PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / fs / jbd / journal.c
blobf96f85092d1cf2bffb671d147470666118b4bc7d
1 /*
2 * linux/fs/jbd/journal.c
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
12 * Generic filesystem journal-writing code; part of the ext2fs
13 * journaling system.
15 * This file manages journals: areas of disk reserved for logging
16 * transactional updates. This includes the kernel journaling thread
17 * which is responsible for scheduling updates to the log.
19 * We do not actually manage the physical storage of the journal in this
20 * file: that is left to a per-journal policy function, which allows us
21 * to store the journal within a filesystem-specified area for ext2
22 * journaling (ext2 can use a reserved inode for storing the log).
25 #include <linux/module.h>
26 #include <linux/time.h>
27 #include <linux/fs.h>
28 #include <linux/jbd.h>
29 #include <linux/errno.h>
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/mm.h>
33 #include <linux/freezer.h>
34 #include <linux/pagemap.h>
35 #include <linux/kthread.h>
36 #include <linux/poison.h>
37 #include <linux/proc_fs.h>
38 #include <linux/debugfs.h>
40 #include <asm/uaccess.h>
41 #include <asm/page.h>
43 EXPORT_SYMBOL(journal_start);
44 EXPORT_SYMBOL(journal_restart);
45 EXPORT_SYMBOL(journal_extend);
46 EXPORT_SYMBOL(journal_stop);
47 EXPORT_SYMBOL(journal_lock_updates);
48 EXPORT_SYMBOL(journal_unlock_updates);
49 EXPORT_SYMBOL(journal_get_write_access);
50 EXPORT_SYMBOL(journal_get_create_access);
51 EXPORT_SYMBOL(journal_get_undo_access);
52 EXPORT_SYMBOL(journal_dirty_data);
53 EXPORT_SYMBOL(journal_dirty_metadata);
54 EXPORT_SYMBOL(journal_release_buffer);
55 EXPORT_SYMBOL(journal_forget);
56 #if 0
57 EXPORT_SYMBOL(journal_sync_buffer);
58 #endif
59 EXPORT_SYMBOL(journal_flush);
60 EXPORT_SYMBOL(journal_revoke);
62 EXPORT_SYMBOL(journal_init_dev);
63 EXPORT_SYMBOL(journal_init_inode);
64 EXPORT_SYMBOL(journal_update_format);
65 EXPORT_SYMBOL(journal_check_used_features);
66 EXPORT_SYMBOL(journal_check_available_features);
67 EXPORT_SYMBOL(journal_set_features);
68 EXPORT_SYMBOL(journal_create);
69 EXPORT_SYMBOL(journal_load);
70 EXPORT_SYMBOL(journal_destroy);
71 EXPORT_SYMBOL(journal_abort);
72 EXPORT_SYMBOL(journal_errno);
73 EXPORT_SYMBOL(journal_ack_err);
74 EXPORT_SYMBOL(journal_clear_err);
75 EXPORT_SYMBOL(log_wait_commit);
76 EXPORT_SYMBOL(journal_start_commit);
77 EXPORT_SYMBOL(journal_force_commit_nested);
78 EXPORT_SYMBOL(journal_wipe);
79 EXPORT_SYMBOL(journal_blocks_per_page);
80 EXPORT_SYMBOL(journal_invalidatepage);
81 EXPORT_SYMBOL(journal_try_to_free_buffers);
82 EXPORT_SYMBOL(journal_force_commit);
84 static int journal_convert_superblock_v1(journal_t *, journal_superblock_t *);
85 static void __journal_abort_soft (journal_t *journal, int errno);
88 * Helper function used to manage commit timeouts
91 static void commit_timeout(unsigned long __data)
93 struct task_struct * p = (struct task_struct *) __data;
95 wake_up_process(p);
99 * kjournald: The main thread function used to manage a logging device
100 * journal.
102 * This kernel thread is responsible for two things:
104 * 1) COMMIT: Every so often we need to commit the current state of the
105 * filesystem to disk. The journal thread is responsible for writing
106 * all of the metadata buffers to disk.
108 * 2) CHECKPOINT: We cannot reuse a used section of the log file until all
109 * of the data in that part of the log has been rewritten elsewhere on
110 * the disk. Flushing these old buffers to reclaim space in the log is
111 * known as checkpointing, and this thread is responsible for that job.
114 static int kjournald(void *arg)
116 journal_t *journal = arg;
117 transaction_t *transaction;
120 * Set up an interval timer which can be used to trigger a commit wakeup
121 * after the commit interval expires
123 setup_timer(&journal->j_commit_timer, commit_timeout,
124 (unsigned long)current);
126 /* Record that the journal thread is running */
127 journal->j_task = current;
128 wake_up(&journal->j_wait_done_commit);
130 printk(KERN_INFO "kjournald starting. Commit interval %ld seconds\n",
131 journal->j_commit_interval / HZ);
134 * And now, wait forever for commit wakeup events.
136 spin_lock(&journal->j_state_lock);
138 loop:
139 if (journal->j_flags & JFS_UNMOUNT)
140 goto end_loop;
142 jbd_debug(1, "commit_sequence=%d, commit_request=%d\n",
143 journal->j_commit_sequence, journal->j_commit_request);
145 if (journal->j_commit_sequence != journal->j_commit_request) {
146 jbd_debug(1, "OK, requests differ\n");
147 spin_unlock(&journal->j_state_lock);
148 del_timer_sync(&journal->j_commit_timer);
149 journal_commit_transaction(journal);
150 spin_lock(&journal->j_state_lock);
151 goto loop;
154 wake_up(&journal->j_wait_done_commit);
155 if (freezing(current)) {
157 * The simpler the better. Flushing journal isn't a
158 * good idea, because that depends on threads that may
159 * be already stopped.
161 jbd_debug(1, "Now suspending kjournald\n");
162 spin_unlock(&journal->j_state_lock);
163 refrigerator();
164 spin_lock(&journal->j_state_lock);
165 } else {
167 * We assume on resume that commits are already there,
168 * so we don't sleep
170 DEFINE_WAIT(wait);
171 int should_sleep = 1;
173 prepare_to_wait(&journal->j_wait_commit, &wait,
174 TASK_INTERRUPTIBLE);
175 if (journal->j_commit_sequence != journal->j_commit_request)
176 should_sleep = 0;
177 transaction = journal->j_running_transaction;
178 if (transaction && time_after_eq(jiffies,
179 transaction->t_expires))
180 should_sleep = 0;
181 if (journal->j_flags & JFS_UNMOUNT)
182 should_sleep = 0;
183 if (should_sleep) {
184 spin_unlock(&journal->j_state_lock);
185 schedule();
186 spin_lock(&journal->j_state_lock);
188 finish_wait(&journal->j_wait_commit, &wait);
191 jbd_debug(1, "kjournald wakes\n");
194 * Were we woken up by a commit wakeup event?
196 transaction = journal->j_running_transaction;
197 if (transaction && time_after_eq(jiffies, transaction->t_expires)) {
198 journal->j_commit_request = transaction->t_tid;
199 jbd_debug(1, "woke because of timeout\n");
201 goto loop;
203 end_loop:
204 spin_unlock(&journal->j_state_lock);
205 del_timer_sync(&journal->j_commit_timer);
206 journal->j_task = NULL;
207 wake_up(&journal->j_wait_done_commit);
208 jbd_debug(1, "Journal thread exiting.\n");
209 return 0;
212 static int journal_start_thread(journal_t *journal)
214 struct task_struct *t;
216 t = kthread_run(kjournald, journal, "kjournald");
217 if (IS_ERR(t))
218 return PTR_ERR(t);
220 wait_event(journal->j_wait_done_commit, journal->j_task != NULL);
221 return 0;
224 static void journal_kill_thread(journal_t *journal)
226 spin_lock(&journal->j_state_lock);
227 journal->j_flags |= JFS_UNMOUNT;
229 while (journal->j_task) {
230 wake_up(&journal->j_wait_commit);
231 spin_unlock(&journal->j_state_lock);
232 wait_event(journal->j_wait_done_commit,
233 journal->j_task == NULL);
234 spin_lock(&journal->j_state_lock);
236 spin_unlock(&journal->j_state_lock);
240 * journal_write_metadata_buffer: write a metadata buffer to the journal.
242 * Writes a metadata buffer to a given disk block. The actual IO is not
243 * performed but a new buffer_head is constructed which labels the data
244 * to be written with the correct destination disk block.
246 * Any magic-number escaping which needs to be done will cause a
247 * copy-out here. If the buffer happens to start with the
248 * JFS_MAGIC_NUMBER, then we can't write it to the log directly: the
249 * magic number is only written to the log for descripter blocks. In
250 * this case, we copy the data and replace the first word with 0, and we
251 * return a result code which indicates that this buffer needs to be
252 * marked as an escaped buffer in the corresponding log descriptor
253 * block. The missing word can then be restored when the block is read
254 * during recovery.
256 * If the source buffer has already been modified by a new transaction
257 * since we took the last commit snapshot, we use the frozen copy of
258 * that data for IO. If we end up using the existing buffer_head's data
259 * for the write, then we *have* to lock the buffer to prevent anyone
260 * else from using and possibly modifying it while the IO is in
261 * progress.
263 * The function returns a pointer to the buffer_heads to be used for IO.
265 * We assume that the journal has already been locked in this function.
267 * Return value:
268 * <0: Error
269 * >=0: Finished OK
271 * On success:
272 * Bit 0 set == escape performed on the data
273 * Bit 1 set == buffer copy-out performed (kfree the data after IO)
276 int journal_write_metadata_buffer(transaction_t *transaction,
277 struct journal_head *jh_in,
278 struct journal_head **jh_out,
279 unsigned long blocknr)
281 int need_copy_out = 0;
282 int done_copy_out = 0;
283 int do_escape = 0;
284 char *mapped_data;
285 struct buffer_head *new_bh;
286 struct journal_head *new_jh;
287 struct page *new_page;
288 unsigned int new_offset;
289 struct buffer_head *bh_in = jh2bh(jh_in);
290 journal_t *journal = transaction->t_journal;
293 * The buffer really shouldn't be locked: only the current committing
294 * transaction is allowed to write it, so nobody else is allowed
295 * to do any IO.
297 * akpm: except if we're journalling data, and write() output is
298 * also part of a shared mapping, and another thread has
299 * decided to launch a writepage() against this buffer.
301 J_ASSERT_BH(bh_in, buffer_jbddirty(bh_in));
303 new_bh = alloc_buffer_head(GFP_NOFS|__GFP_NOFAIL);
304 /* keep subsequent assertions sane */
305 new_bh->b_state = 0;
306 init_buffer(new_bh, NULL, NULL);
307 atomic_set(&new_bh->b_count, 1);
308 new_jh = journal_add_journal_head(new_bh); /* This sleeps */
311 * If a new transaction has already done a buffer copy-out, then
312 * we use that version of the data for the commit.
314 jbd_lock_bh_state(bh_in);
315 repeat:
316 if (jh_in->b_frozen_data) {
317 done_copy_out = 1;
318 new_page = virt_to_page(jh_in->b_frozen_data);
319 new_offset = offset_in_page(jh_in->b_frozen_data);
320 } else {
321 new_page = jh2bh(jh_in)->b_page;
322 new_offset = offset_in_page(jh2bh(jh_in)->b_data);
325 mapped_data = kmap_atomic(new_page, KM_USER0);
327 * Check for escaping
329 if (*((__be32 *)(mapped_data + new_offset)) ==
330 cpu_to_be32(JFS_MAGIC_NUMBER)) {
331 need_copy_out = 1;
332 do_escape = 1;
334 kunmap_atomic(mapped_data, KM_USER0);
337 * Do we need to do a data copy?
339 if (need_copy_out && !done_copy_out) {
340 char *tmp;
342 jbd_unlock_bh_state(bh_in);
343 tmp = jbd_alloc(bh_in->b_size, GFP_NOFS);
344 jbd_lock_bh_state(bh_in);
345 if (jh_in->b_frozen_data) {
346 jbd_free(tmp, bh_in->b_size);
347 goto repeat;
350 jh_in->b_frozen_data = tmp;
351 mapped_data = kmap_atomic(new_page, KM_USER0);
352 memcpy(tmp, mapped_data + new_offset, jh2bh(jh_in)->b_size);
353 kunmap_atomic(mapped_data, KM_USER0);
355 new_page = virt_to_page(tmp);
356 new_offset = offset_in_page(tmp);
357 done_copy_out = 1;
361 * Did we need to do an escaping? Now we've done all the
362 * copying, we can finally do so.
364 if (do_escape) {
365 mapped_data = kmap_atomic(new_page, KM_USER0);
366 *((unsigned int *)(mapped_data + new_offset)) = 0;
367 kunmap_atomic(mapped_data, KM_USER0);
370 set_bh_page(new_bh, new_page, new_offset);
371 new_jh->b_transaction = NULL;
372 new_bh->b_size = jh2bh(jh_in)->b_size;
373 new_bh->b_bdev = transaction->t_journal->j_dev;
374 new_bh->b_blocknr = blocknr;
375 set_buffer_mapped(new_bh);
376 set_buffer_dirty(new_bh);
378 *jh_out = new_jh;
381 * The to-be-written buffer needs to get moved to the io queue,
382 * and the original buffer whose contents we are shadowing or
383 * copying is moved to the transaction's shadow queue.
385 JBUFFER_TRACE(jh_in, "file as BJ_Shadow");
386 spin_lock(&journal->j_list_lock);
387 __journal_file_buffer(jh_in, transaction, BJ_Shadow);
388 spin_unlock(&journal->j_list_lock);
389 jbd_unlock_bh_state(bh_in);
391 JBUFFER_TRACE(new_jh, "file as BJ_IO");
392 journal_file_buffer(new_jh, transaction, BJ_IO);
394 return do_escape | (done_copy_out << 1);
398 * Allocation code for the journal file. Manage the space left in the
399 * journal, so that we can begin checkpointing when appropriate.
403 * __log_space_left: Return the number of free blocks left in the journal.
405 * Called with the journal already locked.
407 * Called under j_state_lock
410 int __log_space_left(journal_t *journal)
412 int left = journal->j_free;
414 assert_spin_locked(&journal->j_state_lock);
417 * Be pessimistic here about the number of those free blocks which
418 * might be required for log descriptor control blocks.
421 #define MIN_LOG_RESERVED_BLOCKS 32 /* Allow for rounding errors */
423 left -= MIN_LOG_RESERVED_BLOCKS;
425 if (left <= 0)
426 return 0;
427 left -= (left >> 3);
428 return left;
432 * Called under j_state_lock. Returns true if a transaction commit was started.
434 int __log_start_commit(journal_t *journal, tid_t target)
437 * Are we already doing a recent enough commit?
439 if (!tid_geq(journal->j_commit_request, target)) {
441 * We want a new commit: OK, mark the request and wakup the
442 * commit thread. We do _not_ do the commit ourselves.
445 journal->j_commit_request = target;
446 jbd_debug(1, "JBD: requesting commit %d/%d\n",
447 journal->j_commit_request,
448 journal->j_commit_sequence);
449 wake_up(&journal->j_wait_commit);
450 return 1;
452 return 0;
455 int log_start_commit(journal_t *journal, tid_t tid)
457 int ret;
459 spin_lock(&journal->j_state_lock);
460 ret = __log_start_commit(journal, tid);
461 spin_unlock(&journal->j_state_lock);
462 return ret;
466 * Force and wait upon a commit if the calling process is not within
467 * transaction. This is used for forcing out undo-protected data which contains
468 * bitmaps, when the fs is running out of space.
470 * We can only force the running transaction if we don't have an active handle;
471 * otherwise, we will deadlock.
473 * Returns true if a transaction was started.
475 int journal_force_commit_nested(journal_t *journal)
477 transaction_t *transaction = NULL;
478 tid_t tid;
480 spin_lock(&journal->j_state_lock);
481 if (journal->j_running_transaction && !current->journal_info) {
482 transaction = journal->j_running_transaction;
483 __log_start_commit(journal, transaction->t_tid);
484 } else if (journal->j_committing_transaction)
485 transaction = journal->j_committing_transaction;
487 if (!transaction) {
488 spin_unlock(&journal->j_state_lock);
489 return 0; /* Nothing to retry */
492 tid = transaction->t_tid;
493 spin_unlock(&journal->j_state_lock);
494 log_wait_commit(journal, tid);
495 return 1;
499 * Start a commit of the current running transaction (if any). Returns true
500 * if a transaction is going to be committed (or is currently already
501 * committing), and fills its tid in at *ptid
503 int journal_start_commit(journal_t *journal, tid_t *ptid)
505 int ret = 0;
507 spin_lock(&journal->j_state_lock);
508 if (journal->j_running_transaction) {
509 tid_t tid = journal->j_running_transaction->t_tid;
511 __log_start_commit(journal, tid);
512 /* There's a running transaction and we've just made sure
513 * it's commit has been scheduled. */
514 if (ptid)
515 *ptid = tid;
516 ret = 1;
517 } else if (journal->j_committing_transaction) {
519 * If ext3_write_super() recently started a commit, then we
520 * have to wait for completion of that transaction
522 if (ptid)
523 *ptid = journal->j_committing_transaction->t_tid;
524 ret = 1;
526 spin_unlock(&journal->j_state_lock);
527 return ret;
531 * Wait for a specified commit to complete.
532 * The caller may not hold the journal lock.
534 int log_wait_commit(journal_t *journal, tid_t tid)
536 int err = 0;
538 #ifdef CONFIG_JBD_DEBUG
539 spin_lock(&journal->j_state_lock);
540 if (!tid_geq(journal->j_commit_request, tid)) {
541 printk(KERN_EMERG
542 "%s: error: j_commit_request=%d, tid=%d\n",
543 __func__, journal->j_commit_request, tid);
545 spin_unlock(&journal->j_state_lock);
546 #endif
547 spin_lock(&journal->j_state_lock);
548 while (tid_gt(tid, journal->j_commit_sequence)) {
549 jbd_debug(1, "JBD: want %d, j_commit_sequence=%d\n",
550 tid, journal->j_commit_sequence);
551 wake_up(&journal->j_wait_commit);
552 spin_unlock(&journal->j_state_lock);
553 wait_event(journal->j_wait_done_commit,
554 !tid_gt(tid, journal->j_commit_sequence));
555 spin_lock(&journal->j_state_lock);
557 spin_unlock(&journal->j_state_lock);
559 if (unlikely(is_journal_aborted(journal))) {
560 printk(KERN_EMERG "journal commit I/O error\n");
561 err = -EIO;
563 return err;
567 * Log buffer allocation routines:
570 int journal_next_log_block(journal_t *journal, unsigned long *retp)
572 unsigned long blocknr;
574 spin_lock(&journal->j_state_lock);
575 J_ASSERT(journal->j_free > 1);
577 blocknr = journal->j_head;
578 journal->j_head++;
579 journal->j_free--;
580 if (journal->j_head == journal->j_last)
581 journal->j_head = journal->j_first;
582 spin_unlock(&journal->j_state_lock);
583 return journal_bmap(journal, blocknr, retp);
587 * Conversion of logical to physical block numbers for the journal
589 * On external journals the journal blocks are identity-mapped, so
590 * this is a no-op. If needed, we can use j_blk_offset - everything is
591 * ready.
593 int journal_bmap(journal_t *journal, unsigned long blocknr,
594 unsigned long *retp)
596 int err = 0;
597 unsigned long ret;
599 if (journal->j_inode) {
600 ret = bmap(journal->j_inode, blocknr);
601 if (ret)
602 *retp = ret;
603 else {
604 char b[BDEVNAME_SIZE];
606 printk(KERN_ALERT "%s: journal block not found "
607 "at offset %lu on %s\n",
608 __func__,
609 blocknr,
610 bdevname(journal->j_dev, b));
611 err = -EIO;
612 __journal_abort_soft(journal, err);
614 } else {
615 *retp = blocknr; /* +journal->j_blk_offset */
617 return err;
621 * We play buffer_head aliasing tricks to write data/metadata blocks to
622 * the journal without copying their contents, but for journal
623 * descriptor blocks we do need to generate bona fide buffers.
625 * After the caller of journal_get_descriptor_buffer() has finished modifying
626 * the buffer's contents they really should run flush_dcache_page(bh->b_page).
627 * But we don't bother doing that, so there will be coherency problems with
628 * mmaps of blockdevs which hold live JBD-controlled filesystems.
630 struct journal_head *journal_get_descriptor_buffer(journal_t *journal)
632 struct buffer_head *bh;
633 unsigned long blocknr;
634 int err;
636 err = journal_next_log_block(journal, &blocknr);
638 if (err)
639 return NULL;
641 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
642 if (!bh)
643 return NULL;
644 lock_buffer(bh);
645 memset(bh->b_data, 0, journal->j_blocksize);
646 set_buffer_uptodate(bh);
647 unlock_buffer(bh);
648 BUFFER_TRACE(bh, "return this buffer");
649 return journal_add_journal_head(bh);
653 * Management for journal control blocks: functions to create and
654 * destroy journal_t structures, and to initialise and read existing
655 * journal blocks from disk. */
657 /* First: create and setup a journal_t object in memory. We initialise
658 * very few fields yet: that has to wait until we have created the
659 * journal structures from from scratch, or loaded them from disk. */
661 static journal_t * journal_init_common (void)
663 journal_t *journal;
664 int err;
666 journal = kzalloc(sizeof(*journal), GFP_KERNEL);
667 if (!journal)
668 goto fail;
670 init_waitqueue_head(&journal->j_wait_transaction_locked);
671 init_waitqueue_head(&journal->j_wait_logspace);
672 init_waitqueue_head(&journal->j_wait_done_commit);
673 init_waitqueue_head(&journal->j_wait_checkpoint);
674 init_waitqueue_head(&journal->j_wait_commit);
675 init_waitqueue_head(&journal->j_wait_updates);
676 mutex_init(&journal->j_barrier);
677 mutex_init(&journal->j_checkpoint_mutex);
678 spin_lock_init(&journal->j_revoke_lock);
679 spin_lock_init(&journal->j_list_lock);
680 spin_lock_init(&journal->j_state_lock);
682 journal->j_commit_interval = (HZ * JBD_DEFAULT_MAX_COMMIT_AGE);
684 /* The journal is marked for error until we succeed with recovery! */
685 journal->j_flags = JFS_ABORT;
687 /* Set up a default-sized revoke table for the new mount. */
688 err = journal_init_revoke(journal, JOURNAL_REVOKE_DEFAULT_HASH);
689 if (err) {
690 kfree(journal);
691 goto fail;
693 return journal;
694 fail:
695 return NULL;
698 /* journal_init_dev and journal_init_inode:
700 * Create a journal structure assigned some fixed set of disk blocks to
701 * the journal. We don't actually touch those disk blocks yet, but we
702 * need to set up all of the mapping information to tell the journaling
703 * system where the journal blocks are.
708 * journal_t * journal_init_dev() - creates and initialises a journal structure
709 * @bdev: Block device on which to create the journal
710 * @fs_dev: Device which hold journalled filesystem for this journal.
711 * @start: Block nr Start of journal.
712 * @len: Length of the journal in blocks.
713 * @blocksize: blocksize of journalling device
715 * Returns: a newly created journal_t *
717 * journal_init_dev creates a journal which maps a fixed contiguous
718 * range of blocks on an arbitrary block device.
721 journal_t * journal_init_dev(struct block_device *bdev,
722 struct block_device *fs_dev,
723 int start, int len, int blocksize)
725 journal_t *journal = journal_init_common();
726 struct buffer_head *bh;
727 int n;
729 if (!journal)
730 return NULL;
732 /* journal descriptor can store up to n blocks -bzzz */
733 journal->j_blocksize = blocksize;
734 n = journal->j_blocksize / sizeof(journal_block_tag_t);
735 journal->j_wbufsize = n;
736 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
737 if (!journal->j_wbuf) {
738 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
739 __func__);
740 goto out_err;
742 journal->j_dev = bdev;
743 journal->j_fs_dev = fs_dev;
744 journal->j_blk_offset = start;
745 journal->j_maxlen = len;
747 bh = __getblk(journal->j_dev, start, journal->j_blocksize);
748 if (!bh) {
749 printk(KERN_ERR
750 "%s: Cannot get buffer for journal superblock\n",
751 __func__);
752 goto out_err;
754 journal->j_sb_buffer = bh;
755 journal->j_superblock = (journal_superblock_t *)bh->b_data;
757 return journal;
758 out_err:
759 kfree(journal);
760 return NULL;
764 * journal_t * journal_init_inode () - creates a journal which maps to a inode.
765 * @inode: An inode to create the journal in
767 * journal_init_inode creates a journal which maps an on-disk inode as
768 * the journal. The inode must exist already, must support bmap() and
769 * must have all data blocks preallocated.
771 journal_t * journal_init_inode (struct inode *inode)
773 struct buffer_head *bh;
774 journal_t *journal = journal_init_common();
775 int err;
776 int n;
777 unsigned long blocknr;
779 if (!journal)
780 return NULL;
782 journal->j_dev = journal->j_fs_dev = inode->i_sb->s_bdev;
783 journal->j_inode = inode;
784 jbd_debug(1,
785 "journal %p: inode %s/%ld, size %Ld, bits %d, blksize %ld\n",
786 journal, inode->i_sb->s_id, inode->i_ino,
787 (long long) inode->i_size,
788 inode->i_sb->s_blocksize_bits, inode->i_sb->s_blocksize);
790 journal->j_maxlen = inode->i_size >> inode->i_sb->s_blocksize_bits;
791 journal->j_blocksize = inode->i_sb->s_blocksize;
793 /* journal descriptor can store up to n blocks -bzzz */
794 n = journal->j_blocksize / sizeof(journal_block_tag_t);
795 journal->j_wbufsize = n;
796 journal->j_wbuf = kmalloc(n * sizeof(struct buffer_head*), GFP_KERNEL);
797 if (!journal->j_wbuf) {
798 printk(KERN_ERR "%s: Cant allocate bhs for commit thread\n",
799 __func__);
800 goto out_err;
803 err = journal_bmap(journal, 0, &blocknr);
804 /* If that failed, give up */
805 if (err) {
806 printk(KERN_ERR "%s: Cannnot locate journal superblock\n",
807 __func__);
808 goto out_err;
811 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
812 if (!bh) {
813 printk(KERN_ERR
814 "%s: Cannot get buffer for journal superblock\n",
815 __func__);
816 goto out_err;
818 journal->j_sb_buffer = bh;
819 journal->j_superblock = (journal_superblock_t *)bh->b_data;
821 return journal;
822 out_err:
823 kfree(journal);
824 return NULL;
828 * If the journal init or create aborts, we need to mark the journal
829 * superblock as being NULL to prevent the journal destroy from writing
830 * back a bogus superblock.
832 static void journal_fail_superblock (journal_t *journal)
834 struct buffer_head *bh = journal->j_sb_buffer;
835 brelse(bh);
836 journal->j_sb_buffer = NULL;
840 * Given a journal_t structure, initialise the various fields for
841 * startup of a new journaling session. We use this both when creating
842 * a journal, and after recovering an old journal to reset it for
843 * subsequent use.
846 static int journal_reset(journal_t *journal)
848 journal_superblock_t *sb = journal->j_superblock;
849 unsigned long first, last;
851 first = be32_to_cpu(sb->s_first);
852 last = be32_to_cpu(sb->s_maxlen);
853 if (first + JFS_MIN_JOURNAL_BLOCKS > last + 1) {
854 printk(KERN_ERR "JBD: Journal too short (blocks %lu-%lu).\n",
855 first, last);
856 journal_fail_superblock(journal);
857 return -EINVAL;
860 journal->j_first = first;
861 journal->j_last = last;
863 journal->j_head = first;
864 journal->j_tail = first;
865 journal->j_free = last - first;
867 journal->j_tail_sequence = journal->j_transaction_sequence;
868 journal->j_commit_sequence = journal->j_transaction_sequence - 1;
869 journal->j_commit_request = journal->j_commit_sequence;
871 journal->j_max_transaction_buffers = journal->j_maxlen / 4;
873 /* Add the dynamic fields and write it to disk. */
874 journal_update_superblock(journal, 1);
875 return journal_start_thread(journal);
879 * int journal_create() - Initialise the new journal file
880 * @journal: Journal to create. This structure must have been initialised
882 * Given a journal_t structure which tells us which disk blocks we can
883 * use, create a new journal superblock and initialise all of the
884 * journal fields from scratch.
886 int journal_create(journal_t *journal)
888 unsigned long blocknr;
889 struct buffer_head *bh;
890 journal_superblock_t *sb;
891 int i, err;
893 if (journal->j_maxlen < JFS_MIN_JOURNAL_BLOCKS) {
894 printk (KERN_ERR "Journal length (%d blocks) too short.\n",
895 journal->j_maxlen);
896 journal_fail_superblock(journal);
897 return -EINVAL;
900 if (journal->j_inode == NULL) {
902 * We don't know what block to start at!
904 printk(KERN_EMERG
905 "%s: creation of journal on external device!\n",
906 __func__);
907 BUG();
910 /* Zero out the entire journal on disk. We cannot afford to
911 have any blocks on disk beginning with JFS_MAGIC_NUMBER. */
912 jbd_debug(1, "JBD: Zeroing out journal blocks...\n");
913 for (i = 0; i < journal->j_maxlen; i++) {
914 err = journal_bmap(journal, i, &blocknr);
915 if (err)
916 return err;
917 bh = __getblk(journal->j_dev, blocknr, journal->j_blocksize);
918 lock_buffer(bh);
919 memset (bh->b_data, 0, journal->j_blocksize);
920 BUFFER_TRACE(bh, "marking dirty");
921 mark_buffer_dirty(bh);
922 BUFFER_TRACE(bh, "marking uptodate");
923 set_buffer_uptodate(bh);
924 unlock_buffer(bh);
925 __brelse(bh);
928 sync_blockdev(journal->j_dev);
929 jbd_debug(1, "JBD: journal cleared.\n");
931 /* OK, fill in the initial static fields in the new superblock */
932 sb = journal->j_superblock;
934 sb->s_header.h_magic = cpu_to_be32(JFS_MAGIC_NUMBER);
935 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
937 sb->s_blocksize = cpu_to_be32(journal->j_blocksize);
938 sb->s_maxlen = cpu_to_be32(journal->j_maxlen);
939 sb->s_first = cpu_to_be32(1);
941 journal->j_transaction_sequence = 1;
943 journal->j_flags &= ~JFS_ABORT;
944 journal->j_format_version = 2;
946 return journal_reset(journal);
950 * void journal_update_superblock() - Update journal sb on disk.
951 * @journal: The journal to update.
952 * @wait: Set to '0' if you don't want to wait for IO completion.
954 * Update a journal's dynamic superblock fields and write it to disk,
955 * optionally waiting for the IO to complete.
957 void journal_update_superblock(journal_t *journal, int wait)
959 journal_superblock_t *sb = journal->j_superblock;
960 struct buffer_head *bh = journal->j_sb_buffer;
963 * As a special case, if the on-disk copy is already marked as needing
964 * no recovery (s_start == 0) and there are no outstanding transactions
965 * in the filesystem, then we can safely defer the superblock update
966 * until the next commit by setting JFS_FLUSHED. This avoids
967 * attempting a write to a potential-readonly device.
969 if (sb->s_start == 0 && journal->j_tail_sequence ==
970 journal->j_transaction_sequence) {
971 jbd_debug(1,"JBD: Skipping superblock update on recovered sb "
972 "(start %ld, seq %d, errno %d)\n",
973 journal->j_tail, journal->j_tail_sequence,
974 journal->j_errno);
975 goto out;
978 spin_lock(&journal->j_state_lock);
979 jbd_debug(1,"JBD: updating superblock (start %ld, seq %d, errno %d)\n",
980 journal->j_tail, journal->j_tail_sequence, journal->j_errno);
982 sb->s_sequence = cpu_to_be32(journal->j_tail_sequence);
983 sb->s_start = cpu_to_be32(journal->j_tail);
984 sb->s_errno = cpu_to_be32(journal->j_errno);
985 spin_unlock(&journal->j_state_lock);
987 BUFFER_TRACE(bh, "marking dirty");
988 mark_buffer_dirty(bh);
989 if (wait)
990 sync_dirty_buffer(bh);
991 else
992 ll_rw_block(SWRITE, 1, &bh);
994 out:
995 /* If we have just flushed the log (by marking s_start==0), then
996 * any future commit will have to be careful to update the
997 * superblock again to re-record the true start of the log. */
999 spin_lock(&journal->j_state_lock);
1000 if (sb->s_start)
1001 journal->j_flags &= ~JFS_FLUSHED;
1002 else
1003 journal->j_flags |= JFS_FLUSHED;
1004 spin_unlock(&journal->j_state_lock);
1008 * Read the superblock for a given journal, performing initial
1009 * validation of the format.
1012 static int journal_get_superblock(journal_t *journal)
1014 struct buffer_head *bh;
1015 journal_superblock_t *sb;
1016 int err = -EIO;
1018 bh = journal->j_sb_buffer;
1020 J_ASSERT(bh != NULL);
1021 if (!buffer_uptodate(bh)) {
1022 ll_rw_block(READ, 1, &bh);
1023 wait_on_buffer(bh);
1024 if (!buffer_uptodate(bh)) {
1025 printk (KERN_ERR
1026 "JBD: IO error reading journal superblock\n");
1027 goto out;
1031 sb = journal->j_superblock;
1033 err = -EINVAL;
1035 if (sb->s_header.h_magic != cpu_to_be32(JFS_MAGIC_NUMBER) ||
1036 sb->s_blocksize != cpu_to_be32(journal->j_blocksize)) {
1037 printk(KERN_WARNING "JBD: no valid journal superblock found\n");
1038 goto out;
1041 switch(be32_to_cpu(sb->s_header.h_blocktype)) {
1042 case JFS_SUPERBLOCK_V1:
1043 journal->j_format_version = 1;
1044 break;
1045 case JFS_SUPERBLOCK_V2:
1046 journal->j_format_version = 2;
1047 break;
1048 default:
1049 printk(KERN_WARNING "JBD: unrecognised superblock format ID\n");
1050 goto out;
1053 if (be32_to_cpu(sb->s_maxlen) < journal->j_maxlen)
1054 journal->j_maxlen = be32_to_cpu(sb->s_maxlen);
1055 else if (be32_to_cpu(sb->s_maxlen) > journal->j_maxlen) {
1056 printk (KERN_WARNING "JBD: journal file too short\n");
1057 goto out;
1060 return 0;
1062 out:
1063 journal_fail_superblock(journal);
1064 return err;
1068 * Load the on-disk journal superblock and read the key fields into the
1069 * journal_t.
1072 static int load_superblock(journal_t *journal)
1074 int err;
1075 journal_superblock_t *sb;
1077 err = journal_get_superblock(journal);
1078 if (err)
1079 return err;
1081 sb = journal->j_superblock;
1083 journal->j_tail_sequence = be32_to_cpu(sb->s_sequence);
1084 journal->j_tail = be32_to_cpu(sb->s_start);
1085 journal->j_first = be32_to_cpu(sb->s_first);
1086 journal->j_last = be32_to_cpu(sb->s_maxlen);
1087 journal->j_errno = be32_to_cpu(sb->s_errno);
1089 return 0;
1094 * int journal_load() - Read journal from disk.
1095 * @journal: Journal to act on.
1097 * Given a journal_t structure which tells us which disk blocks contain
1098 * a journal, read the journal from disk to initialise the in-memory
1099 * structures.
1101 int journal_load(journal_t *journal)
1103 int err;
1104 journal_superblock_t *sb;
1106 err = load_superblock(journal);
1107 if (err)
1108 return err;
1110 sb = journal->j_superblock;
1111 /* If this is a V2 superblock, then we have to check the
1112 * features flags on it. */
1114 if (journal->j_format_version >= 2) {
1115 if ((sb->s_feature_ro_compat &
1116 ~cpu_to_be32(JFS_KNOWN_ROCOMPAT_FEATURES)) ||
1117 (sb->s_feature_incompat &
1118 ~cpu_to_be32(JFS_KNOWN_INCOMPAT_FEATURES))) {
1119 printk (KERN_WARNING
1120 "JBD: Unrecognised features on journal\n");
1121 return -EINVAL;
1125 /* Let the recovery code check whether it needs to recover any
1126 * data from the journal. */
1127 if (journal_recover(journal))
1128 goto recovery_error;
1130 /* OK, we've finished with the dynamic journal bits:
1131 * reinitialise the dynamic contents of the superblock in memory
1132 * and reset them on disk. */
1133 if (journal_reset(journal))
1134 goto recovery_error;
1136 journal->j_flags &= ~JFS_ABORT;
1137 journal->j_flags |= JFS_LOADED;
1138 return 0;
1140 recovery_error:
1141 printk (KERN_WARNING "JBD: recovery failed\n");
1142 return -EIO;
1146 * void journal_destroy() - Release a journal_t structure.
1147 * @journal: Journal to act on.
1149 * Release a journal_t structure once it is no longer in use by the
1150 * journaled object.
1151 * Return <0 if we couldn't clean up the journal.
1153 int journal_destroy(journal_t *journal)
1155 int err = 0;
1157 /* Wait for the commit thread to wake up and die. */
1158 journal_kill_thread(journal);
1160 /* Force a final log commit */
1161 if (journal->j_running_transaction)
1162 journal_commit_transaction(journal);
1164 /* Force any old transactions to disk */
1166 /* Totally anal locking here... */
1167 spin_lock(&journal->j_list_lock);
1168 while (journal->j_checkpoint_transactions != NULL) {
1169 spin_unlock(&journal->j_list_lock);
1170 log_do_checkpoint(journal);
1171 spin_lock(&journal->j_list_lock);
1174 J_ASSERT(journal->j_running_transaction == NULL);
1175 J_ASSERT(journal->j_committing_transaction == NULL);
1176 J_ASSERT(journal->j_checkpoint_transactions == NULL);
1177 spin_unlock(&journal->j_list_lock);
1179 if (journal->j_sb_buffer) {
1180 if (!is_journal_aborted(journal)) {
1181 /* We can now mark the journal as empty. */
1182 journal->j_tail = 0;
1183 journal->j_tail_sequence =
1184 ++journal->j_transaction_sequence;
1185 journal_update_superblock(journal, 1);
1186 } else {
1187 err = -EIO;
1189 brelse(journal->j_sb_buffer);
1192 if (journal->j_inode)
1193 iput(journal->j_inode);
1194 if (journal->j_revoke)
1195 journal_destroy_revoke(journal);
1196 kfree(journal->j_wbuf);
1197 kfree(journal);
1199 return err;
1204 *int journal_check_used_features () - Check if features specified are used.
1205 * @journal: Journal to check.
1206 * @compat: bitmask of compatible features
1207 * @ro: bitmask of features that force read-only mount
1208 * @incompat: bitmask of incompatible features
1210 * Check whether the journal uses all of a given set of
1211 * features. Return true (non-zero) if it does.
1214 int journal_check_used_features (journal_t *journal, unsigned long compat,
1215 unsigned long ro, unsigned long incompat)
1217 journal_superblock_t *sb;
1219 if (!compat && !ro && !incompat)
1220 return 1;
1221 if (journal->j_format_version == 1)
1222 return 0;
1224 sb = journal->j_superblock;
1226 if (((be32_to_cpu(sb->s_feature_compat) & compat) == compat) &&
1227 ((be32_to_cpu(sb->s_feature_ro_compat) & ro) == ro) &&
1228 ((be32_to_cpu(sb->s_feature_incompat) & incompat) == incompat))
1229 return 1;
1231 return 0;
1235 * int journal_check_available_features() - Check feature set in journalling layer
1236 * @journal: Journal to check.
1237 * @compat: bitmask of compatible features
1238 * @ro: bitmask of features that force read-only mount
1239 * @incompat: bitmask of incompatible features
1241 * Check whether the journaling code supports the use of
1242 * all of a given set of features on this journal. Return true
1243 * (non-zero) if it can. */
1245 int journal_check_available_features (journal_t *journal, unsigned long compat,
1246 unsigned long ro, unsigned long incompat)
1248 journal_superblock_t *sb;
1250 if (!compat && !ro && !incompat)
1251 return 1;
1253 sb = journal->j_superblock;
1255 /* We can support any known requested features iff the
1256 * superblock is in version 2. Otherwise we fail to support any
1257 * extended sb features. */
1259 if (journal->j_format_version != 2)
1260 return 0;
1262 if ((compat & JFS_KNOWN_COMPAT_FEATURES) == compat &&
1263 (ro & JFS_KNOWN_ROCOMPAT_FEATURES) == ro &&
1264 (incompat & JFS_KNOWN_INCOMPAT_FEATURES) == incompat)
1265 return 1;
1267 return 0;
1271 * int journal_set_features () - Mark a given journal feature in the superblock
1272 * @journal: Journal to act on.
1273 * @compat: bitmask of compatible features
1274 * @ro: bitmask of features that force read-only mount
1275 * @incompat: bitmask of incompatible features
1277 * Mark a given journal feature as present on the
1278 * superblock. Returns true if the requested features could be set.
1282 int journal_set_features (journal_t *journal, unsigned long compat,
1283 unsigned long ro, unsigned long incompat)
1285 journal_superblock_t *sb;
1287 if (journal_check_used_features(journal, compat, ro, incompat))
1288 return 1;
1290 if (!journal_check_available_features(journal, compat, ro, incompat))
1291 return 0;
1293 jbd_debug(1, "Setting new features 0x%lx/0x%lx/0x%lx\n",
1294 compat, ro, incompat);
1296 sb = journal->j_superblock;
1298 sb->s_feature_compat |= cpu_to_be32(compat);
1299 sb->s_feature_ro_compat |= cpu_to_be32(ro);
1300 sb->s_feature_incompat |= cpu_to_be32(incompat);
1302 return 1;
1307 * int journal_update_format () - Update on-disk journal structure.
1308 * @journal: Journal to act on.
1310 * Given an initialised but unloaded journal struct, poke about in the
1311 * on-disk structure to update it to the most recent supported version.
1313 int journal_update_format (journal_t *journal)
1315 journal_superblock_t *sb;
1316 int err;
1318 err = journal_get_superblock(journal);
1319 if (err)
1320 return err;
1322 sb = journal->j_superblock;
1324 switch (be32_to_cpu(sb->s_header.h_blocktype)) {
1325 case JFS_SUPERBLOCK_V2:
1326 return 0;
1327 case JFS_SUPERBLOCK_V1:
1328 return journal_convert_superblock_v1(journal, sb);
1329 default:
1330 break;
1332 return -EINVAL;
1335 static int journal_convert_superblock_v1(journal_t *journal,
1336 journal_superblock_t *sb)
1338 int offset, blocksize;
1339 struct buffer_head *bh;
1341 printk(KERN_WARNING
1342 "JBD: Converting superblock from version 1 to 2.\n");
1344 /* Pre-initialise new fields to zero */
1345 offset = ((char *) &(sb->s_feature_compat)) - ((char *) sb);
1346 blocksize = be32_to_cpu(sb->s_blocksize);
1347 memset(&sb->s_feature_compat, 0, blocksize-offset);
1349 sb->s_nr_users = cpu_to_be32(1);
1350 sb->s_header.h_blocktype = cpu_to_be32(JFS_SUPERBLOCK_V2);
1351 journal->j_format_version = 2;
1353 bh = journal->j_sb_buffer;
1354 BUFFER_TRACE(bh, "marking dirty");
1355 mark_buffer_dirty(bh);
1356 sync_dirty_buffer(bh);
1357 return 0;
1362 * int journal_flush () - Flush journal
1363 * @journal: Journal to act on.
1365 * Flush all data for a given journal to disk and empty the journal.
1366 * Filesystems can use this when remounting readonly to ensure that
1367 * recovery does not need to happen on remount.
1370 int journal_flush(journal_t *journal)
1372 int err = 0;
1373 transaction_t *transaction = NULL;
1374 unsigned long old_tail;
1376 spin_lock(&journal->j_state_lock);
1378 /* Force everything buffered to the log... */
1379 if (journal->j_running_transaction) {
1380 transaction = journal->j_running_transaction;
1381 __log_start_commit(journal, transaction->t_tid);
1382 } else if (journal->j_committing_transaction)
1383 transaction = journal->j_committing_transaction;
1385 /* Wait for the log commit to complete... */
1386 if (transaction) {
1387 tid_t tid = transaction->t_tid;
1389 spin_unlock(&journal->j_state_lock);
1390 log_wait_commit(journal, tid);
1391 } else {
1392 spin_unlock(&journal->j_state_lock);
1395 /* ...and flush everything in the log out to disk. */
1396 spin_lock(&journal->j_list_lock);
1397 while (!err && journal->j_checkpoint_transactions != NULL) {
1398 spin_unlock(&journal->j_list_lock);
1399 mutex_lock(&journal->j_checkpoint_mutex);
1400 err = log_do_checkpoint(journal);
1401 mutex_unlock(&journal->j_checkpoint_mutex);
1402 spin_lock(&journal->j_list_lock);
1404 spin_unlock(&journal->j_list_lock);
1406 if (is_journal_aborted(journal))
1407 return -EIO;
1409 cleanup_journal_tail(journal);
1411 /* Finally, mark the journal as really needing no recovery.
1412 * This sets s_start==0 in the underlying superblock, which is
1413 * the magic code for a fully-recovered superblock. Any future
1414 * commits of data to the journal will restore the current
1415 * s_start value. */
1416 spin_lock(&journal->j_state_lock);
1417 old_tail = journal->j_tail;
1418 journal->j_tail = 0;
1419 spin_unlock(&journal->j_state_lock);
1420 journal_update_superblock(journal, 1);
1421 spin_lock(&journal->j_state_lock);
1422 journal->j_tail = old_tail;
1424 J_ASSERT(!journal->j_running_transaction);
1425 J_ASSERT(!journal->j_committing_transaction);
1426 J_ASSERT(!journal->j_checkpoint_transactions);
1427 J_ASSERT(journal->j_head == journal->j_tail);
1428 J_ASSERT(journal->j_tail_sequence == journal->j_transaction_sequence);
1429 spin_unlock(&journal->j_state_lock);
1430 return 0;
1434 * int journal_wipe() - Wipe journal contents
1435 * @journal: Journal to act on.
1436 * @write: flag (see below)
1438 * Wipe out all of the contents of a journal, safely. This will produce
1439 * a warning if the journal contains any valid recovery information.
1440 * Must be called between journal_init_*() and journal_load().
1442 * If 'write' is non-zero, then we wipe out the journal on disk; otherwise
1443 * we merely suppress recovery.
1446 int journal_wipe(journal_t *journal, int write)
1448 journal_superblock_t *sb;
1449 int err = 0;
1451 J_ASSERT (!(journal->j_flags & JFS_LOADED));
1453 err = load_superblock(journal);
1454 if (err)
1455 return err;
1457 sb = journal->j_superblock;
1459 if (!journal->j_tail)
1460 goto no_recovery;
1462 printk (KERN_WARNING "JBD: %s recovery information on journal\n",
1463 write ? "Clearing" : "Ignoring");
1465 err = journal_skip_recovery(journal);
1466 if (write)
1467 journal_update_superblock(journal, 1);
1469 no_recovery:
1470 return err;
1474 * journal_dev_name: format a character string to describe on what
1475 * device this journal is present.
1478 static const char *journal_dev_name(journal_t *journal, char *buffer)
1480 struct block_device *bdev;
1482 if (journal->j_inode)
1483 bdev = journal->j_inode->i_sb->s_bdev;
1484 else
1485 bdev = journal->j_dev;
1487 return bdevname(bdev, buffer);
1491 * Journal abort has very specific semantics, which we describe
1492 * for journal abort.
1494 * Two internal function, which provide abort to te jbd layer
1495 * itself are here.
1499 * Quick version for internal journal use (doesn't lock the journal).
1500 * Aborts hard --- we mark the abort as occurred, but do _nothing_ else,
1501 * and don't attempt to make any other journal updates.
1503 static void __journal_abort_hard(journal_t *journal)
1505 transaction_t *transaction;
1506 char b[BDEVNAME_SIZE];
1508 if (journal->j_flags & JFS_ABORT)
1509 return;
1511 printk(KERN_ERR "Aborting journal on device %s.\n",
1512 journal_dev_name(journal, b));
1514 spin_lock(&journal->j_state_lock);
1515 journal->j_flags |= JFS_ABORT;
1516 transaction = journal->j_running_transaction;
1517 if (transaction)
1518 __log_start_commit(journal, transaction->t_tid);
1519 spin_unlock(&journal->j_state_lock);
1522 /* Soft abort: record the abort error status in the journal superblock,
1523 * but don't do any other IO. */
1524 static void __journal_abort_soft (journal_t *journal, int errno)
1526 if (journal->j_flags & JFS_ABORT)
1527 return;
1529 if (!journal->j_errno)
1530 journal->j_errno = errno;
1532 __journal_abort_hard(journal);
1534 if (errno)
1535 journal_update_superblock(journal, 1);
1539 * void journal_abort () - Shutdown the journal immediately.
1540 * @journal: the journal to shutdown.
1541 * @errno: an error number to record in the journal indicating
1542 * the reason for the shutdown.
1544 * Perform a complete, immediate shutdown of the ENTIRE
1545 * journal (not of a single transaction). This operation cannot be
1546 * undone without closing and reopening the journal.
1548 * The journal_abort function is intended to support higher level error
1549 * recovery mechanisms such as the ext2/ext3 remount-readonly error
1550 * mode.
1552 * Journal abort has very specific semantics. Any existing dirty,
1553 * unjournaled buffers in the main filesystem will still be written to
1554 * disk by bdflush, but the journaling mechanism will be suspended
1555 * immediately and no further transaction commits will be honoured.
1557 * Any dirty, journaled buffers will be written back to disk without
1558 * hitting the journal. Atomicity cannot be guaranteed on an aborted
1559 * filesystem, but we _do_ attempt to leave as much data as possible
1560 * behind for fsck to use for cleanup.
1562 * Any attempt to get a new transaction handle on a journal which is in
1563 * ABORT state will just result in an -EROFS error return. A
1564 * journal_stop on an existing handle will return -EIO if we have
1565 * entered abort state during the update.
1567 * Recursive transactions are not disturbed by journal abort until the
1568 * final journal_stop, which will receive the -EIO error.
1570 * Finally, the journal_abort call allows the caller to supply an errno
1571 * which will be recorded (if possible) in the journal superblock. This
1572 * allows a client to record failure conditions in the middle of a
1573 * transaction without having to complete the transaction to record the
1574 * failure to disk. ext3_error, for example, now uses this
1575 * functionality.
1577 * Errors which originate from within the journaling layer will NOT
1578 * supply an errno; a null errno implies that absolutely no further
1579 * writes are done to the journal (unless there are any already in
1580 * progress).
1584 void journal_abort(journal_t *journal, int errno)
1586 __journal_abort_soft(journal, errno);
1590 * int journal_errno () - returns the journal's error state.
1591 * @journal: journal to examine.
1593 * This is the errno numbet set with journal_abort(), the last
1594 * time the journal was mounted - if the journal was stopped
1595 * without calling abort this will be 0.
1597 * If the journal has been aborted on this mount time -EROFS will
1598 * be returned.
1600 int journal_errno(journal_t *journal)
1602 int err;
1604 spin_lock(&journal->j_state_lock);
1605 if (journal->j_flags & JFS_ABORT)
1606 err = -EROFS;
1607 else
1608 err = journal->j_errno;
1609 spin_unlock(&journal->j_state_lock);
1610 return err;
1614 * int journal_clear_err () - clears the journal's error state
1615 * @journal: journal to act on.
1617 * An error must be cleared or Acked to take a FS out of readonly
1618 * mode.
1620 int journal_clear_err(journal_t *journal)
1622 int err = 0;
1624 spin_lock(&journal->j_state_lock);
1625 if (journal->j_flags & JFS_ABORT)
1626 err = -EROFS;
1627 else
1628 journal->j_errno = 0;
1629 spin_unlock(&journal->j_state_lock);
1630 return err;
1634 * void journal_ack_err() - Ack journal err.
1635 * @journal: journal to act on.
1637 * An error must be cleared or Acked to take a FS out of readonly
1638 * mode.
1640 void journal_ack_err(journal_t *journal)
1642 spin_lock(&journal->j_state_lock);
1643 if (journal->j_errno)
1644 journal->j_flags |= JFS_ACK_ERR;
1645 spin_unlock(&journal->j_state_lock);
1648 int journal_blocks_per_page(struct inode *inode)
1650 return 1 << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1654 * Journal_head storage management
1656 static struct kmem_cache *journal_head_cache;
1657 #ifdef CONFIG_JBD_DEBUG
1658 static atomic_t nr_journal_heads = ATOMIC_INIT(0);
1659 #endif
1661 static int journal_init_journal_head_cache(void)
1663 int retval;
1665 J_ASSERT(journal_head_cache == NULL);
1666 journal_head_cache = kmem_cache_create("journal_head",
1667 sizeof(struct journal_head),
1668 0, /* offset */
1669 SLAB_TEMPORARY, /* flags */
1670 NULL); /* ctor */
1671 retval = 0;
1672 if (!journal_head_cache) {
1673 retval = -ENOMEM;
1674 printk(KERN_EMERG "JBD: no memory for journal_head cache\n");
1676 return retval;
1679 static void journal_destroy_journal_head_cache(void)
1681 if (journal_head_cache) {
1682 kmem_cache_destroy(journal_head_cache);
1683 journal_head_cache = NULL;
1688 * journal_head splicing and dicing
1690 static struct journal_head *journal_alloc_journal_head(void)
1692 struct journal_head *ret;
1693 static unsigned long last_warning;
1695 #ifdef CONFIG_JBD_DEBUG
1696 atomic_inc(&nr_journal_heads);
1697 #endif
1698 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1699 if (ret == NULL) {
1700 jbd_debug(1, "out of memory for journal_head\n");
1701 if (time_after(jiffies, last_warning + 5*HZ)) {
1702 printk(KERN_NOTICE "ENOMEM in %s, retrying.\n",
1703 __func__);
1704 last_warning = jiffies;
1706 while (ret == NULL) {
1707 yield();
1708 ret = kmem_cache_alloc(journal_head_cache, GFP_NOFS);
1711 return ret;
1714 static void journal_free_journal_head(struct journal_head *jh)
1716 #ifdef CONFIG_JBD_DEBUG
1717 atomic_dec(&nr_journal_heads);
1718 memset(jh, JBD_POISON_FREE, sizeof(*jh));
1719 #endif
1720 kmem_cache_free(journal_head_cache, jh);
1724 * A journal_head is attached to a buffer_head whenever JBD has an
1725 * interest in the buffer.
1727 * Whenever a buffer has an attached journal_head, its ->b_state:BH_JBD bit
1728 * is set. This bit is tested in core kernel code where we need to take
1729 * JBD-specific actions. Testing the zeroness of ->b_private is not reliable
1730 * there.
1732 * When a buffer has its BH_JBD bit set, its ->b_count is elevated by one.
1734 * When a buffer has its BH_JBD bit set it is immune from being released by
1735 * core kernel code, mainly via ->b_count.
1737 * A journal_head may be detached from its buffer_head when the journal_head's
1738 * b_transaction, b_cp_transaction and b_next_transaction pointers are NULL.
1739 * Various places in JBD call journal_remove_journal_head() to indicate that the
1740 * journal_head can be dropped if needed.
1742 * Various places in the kernel want to attach a journal_head to a buffer_head
1743 * _before_ attaching the journal_head to a transaction. To protect the
1744 * journal_head in this situation, journal_add_journal_head elevates the
1745 * journal_head's b_jcount refcount by one. The caller must call
1746 * journal_put_journal_head() to undo this.
1748 * So the typical usage would be:
1750 * (Attach a journal_head if needed. Increments b_jcount)
1751 * struct journal_head *jh = journal_add_journal_head(bh);
1752 * ...
1753 * jh->b_transaction = xxx;
1754 * journal_put_journal_head(jh);
1756 * Now, the journal_head's b_jcount is zero, but it is safe from being released
1757 * because it has a non-zero b_transaction.
1761 * Give a buffer_head a journal_head.
1763 * Doesn't need the journal lock.
1764 * May sleep.
1766 struct journal_head *journal_add_journal_head(struct buffer_head *bh)
1768 struct journal_head *jh;
1769 struct journal_head *new_jh = NULL;
1771 repeat:
1772 if (!buffer_jbd(bh)) {
1773 new_jh = journal_alloc_journal_head();
1774 memset(new_jh, 0, sizeof(*new_jh));
1777 jbd_lock_bh_journal_head(bh);
1778 if (buffer_jbd(bh)) {
1779 jh = bh2jh(bh);
1780 } else {
1781 J_ASSERT_BH(bh,
1782 (atomic_read(&bh->b_count) > 0) ||
1783 (bh->b_page && bh->b_page->mapping));
1785 if (!new_jh) {
1786 jbd_unlock_bh_journal_head(bh);
1787 goto repeat;
1790 jh = new_jh;
1791 new_jh = NULL; /* We consumed it */
1792 set_buffer_jbd(bh);
1793 bh->b_private = jh;
1794 jh->b_bh = bh;
1795 get_bh(bh);
1796 BUFFER_TRACE(bh, "added journal_head");
1798 jh->b_jcount++;
1799 jbd_unlock_bh_journal_head(bh);
1800 if (new_jh)
1801 journal_free_journal_head(new_jh);
1802 return bh->b_private;
1806 * Grab a ref against this buffer_head's journal_head. If it ended up not
1807 * having a journal_head, return NULL
1809 struct journal_head *journal_grab_journal_head(struct buffer_head *bh)
1811 struct journal_head *jh = NULL;
1813 jbd_lock_bh_journal_head(bh);
1814 if (buffer_jbd(bh)) {
1815 jh = bh2jh(bh);
1816 jh->b_jcount++;
1818 jbd_unlock_bh_journal_head(bh);
1819 return jh;
1822 static void __journal_remove_journal_head(struct buffer_head *bh)
1824 struct journal_head *jh = bh2jh(bh);
1826 J_ASSERT_JH(jh, jh->b_jcount >= 0);
1828 get_bh(bh);
1829 if (jh->b_jcount == 0) {
1830 if (jh->b_transaction == NULL &&
1831 jh->b_next_transaction == NULL &&
1832 jh->b_cp_transaction == NULL) {
1833 J_ASSERT_JH(jh, jh->b_jlist == BJ_None);
1834 J_ASSERT_BH(bh, buffer_jbd(bh));
1835 J_ASSERT_BH(bh, jh2bh(jh) == bh);
1836 BUFFER_TRACE(bh, "remove journal_head");
1837 if (jh->b_frozen_data) {
1838 printk(KERN_WARNING "%s: freeing "
1839 "b_frozen_data\n",
1840 __func__);
1841 jbd_free(jh->b_frozen_data, bh->b_size);
1843 if (jh->b_committed_data) {
1844 printk(KERN_WARNING "%s: freeing "
1845 "b_committed_data\n",
1846 __func__);
1847 jbd_free(jh->b_committed_data, bh->b_size);
1849 bh->b_private = NULL;
1850 jh->b_bh = NULL; /* debug, really */
1851 clear_buffer_jbd(bh);
1852 __brelse(bh);
1853 journal_free_journal_head(jh);
1854 } else {
1855 BUFFER_TRACE(bh, "journal_head was locked");
1861 * journal_remove_journal_head(): if the buffer isn't attached to a transaction
1862 * and has a zero b_jcount then remove and release its journal_head. If we did
1863 * see that the buffer is not used by any transaction we also "logically"
1864 * decrement ->b_count.
1866 * We in fact take an additional increment on ->b_count as a convenience,
1867 * because the caller usually wants to do additional things with the bh
1868 * after calling here.
1869 * The caller of journal_remove_journal_head() *must* run __brelse(bh) at some
1870 * time. Once the caller has run __brelse(), the buffer is eligible for
1871 * reaping by try_to_free_buffers().
1873 void journal_remove_journal_head(struct buffer_head *bh)
1875 jbd_lock_bh_journal_head(bh);
1876 __journal_remove_journal_head(bh);
1877 jbd_unlock_bh_journal_head(bh);
1881 * Drop a reference on the passed journal_head. If it fell to zero then try to
1882 * release the journal_head from the buffer_head.
1884 void journal_put_journal_head(struct journal_head *jh)
1886 struct buffer_head *bh = jh2bh(jh);
1888 jbd_lock_bh_journal_head(bh);
1889 J_ASSERT_JH(jh, jh->b_jcount > 0);
1890 --jh->b_jcount;
1891 if (!jh->b_jcount && !jh->b_transaction) {
1892 __journal_remove_journal_head(bh);
1893 __brelse(bh);
1895 jbd_unlock_bh_journal_head(bh);
1899 * debugfs tunables
1901 #ifdef CONFIG_JBD_DEBUG
1903 u8 journal_enable_debug __read_mostly;
1904 EXPORT_SYMBOL(journal_enable_debug);
1906 static struct dentry *jbd_debugfs_dir;
1907 static struct dentry *jbd_debug;
1909 static void __init jbd_create_debugfs_entry(void)
1911 jbd_debugfs_dir = debugfs_create_dir("jbd", NULL);
1912 if (jbd_debugfs_dir)
1913 jbd_debug = debugfs_create_u8("jbd-debug", S_IRUGO,
1914 jbd_debugfs_dir,
1915 &journal_enable_debug);
1918 static void __exit jbd_remove_debugfs_entry(void)
1920 debugfs_remove(jbd_debug);
1921 debugfs_remove(jbd_debugfs_dir);
1924 #else
1926 static inline void jbd_create_debugfs_entry(void)
1930 static inline void jbd_remove_debugfs_entry(void)
1934 #endif
1936 struct kmem_cache *jbd_handle_cache;
1938 static int __init journal_init_handle_cache(void)
1940 jbd_handle_cache = kmem_cache_create("journal_handle",
1941 sizeof(handle_t),
1942 0, /* offset */
1943 SLAB_TEMPORARY, /* flags */
1944 NULL); /* ctor */
1945 if (jbd_handle_cache == NULL) {
1946 printk(KERN_EMERG "JBD: failed to create handle cache\n");
1947 return -ENOMEM;
1949 return 0;
1952 static void journal_destroy_handle_cache(void)
1954 if (jbd_handle_cache)
1955 kmem_cache_destroy(jbd_handle_cache);
1959 * Module startup and shutdown
1962 static int __init journal_init_caches(void)
1964 int ret;
1966 ret = journal_init_revoke_caches();
1967 if (ret == 0)
1968 ret = journal_init_journal_head_cache();
1969 if (ret == 0)
1970 ret = journal_init_handle_cache();
1971 return ret;
1974 static void journal_destroy_caches(void)
1976 journal_destroy_revoke_caches();
1977 journal_destroy_journal_head_cache();
1978 journal_destroy_handle_cache();
1981 static int __init journal_init(void)
1983 int ret;
1985 BUILD_BUG_ON(sizeof(struct journal_superblock_s) != 1024);
1987 ret = journal_init_caches();
1988 if (ret != 0)
1989 journal_destroy_caches();
1990 jbd_create_debugfs_entry();
1991 return ret;
1994 static void __exit journal_exit(void)
1996 #ifdef CONFIG_JBD_DEBUG
1997 int n = atomic_read(&nr_journal_heads);
1998 if (n)
1999 printk(KERN_EMERG "JBD: leaked %d journal_heads!\n", n);
2000 #endif
2001 jbd_remove_debugfs_entry();
2002 journal_destroy_caches();
2005 MODULE_LICENSE("GPL");
2006 module_init(journal_init);
2007 module_exit(journal_exit);