PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / fs / ecryptfs / crypto.c
blobf0b53dfcccfca8ff5d2ff0c8cfdb40f8814cf836
1 /**
2 * eCryptfs: Linux filesystem encryption layer
4 * Copyright (C) 1997-2004 Erez Zadok
5 * Copyright (C) 2001-2004 Stony Brook University
6 * Copyright (C) 2004-2007 International Business Machines Corp.
7 * Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8 * Michael C. Thompson <mcthomps@us.ibm.com>
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2 of the
13 * License, or (at your option) any later version.
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23 * 02111-1307, USA.
26 #include <linux/fs.h>
27 #include <linux/mount.h>
28 #include <linux/pagemap.h>
29 #include <linux/random.h>
30 #include <linux/compiler.h>
31 #include <linux/key.h>
32 #include <linux/namei.h>
33 #include <linux/crypto.h>
34 #include <linux/file.h>
35 #include <linux/scatterlist.h>
36 #include <asm/unaligned.h>
37 #include "ecryptfs_kernel.h"
39 static int
40 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
41 struct page *dst_page, int dst_offset,
42 struct page *src_page, int src_offset, int size,
43 unsigned char *iv);
44 static int
45 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
46 struct page *dst_page, int dst_offset,
47 struct page *src_page, int src_offset, int size,
48 unsigned char *iv);
50 /**
51 * ecryptfs_to_hex
52 * @dst: Buffer to take hex character representation of contents of
53 * src; must be at least of size (src_size * 2)
54 * @src: Buffer to be converted to a hex string respresentation
55 * @src_size: number of bytes to convert
57 void ecryptfs_to_hex(char *dst, char *src, size_t src_size)
59 int x;
61 for (x = 0; x < src_size; x++)
62 sprintf(&dst[x * 2], "%.2x", (unsigned char)src[x]);
65 /**
66 * ecryptfs_from_hex
67 * @dst: Buffer to take the bytes from src hex; must be at least of
68 * size (src_size / 2)
69 * @src: Buffer to be converted from a hex string respresentation to raw value
70 * @dst_size: size of dst buffer, or number of hex characters pairs to convert
72 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
74 int x;
75 char tmp[3] = { 0, };
77 for (x = 0; x < dst_size; x++) {
78 tmp[0] = src[x * 2];
79 tmp[1] = src[x * 2 + 1];
80 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
84 /**
85 * ecryptfs_calculate_md5 - calculates the md5 of @src
86 * @dst: Pointer to 16 bytes of allocated memory
87 * @crypt_stat: Pointer to crypt_stat struct for the current inode
88 * @src: Data to be md5'd
89 * @len: Length of @src
91 * Uses the allocated crypto context that crypt_stat references to
92 * generate the MD5 sum of the contents of src.
94 static int ecryptfs_calculate_md5(char *dst,
95 struct ecryptfs_crypt_stat *crypt_stat,
96 char *src, int len)
98 struct scatterlist sg;
99 struct hash_desc desc = {
100 .tfm = crypt_stat->hash_tfm,
101 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
103 int rc = 0;
105 mutex_lock(&crypt_stat->cs_hash_tfm_mutex);
106 sg_init_one(&sg, (u8 *)src, len);
107 if (!desc.tfm) {
108 desc.tfm = crypto_alloc_hash(ECRYPTFS_DEFAULT_HASH, 0,
109 CRYPTO_ALG_ASYNC);
110 if (IS_ERR(desc.tfm)) {
111 rc = PTR_ERR(desc.tfm);
112 ecryptfs_printk(KERN_ERR, "Error attempting to "
113 "allocate crypto context; rc = [%d]\n",
114 rc);
115 goto out;
117 crypt_stat->hash_tfm = desc.tfm;
119 rc = crypto_hash_init(&desc);
120 if (rc) {
121 printk(KERN_ERR
122 "%s: Error initializing crypto hash; rc = [%d]\n",
123 __func__, rc);
124 goto out;
126 rc = crypto_hash_update(&desc, &sg, len);
127 if (rc) {
128 printk(KERN_ERR
129 "%s: Error updating crypto hash; rc = [%d]\n",
130 __func__, rc);
131 goto out;
133 rc = crypto_hash_final(&desc, dst);
134 if (rc) {
135 printk(KERN_ERR
136 "%s: Error finalizing crypto hash; rc = [%d]\n",
137 __func__, rc);
138 goto out;
140 out:
141 mutex_unlock(&crypt_stat->cs_hash_tfm_mutex);
142 return rc;
145 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
146 char *cipher_name,
147 char *chaining_modifier)
149 int cipher_name_len = strlen(cipher_name);
150 int chaining_modifier_len = strlen(chaining_modifier);
151 int algified_name_len;
152 int rc;
154 algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
155 (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
156 if (!(*algified_name)) {
157 rc = -ENOMEM;
158 goto out;
160 snprintf((*algified_name), algified_name_len, "%s(%s)",
161 chaining_modifier, cipher_name);
162 rc = 0;
163 out:
164 return rc;
168 * ecryptfs_derive_iv
169 * @iv: destination for the derived iv vale
170 * @crypt_stat: Pointer to crypt_stat struct for the current inode
171 * @offset: Offset of the extent whose IV we are to derive
173 * Generate the initialization vector from the given root IV and page
174 * offset.
176 * Returns zero on success; non-zero on error.
178 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
179 loff_t offset)
181 int rc = 0;
182 char dst[MD5_DIGEST_SIZE];
183 char src[ECRYPTFS_MAX_IV_BYTES + 16];
185 if (unlikely(ecryptfs_verbosity > 0)) {
186 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
187 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
189 /* TODO: It is probably secure to just cast the least
190 * significant bits of the root IV into an unsigned long and
191 * add the offset to that rather than go through all this
192 * hashing business. -Halcrow */
193 memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
194 memset((src + crypt_stat->iv_bytes), 0, 16);
195 snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
196 if (unlikely(ecryptfs_verbosity > 0)) {
197 ecryptfs_printk(KERN_DEBUG, "source:\n");
198 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
200 rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
201 (crypt_stat->iv_bytes + 16));
202 if (rc) {
203 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
204 "MD5 while generating IV for a page\n");
205 goto out;
207 memcpy(iv, dst, crypt_stat->iv_bytes);
208 if (unlikely(ecryptfs_verbosity > 0)) {
209 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
210 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
212 out:
213 return rc;
217 * ecryptfs_init_crypt_stat
218 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
220 * Initialize the crypt_stat structure.
222 void
223 ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
225 memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 INIT_LIST_HEAD(&crypt_stat->keysig_list);
227 mutex_init(&crypt_stat->keysig_list_mutex);
228 mutex_init(&crypt_stat->cs_mutex);
229 mutex_init(&crypt_stat->cs_tfm_mutex);
230 mutex_init(&crypt_stat->cs_hash_tfm_mutex);
231 crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
235 * ecryptfs_destroy_crypt_stat
236 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
238 * Releases all memory associated with a crypt_stat struct.
240 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
242 struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
244 if (crypt_stat->tfm)
245 crypto_free_blkcipher(crypt_stat->tfm);
246 if (crypt_stat->hash_tfm)
247 crypto_free_hash(crypt_stat->hash_tfm);
248 mutex_lock(&crypt_stat->keysig_list_mutex);
249 list_for_each_entry_safe(key_sig, key_sig_tmp,
250 &crypt_stat->keysig_list, crypt_stat_list) {
251 list_del(&key_sig->crypt_stat_list);
252 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
254 mutex_unlock(&crypt_stat->keysig_list_mutex);
255 memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
258 void ecryptfs_destroy_mount_crypt_stat(
259 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
261 struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
263 if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
264 return;
265 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
266 list_for_each_entry_safe(auth_tok, auth_tok_tmp,
267 &mount_crypt_stat->global_auth_tok_list,
268 mount_crypt_stat_list) {
269 list_del(&auth_tok->mount_crypt_stat_list);
270 mount_crypt_stat->num_global_auth_toks--;
271 if (auth_tok->global_auth_tok_key
272 && !(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
273 key_put(auth_tok->global_auth_tok_key);
274 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
276 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
277 memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
281 * virt_to_scatterlist
282 * @addr: Virtual address
283 * @size: Size of data; should be an even multiple of the block size
284 * @sg: Pointer to scatterlist array; set to NULL to obtain only
285 * the number of scatterlist structs required in array
286 * @sg_size: Max array size
288 * Fills in a scatterlist array with page references for a passed
289 * virtual address.
291 * Returns the number of scatterlist structs in array used
293 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
294 int sg_size)
296 int i = 0;
297 struct page *pg;
298 int offset;
299 int remainder_of_page;
301 sg_init_table(sg, sg_size);
303 while (size > 0 && i < sg_size) {
304 pg = virt_to_page(addr);
305 offset = offset_in_page(addr);
306 if (sg)
307 sg_set_page(&sg[i], pg, 0, offset);
308 remainder_of_page = PAGE_CACHE_SIZE - offset;
309 if (size >= remainder_of_page) {
310 if (sg)
311 sg[i].length = remainder_of_page;
312 addr += remainder_of_page;
313 size -= remainder_of_page;
314 } else {
315 if (sg)
316 sg[i].length = size;
317 addr += size;
318 size = 0;
320 i++;
322 if (size > 0)
323 return -ENOMEM;
324 return i;
328 * encrypt_scatterlist
329 * @crypt_stat: Pointer to the crypt_stat struct to initialize.
330 * @dest_sg: Destination of encrypted data
331 * @src_sg: Data to be encrypted
332 * @size: Length of data to be encrypted
333 * @iv: iv to use during encryption
335 * Returns the number of bytes encrypted; negative value on error
337 static int encrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
338 struct scatterlist *dest_sg,
339 struct scatterlist *src_sg, int size,
340 unsigned char *iv)
342 struct blkcipher_desc desc = {
343 .tfm = crypt_stat->tfm,
344 .info = iv,
345 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
347 int rc = 0;
349 BUG_ON(!crypt_stat || !crypt_stat->tfm
350 || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
351 if (unlikely(ecryptfs_verbosity > 0)) {
352 ecryptfs_printk(KERN_DEBUG, "Key size [%d]; key:\n",
353 crypt_stat->key_size);
354 ecryptfs_dump_hex(crypt_stat->key,
355 crypt_stat->key_size);
357 /* Consider doing this once, when the file is opened */
358 mutex_lock(&crypt_stat->cs_tfm_mutex);
359 if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
360 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
361 crypt_stat->key_size);
362 crypt_stat->flags |= ECRYPTFS_KEY_SET;
364 if (rc) {
365 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
366 rc);
367 mutex_unlock(&crypt_stat->cs_tfm_mutex);
368 rc = -EINVAL;
369 goto out;
371 ecryptfs_printk(KERN_DEBUG, "Encrypting [%d] bytes.\n", size);
372 crypto_blkcipher_encrypt_iv(&desc, dest_sg, src_sg, size);
373 mutex_unlock(&crypt_stat->cs_tfm_mutex);
374 out:
375 return rc;
379 * ecryptfs_lower_offset_for_extent
381 * Convert an eCryptfs page index into a lower byte offset
383 static void ecryptfs_lower_offset_for_extent(loff_t *offset, loff_t extent_num,
384 struct ecryptfs_crypt_stat *crypt_stat)
386 (*offset) = (crypt_stat->num_header_bytes_at_front
387 + (crypt_stat->extent_size * extent_num));
391 * ecryptfs_encrypt_extent
392 * @enc_extent_page: Allocated page into which to encrypt the data in
393 * @page
394 * @crypt_stat: crypt_stat containing cryptographic context for the
395 * encryption operation
396 * @page: Page containing plaintext data extent to encrypt
397 * @extent_offset: Page extent offset for use in generating IV
399 * Encrypts one extent of data.
401 * Return zero on success; non-zero otherwise
403 static int ecryptfs_encrypt_extent(struct page *enc_extent_page,
404 struct ecryptfs_crypt_stat *crypt_stat,
405 struct page *page,
406 unsigned long extent_offset)
408 loff_t extent_base;
409 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
410 int rc;
412 extent_base = (((loff_t)page->index)
413 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
414 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
415 (extent_base + extent_offset));
416 if (rc) {
417 ecryptfs_printk(KERN_ERR, "Error attempting to "
418 "derive IV for extent [0x%.16x]; "
419 "rc = [%d]\n", (extent_base + extent_offset),
420 rc);
421 goto out;
423 if (unlikely(ecryptfs_verbosity > 0)) {
424 ecryptfs_printk(KERN_DEBUG, "Encrypting extent "
425 "with iv:\n");
426 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
427 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
428 "encryption:\n");
429 ecryptfs_dump_hex((char *)
430 (page_address(page)
431 + (extent_offset * crypt_stat->extent_size)),
434 rc = ecryptfs_encrypt_page_offset(crypt_stat, enc_extent_page, 0,
435 page, (extent_offset
436 * crypt_stat->extent_size),
437 crypt_stat->extent_size, extent_iv);
438 if (rc < 0) {
439 printk(KERN_ERR "%s: Error attempting to encrypt page with "
440 "page->index = [%ld], extent_offset = [%ld]; "
441 "rc = [%d]\n", __func__, page->index, extent_offset,
442 rc);
443 goto out;
445 rc = 0;
446 if (unlikely(ecryptfs_verbosity > 0)) {
447 ecryptfs_printk(KERN_DEBUG, "Encrypt extent [0x%.16x]; "
448 "rc = [%d]\n", (extent_base + extent_offset),
449 rc);
450 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
451 "encryption:\n");
452 ecryptfs_dump_hex((char *)(page_address(enc_extent_page)), 8);
454 out:
455 return rc;
459 * ecryptfs_encrypt_page
460 * @page: Page mapped from the eCryptfs inode for the file; contains
461 * decrypted content that needs to be encrypted (to a temporary
462 * page; not in place) and written out to the lower file
464 * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
465 * that eCryptfs pages may straddle the lower pages -- for instance,
466 * if the file was created on a machine with an 8K page size
467 * (resulting in an 8K header), and then the file is copied onto a
468 * host with a 32K page size, then when reading page 0 of the eCryptfs
469 * file, 24K of page 0 of the lower file will be read and decrypted,
470 * and then 8K of page 1 of the lower file will be read and decrypted.
472 * Returns zero on success; negative on error
474 int ecryptfs_encrypt_page(struct page *page)
476 struct inode *ecryptfs_inode;
477 struct ecryptfs_crypt_stat *crypt_stat;
478 char *enc_extent_virt;
479 struct page *enc_extent_page = NULL;
480 loff_t extent_offset;
481 int rc = 0;
483 ecryptfs_inode = page->mapping->host;
484 crypt_stat =
485 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
486 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
487 enc_extent_page = alloc_page(GFP_USER);
488 if (!enc_extent_page) {
489 rc = -ENOMEM;
490 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
491 "encrypted extent\n");
492 goto out;
494 enc_extent_virt = kmap(enc_extent_page);
495 for (extent_offset = 0;
496 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
497 extent_offset++) {
498 loff_t offset;
500 rc = ecryptfs_encrypt_extent(enc_extent_page, crypt_stat, page,
501 extent_offset);
502 if (rc) {
503 printk(KERN_ERR "%s: Error encrypting extent; "
504 "rc = [%d]\n", __func__, rc);
505 goto out;
507 ecryptfs_lower_offset_for_extent(
508 &offset, ((((loff_t)page->index)
509 * (PAGE_CACHE_SIZE
510 / crypt_stat->extent_size))
511 + extent_offset), crypt_stat);
512 rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt,
513 offset, crypt_stat->extent_size);
514 if (rc) {
515 ecryptfs_printk(KERN_ERR, "Error attempting "
516 "to write lower page; rc = [%d]"
517 "\n", rc);
518 goto out;
521 out:
522 if (enc_extent_page) {
523 kunmap(enc_extent_page);
524 __free_page(enc_extent_page);
526 return rc;
529 static int ecryptfs_decrypt_extent(struct page *page,
530 struct ecryptfs_crypt_stat *crypt_stat,
531 struct page *enc_extent_page,
532 unsigned long extent_offset)
534 loff_t extent_base;
535 char extent_iv[ECRYPTFS_MAX_IV_BYTES];
536 int rc;
538 extent_base = (((loff_t)page->index)
539 * (PAGE_CACHE_SIZE / crypt_stat->extent_size));
540 rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
541 (extent_base + extent_offset));
542 if (rc) {
543 ecryptfs_printk(KERN_ERR, "Error attempting to "
544 "derive IV for extent [0x%.16x]; "
545 "rc = [%d]\n", (extent_base + extent_offset),
546 rc);
547 goto out;
549 if (unlikely(ecryptfs_verbosity > 0)) {
550 ecryptfs_printk(KERN_DEBUG, "Decrypting extent "
551 "with iv:\n");
552 ecryptfs_dump_hex(extent_iv, crypt_stat->iv_bytes);
553 ecryptfs_printk(KERN_DEBUG, "First 8 bytes before "
554 "decryption:\n");
555 ecryptfs_dump_hex((char *)
556 (page_address(enc_extent_page)
557 + (extent_offset * crypt_stat->extent_size)),
560 rc = ecryptfs_decrypt_page_offset(crypt_stat, page,
561 (extent_offset
562 * crypt_stat->extent_size),
563 enc_extent_page, 0,
564 crypt_stat->extent_size, extent_iv);
565 if (rc < 0) {
566 printk(KERN_ERR "%s: Error attempting to decrypt to page with "
567 "page->index = [%ld], extent_offset = [%ld]; "
568 "rc = [%d]\n", __func__, page->index, extent_offset,
569 rc);
570 goto out;
572 rc = 0;
573 if (unlikely(ecryptfs_verbosity > 0)) {
574 ecryptfs_printk(KERN_DEBUG, "Decrypt extent [0x%.16x]; "
575 "rc = [%d]\n", (extent_base + extent_offset),
576 rc);
577 ecryptfs_printk(KERN_DEBUG, "First 8 bytes after "
578 "decryption:\n");
579 ecryptfs_dump_hex((char *)(page_address(page)
580 + (extent_offset
581 * crypt_stat->extent_size)), 8);
583 out:
584 return rc;
588 * ecryptfs_decrypt_page
589 * @page: Page mapped from the eCryptfs inode for the file; data read
590 * and decrypted from the lower file will be written into this
591 * page
593 * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
594 * that eCryptfs pages may straddle the lower pages -- for instance,
595 * if the file was created on a machine with an 8K page size
596 * (resulting in an 8K header), and then the file is copied onto a
597 * host with a 32K page size, then when reading page 0 of the eCryptfs
598 * file, 24K of page 0 of the lower file will be read and decrypted,
599 * and then 8K of page 1 of the lower file will be read and decrypted.
601 * Returns zero on success; negative on error
603 int ecryptfs_decrypt_page(struct page *page)
605 struct inode *ecryptfs_inode;
606 struct ecryptfs_crypt_stat *crypt_stat;
607 char *enc_extent_virt;
608 struct page *enc_extent_page = NULL;
609 unsigned long extent_offset;
610 int rc = 0;
612 ecryptfs_inode = page->mapping->host;
613 crypt_stat =
614 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
615 BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
616 enc_extent_page = alloc_page(GFP_USER);
617 if (!enc_extent_page) {
618 rc = -ENOMEM;
619 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
620 "encrypted extent\n");
621 goto out;
623 enc_extent_virt = kmap(enc_extent_page);
624 for (extent_offset = 0;
625 extent_offset < (PAGE_CACHE_SIZE / crypt_stat->extent_size);
626 extent_offset++) {
627 loff_t offset;
629 ecryptfs_lower_offset_for_extent(
630 &offset, ((page->index * (PAGE_CACHE_SIZE
631 / crypt_stat->extent_size))
632 + extent_offset), crypt_stat);
633 rc = ecryptfs_read_lower(enc_extent_virt, offset,
634 crypt_stat->extent_size,
635 ecryptfs_inode);
636 if (rc) {
637 ecryptfs_printk(KERN_ERR, "Error attempting "
638 "to read lower page; rc = [%d]"
639 "\n", rc);
640 goto out;
642 rc = ecryptfs_decrypt_extent(page, crypt_stat, enc_extent_page,
643 extent_offset);
644 if (rc) {
645 printk(KERN_ERR "%s: Error encrypting extent; "
646 "rc = [%d]\n", __func__, rc);
647 goto out;
650 out:
651 if (enc_extent_page) {
652 kunmap(enc_extent_page);
653 __free_page(enc_extent_page);
655 return rc;
659 * decrypt_scatterlist
660 * @crypt_stat: Cryptographic context
661 * @dest_sg: The destination scatterlist to decrypt into
662 * @src_sg: The source scatterlist to decrypt from
663 * @size: The number of bytes to decrypt
664 * @iv: The initialization vector to use for the decryption
666 * Returns the number of bytes decrypted; negative value on error
668 static int decrypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
669 struct scatterlist *dest_sg,
670 struct scatterlist *src_sg, int size,
671 unsigned char *iv)
673 struct blkcipher_desc desc = {
674 .tfm = crypt_stat->tfm,
675 .info = iv,
676 .flags = CRYPTO_TFM_REQ_MAY_SLEEP
678 int rc = 0;
680 /* Consider doing this once, when the file is opened */
681 mutex_lock(&crypt_stat->cs_tfm_mutex);
682 rc = crypto_blkcipher_setkey(crypt_stat->tfm, crypt_stat->key,
683 crypt_stat->key_size);
684 if (rc) {
685 ecryptfs_printk(KERN_ERR, "Error setting key; rc = [%d]\n",
686 rc);
687 mutex_unlock(&crypt_stat->cs_tfm_mutex);
688 rc = -EINVAL;
689 goto out;
691 ecryptfs_printk(KERN_DEBUG, "Decrypting [%d] bytes.\n", size);
692 rc = crypto_blkcipher_decrypt_iv(&desc, dest_sg, src_sg, size);
693 mutex_unlock(&crypt_stat->cs_tfm_mutex);
694 if (rc) {
695 ecryptfs_printk(KERN_ERR, "Error decrypting; rc = [%d]\n",
696 rc);
697 goto out;
699 rc = size;
700 out:
701 return rc;
705 * ecryptfs_encrypt_page_offset
706 * @crypt_stat: The cryptographic context
707 * @dst_page: The page to encrypt into
708 * @dst_offset: The offset in the page to encrypt into
709 * @src_page: The page to encrypt from
710 * @src_offset: The offset in the page to encrypt from
711 * @size: The number of bytes to encrypt
712 * @iv: The initialization vector to use for the encryption
714 * Returns the number of bytes encrypted
716 static int
717 ecryptfs_encrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
718 struct page *dst_page, int dst_offset,
719 struct page *src_page, int src_offset, int size,
720 unsigned char *iv)
722 struct scatterlist src_sg, dst_sg;
724 sg_init_table(&src_sg, 1);
725 sg_init_table(&dst_sg, 1);
727 sg_set_page(&src_sg, src_page, size, src_offset);
728 sg_set_page(&dst_sg, dst_page, size, dst_offset);
729 return encrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
733 * ecryptfs_decrypt_page_offset
734 * @crypt_stat: The cryptographic context
735 * @dst_page: The page to decrypt into
736 * @dst_offset: The offset in the page to decrypt into
737 * @src_page: The page to decrypt from
738 * @src_offset: The offset in the page to decrypt from
739 * @size: The number of bytes to decrypt
740 * @iv: The initialization vector to use for the decryption
742 * Returns the number of bytes decrypted
744 static int
745 ecryptfs_decrypt_page_offset(struct ecryptfs_crypt_stat *crypt_stat,
746 struct page *dst_page, int dst_offset,
747 struct page *src_page, int src_offset, int size,
748 unsigned char *iv)
750 struct scatterlist src_sg, dst_sg;
752 sg_init_table(&src_sg, 1);
753 sg_set_page(&src_sg, src_page, size, src_offset);
755 sg_init_table(&dst_sg, 1);
756 sg_set_page(&dst_sg, dst_page, size, dst_offset);
758 return decrypt_scatterlist(crypt_stat, &dst_sg, &src_sg, size, iv);
761 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
764 * ecryptfs_init_crypt_ctx
765 * @crypt_stat: Uninitilized crypt stats structure
767 * Initialize the crypto context.
769 * TODO: Performance: Keep a cache of initialized cipher contexts;
770 * only init if needed
772 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
774 char *full_alg_name;
775 int rc = -EINVAL;
777 if (!crypt_stat->cipher) {
778 ecryptfs_printk(KERN_ERR, "No cipher specified\n");
779 goto out;
781 ecryptfs_printk(KERN_DEBUG,
782 "Initializing cipher [%s]; strlen = [%d]; "
783 "key_size_bits = [%d]\n",
784 crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
785 crypt_stat->key_size << 3);
786 if (crypt_stat->tfm) {
787 rc = 0;
788 goto out;
790 mutex_lock(&crypt_stat->cs_tfm_mutex);
791 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
792 crypt_stat->cipher, "cbc");
793 if (rc)
794 goto out_unlock;
795 crypt_stat->tfm = crypto_alloc_blkcipher(full_alg_name, 0,
796 CRYPTO_ALG_ASYNC);
797 kfree(full_alg_name);
798 if (IS_ERR(crypt_stat->tfm)) {
799 rc = PTR_ERR(crypt_stat->tfm);
800 crypt_stat->tfm = NULL;
801 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
802 "Error initializing cipher [%s]\n",
803 crypt_stat->cipher);
804 goto out_unlock;
806 crypto_blkcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
807 rc = 0;
808 out_unlock:
809 mutex_unlock(&crypt_stat->cs_tfm_mutex);
810 out:
811 return rc;
814 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
816 int extent_size_tmp;
818 crypt_stat->extent_mask = 0xFFFFFFFF;
819 crypt_stat->extent_shift = 0;
820 if (crypt_stat->extent_size == 0)
821 return;
822 extent_size_tmp = crypt_stat->extent_size;
823 while ((extent_size_tmp & 0x01) == 0) {
824 extent_size_tmp >>= 1;
825 crypt_stat->extent_mask <<= 1;
826 crypt_stat->extent_shift++;
830 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
832 /* Default values; may be overwritten as we are parsing the
833 * packets. */
834 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
835 set_extent_mask_and_shift(crypt_stat);
836 crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
837 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
838 crypt_stat->num_header_bytes_at_front = 0;
839 else {
840 if (PAGE_CACHE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
841 crypt_stat->num_header_bytes_at_front =
842 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
843 else
844 crypt_stat->num_header_bytes_at_front = PAGE_CACHE_SIZE;
849 * ecryptfs_compute_root_iv
850 * @crypt_stats
852 * On error, sets the root IV to all 0's.
854 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
856 int rc = 0;
857 char dst[MD5_DIGEST_SIZE];
859 BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
860 BUG_ON(crypt_stat->iv_bytes <= 0);
861 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
862 rc = -EINVAL;
863 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
864 "cannot generate root IV\n");
865 goto out;
867 rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
868 crypt_stat->key_size);
869 if (rc) {
870 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
871 "MD5 while generating root IV\n");
872 goto out;
874 memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
875 out:
876 if (rc) {
877 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
878 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
880 return rc;
883 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
885 get_random_bytes(crypt_stat->key, crypt_stat->key_size);
886 crypt_stat->flags |= ECRYPTFS_KEY_VALID;
887 ecryptfs_compute_root_iv(crypt_stat);
888 if (unlikely(ecryptfs_verbosity > 0)) {
889 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
890 ecryptfs_dump_hex(crypt_stat->key,
891 crypt_stat->key_size);
896 * ecryptfs_copy_mount_wide_flags_to_inode_flags
897 * @crypt_stat: The inode's cryptographic context
898 * @mount_crypt_stat: The mount point's cryptographic context
900 * This function propagates the mount-wide flags to individual inode
901 * flags.
903 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
904 struct ecryptfs_crypt_stat *crypt_stat,
905 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
907 if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
908 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
909 if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
910 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
911 if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
912 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
913 if (mount_crypt_stat->flags
914 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
915 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
916 else if (mount_crypt_stat->flags
917 & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
918 crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
922 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
923 struct ecryptfs_crypt_stat *crypt_stat,
924 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
926 struct ecryptfs_global_auth_tok *global_auth_tok;
927 int rc = 0;
929 mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
930 list_for_each_entry(global_auth_tok,
931 &mount_crypt_stat->global_auth_tok_list,
932 mount_crypt_stat_list) {
933 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
934 continue;
935 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
936 if (rc) {
937 printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
938 mutex_unlock(
939 &mount_crypt_stat->global_auth_tok_list_mutex);
940 goto out;
943 mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
944 out:
945 return rc;
949 * ecryptfs_set_default_crypt_stat_vals
950 * @crypt_stat: The inode's cryptographic context
951 * @mount_crypt_stat: The mount point's cryptographic context
953 * Default values in the event that policy does not override them.
955 static void ecryptfs_set_default_crypt_stat_vals(
956 struct ecryptfs_crypt_stat *crypt_stat,
957 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
959 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
960 mount_crypt_stat);
961 ecryptfs_set_default_sizes(crypt_stat);
962 strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
963 crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
964 crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
965 crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
966 crypt_stat->mount_crypt_stat = mount_crypt_stat;
970 * ecryptfs_new_file_context
971 * @ecryptfs_dentry: The eCryptfs dentry
973 * If the crypto context for the file has not yet been established,
974 * this is where we do that. Establishing a new crypto context
975 * involves the following decisions:
976 * - What cipher to use?
977 * - What set of authentication tokens to use?
978 * Here we just worry about getting enough information into the
979 * authentication tokens so that we know that they are available.
980 * We associate the available authentication tokens with the new file
981 * via the set of signatures in the crypt_stat struct. Later, when
982 * the headers are actually written out, we may again defer to
983 * userspace to perform the encryption of the session key; for the
984 * foreseeable future, this will be the case with public key packets.
986 * Returns zero on success; non-zero otherwise
988 int ecryptfs_new_file_context(struct dentry *ecryptfs_dentry)
990 struct ecryptfs_crypt_stat *crypt_stat =
991 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
992 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
993 &ecryptfs_superblock_to_private(
994 ecryptfs_dentry->d_sb)->mount_crypt_stat;
995 int cipher_name_len;
996 int rc = 0;
998 ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
999 crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
1000 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1001 mount_crypt_stat);
1002 rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
1003 mount_crypt_stat);
1004 if (rc) {
1005 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
1006 "to the inode key sigs; rc = [%d]\n", rc);
1007 goto out;
1009 cipher_name_len =
1010 strlen(mount_crypt_stat->global_default_cipher_name);
1011 memcpy(crypt_stat->cipher,
1012 mount_crypt_stat->global_default_cipher_name,
1013 cipher_name_len);
1014 crypt_stat->cipher[cipher_name_len] = '\0';
1015 crypt_stat->key_size =
1016 mount_crypt_stat->global_default_cipher_key_size;
1017 ecryptfs_generate_new_key(crypt_stat);
1018 rc = ecryptfs_init_crypt_ctx(crypt_stat);
1019 if (rc)
1020 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
1021 "context for cipher [%s]: rc = [%d]\n",
1022 crypt_stat->cipher, rc);
1023 out:
1024 return rc;
1028 * contains_ecryptfs_marker - check for the ecryptfs marker
1029 * @data: The data block in which to check
1031 * Returns one if marker found; zero if not found
1033 static int contains_ecryptfs_marker(char *data)
1035 u32 m_1, m_2;
1037 m_1 = get_unaligned_be32(data);
1038 m_2 = get_unaligned_be32(data + 4);
1039 if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
1040 return 1;
1041 ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
1042 "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
1043 MAGIC_ECRYPTFS_MARKER);
1044 ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
1045 "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
1046 return 0;
1049 struct ecryptfs_flag_map_elem {
1050 u32 file_flag;
1051 u32 local_flag;
1054 /* Add support for additional flags by adding elements here. */
1055 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
1056 {0x00000001, ECRYPTFS_ENABLE_HMAC},
1057 {0x00000002, ECRYPTFS_ENCRYPTED},
1058 {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
1059 {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
1063 * ecryptfs_process_flags
1064 * @crypt_stat: The cryptographic context
1065 * @page_virt: Source data to be parsed
1066 * @bytes_read: Updated with the number of bytes read
1068 * Returns zero on success; non-zero if the flag set is invalid
1070 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
1071 char *page_virt, int *bytes_read)
1073 int rc = 0;
1074 int i;
1075 u32 flags;
1077 flags = get_unaligned_be32(page_virt);
1078 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1079 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1080 if (flags & ecryptfs_flag_map[i].file_flag) {
1081 crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
1082 } else
1083 crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
1084 /* Version is in top 8 bits of the 32-bit flag vector */
1085 crypt_stat->file_version = ((flags >> 24) & 0xFF);
1086 (*bytes_read) = 4;
1087 return rc;
1091 * write_ecryptfs_marker
1092 * @page_virt: The pointer to in a page to begin writing the marker
1093 * @written: Number of bytes written
1095 * Marker = 0x3c81b7f5
1097 static void write_ecryptfs_marker(char *page_virt, size_t *written)
1099 u32 m_1, m_2;
1101 get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
1102 m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
1103 put_unaligned_be32(m_1, page_virt);
1104 page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
1105 put_unaligned_be32(m_2, page_virt);
1106 (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1109 static void
1110 write_ecryptfs_flags(char *page_virt, struct ecryptfs_crypt_stat *crypt_stat,
1111 size_t *written)
1113 u32 flags = 0;
1114 int i;
1116 for (i = 0; i < ((sizeof(ecryptfs_flag_map)
1117 / sizeof(struct ecryptfs_flag_map_elem))); i++)
1118 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
1119 flags |= ecryptfs_flag_map[i].file_flag;
1120 /* Version is in top 8 bits of the 32-bit flag vector */
1121 flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
1122 put_unaligned_be32(flags, page_virt);
1123 (*written) = 4;
1126 struct ecryptfs_cipher_code_str_map_elem {
1127 char cipher_str[16];
1128 u8 cipher_code;
1131 /* Add support for additional ciphers by adding elements here. The
1132 * cipher_code is whatever OpenPGP applicatoins use to identify the
1133 * ciphers. List in order of probability. */
1134 static struct ecryptfs_cipher_code_str_map_elem
1135 ecryptfs_cipher_code_str_map[] = {
1136 {"aes",RFC2440_CIPHER_AES_128 },
1137 {"blowfish", RFC2440_CIPHER_BLOWFISH},
1138 {"des3_ede", RFC2440_CIPHER_DES3_EDE},
1139 {"cast5", RFC2440_CIPHER_CAST_5},
1140 {"twofish", RFC2440_CIPHER_TWOFISH},
1141 {"cast6", RFC2440_CIPHER_CAST_6},
1142 {"aes", RFC2440_CIPHER_AES_192},
1143 {"aes", RFC2440_CIPHER_AES_256}
1147 * ecryptfs_code_for_cipher_string
1148 * @cipher_name: The string alias for the cipher
1149 * @key_bytes: Length of key in bytes; used for AES code selection
1151 * Returns zero on no match, or the cipher code on match
1153 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
1155 int i;
1156 u8 code = 0;
1157 struct ecryptfs_cipher_code_str_map_elem *map =
1158 ecryptfs_cipher_code_str_map;
1160 if (strcmp(cipher_name, "aes") == 0) {
1161 switch (key_bytes) {
1162 case 16:
1163 code = RFC2440_CIPHER_AES_128;
1164 break;
1165 case 24:
1166 code = RFC2440_CIPHER_AES_192;
1167 break;
1168 case 32:
1169 code = RFC2440_CIPHER_AES_256;
1171 } else {
1172 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1173 if (strcmp(cipher_name, map[i].cipher_str) == 0) {
1174 code = map[i].cipher_code;
1175 break;
1178 return code;
1182 * ecryptfs_cipher_code_to_string
1183 * @str: Destination to write out the cipher name
1184 * @cipher_code: The code to convert to cipher name string
1186 * Returns zero on success
1188 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
1190 int rc = 0;
1191 int i;
1193 str[0] = '\0';
1194 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1195 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1196 strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1197 if (str[0] == '\0') {
1198 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1199 "[%d]\n", cipher_code);
1200 rc = -EINVAL;
1202 return rc;
1205 int ecryptfs_read_and_validate_header_region(char *data,
1206 struct inode *ecryptfs_inode)
1208 struct ecryptfs_crypt_stat *crypt_stat =
1209 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
1210 int rc;
1212 if (crypt_stat->extent_size == 0)
1213 crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
1214 rc = ecryptfs_read_lower(data, 0, crypt_stat->extent_size,
1215 ecryptfs_inode);
1216 if (rc) {
1217 printk(KERN_ERR "%s: Error reading header region; rc = [%d]\n",
1218 __func__, rc);
1219 goto out;
1221 if (!contains_ecryptfs_marker(data + ECRYPTFS_FILE_SIZE_BYTES)) {
1222 rc = -EINVAL;
1224 out:
1225 return rc;
1228 void
1229 ecryptfs_write_header_metadata(char *virt,
1230 struct ecryptfs_crypt_stat *crypt_stat,
1231 size_t *written)
1233 u32 header_extent_size;
1234 u16 num_header_extents_at_front;
1236 header_extent_size = (u32)crypt_stat->extent_size;
1237 num_header_extents_at_front =
1238 (u16)(crypt_stat->num_header_bytes_at_front
1239 / crypt_stat->extent_size);
1240 put_unaligned_be32(header_extent_size, virt);
1241 virt += 4;
1242 put_unaligned_be16(num_header_extents_at_front, virt);
1243 (*written) = 6;
1246 struct kmem_cache *ecryptfs_header_cache_1;
1247 struct kmem_cache *ecryptfs_header_cache_2;
1250 * ecryptfs_write_headers_virt
1251 * @page_virt: The virtual address to write the headers to
1252 * @max: The size of memory allocated at page_virt
1253 * @size: Set to the number of bytes written by this function
1254 * @crypt_stat: The cryptographic context
1255 * @ecryptfs_dentry: The eCryptfs dentry
1257 * Format version: 1
1259 * Header Extent:
1260 * Octets 0-7: Unencrypted file size (big-endian)
1261 * Octets 8-15: eCryptfs special marker
1262 * Octets 16-19: Flags
1263 * Octet 16: File format version number (between 0 and 255)
1264 * Octets 17-18: Reserved
1265 * Octet 19: Bit 1 (lsb): Reserved
1266 * Bit 2: Encrypted?
1267 * Bits 3-8: Reserved
1268 * Octets 20-23: Header extent size (big-endian)
1269 * Octets 24-25: Number of header extents at front of file
1270 * (big-endian)
1271 * Octet 26: Begin RFC 2440 authentication token packet set
1272 * Data Extent 0:
1273 * Lower data (CBC encrypted)
1274 * Data Extent 1:
1275 * Lower data (CBC encrypted)
1276 * ...
1278 * Returns zero on success
1280 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1281 size_t *size,
1282 struct ecryptfs_crypt_stat *crypt_stat,
1283 struct dentry *ecryptfs_dentry)
1285 int rc;
1286 size_t written;
1287 size_t offset;
1289 offset = ECRYPTFS_FILE_SIZE_BYTES;
1290 write_ecryptfs_marker((page_virt + offset), &written);
1291 offset += written;
1292 write_ecryptfs_flags((page_virt + offset), crypt_stat, &written);
1293 offset += written;
1294 ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1295 &written);
1296 offset += written;
1297 rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1298 ecryptfs_dentry, &written,
1299 max - offset);
1300 if (rc)
1301 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1302 "set; rc = [%d]\n", rc);
1303 if (size) {
1304 offset += written;
1305 *size = offset;
1307 return rc;
1310 static int
1311 ecryptfs_write_metadata_to_contents(struct dentry *ecryptfs_dentry,
1312 char *virt, size_t virt_len)
1314 int rc;
1316 rc = ecryptfs_write_lower(ecryptfs_dentry->d_inode, virt,
1317 0, virt_len);
1318 if (rc)
1319 printk(KERN_ERR "%s: Error attempting to write header "
1320 "information to lower file; rc = [%d]\n", __func__,
1321 rc);
1322 return rc;
1325 static int
1326 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1327 char *page_virt, size_t size)
1329 int rc;
1331 rc = ecryptfs_setxattr(ecryptfs_dentry, ECRYPTFS_XATTR_NAME, page_virt,
1332 size, 0);
1333 return rc;
1336 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1337 unsigned int order)
1339 struct page *page;
1341 page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1342 if (page)
1343 return (unsigned long) page_address(page);
1344 return 0;
1348 * ecryptfs_write_metadata
1349 * @ecryptfs_dentry: The eCryptfs dentry
1351 * Write the file headers out. This will likely involve a userspace
1352 * callout, in which the session key is encrypted with one or more
1353 * public keys and/or the passphrase necessary to do the encryption is
1354 * retrieved via a prompt. Exactly what happens at this point should
1355 * be policy-dependent.
1357 * Returns zero on success; non-zero on error
1359 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry)
1361 struct ecryptfs_crypt_stat *crypt_stat =
1362 &ecryptfs_inode_to_private(ecryptfs_dentry->d_inode)->crypt_stat;
1363 unsigned int order;
1364 char *virt;
1365 size_t virt_len;
1366 size_t size = 0;
1367 int rc = 0;
1369 if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1370 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1371 printk(KERN_ERR "Key is invalid; bailing out\n");
1372 rc = -EINVAL;
1373 goto out;
1375 } else {
1376 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1377 __func__);
1378 rc = -EINVAL;
1379 goto out;
1381 virt_len = crypt_stat->num_header_bytes_at_front;
1382 order = get_order(virt_len);
1383 /* Released in this function */
1384 virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1385 if (!virt) {
1386 printk(KERN_ERR "%s: Out of memory\n", __func__);
1387 rc = -ENOMEM;
1388 goto out;
1390 rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1391 ecryptfs_dentry);
1392 if (unlikely(rc)) {
1393 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1394 __func__, rc);
1395 goto out_free;
1397 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1398 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, virt,
1399 size);
1400 else
1401 rc = ecryptfs_write_metadata_to_contents(ecryptfs_dentry, virt,
1402 virt_len);
1403 if (rc) {
1404 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1405 "rc = [%d]\n", __func__, rc);
1406 goto out_free;
1408 out_free:
1409 free_pages((unsigned long)virt, order);
1410 out:
1411 return rc;
1414 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1415 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1416 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1417 char *virt, int *bytes_read,
1418 int validate_header_size)
1420 int rc = 0;
1421 u32 header_extent_size;
1422 u16 num_header_extents_at_front;
1424 header_extent_size = get_unaligned_be32(virt);
1425 virt += sizeof(__be32);
1426 num_header_extents_at_front = get_unaligned_be16(virt);
1427 crypt_stat->num_header_bytes_at_front =
1428 (((size_t)num_header_extents_at_front
1429 * (size_t)header_extent_size));
1430 (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1431 if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1432 && (crypt_stat->num_header_bytes_at_front
1433 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1434 rc = -EINVAL;
1435 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1436 crypt_stat->num_header_bytes_at_front);
1438 return rc;
1442 * set_default_header_data
1443 * @crypt_stat: The cryptographic context
1445 * For version 0 file format; this function is only for backwards
1446 * compatibility for files created with the prior versions of
1447 * eCryptfs.
1449 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1451 crypt_stat->num_header_bytes_at_front =
1452 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1456 * ecryptfs_read_headers_virt
1457 * @page_virt: The virtual address into which to read the headers
1458 * @crypt_stat: The cryptographic context
1459 * @ecryptfs_dentry: The eCryptfs dentry
1460 * @validate_header_size: Whether to validate the header size while reading
1462 * Read/parse the header data. The header format is detailed in the
1463 * comment block for the ecryptfs_write_headers_virt() function.
1465 * Returns zero on success
1467 static int ecryptfs_read_headers_virt(char *page_virt,
1468 struct ecryptfs_crypt_stat *crypt_stat,
1469 struct dentry *ecryptfs_dentry,
1470 int validate_header_size)
1472 int rc = 0;
1473 int offset;
1474 int bytes_read;
1476 ecryptfs_set_default_sizes(crypt_stat);
1477 crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1478 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1479 offset = ECRYPTFS_FILE_SIZE_BYTES;
1480 rc = contains_ecryptfs_marker(page_virt + offset);
1481 if (rc == 0) {
1482 rc = -EINVAL;
1483 goto out;
1485 offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1486 rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1487 &bytes_read);
1488 if (rc) {
1489 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1490 goto out;
1492 if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1493 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1494 "file version [%d] is supported by this "
1495 "version of eCryptfs\n",
1496 crypt_stat->file_version,
1497 ECRYPTFS_SUPPORTED_FILE_VERSION);
1498 rc = -EINVAL;
1499 goto out;
1501 offset += bytes_read;
1502 if (crypt_stat->file_version >= 1) {
1503 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1504 &bytes_read, validate_header_size);
1505 if (rc) {
1506 ecryptfs_printk(KERN_WARNING, "Error reading header "
1507 "metadata; rc = [%d]\n", rc);
1509 offset += bytes_read;
1510 } else
1511 set_default_header_data(crypt_stat);
1512 rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1513 ecryptfs_dentry);
1514 out:
1515 return rc;
1519 * ecryptfs_read_xattr_region
1520 * @page_virt: The vitual address into which to read the xattr data
1521 * @ecryptfs_inode: The eCryptfs inode
1523 * Attempts to read the crypto metadata from the extended attribute
1524 * region of the lower file.
1526 * Returns zero on success; non-zero on error
1528 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1530 struct dentry *lower_dentry =
1531 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_dentry;
1532 ssize_t size;
1533 int rc = 0;
1535 size = ecryptfs_getxattr_lower(lower_dentry, ECRYPTFS_XATTR_NAME,
1536 page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1537 if (size < 0) {
1538 if (unlikely(ecryptfs_verbosity > 0))
1539 printk(KERN_INFO "Error attempting to read the [%s] "
1540 "xattr from the lower file; return value = "
1541 "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1542 rc = -EINVAL;
1543 goto out;
1545 out:
1546 return rc;
1549 int ecryptfs_read_and_validate_xattr_region(char *page_virt,
1550 struct dentry *ecryptfs_dentry)
1552 int rc;
1554 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_dentry->d_inode);
1555 if (rc)
1556 goto out;
1557 if (!contains_ecryptfs_marker(page_virt + ECRYPTFS_FILE_SIZE_BYTES)) {
1558 printk(KERN_WARNING "Valid data found in [%s] xattr, but "
1559 "the marker is invalid\n", ECRYPTFS_XATTR_NAME);
1560 rc = -EINVAL;
1562 out:
1563 return rc;
1567 * ecryptfs_read_metadata
1569 * Common entry point for reading file metadata. From here, we could
1570 * retrieve the header information from the header region of the file,
1571 * the xattr region of the file, or some other repostory that is
1572 * stored separately from the file itself. The current implementation
1573 * supports retrieving the metadata information from the file contents
1574 * and from the xattr region.
1576 * Returns zero if valid headers found and parsed; non-zero otherwise
1578 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1580 int rc = 0;
1581 char *page_virt = NULL;
1582 struct inode *ecryptfs_inode = ecryptfs_dentry->d_inode;
1583 struct ecryptfs_crypt_stat *crypt_stat =
1584 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1585 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1586 &ecryptfs_superblock_to_private(
1587 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1589 ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1590 mount_crypt_stat);
1591 /* Read the first page from the underlying file */
1592 page_virt = kmem_cache_alloc(ecryptfs_header_cache_1, GFP_USER);
1593 if (!page_virt) {
1594 rc = -ENOMEM;
1595 printk(KERN_ERR "%s: Unable to allocate page_virt\n",
1596 __func__);
1597 goto out;
1599 rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1600 ecryptfs_inode);
1601 if (!rc)
1602 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1603 ecryptfs_dentry,
1604 ECRYPTFS_VALIDATE_HEADER_SIZE);
1605 if (rc) {
1606 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1607 if (rc) {
1608 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1609 "file header region or xattr region\n");
1610 rc = -EINVAL;
1611 goto out;
1613 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1614 ecryptfs_dentry,
1615 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1616 if (rc) {
1617 printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1618 "file xattr region either\n");
1619 rc = -EINVAL;
1621 if (crypt_stat->mount_crypt_stat->flags
1622 & ECRYPTFS_XATTR_METADATA_ENABLED) {
1623 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1624 } else {
1625 printk(KERN_WARNING "Attempt to access file with "
1626 "crypto metadata only in the extended attribute "
1627 "region, but eCryptfs was mounted without "
1628 "xattr support enabled. eCryptfs will not treat "
1629 "this like an encrypted file.\n");
1630 rc = -EINVAL;
1633 out:
1634 if (page_virt) {
1635 memset(page_virt, 0, PAGE_CACHE_SIZE);
1636 kmem_cache_free(ecryptfs_header_cache_1, page_virt);
1638 return rc;
1642 * ecryptfs_encrypt_filename - encrypt filename
1644 * CBC-encrypts the filename. We do not want to encrypt the same
1645 * filename with the same key and IV, which may happen with hard
1646 * links, so we prepend random bits to each filename.
1648 * Returns zero on success; non-zero otherwise
1650 static int
1651 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1652 struct ecryptfs_crypt_stat *crypt_stat,
1653 struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1655 int rc = 0;
1657 filename->encrypted_filename = NULL;
1658 filename->encrypted_filename_size = 0;
1659 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
1660 || (mount_crypt_stat && (mount_crypt_stat->flags
1661 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
1662 size_t packet_size;
1663 size_t remaining_bytes;
1665 rc = ecryptfs_write_tag_70_packet(
1666 NULL, NULL,
1667 &filename->encrypted_filename_size,
1668 mount_crypt_stat, NULL,
1669 filename->filename_size);
1670 if (rc) {
1671 printk(KERN_ERR "%s: Error attempting to get packet "
1672 "size for tag 72; rc = [%d]\n", __func__,
1673 rc);
1674 filename->encrypted_filename_size = 0;
1675 goto out;
1677 filename->encrypted_filename =
1678 kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1679 if (!filename->encrypted_filename) {
1680 printk(KERN_ERR "%s: Out of memory whilst attempting "
1681 "to kmalloc [%zd] bytes\n", __func__,
1682 filename->encrypted_filename_size);
1683 rc = -ENOMEM;
1684 goto out;
1686 remaining_bytes = filename->encrypted_filename_size;
1687 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1688 &remaining_bytes,
1689 &packet_size,
1690 mount_crypt_stat,
1691 filename->filename,
1692 filename->filename_size);
1693 if (rc) {
1694 printk(KERN_ERR "%s: Error attempting to generate "
1695 "tag 70 packet; rc = [%d]\n", __func__,
1696 rc);
1697 kfree(filename->encrypted_filename);
1698 filename->encrypted_filename = NULL;
1699 filename->encrypted_filename_size = 0;
1700 goto out;
1702 filename->encrypted_filename_size = packet_size;
1703 } else {
1704 printk(KERN_ERR "%s: No support for requested filename "
1705 "encryption method in this release\n", __func__);
1706 rc = -EOPNOTSUPP;
1707 goto out;
1709 out:
1710 return rc;
1713 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1714 const char *name, size_t name_size)
1716 int rc = 0;
1718 (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1719 if (!(*copied_name)) {
1720 rc = -ENOMEM;
1721 goto out;
1723 memcpy((void *)(*copied_name), (void *)name, name_size);
1724 (*copied_name)[(name_size)] = '\0'; /* Only for convenience
1725 * in printing out the
1726 * string in debug
1727 * messages */
1728 (*copied_name_size) = name_size;
1729 out:
1730 return rc;
1734 * ecryptfs_process_key_cipher - Perform key cipher initialization.
1735 * @key_tfm: Crypto context for key material, set by this function
1736 * @cipher_name: Name of the cipher
1737 * @key_size: Size of the key in bytes
1739 * Returns zero on success. Any crypto_tfm structs allocated here
1740 * should be released by other functions, such as on a superblock put
1741 * event, regardless of whether this function succeeds for fails.
1743 static int
1744 ecryptfs_process_key_cipher(struct crypto_blkcipher **key_tfm,
1745 char *cipher_name, size_t *key_size)
1747 char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1748 char *full_alg_name;
1749 int rc;
1751 *key_tfm = NULL;
1752 if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1753 rc = -EINVAL;
1754 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1755 "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1756 goto out;
1758 rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1759 "ecb");
1760 if (rc)
1761 goto out;
1762 *key_tfm = crypto_alloc_blkcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1763 kfree(full_alg_name);
1764 if (IS_ERR(*key_tfm)) {
1765 rc = PTR_ERR(*key_tfm);
1766 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1767 "[%s]; rc = [%d]\n", cipher_name, rc);
1768 goto out;
1770 crypto_blkcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1771 if (*key_size == 0) {
1772 struct blkcipher_alg *alg = crypto_blkcipher_alg(*key_tfm);
1774 *key_size = alg->max_keysize;
1776 get_random_bytes(dummy_key, *key_size);
1777 rc = crypto_blkcipher_setkey(*key_tfm, dummy_key, *key_size);
1778 if (rc) {
1779 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1780 "cipher [%s]; rc = [%d]\n", *key_size, cipher_name, rc);
1781 rc = -EINVAL;
1782 goto out;
1784 out:
1785 return rc;
1788 struct kmem_cache *ecryptfs_key_tfm_cache;
1789 static struct list_head key_tfm_list;
1790 struct mutex key_tfm_list_mutex;
1792 int ecryptfs_init_crypto(void)
1794 mutex_init(&key_tfm_list_mutex);
1795 INIT_LIST_HEAD(&key_tfm_list);
1796 return 0;
1800 * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1802 * Called only at module unload time
1804 int ecryptfs_destroy_crypto(void)
1806 struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1808 mutex_lock(&key_tfm_list_mutex);
1809 list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1810 key_tfm_list) {
1811 list_del(&key_tfm->key_tfm_list);
1812 if (key_tfm->key_tfm)
1813 crypto_free_blkcipher(key_tfm->key_tfm);
1814 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1816 mutex_unlock(&key_tfm_list_mutex);
1817 return 0;
1821 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1822 size_t key_size)
1824 struct ecryptfs_key_tfm *tmp_tfm;
1825 int rc = 0;
1827 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1829 tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1830 if (key_tfm != NULL)
1831 (*key_tfm) = tmp_tfm;
1832 if (!tmp_tfm) {
1833 rc = -ENOMEM;
1834 printk(KERN_ERR "Error attempting to allocate from "
1835 "ecryptfs_key_tfm_cache\n");
1836 goto out;
1838 mutex_init(&tmp_tfm->key_tfm_mutex);
1839 strncpy(tmp_tfm->cipher_name, cipher_name,
1840 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1841 tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1842 tmp_tfm->key_size = key_size;
1843 rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1844 tmp_tfm->cipher_name,
1845 &tmp_tfm->key_size);
1846 if (rc) {
1847 printk(KERN_ERR "Error attempting to initialize key TFM "
1848 "cipher with name = [%s]; rc = [%d]\n",
1849 tmp_tfm->cipher_name, rc);
1850 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1851 if (key_tfm != NULL)
1852 (*key_tfm) = NULL;
1853 goto out;
1855 list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1856 out:
1857 return rc;
1861 * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1862 * @cipher_name: the name of the cipher to search for
1863 * @key_tfm: set to corresponding tfm if found
1865 * Searches for cached key_tfm matching @cipher_name
1866 * Must be called with &key_tfm_list_mutex held
1867 * Returns 1 if found, with @key_tfm set
1868 * Returns 0 if not found, with @key_tfm set to NULL
1870 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1872 struct ecryptfs_key_tfm *tmp_key_tfm;
1874 BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1876 list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1877 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1878 if (key_tfm)
1879 (*key_tfm) = tmp_key_tfm;
1880 return 1;
1883 if (key_tfm)
1884 (*key_tfm) = NULL;
1885 return 0;
1889 * ecryptfs_get_tfm_and_mutex_for_cipher_name
1891 * @tfm: set to cached tfm found, or new tfm created
1892 * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1893 * @cipher_name: the name of the cipher to search for and/or add
1895 * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1896 * Searches for cached item first, and creates new if not found.
1897 * Returns 0 on success, non-zero if adding new cipher failed
1899 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_blkcipher **tfm,
1900 struct mutex **tfm_mutex,
1901 char *cipher_name)
1903 struct ecryptfs_key_tfm *key_tfm;
1904 int rc = 0;
1906 (*tfm) = NULL;
1907 (*tfm_mutex) = NULL;
1909 mutex_lock(&key_tfm_list_mutex);
1910 if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1911 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1912 if (rc) {
1913 printk(KERN_ERR "Error adding new key_tfm to list; "
1914 "rc = [%d]\n", rc);
1915 goto out;
1918 (*tfm) = key_tfm->key_tfm;
1919 (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1920 out:
1921 mutex_unlock(&key_tfm_list_mutex);
1922 return rc;
1925 /* 64 characters forming a 6-bit target field */
1926 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1927 "EFGHIJKLMNOPQRST"
1928 "UVWXYZabcdefghij"
1929 "klmnopqrstuvwxyz");
1931 /* We could either offset on every reverse map or just pad some 0x00's
1932 * at the front here */
1933 static const unsigned char filename_rev_map[] = {
1934 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1935 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1936 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1937 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1938 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1939 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1940 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1941 0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1942 0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1943 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1944 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1945 0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1946 0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1947 0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1948 0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1949 0x3D, 0x3E, 0x3F
1953 * ecryptfs_encode_for_filename
1954 * @dst: Destination location for encoded filename
1955 * @dst_size: Size of the encoded filename in bytes
1956 * @src: Source location for the filename to encode
1957 * @src_size: Size of the source in bytes
1959 void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1960 unsigned char *src, size_t src_size)
1962 size_t num_blocks;
1963 size_t block_num = 0;
1964 size_t dst_offset = 0;
1965 unsigned char last_block[3];
1967 if (src_size == 0) {
1968 (*dst_size) = 0;
1969 goto out;
1971 num_blocks = (src_size / 3);
1972 if ((src_size % 3) == 0) {
1973 memcpy(last_block, (&src[src_size - 3]), 3);
1974 } else {
1975 num_blocks++;
1976 last_block[2] = 0x00;
1977 switch (src_size % 3) {
1978 case 1:
1979 last_block[0] = src[src_size - 1];
1980 last_block[1] = 0x00;
1981 break;
1982 case 2:
1983 last_block[0] = src[src_size - 2];
1984 last_block[1] = src[src_size - 1];
1987 (*dst_size) = (num_blocks * 4);
1988 if (!dst)
1989 goto out;
1990 while (block_num < num_blocks) {
1991 unsigned char *src_block;
1992 unsigned char dst_block[4];
1994 if (block_num == (num_blocks - 1))
1995 src_block = last_block;
1996 else
1997 src_block = &src[block_num * 3];
1998 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1999 dst_block[1] = (((src_block[0] << 4) & 0x30)
2000 | ((src_block[1] >> 4) & 0x0F));
2001 dst_block[2] = (((src_block[1] << 2) & 0x3C)
2002 | ((src_block[2] >> 6) & 0x03));
2003 dst_block[3] = (src_block[2] & 0x3F);
2004 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
2005 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
2006 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
2007 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
2008 block_num++;
2010 out:
2011 return;
2015 * ecryptfs_decode_from_filename
2016 * @dst: If NULL, this function only sets @dst_size and returns. If
2017 * non-NULL, this function decodes the encoded octets in @src
2018 * into the memory that @dst points to.
2019 * @dst_size: Set to the size of the decoded string.
2020 * @src: The encoded set of octets to decode.
2021 * @src_size: The size of the encoded set of octets to decode.
2023 static void
2024 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
2025 const unsigned char *src, size_t src_size)
2027 u8 current_bit_offset = 0;
2028 size_t src_byte_offset = 0;
2029 size_t dst_byte_offset = 0;
2031 if (dst == NULL) {
2032 /* Not exact; conservatively long. Every block of 4
2033 * encoded characters decodes into a block of 3
2034 * decoded characters. This segment of code provides
2035 * the caller with the maximum amount of allocated
2036 * space that @dst will need to point to in a
2037 * subsequent call. */
2038 (*dst_size) = (((src_size + 1) * 3) / 4);
2039 goto out;
2041 while (src_byte_offset < src_size) {
2042 unsigned char src_byte =
2043 filename_rev_map[(int)src[src_byte_offset]];
2045 switch (current_bit_offset) {
2046 case 0:
2047 dst[dst_byte_offset] = (src_byte << 2);
2048 current_bit_offset = 6;
2049 break;
2050 case 6:
2051 dst[dst_byte_offset++] |= (src_byte >> 4);
2052 dst[dst_byte_offset] = ((src_byte & 0xF)
2053 << 4);
2054 current_bit_offset = 4;
2055 break;
2056 case 4:
2057 dst[dst_byte_offset++] |= (src_byte >> 2);
2058 dst[dst_byte_offset] = (src_byte << 6);
2059 current_bit_offset = 2;
2060 break;
2061 case 2:
2062 dst[dst_byte_offset++] |= (src_byte);
2063 dst[dst_byte_offset] = 0;
2064 current_bit_offset = 0;
2065 break;
2067 src_byte_offset++;
2069 (*dst_size) = dst_byte_offset;
2070 out:
2071 return;
2075 * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
2076 * @crypt_stat: The crypt_stat struct associated with the file anem to encode
2077 * @name: The plaintext name
2078 * @length: The length of the plaintext
2079 * @encoded_name: The encypted name
2081 * Encrypts and encodes a filename into something that constitutes a
2082 * valid filename for a filesystem, with printable characters.
2084 * We assume that we have a properly initialized crypto context,
2085 * pointed to by crypt_stat->tfm.
2087 * Returns zero on success; non-zero on otherwise
2089 int ecryptfs_encrypt_and_encode_filename(
2090 char **encoded_name,
2091 size_t *encoded_name_size,
2092 struct ecryptfs_crypt_stat *crypt_stat,
2093 struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
2094 const char *name, size_t name_size)
2096 size_t encoded_name_no_prefix_size;
2097 int rc = 0;
2099 (*encoded_name) = NULL;
2100 (*encoded_name_size) = 0;
2101 if ((crypt_stat && (crypt_stat->flags & ECRYPTFS_ENCRYPT_FILENAMES))
2102 || (mount_crypt_stat && (mount_crypt_stat->flags
2103 & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES))) {
2104 struct ecryptfs_filename *filename;
2106 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
2107 if (!filename) {
2108 printk(KERN_ERR "%s: Out of memory whilst attempting "
2109 "to kzalloc [%zd] bytes\n", __func__,
2110 sizeof(*filename));
2111 rc = -ENOMEM;
2112 goto out;
2114 filename->filename = (char *)name;
2115 filename->filename_size = name_size;
2116 rc = ecryptfs_encrypt_filename(filename, crypt_stat,
2117 mount_crypt_stat);
2118 if (rc) {
2119 printk(KERN_ERR "%s: Error attempting to encrypt "
2120 "filename; rc = [%d]\n", __func__, rc);
2121 kfree(filename);
2122 goto out;
2124 ecryptfs_encode_for_filename(
2125 NULL, &encoded_name_no_prefix_size,
2126 filename->encrypted_filename,
2127 filename->encrypted_filename_size);
2128 if ((crypt_stat && (crypt_stat->flags
2129 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2130 || (mount_crypt_stat
2131 && (mount_crypt_stat->flags
2132 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)))
2133 (*encoded_name_size) =
2134 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2135 + encoded_name_no_prefix_size);
2136 else
2137 (*encoded_name_size) =
2138 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2139 + encoded_name_no_prefix_size);
2140 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
2141 if (!(*encoded_name)) {
2142 printk(KERN_ERR "%s: Out of memory whilst attempting "
2143 "to kzalloc [%zd] bytes\n", __func__,
2144 (*encoded_name_size));
2145 rc = -ENOMEM;
2146 kfree(filename->encrypted_filename);
2147 kfree(filename);
2148 goto out;
2150 if ((crypt_stat && (crypt_stat->flags
2151 & ECRYPTFS_ENCFN_USE_MOUNT_FNEK))
2152 || (mount_crypt_stat
2153 && (mount_crypt_stat->flags
2154 & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))) {
2155 memcpy((*encoded_name),
2156 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2157 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
2158 ecryptfs_encode_for_filename(
2159 ((*encoded_name)
2160 + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
2161 &encoded_name_no_prefix_size,
2162 filename->encrypted_filename,
2163 filename->encrypted_filename_size);
2164 (*encoded_name_size) =
2165 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
2166 + encoded_name_no_prefix_size);
2167 (*encoded_name)[(*encoded_name_size)] = '\0';
2168 (*encoded_name_size)++;
2169 } else {
2170 rc = -EOPNOTSUPP;
2172 if (rc) {
2173 printk(KERN_ERR "%s: Error attempting to encode "
2174 "encrypted filename; rc = [%d]\n", __func__,
2175 rc);
2176 kfree((*encoded_name));
2177 (*encoded_name) = NULL;
2178 (*encoded_name_size) = 0;
2180 kfree(filename->encrypted_filename);
2181 kfree(filename);
2182 } else {
2183 rc = ecryptfs_copy_filename(encoded_name,
2184 encoded_name_size,
2185 name, name_size);
2187 out:
2188 return rc;
2192 * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2193 * @plaintext_name: The plaintext name
2194 * @plaintext_name_size: The plaintext name size
2195 * @ecryptfs_dir_dentry: eCryptfs directory dentry
2196 * @name: The filename in cipher text
2197 * @name_size: The cipher text name size
2199 * Decrypts and decodes the filename.
2201 * Returns zero on error; non-zero otherwise
2203 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2204 size_t *plaintext_name_size,
2205 struct dentry *ecryptfs_dir_dentry,
2206 const char *name, size_t name_size)
2208 struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2209 &ecryptfs_superblock_to_private(
2210 ecryptfs_dir_dentry->d_sb)->mount_crypt_stat;
2211 char *decoded_name;
2212 size_t decoded_name_size;
2213 size_t packet_size;
2214 int rc = 0;
2216 if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)
2217 && !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
2218 && (name_size > ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)
2219 && (strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2220 ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE) == 0)) {
2221 const char *orig_name = name;
2222 size_t orig_name_size = name_size;
2224 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2225 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2226 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2227 name, name_size);
2228 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2229 if (!decoded_name) {
2230 printk(KERN_ERR "%s: Out of memory whilst attempting "
2231 "to kmalloc [%zd] bytes\n", __func__,
2232 decoded_name_size);
2233 rc = -ENOMEM;
2234 goto out;
2236 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2237 name, name_size);
2238 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2239 plaintext_name_size,
2240 &packet_size,
2241 mount_crypt_stat,
2242 decoded_name,
2243 decoded_name_size);
2244 if (rc) {
2245 printk(KERN_INFO "%s: Could not parse tag 70 packet "
2246 "from filename; copying through filename "
2247 "as-is\n", __func__);
2248 rc = ecryptfs_copy_filename(plaintext_name,
2249 plaintext_name_size,
2250 orig_name, orig_name_size);
2251 goto out_free;
2253 } else {
2254 rc = ecryptfs_copy_filename(plaintext_name,
2255 plaintext_name_size,
2256 name, name_size);
2257 goto out;
2259 out_free:
2260 kfree(decoded_name);
2261 out:
2262 return rc;