PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / block / elevator.c
blob2d511f9105e16abcf93cad6ac849ad9996661a32
1 /*
2 * Block device elevator/IO-scheduler.
4 * Copyright (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
6 * 30042000 Jens Axboe <axboe@kernel.dk> :
8 * Split the elevator a bit so that it is possible to choose a different
9 * one or even write a new "plug in". There are three pieces:
10 * - elevator_fn, inserts a new request in the queue list
11 * - elevator_merge_fn, decides whether a new buffer can be merged with
12 * an existing request
13 * - elevator_dequeue_fn, called when a request is taken off the active list
15 * 20082000 Dave Jones <davej@suse.de> :
16 * Removed tests for max-bomb-segments, which was breaking elvtune
17 * when run without -bN
19 * Jens:
20 * - Rework again to work with bio instead of buffer_heads
21 * - loose bi_dev comparisons, partition handling is right now
22 * - completely modularize elevator setup and teardown
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/blkdev.h>
28 #include <linux/elevator.h>
29 #include <linux/bio.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/compiler.h>
34 #include <linux/delay.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/hash.h>
37 #include <linux/uaccess.h>
39 #include <trace/events/block.h>
41 #include "blk.h"
43 static DEFINE_SPINLOCK(elv_list_lock);
44 static LIST_HEAD(elv_list);
47 * Merge hash stuff.
49 static const int elv_hash_shift = 6;
50 #define ELV_HASH_BLOCK(sec) ((sec) >> 3)
51 #define ELV_HASH_FN(sec) \
52 (hash_long(ELV_HASH_BLOCK((sec)), elv_hash_shift))
53 #define ELV_HASH_ENTRIES (1 << elv_hash_shift)
54 #define rq_hash_key(rq) (blk_rq_pos(rq) + blk_rq_sectors(rq))
57 * Query io scheduler to see if the current process issuing bio may be
58 * merged with rq.
60 static int elv_iosched_allow_merge(struct request *rq, struct bio *bio)
62 struct request_queue *q = rq->q;
63 struct elevator_queue *e = q->elevator;
65 if (e->ops->elevator_allow_merge_fn)
66 return e->ops->elevator_allow_merge_fn(q, rq, bio);
68 return 1;
72 * can we safely merge with this request?
74 int elv_rq_merge_ok(struct request *rq, struct bio *bio)
76 if (!rq_mergeable(rq))
77 return 0;
80 * Don't merge file system requests and discard requests
82 if (bio_discard(bio) != bio_discard(rq->bio))
83 return 0;
86 * different data direction or already started, don't merge
88 if (bio_data_dir(bio) != rq_data_dir(rq))
89 return 0;
92 * must be same device and not a special request
94 if (rq->rq_disk != bio->bi_bdev->bd_disk || rq->special)
95 return 0;
98 * only merge integrity protected bio into ditto rq
100 if (bio_integrity(bio) != blk_integrity_rq(rq))
101 return 0;
104 * Don't merge if failfast settings don't match.
106 * FIXME: The negation in front of each condition is necessary
107 * because bio and request flags use different bit positions
108 * and the accessors return those bits directly. This
109 * ugliness will soon go away.
111 if (!bio_failfast_dev(bio) != !blk_failfast_dev(rq) ||
112 !bio_failfast_transport(bio) != !blk_failfast_transport(rq) ||
113 !bio_failfast_driver(bio) != !blk_failfast_driver(rq))
114 return 0;
116 if (!elv_iosched_allow_merge(rq, bio))
117 return 0;
119 return 1;
121 EXPORT_SYMBOL(elv_rq_merge_ok);
123 static inline int elv_try_merge(struct request *__rq, struct bio *bio)
125 int ret = ELEVATOR_NO_MERGE;
128 * we can merge and sequence is ok, check if it's possible
130 if (elv_rq_merge_ok(__rq, bio)) {
131 if (blk_rq_pos(__rq) + blk_rq_sectors(__rq) == bio->bi_sector)
132 ret = ELEVATOR_BACK_MERGE;
133 else if (blk_rq_pos(__rq) - bio_sectors(bio) == bio->bi_sector)
134 ret = ELEVATOR_FRONT_MERGE;
137 return ret;
140 static struct elevator_type *elevator_find(const char *name)
142 struct elevator_type *e;
144 list_for_each_entry(e, &elv_list, list) {
145 if (!strcmp(e->elevator_name, name))
146 return e;
149 return NULL;
152 static void elevator_put(struct elevator_type *e)
154 module_put(e->elevator_owner);
157 static struct elevator_type *elevator_get(const char *name)
159 struct elevator_type *e;
161 spin_lock(&elv_list_lock);
163 e = elevator_find(name);
164 if (!e) {
165 char elv[ELV_NAME_MAX + strlen("-iosched")];
167 spin_unlock(&elv_list_lock);
169 if (!strcmp(name, "anticipatory"))
170 sprintf(elv, "as-iosched");
171 else
172 sprintf(elv, "%s-iosched", name);
174 request_module("%s", elv);
175 spin_lock(&elv_list_lock);
176 e = elevator_find(name);
179 if (e && !try_module_get(e->elevator_owner))
180 e = NULL;
182 spin_unlock(&elv_list_lock);
184 return e;
187 static void *elevator_init_queue(struct request_queue *q,
188 struct elevator_queue *eq)
190 return eq->ops->elevator_init_fn(q);
193 static void elevator_attach(struct request_queue *q, struct elevator_queue *eq,
194 void *data)
196 q->elevator = eq;
197 eq->elevator_data = data;
200 static char chosen_elevator[16];
202 static int __init elevator_setup(char *str)
205 * Be backwards-compatible with previous kernels, so users
206 * won't get the wrong elevator.
208 if (!strcmp(str, "as"))
209 strcpy(chosen_elevator, "anticipatory");
210 else
211 strncpy(chosen_elevator, str, sizeof(chosen_elevator) - 1);
212 return 1;
215 __setup("elevator=", elevator_setup);
217 static struct kobj_type elv_ktype;
219 static struct elevator_queue *elevator_alloc(struct request_queue *q,
220 struct elevator_type *e)
222 struct elevator_queue *eq;
223 int i;
225 eq = kmalloc_node(sizeof(*eq), GFP_KERNEL | __GFP_ZERO, q->node);
226 if (unlikely(!eq))
227 goto err;
229 eq->ops = &e->ops;
230 eq->elevator_type = e;
231 kobject_init(&eq->kobj, &elv_ktype);
232 mutex_init(&eq->sysfs_lock);
234 eq->hash = kmalloc_node(sizeof(struct hlist_head) * ELV_HASH_ENTRIES,
235 GFP_KERNEL, q->node);
236 if (!eq->hash)
237 goto err;
239 for (i = 0; i < ELV_HASH_ENTRIES; i++)
240 INIT_HLIST_HEAD(&eq->hash[i]);
242 return eq;
243 err:
244 kfree(eq);
245 elevator_put(e);
246 return NULL;
249 static void elevator_release(struct kobject *kobj)
251 struct elevator_queue *e;
253 e = container_of(kobj, struct elevator_queue, kobj);
254 elevator_put(e->elevator_type);
255 kfree(e->hash);
256 kfree(e);
259 int elevator_init(struct request_queue *q, char *name)
261 struct elevator_type *e = NULL;
262 struct elevator_queue *eq;
263 int ret = 0;
264 void *data;
266 INIT_LIST_HEAD(&q->queue_head);
267 q->last_merge = NULL;
268 q->end_sector = 0;
269 q->boundary_rq = NULL;
271 if (name) {
272 e = elevator_get(name);
273 if (!e)
274 return -EINVAL;
277 if (!e && *chosen_elevator) {
278 e = elevator_get(chosen_elevator);
279 if (!e)
280 printk(KERN_ERR "I/O scheduler %s not found\n",
281 chosen_elevator);
284 if (!e) {
285 e = elevator_get(CONFIG_DEFAULT_IOSCHED);
286 if (!e) {
287 printk(KERN_ERR
288 "Default I/O scheduler not found. " \
289 "Using noop.\n");
290 e = elevator_get("noop");
294 eq = elevator_alloc(q, e);
295 if (!eq)
296 return -ENOMEM;
298 data = elevator_init_queue(q, eq);
299 if (!data) {
300 kobject_put(&eq->kobj);
301 return -ENOMEM;
304 elevator_attach(q, eq, data);
305 return ret;
307 EXPORT_SYMBOL(elevator_init);
309 void elevator_exit(struct elevator_queue *e)
311 mutex_lock(&e->sysfs_lock);
312 if (e->ops->elevator_exit_fn)
313 e->ops->elevator_exit_fn(e);
314 e->ops = NULL;
315 mutex_unlock(&e->sysfs_lock);
317 kobject_put(&e->kobj);
319 EXPORT_SYMBOL(elevator_exit);
321 static inline void __elv_rqhash_del(struct request *rq)
323 hlist_del_init(&rq->hash);
326 static void elv_rqhash_del(struct request_queue *q, struct request *rq)
328 if (ELV_ON_HASH(rq))
329 __elv_rqhash_del(rq);
332 static void elv_rqhash_add(struct request_queue *q, struct request *rq)
334 struct elevator_queue *e = q->elevator;
336 BUG_ON(ELV_ON_HASH(rq));
337 hlist_add_head(&rq->hash, &e->hash[ELV_HASH_FN(rq_hash_key(rq))]);
340 static void elv_rqhash_reposition(struct request_queue *q, struct request *rq)
342 __elv_rqhash_del(rq);
343 elv_rqhash_add(q, rq);
346 static struct request *elv_rqhash_find(struct request_queue *q, sector_t offset)
348 struct elevator_queue *e = q->elevator;
349 struct hlist_head *hash_list = &e->hash[ELV_HASH_FN(offset)];
350 struct hlist_node *entry, *next;
351 struct request *rq;
353 hlist_for_each_entry_safe(rq, entry, next, hash_list, hash) {
354 BUG_ON(!ELV_ON_HASH(rq));
356 if (unlikely(!rq_mergeable(rq))) {
357 __elv_rqhash_del(rq);
358 continue;
361 if (rq_hash_key(rq) == offset)
362 return rq;
365 return NULL;
369 * RB-tree support functions for inserting/lookup/removal of requests
370 * in a sorted RB tree.
372 struct request *elv_rb_add(struct rb_root *root, struct request *rq)
374 struct rb_node **p = &root->rb_node;
375 struct rb_node *parent = NULL;
376 struct request *__rq;
378 while (*p) {
379 parent = *p;
380 __rq = rb_entry(parent, struct request, rb_node);
382 if (blk_rq_pos(rq) < blk_rq_pos(__rq))
383 p = &(*p)->rb_left;
384 else if (blk_rq_pos(rq) > blk_rq_pos(__rq))
385 p = &(*p)->rb_right;
386 else
387 return __rq;
390 rb_link_node(&rq->rb_node, parent, p);
391 rb_insert_color(&rq->rb_node, root);
392 return NULL;
394 EXPORT_SYMBOL(elv_rb_add);
396 void elv_rb_del(struct rb_root *root, struct request *rq)
398 BUG_ON(RB_EMPTY_NODE(&rq->rb_node));
399 rb_erase(&rq->rb_node, root);
400 RB_CLEAR_NODE(&rq->rb_node);
402 EXPORT_SYMBOL(elv_rb_del);
404 struct request *elv_rb_find(struct rb_root *root, sector_t sector)
406 struct rb_node *n = root->rb_node;
407 struct request *rq;
409 while (n) {
410 rq = rb_entry(n, struct request, rb_node);
412 if (sector < blk_rq_pos(rq))
413 n = n->rb_left;
414 else if (sector > blk_rq_pos(rq))
415 n = n->rb_right;
416 else
417 return rq;
420 return NULL;
422 EXPORT_SYMBOL(elv_rb_find);
425 * Insert rq into dispatch queue of q. Queue lock must be held on
426 * entry. rq is sort instead into the dispatch queue. To be used by
427 * specific elevators.
429 void elv_dispatch_sort(struct request_queue *q, struct request *rq)
431 sector_t boundary;
432 struct list_head *entry;
433 int stop_flags;
435 if (q->last_merge == rq)
436 q->last_merge = NULL;
438 elv_rqhash_del(q, rq);
440 q->nr_sorted--;
442 boundary = q->end_sector;
443 stop_flags = REQ_SOFTBARRIER | REQ_HARDBARRIER | REQ_STARTED;
444 list_for_each_prev(entry, &q->queue_head) {
445 struct request *pos = list_entry_rq(entry);
447 if (blk_discard_rq(rq) != blk_discard_rq(pos))
448 break;
449 if (rq_data_dir(rq) != rq_data_dir(pos))
450 break;
451 if (pos->cmd_flags & stop_flags)
452 break;
453 if (blk_rq_pos(rq) >= boundary) {
454 if (blk_rq_pos(pos) < boundary)
455 continue;
456 } else {
457 if (blk_rq_pos(pos) >= boundary)
458 break;
460 if (blk_rq_pos(rq) >= blk_rq_pos(pos))
461 break;
464 list_add(&rq->queuelist, entry);
466 EXPORT_SYMBOL(elv_dispatch_sort);
469 * Insert rq into dispatch queue of q. Queue lock must be held on
470 * entry. rq is added to the back of the dispatch queue. To be used by
471 * specific elevators.
473 void elv_dispatch_add_tail(struct request_queue *q, struct request *rq)
475 if (q->last_merge == rq)
476 q->last_merge = NULL;
478 elv_rqhash_del(q, rq);
480 q->nr_sorted--;
482 q->end_sector = rq_end_sector(rq);
483 q->boundary_rq = rq;
484 list_add_tail(&rq->queuelist, &q->queue_head);
486 EXPORT_SYMBOL(elv_dispatch_add_tail);
488 int elv_merge(struct request_queue *q, struct request **req, struct bio *bio)
490 struct elevator_queue *e = q->elevator;
491 struct request *__rq;
492 int ret;
495 * First try one-hit cache.
497 if (q->last_merge) {
498 ret = elv_try_merge(q->last_merge, bio);
499 if (ret != ELEVATOR_NO_MERGE) {
500 *req = q->last_merge;
501 return ret;
505 if (blk_queue_nomerges(q))
506 return ELEVATOR_NO_MERGE;
509 * See if our hash lookup can find a potential backmerge.
511 __rq = elv_rqhash_find(q, bio->bi_sector);
512 if (__rq && elv_rq_merge_ok(__rq, bio)) {
513 *req = __rq;
514 return ELEVATOR_BACK_MERGE;
517 if (e->ops->elevator_merge_fn)
518 return e->ops->elevator_merge_fn(q, req, bio);
520 return ELEVATOR_NO_MERGE;
523 void elv_merged_request(struct request_queue *q, struct request *rq, int type)
525 struct elevator_queue *e = q->elevator;
527 if (e->ops->elevator_merged_fn)
528 e->ops->elevator_merged_fn(q, rq, type);
530 if (type == ELEVATOR_BACK_MERGE)
531 elv_rqhash_reposition(q, rq);
533 q->last_merge = rq;
536 void elv_merge_requests(struct request_queue *q, struct request *rq,
537 struct request *next)
539 struct elevator_queue *e = q->elevator;
541 if (e->ops->elevator_merge_req_fn)
542 e->ops->elevator_merge_req_fn(q, rq, next);
544 elv_rqhash_reposition(q, rq);
545 elv_rqhash_del(q, next);
547 q->nr_sorted--;
548 q->last_merge = rq;
551 void elv_requeue_request(struct request_queue *q, struct request *rq)
554 * it already went through dequeue, we need to decrement the
555 * in_flight count again
557 if (blk_account_rq(rq)) {
558 q->in_flight[rq_is_sync(rq)]--;
559 if (blk_sorted_rq(rq))
560 elv_deactivate_rq(q, rq);
563 rq->cmd_flags &= ~REQ_STARTED;
565 elv_insert(q, rq, ELEVATOR_INSERT_REQUEUE);
568 void elv_drain_elevator(struct request_queue *q)
570 static int printed;
571 while (q->elevator->ops->elevator_dispatch_fn(q, 1))
573 if (q->nr_sorted == 0)
574 return;
575 if (printed++ < 10) {
576 printk(KERN_ERR "%s: forced dispatching is broken "
577 "(nr_sorted=%u), please report this\n",
578 q->elevator->elevator_type->elevator_name, q->nr_sorted);
583 * Call with queue lock held, interrupts disabled
585 void elv_quiesce_start(struct request_queue *q)
587 if (!q->elevator)
588 return;
590 queue_flag_set(QUEUE_FLAG_ELVSWITCH, q);
593 * make sure we don't have any requests in flight
595 elv_drain_elevator(q);
596 while (q->rq.elvpriv) {
597 __blk_run_queue(q);
598 spin_unlock_irq(q->queue_lock);
599 msleep(10);
600 spin_lock_irq(q->queue_lock);
601 elv_drain_elevator(q);
605 void elv_quiesce_end(struct request_queue *q)
607 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
610 void elv_insert(struct request_queue *q, struct request *rq, int where)
612 struct list_head *pos;
613 unsigned ordseq;
614 int unplug_it = 1;
616 trace_block_rq_insert(q, rq);
618 rq->q = q;
620 switch (where) {
621 case ELEVATOR_INSERT_FRONT:
622 rq->cmd_flags |= REQ_SOFTBARRIER;
624 list_add(&rq->queuelist, &q->queue_head);
625 break;
627 case ELEVATOR_INSERT_BACK:
628 rq->cmd_flags |= REQ_SOFTBARRIER;
629 elv_drain_elevator(q);
630 list_add_tail(&rq->queuelist, &q->queue_head);
632 * We kick the queue here for the following reasons.
633 * - The elevator might have returned NULL previously
634 * to delay requests and returned them now. As the
635 * queue wasn't empty before this request, ll_rw_blk
636 * won't run the queue on return, resulting in hang.
637 * - Usually, back inserted requests won't be merged
638 * with anything. There's no point in delaying queue
639 * processing.
641 __blk_run_queue(q);
642 break;
644 case ELEVATOR_INSERT_SORT:
645 BUG_ON(!blk_fs_request(rq) && !blk_discard_rq(rq));
646 rq->cmd_flags |= REQ_SORTED;
647 q->nr_sorted++;
648 if (rq_mergeable(rq)) {
649 elv_rqhash_add(q, rq);
650 if (!q->last_merge)
651 q->last_merge = rq;
655 * Some ioscheds (cfq) run q->request_fn directly, so
656 * rq cannot be accessed after calling
657 * elevator_add_req_fn.
659 q->elevator->ops->elevator_add_req_fn(q, rq);
660 break;
662 case ELEVATOR_INSERT_REQUEUE:
664 * If ordered flush isn't in progress, we do front
665 * insertion; otherwise, requests should be requeued
666 * in ordseq order.
668 rq->cmd_flags |= REQ_SOFTBARRIER;
671 * Most requeues happen because of a busy condition,
672 * don't force unplug of the queue for that case.
674 unplug_it = 0;
676 if (q->ordseq == 0) {
677 list_add(&rq->queuelist, &q->queue_head);
678 break;
681 ordseq = blk_ordered_req_seq(rq);
683 list_for_each(pos, &q->queue_head) {
684 struct request *pos_rq = list_entry_rq(pos);
685 if (ordseq <= blk_ordered_req_seq(pos_rq))
686 break;
689 list_add_tail(&rq->queuelist, pos);
690 break;
692 default:
693 printk(KERN_ERR "%s: bad insertion point %d\n",
694 __func__, where);
695 BUG();
698 if (unplug_it && blk_queue_plugged(q)) {
699 int nrq = q->rq.count[BLK_RW_SYNC] + q->rq.count[BLK_RW_ASYNC]
700 - queue_in_flight(q);
702 if (nrq >= q->unplug_thresh)
703 __generic_unplug_device(q);
707 void __elv_add_request(struct request_queue *q, struct request *rq, int where,
708 int plug)
710 if (q->ordcolor)
711 rq->cmd_flags |= REQ_ORDERED_COLOR;
713 if (rq->cmd_flags & (REQ_SOFTBARRIER | REQ_HARDBARRIER)) {
715 * toggle ordered color
717 if (blk_barrier_rq(rq))
718 q->ordcolor ^= 1;
721 * barriers implicitly indicate back insertion
723 if (where == ELEVATOR_INSERT_SORT)
724 where = ELEVATOR_INSERT_BACK;
727 * this request is scheduling boundary, update
728 * end_sector
730 if (blk_fs_request(rq) || blk_discard_rq(rq)) {
731 q->end_sector = rq_end_sector(rq);
732 q->boundary_rq = rq;
734 } else if (!(rq->cmd_flags & REQ_ELVPRIV) &&
735 where == ELEVATOR_INSERT_SORT)
736 where = ELEVATOR_INSERT_BACK;
738 if (plug)
739 blk_plug_device(q);
741 elv_insert(q, rq, where);
743 EXPORT_SYMBOL(__elv_add_request);
745 void elv_add_request(struct request_queue *q, struct request *rq, int where,
746 int plug)
748 unsigned long flags;
750 spin_lock_irqsave(q->queue_lock, flags);
751 __elv_add_request(q, rq, where, plug);
752 spin_unlock_irqrestore(q->queue_lock, flags);
754 EXPORT_SYMBOL(elv_add_request);
756 int elv_queue_empty(struct request_queue *q)
758 struct elevator_queue *e = q->elevator;
760 if (!list_empty(&q->queue_head))
761 return 0;
763 if (e->ops->elevator_queue_empty_fn)
764 return e->ops->elevator_queue_empty_fn(q);
766 return 1;
768 EXPORT_SYMBOL(elv_queue_empty);
770 struct request *elv_latter_request(struct request_queue *q, struct request *rq)
772 struct elevator_queue *e = q->elevator;
774 if (e->ops->elevator_latter_req_fn)
775 return e->ops->elevator_latter_req_fn(q, rq);
776 return NULL;
779 struct request *elv_former_request(struct request_queue *q, struct request *rq)
781 struct elevator_queue *e = q->elevator;
783 if (e->ops->elevator_former_req_fn)
784 return e->ops->elevator_former_req_fn(q, rq);
785 return NULL;
788 int elv_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
790 struct elevator_queue *e = q->elevator;
792 if (e->ops->elevator_set_req_fn)
793 return e->ops->elevator_set_req_fn(q, rq, gfp_mask);
795 rq->elevator_private = NULL;
796 return 0;
799 void elv_put_request(struct request_queue *q, struct request *rq)
801 struct elevator_queue *e = q->elevator;
803 if (e->ops->elevator_put_req_fn)
804 e->ops->elevator_put_req_fn(rq);
807 int elv_may_queue(struct request_queue *q, int rw)
809 struct elevator_queue *e = q->elevator;
811 if (e->ops->elevator_may_queue_fn)
812 return e->ops->elevator_may_queue_fn(q, rw);
814 return ELV_MQUEUE_MAY;
817 void elv_abort_queue(struct request_queue *q)
819 struct request *rq;
821 while (!list_empty(&q->queue_head)) {
822 rq = list_entry_rq(q->queue_head.next);
823 rq->cmd_flags |= REQ_QUIET;
824 trace_block_rq_abort(q, rq);
826 * Mark this request as started so we don't trigger
827 * any debug logic in the end I/O path.
829 blk_start_request(rq);
830 __blk_end_request_all(rq, -EIO);
833 EXPORT_SYMBOL(elv_abort_queue);
835 void elv_completed_request(struct request_queue *q, struct request *rq)
837 struct elevator_queue *e = q->elevator;
840 * request is released from the driver, io must be done
842 if (blk_account_rq(rq)) {
843 q->in_flight[rq_is_sync(rq)]--;
844 if (blk_sorted_rq(rq) && e->ops->elevator_completed_req_fn)
845 e->ops->elevator_completed_req_fn(q, rq);
849 * Check if the queue is waiting for fs requests to be
850 * drained for flush sequence.
852 if (unlikely(q->ordseq)) {
853 struct request *next = NULL;
855 if (!list_empty(&q->queue_head))
856 next = list_entry_rq(q->queue_head.next);
858 if (!queue_in_flight(q) &&
859 blk_ordered_cur_seq(q) == QUEUE_ORDSEQ_DRAIN &&
860 (!next || blk_ordered_req_seq(next) > QUEUE_ORDSEQ_DRAIN)) {
861 blk_ordered_complete_seq(q, QUEUE_ORDSEQ_DRAIN, 0);
862 __blk_run_queue(q);
867 #define to_elv(atr) container_of((atr), struct elv_fs_entry, attr)
869 static ssize_t
870 elv_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
872 struct elv_fs_entry *entry = to_elv(attr);
873 struct elevator_queue *e;
874 ssize_t error;
876 if (!entry->show)
877 return -EIO;
879 e = container_of(kobj, struct elevator_queue, kobj);
880 mutex_lock(&e->sysfs_lock);
881 error = e->ops ? entry->show(e, page) : -ENOENT;
882 mutex_unlock(&e->sysfs_lock);
883 return error;
886 static ssize_t
887 elv_attr_store(struct kobject *kobj, struct attribute *attr,
888 const char *page, size_t length)
890 struct elv_fs_entry *entry = to_elv(attr);
891 struct elevator_queue *e;
892 ssize_t error;
894 if (!entry->store)
895 return -EIO;
897 e = container_of(kobj, struct elevator_queue, kobj);
898 mutex_lock(&e->sysfs_lock);
899 error = e->ops ? entry->store(e, page, length) : -ENOENT;
900 mutex_unlock(&e->sysfs_lock);
901 return error;
904 static struct sysfs_ops elv_sysfs_ops = {
905 .show = elv_attr_show,
906 .store = elv_attr_store,
909 static struct kobj_type elv_ktype = {
910 .sysfs_ops = &elv_sysfs_ops,
911 .release = elevator_release,
914 int elv_register_queue(struct request_queue *q)
916 struct elevator_queue *e = q->elevator;
917 int error;
919 error = kobject_add(&e->kobj, &q->kobj, "%s", "iosched");
920 if (!error) {
921 struct elv_fs_entry *attr = e->elevator_type->elevator_attrs;
922 if (attr) {
923 while (attr->attr.name) {
924 if (sysfs_create_file(&e->kobj, &attr->attr))
925 break;
926 attr++;
929 kobject_uevent(&e->kobj, KOBJ_ADD);
931 return error;
934 static void __elv_unregister_queue(struct elevator_queue *e)
936 kobject_uevent(&e->kobj, KOBJ_REMOVE);
937 kobject_del(&e->kobj);
940 void elv_unregister_queue(struct request_queue *q)
942 if (q)
943 __elv_unregister_queue(q->elevator);
946 void elv_register(struct elevator_type *e)
948 char *def = "";
950 spin_lock(&elv_list_lock);
951 BUG_ON(elevator_find(e->elevator_name));
952 list_add_tail(&e->list, &elv_list);
953 spin_unlock(&elv_list_lock);
955 if (!strcmp(e->elevator_name, chosen_elevator) ||
956 (!*chosen_elevator &&
957 !strcmp(e->elevator_name, CONFIG_DEFAULT_IOSCHED)))
958 def = " (default)";
960 printk(KERN_INFO "io scheduler %s registered%s\n", e->elevator_name,
961 def);
963 EXPORT_SYMBOL_GPL(elv_register);
965 void elv_unregister(struct elevator_type *e)
967 struct task_struct *g, *p;
970 * Iterate every thread in the process to remove the io contexts.
972 if (e->ops.trim) {
973 read_lock(&tasklist_lock);
974 do_each_thread(g, p) {
975 task_lock(p);
976 if (p->io_context)
977 e->ops.trim(p->io_context);
978 task_unlock(p);
979 } while_each_thread(g, p);
980 read_unlock(&tasklist_lock);
983 spin_lock(&elv_list_lock);
984 list_del_init(&e->list);
985 spin_unlock(&elv_list_lock);
987 EXPORT_SYMBOL_GPL(elv_unregister);
990 * switch to new_e io scheduler. be careful not to introduce deadlocks -
991 * we don't free the old io scheduler, before we have allocated what we
992 * need for the new one. this way we have a chance of going back to the old
993 * one, if the new one fails init for some reason.
995 static int elevator_switch(struct request_queue *q, struct elevator_type *new_e)
997 struct elevator_queue *old_elevator, *e;
998 void *data;
1001 * Allocate new elevator
1003 e = elevator_alloc(q, new_e);
1004 if (!e)
1005 return 0;
1007 data = elevator_init_queue(q, e);
1008 if (!data) {
1009 kobject_put(&e->kobj);
1010 return 0;
1014 * Turn on BYPASS and drain all requests w/ elevator private data
1016 spin_lock_irq(q->queue_lock);
1017 elv_quiesce_start(q);
1020 * Remember old elevator.
1022 old_elevator = q->elevator;
1025 * attach and start new elevator
1027 elevator_attach(q, e, data);
1029 spin_unlock_irq(q->queue_lock);
1031 __elv_unregister_queue(old_elevator);
1033 if (elv_register_queue(q))
1034 goto fail_register;
1037 * finally exit old elevator and turn off BYPASS.
1039 elevator_exit(old_elevator);
1040 spin_lock_irq(q->queue_lock);
1041 elv_quiesce_end(q);
1042 spin_unlock_irq(q->queue_lock);
1044 blk_add_trace_msg(q, "elv switch: %s", e->elevator_type->elevator_name);
1046 return 1;
1048 fail_register:
1050 * switch failed, exit the new io scheduler and reattach the old
1051 * one again (along with re-adding the sysfs dir)
1053 elevator_exit(e);
1054 q->elevator = old_elevator;
1055 elv_register_queue(q);
1057 spin_lock_irq(q->queue_lock);
1058 queue_flag_clear(QUEUE_FLAG_ELVSWITCH, q);
1059 spin_unlock_irq(q->queue_lock);
1061 return 0;
1064 ssize_t elv_iosched_store(struct request_queue *q, const char *name,
1065 size_t count)
1067 char elevator_name[ELV_NAME_MAX];
1068 struct elevator_type *e;
1070 if (!q->elevator)
1071 return count;
1073 strlcpy(elevator_name, name, sizeof(elevator_name));
1074 strstrip(elevator_name);
1076 e = elevator_get(elevator_name);
1077 if (!e) {
1078 printk(KERN_ERR "elevator: type %s not found\n", elevator_name);
1079 return -EINVAL;
1082 if (!strcmp(elevator_name, q->elevator->elevator_type->elevator_name)) {
1083 elevator_put(e);
1084 return count;
1087 if (!elevator_switch(q, e))
1088 printk(KERN_ERR "elevator: switch to %s failed\n",
1089 elevator_name);
1090 return count;
1093 ssize_t elv_iosched_show(struct request_queue *q, char *name)
1095 struct elevator_queue *e = q->elevator;
1096 struct elevator_type *elv;
1097 struct elevator_type *__e;
1098 int len = 0;
1100 if (!q->elevator)
1101 return sprintf(name, "none\n");
1103 elv = e->elevator_type;
1105 spin_lock(&elv_list_lock);
1106 list_for_each_entry(__e, &elv_list, list) {
1107 if (!strcmp(elv->elevator_name, __e->elevator_name))
1108 len += sprintf(name+len, "[%s] ", elv->elevator_name);
1109 else
1110 len += sprintf(name+len, "%s ", __e->elevator_name);
1112 spin_unlock(&elv_list_lock);
1114 len += sprintf(len+name, "\n");
1115 return len;
1118 struct request *elv_rb_former_request(struct request_queue *q,
1119 struct request *rq)
1121 struct rb_node *rbprev = rb_prev(&rq->rb_node);
1123 if (rbprev)
1124 return rb_entry_rq(rbprev);
1126 return NULL;
1128 EXPORT_SYMBOL(elv_rb_former_request);
1130 struct request *elv_rb_latter_request(struct request_queue *q,
1131 struct request *rq)
1133 struct rb_node *rbnext = rb_next(&rq->rb_node);
1135 if (rbnext)
1136 return rb_entry_rq(rbnext);
1138 return NULL;
1140 EXPORT_SYMBOL(elv_rb_latter_request);