valid timestamp, skip. */
763 next_out++;
764 older_unprocess_out = next_out;
768 /* Push the event into the kfifo */
769 for (out = sensorhub->ring; out < last_out; out++)
770 cros_sensorhub_send_sample(sensorhub, out);
774 * cros_ec_sensorhub_ring_handler() - The trigger handler function
776 * @sensorhub: Sensor Hub object.
778 * Called by the notifier, process the EC sensor FIFO queue.
780 static void cros_ec_sensorhub_ring_handler(struct cros_ec_sensorhub *sensorhub)
782 struct ec_response_motion_sense_fifo_info *fifo_info =
783 sensorhub->fifo_info;
784 struct cros_ec_dev *ec = sensorhub->ec;
785 ktime_t fifo_timestamp, current_timestamp;
786 int i, j, number_data, ret;
787 unsigned long sensor_mask = 0;
788 struct ec_response_motion_sensor_data *in;
789 struct cros_ec_sensors_ring_sample *out, *last_out;
791 mutex_lock(&sensorhub->cmd_lock);
793 /* Get FIFO information if there are lost vectors. */
794 if (fifo_info->total_lost) {
795 int fifo_info_length =
796 sizeof(struct ec_response_motion_sense_fifo_info) +
797 sizeof(u16) * sensorhub->sensor_num;
799 /* Need to retrieve the number of lost vectors per sensor */
800 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
801 sensorhub->msg->outsize = 1;
802 sensorhub->msg->insize = fifo_info_length;
804 if (cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg) < 0)
805 goto error;
807 memcpy(fifo_info, &sensorhub->resp->fifo_info,
808 fifo_info_length);
811 * Update collection time, will not be as precise as the
812 * non-error case.
814 fifo_timestamp = cros_ec_get_time_ns();
815 } else {
816 fifo_timestamp = sensorhub->fifo_timestamp[
817 CROS_EC_SENSOR_NEW_TS];
820 if (fifo_info->count > sensorhub->fifo_size ||
821 fifo_info->size != sensorhub->fifo_size) {
822 dev_warn(sensorhub->dev,
823 "Mismatch EC data: count %d, size %d - expected %d\n",
824 fifo_info->count, fifo_info->size,
825 sensorhub->fifo_size);
826 goto error;
829 /* Copy elements in the main fifo */
830 current_timestamp = sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS];
831 out = sensorhub->ring;
832 for (i = 0; i < fifo_info->count; i += number_data) {
833 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_READ;
834 sensorhub->params->fifo_read.max_data_vector =
835 fifo_info->count - i;
836 sensorhub->msg->outsize =
837 sizeof(struct ec_params_motion_sense);
838 sensorhub->msg->insize =
839 sizeof(sensorhub->resp->fifo_read) +
840 sensorhub->params->fifo_read.max_data_vector *
841 sizeof(struct ec_response_motion_sensor_data);
842 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
843 if (ret < 0) {
844 dev_warn(sensorhub->dev, "Fifo error: %d\n", ret);
845 break;
847 number_data = sensorhub->resp->fifo_read.number_data;
848 if (number_data == 0) {
849 dev_dbg(sensorhub->dev, "Unexpected empty FIFO\n");
850 break;
852 if (number_data > fifo_info->count - i) {
853 dev_warn(sensorhub->dev,
854 "Invalid EC data: too many entry received: %d, expected %d\n",
855 number_data, fifo_info->count - i);
856 break;
858 if (out + number_data >
859 sensorhub->ring + fifo_info->count) {
860 dev_warn(sensorhub->dev,
861 "Too many samples: %d (%zd data) to %d entries for expected %d entries\n",
862 i, out - sensorhub->ring, i + number_data,
863 fifo_info->count);
864 break;
867 for (in = sensorhub->resp->fifo_read.data, j = 0;
868 j < number_data; j++, in++) {
869 if (cros_ec_sensor_ring_process_event(
870 sensorhub, fifo_info,
871 fifo_timestamp,
872 &current_timestamp,
873 in, out)) {
874 sensor_mask |= BIT(in->sensor_num);
875 out++;
879 mutex_unlock(&sensorhub->cmd_lock);
880 last_out = out;
882 if (out == sensorhub->ring)
883 /* Unexpected empty FIFO. */
884 goto ring_handler_end;
887 * Check if current_timestamp is ahead of the last sample. Normally,
888 * the EC appends a timestamp after the last sample, but if the AP
889 * is slow to respond to the IRQ, the EC may have added new samples.
890 * Use the FIFO info timestamp as last timestamp then.
892 if (!sensorhub->tight_timestamps &&
893 (last_out - 1)->timestamp == current_timestamp)
894 current_timestamp = fifo_timestamp;
896 /* Warn on lost samples. */
897 if (fifo_info->total_lost)
898 for (i = 0; i < sensorhub->sensor_num; i++) {
899 if (fifo_info->lost[i]) {
900 dev_warn_ratelimited(sensorhub->dev,
901 "Sensor %d: lost: %d out of %d\n",
902 i, fifo_info->lost[i],
903 fifo_info->total_lost);
904 if (sensorhub->tight_timestamps)
905 sensorhub->batch_state[i].last_len = 0;
910 * Spread samples in case of batching, then add them to the
911 * ringbuffer.
913 if (sensorhub->tight_timestamps)
914 cros_ec_sensor_ring_spread_add(sensorhub, sensor_mask,
915 last_out);
916 else
917 cros_ec_sensor_ring_spread_add_legacy(sensorhub, sensor_mask,
918 current_timestamp,
919 last_out);
921 ring_handler_end:
922 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] = current_timestamp;
923 return;
925 error:
926 mutex_unlock(&sensorhub->cmd_lock);
929 static int cros_ec_sensorhub_event(struct notifier_block *nb,
930 unsigned long queued_during_suspend,
931 void *_notify)
933 struct cros_ec_sensorhub *sensorhub;
934 struct cros_ec_device *ec_dev;
936 sensorhub = container_of(nb, struct cros_ec_sensorhub, notifier);
937 ec_dev = sensorhub->ec->ec_dev;
939 if (ec_dev->event_data.event_type != EC_MKBP_EVENT_SENSOR_FIFO)
940 return NOTIFY_DONE;
942 if (ec_dev->event_size != sizeof(ec_dev->event_data.data.sensor_fifo)) {
943 dev_warn(ec_dev->dev, "Invalid fifo info size\n");
944 return NOTIFY_DONE;
947 if (queued_during_suspend)
948 return NOTIFY_OK;
950 memcpy(sensorhub->fifo_info, &ec_dev->event_data.data.sensor_fifo.info,
951 sizeof(*sensorhub->fifo_info));
952 sensorhub->fifo_timestamp[CROS_EC_SENSOR_NEW_TS] =
953 ec_dev->last_event_time;
954 cros_ec_sensorhub_ring_handler(sensorhub);
956 return NOTIFY_OK;
960 * cros_ec_sensorhub_ring_allocate() - Prepare the FIFO functionality if the EC
961 * supports it.
963 * @sensorhub : Sensor Hub object.
965 * Return: 0 on success.
967 int cros_ec_sensorhub_ring_allocate(struct cros_ec_sensorhub *sensorhub)
969 int fifo_info_length =
970 sizeof(struct ec_response_motion_sense_fifo_info) +
971 sizeof(u16) * sensorhub->sensor_num;
973 /* Allocate the array for lost events. */
974 sensorhub->fifo_info = devm_kzalloc(sensorhub->dev, fifo_info_length,
975 GFP_KERNEL);
976 if (!sensorhub->fifo_info)
977 return -ENOMEM;
980 * Allocate the callback area based on the number of sensors.
981 * Add one for the sensor ring.
983 sensorhub->push_data = devm_kcalloc(sensorhub->dev,
984 sensorhub->sensor_num,
985 sizeof(*sensorhub->push_data),
986 GFP_KERNEL);
987 if (!sensorhub->push_data)
988 return -ENOMEM;
990 sensorhub->tight_timestamps = cros_ec_check_features(
991 sensorhub->ec,
992 EC_FEATURE_MOTION_SENSE_TIGHT_TIMESTAMPS);
994 if (sensorhub->tight_timestamps) {
995 sensorhub->batch_state = devm_kcalloc(sensorhub->dev,
996 sensorhub->sensor_num,
997 sizeof(*sensorhub->batch_state),
998 GFP_KERNEL);
999 if (!sensorhub->batch_state)
1000 return -ENOMEM;
1003 return 0;
1007 * cros_ec_sensorhub_ring_add() - Add the FIFO functionality if the EC
1008 * supports it.
1010 * @sensorhub : Sensor Hub object.
1012 * Return: 0 on success.
1014 int cros_ec_sensorhub_ring_add(struct cros_ec_sensorhub *sensorhub)
1016 struct cros_ec_dev *ec = sensorhub->ec;
1017 int ret;
1018 int fifo_info_length =
1019 sizeof(struct ec_response_motion_sense_fifo_info) +
1020 sizeof(u16) * sensorhub->sensor_num;
1022 /* Retrieve FIFO information */
1023 sensorhub->msg->version = 2;
1024 sensorhub->params->cmd = MOTIONSENSE_CMD_FIFO_INFO;
1025 sensorhub->msg->outsize = 1;
1026 sensorhub->msg->insize = fifo_info_length;
1028 ret = cros_ec_cmd_xfer_status(ec->ec_dev, sensorhub->msg);
1029 if (ret < 0)
1030 return ret;
1033 * Allocate the full fifo. We need to copy the whole FIFO to set
1034 * timestamps properly.
1036 sensorhub->fifo_size = sensorhub->resp->fifo_info.size;
1037 sensorhub->ring = devm_kcalloc(sensorhub->dev, sensorhub->fifo_size,
1038 sizeof(*sensorhub->ring), GFP_KERNEL);
1039 if (!sensorhub->ring)
1040 return -ENOMEM;
1042 sensorhub->fifo_timestamp[CROS_EC_SENSOR_LAST_TS] =
1043 cros_ec_get_time_ns();
1045 /* Register the notifier that will act as a top half interrupt. */
1046 sensorhub->notifier.notifier_call = cros_ec_sensorhub_event;
1047 ret = blocking_notifier_chain_register(&ec->ec_dev->event_notifier,
1048 &sensorhub->notifier);
1049 if (ret < 0)
1050 return ret;
1052 /* Start collection samples. */
1053 return cros_ec_sensorhub_ring_fifo_enable(sensorhub, true);
1056 void cros_ec_sensorhub_ring_remove(void *arg)
1058 struct cros_ec_sensorhub *sensorhub = arg;
1059 struct cros_ec_device *ec_dev = sensorhub->ec->ec_dev;
1061 /* Disable the ring, prevent EC interrupt to the AP for nothing. */
1062 cros_ec_sensorhub_ring_fifo_enable(sensorhub, false);
1063 blocking_notifier_chain_unregister(&ec_dev->event_notifier,
1064 &sensorhub->notifier);