PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / fs / proc / page.c
blob2707c6c7a20f0dc8bac60ad129103570b4cb10d0
1 #include <linux/bootmem.h>
2 #include <linux/compiler.h>
3 #include <linux/fs.h>
4 #include <linux/init.h>
5 #include <linux/mm.h>
6 #include <linux/mmzone.h>
7 #include <linux/proc_fs.h>
8 #include <linux/seq_file.h>
9 #include <linux/hugetlb.h>
10 #include <asm/uaccess.h>
11 #include "internal.h"
13 #define KPMSIZE sizeof(u64)
14 #define KPMMASK (KPMSIZE - 1)
16 /* /proc/kpagecount - an array exposing page counts
18 * Each entry is a u64 representing the corresponding
19 * physical page count.
21 static ssize_t kpagecount_read(struct file *file, char __user *buf,
22 size_t count, loff_t *ppos)
24 u64 __user *out = (u64 __user *)buf;
25 struct page *ppage;
26 unsigned long src = *ppos;
27 unsigned long pfn;
28 ssize_t ret = 0;
29 u64 pcount;
31 pfn = src / KPMSIZE;
32 count = min_t(size_t, count, (max_pfn * KPMSIZE) - src);
33 if (src & KPMMASK || count & KPMMASK)
34 return -EINVAL;
36 while (count > 0) {
37 if (pfn_valid(pfn))
38 ppage = pfn_to_page(pfn);
39 else
40 ppage = NULL;
41 if (!ppage)
42 pcount = 0;
43 else
44 pcount = page_mapcount(ppage);
46 if (put_user(pcount, out)) {
47 ret = -EFAULT;
48 break;
51 pfn++;
52 out++;
53 count -= KPMSIZE;
56 *ppos += (char __user *)out - buf;
57 if (!ret)
58 ret = (char __user *)out - buf;
59 return ret;
62 static const struct file_operations proc_kpagecount_operations = {
63 .llseek = mem_lseek,
64 .read = kpagecount_read,
67 /* /proc/kpageflags - an array exposing page flags
69 * Each entry is a u64 representing the corresponding
70 * physical page flags.
73 /* These macros are used to decouple internal flags from exported ones */
75 #define KPF_LOCKED 0
76 #define KPF_ERROR 1
77 #define KPF_REFERENCED 2
78 #define KPF_UPTODATE 3
79 #define KPF_DIRTY 4
80 #define KPF_LRU 5
81 #define KPF_ACTIVE 6
82 #define KPF_SLAB 7
83 #define KPF_WRITEBACK 8
84 #define KPF_RECLAIM 9
85 #define KPF_BUDDY 10
87 /* 11-20: new additions in 2.6.31 */
88 #define KPF_MMAP 11
89 #define KPF_ANON 12
90 #define KPF_SWAPCACHE 13
91 #define KPF_SWAPBACKED 14
92 #define KPF_COMPOUND_HEAD 15
93 #define KPF_COMPOUND_TAIL 16
94 #define KPF_HUGE 17
95 #define KPF_UNEVICTABLE 18
96 #define KPF_NOPAGE 20
98 /* kernel hacking assistances
99 * WARNING: subject to change, never rely on them!
101 #define KPF_RESERVED 32
102 #define KPF_MLOCKED 33
103 #define KPF_MAPPEDTODISK 34
104 #define KPF_PRIVATE 35
105 #define KPF_PRIVATE_2 36
106 #define KPF_OWNER_PRIVATE 37
107 #define KPF_ARCH 38
108 #define KPF_UNCACHED 39
110 static inline u64 kpf_copy_bit(u64 kflags, int ubit, int kbit)
112 return ((kflags >> kbit) & 1) << ubit;
115 static u64 get_uflags(struct page *page)
117 u64 k;
118 u64 u;
121 * pseudo flag: KPF_NOPAGE
122 * it differentiates a memory hole from a page with no flags
124 if (!page)
125 return 1 << KPF_NOPAGE;
127 k = page->flags;
128 u = 0;
131 * pseudo flags for the well known (anonymous) memory mapped pages
133 * Note that page->_mapcount is overloaded in SLOB/SLUB/SLQB, so the
134 * simple test in page_mapped() is not enough.
136 if (!PageSlab(page) && page_mapped(page))
137 u |= 1 << KPF_MMAP;
138 if (PageAnon(page))
139 u |= 1 << KPF_ANON;
142 * compound pages: export both head/tail info
143 * they together define a compound page's start/end pos and order
145 if (PageHead(page))
146 u |= 1 << KPF_COMPOUND_HEAD;
147 if (PageTail(page))
148 u |= 1 << KPF_COMPOUND_TAIL;
149 if (PageHuge(page))
150 u |= 1 << KPF_HUGE;
152 u |= kpf_copy_bit(k, KPF_LOCKED, PG_locked);
155 * Caveats on high order pages:
156 * PG_buddy will only be set on the head page; SLUB/SLQB do the same
157 * for PG_slab; SLOB won't set PG_slab at all on compound pages.
159 u |= kpf_copy_bit(k, KPF_SLAB, PG_slab);
160 u |= kpf_copy_bit(k, KPF_BUDDY, PG_buddy);
162 u |= kpf_copy_bit(k, KPF_ERROR, PG_error);
163 u |= kpf_copy_bit(k, KPF_DIRTY, PG_dirty);
164 u |= kpf_copy_bit(k, KPF_UPTODATE, PG_uptodate);
165 u |= kpf_copy_bit(k, KPF_WRITEBACK, PG_writeback);
167 u |= kpf_copy_bit(k, KPF_LRU, PG_lru);
168 u |= kpf_copy_bit(k, KPF_REFERENCED, PG_referenced);
169 u |= kpf_copy_bit(k, KPF_ACTIVE, PG_active);
170 u |= kpf_copy_bit(k, KPF_RECLAIM, PG_reclaim);
172 u |= kpf_copy_bit(k, KPF_SWAPCACHE, PG_swapcache);
173 u |= kpf_copy_bit(k, KPF_SWAPBACKED, PG_swapbacked);
175 u |= kpf_copy_bit(k, KPF_UNEVICTABLE, PG_unevictable);
176 u |= kpf_copy_bit(k, KPF_MLOCKED, PG_mlocked);
178 #ifdef CONFIG_IA64_UNCACHED_ALLOCATOR
179 u |= kpf_copy_bit(k, KPF_UNCACHED, PG_uncached);
180 #endif
182 u |= kpf_copy_bit(k, KPF_RESERVED, PG_reserved);
183 u |= kpf_copy_bit(k, KPF_MAPPEDTODISK, PG_mappedtodisk);
184 u |= kpf_copy_bit(k, KPF_PRIVATE, PG_private);
185 u |= kpf_copy_bit(k, KPF_PRIVATE_2, PG_private_2);
186 u |= kpf_copy_bit(k, KPF_OWNER_PRIVATE, PG_owner_priv_1);
187 u |= kpf_copy_bit(k, KPF_ARCH, PG_arch_1);
189 return u;
192 static ssize_t kpageflags_read(struct file *file, char __user *buf,
193 size_t count, loff_t *ppos)
195 u64 __user *out = (u64 __user *)buf;
196 struct page *ppage;
197 unsigned long src = *ppos;
198 unsigned long pfn;
199 ssize_t ret = 0;
201 pfn = src / KPMSIZE;
202 count = min_t(unsigned long, count, (max_pfn * KPMSIZE) - src);
203 if (src & KPMMASK || count & KPMMASK)
204 return -EINVAL;
206 while (count > 0) {
207 if (pfn_valid(pfn))
208 ppage = pfn_to_page(pfn);
209 else
210 ppage = NULL;
212 if (put_user(get_uflags(ppage), out)) {
213 ret = -EFAULT;
214 break;
217 pfn++;
218 out++;
219 count -= KPMSIZE;
222 *ppos += (char __user *)out - buf;
223 if (!ret)
224 ret = (char __user *)out - buf;
225 return ret;
228 static const struct file_operations proc_kpageflags_operations = {
229 .llseek = mem_lseek,
230 .read = kpageflags_read,
233 static int __init proc_page_init(void)
235 proc_create("kpagecount", S_IRUSR, NULL, &proc_kpagecount_operations);
236 proc_create("kpageflags", S_IRUSR, NULL, &proc_kpageflags_operations);
237 return 0;
239 module_init(proc_page_init);