PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / kernel / kprobes.c
blob0540948e29abf0217fc7e4edded97874aa26605c
1 /*
2 * Kernel Probes (KProbes)
3 * kernel/kprobes.c
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 * Copyright (C) IBM Corporation, 2002, 2004
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation (includes suggestions from
23 * Rusty Russell).
24 * 2004-Aug Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25 * hlists and exceptions notifier as suggested by Andi Kleen.
26 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27 * interface to access function arguments.
28 * 2004-Sep Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29 * exceptions notifier to be first on the priority list.
30 * 2005-May Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31 * <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32 * <prasanna@in.ibm.com> added function-return probes.
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/module.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/kdebug.h>
46 #include <linux/memory.h>
48 #include <asm-generic/sections.h>
49 #include <asm/cacheflush.h>
50 #include <asm/errno.h>
51 #include <asm/uaccess.h>
53 #define KPROBE_HASH_BITS 6
54 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
58 * Some oddball architectures like 64bit powerpc have function descriptors
59 * so this must be overridable.
61 #ifndef kprobe_lookup_name
62 #define kprobe_lookup_name(name, addr) \
63 addr = ((kprobe_opcode_t *)(kallsyms_lookup_name(name)))
64 #endif
66 static int kprobes_initialized;
67 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
68 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
70 /* NOTE: change this value only with kprobe_mutex held */
71 static bool kprobes_all_disarmed;
73 static DEFINE_MUTEX(kprobe_mutex); /* Protects kprobe_table */
74 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
75 static struct {
76 spinlock_t lock ____cacheline_aligned_in_smp;
77 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
79 static spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
81 return &(kretprobe_table_locks[hash].lock);
85 * Normally, functions that we'd want to prohibit kprobes in, are marked
86 * __kprobes. But, there are cases where such functions already belong to
87 * a different section (__sched for preempt_schedule)
89 * For such cases, we now have a blacklist
91 static struct kprobe_blackpoint kprobe_blacklist[] = {
92 {"preempt_schedule",},
93 {NULL} /* Terminator */
96 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
98 * kprobe->ainsn.insn points to the copy of the instruction to be
99 * single-stepped. x86_64, POWER4 and above have no-exec support and
100 * stepping on the instruction on a vmalloced/kmalloced/data page
101 * is a recipe for disaster
103 #define INSNS_PER_PAGE (PAGE_SIZE/(MAX_INSN_SIZE * sizeof(kprobe_opcode_t)))
105 struct kprobe_insn_page {
106 struct hlist_node hlist;
107 kprobe_opcode_t *insns; /* Page of instruction slots */
108 char slot_used[INSNS_PER_PAGE];
109 int nused;
110 int ngarbage;
113 enum kprobe_slot_state {
114 SLOT_CLEAN = 0,
115 SLOT_DIRTY = 1,
116 SLOT_USED = 2,
119 static DEFINE_MUTEX(kprobe_insn_mutex); /* Protects kprobe_insn_pages */
120 static struct hlist_head kprobe_insn_pages;
121 static int kprobe_garbage_slots;
122 static int collect_garbage_slots(void);
124 static int __kprobes check_safety(void)
126 int ret = 0;
127 #if defined(CONFIG_PREEMPT) && defined(CONFIG_FREEZER)
128 ret = freeze_processes();
129 if (ret == 0) {
130 struct task_struct *p, *q;
131 do_each_thread(p, q) {
132 if (p != current && p->state == TASK_RUNNING &&
133 p->pid != 0) {
134 printk("Check failed: %s is running\n",p->comm);
135 ret = -1;
136 goto loop_end;
138 } while_each_thread(p, q);
140 loop_end:
141 thaw_processes();
142 #else
143 synchronize_sched();
144 #endif
145 return ret;
149 * __get_insn_slot() - Find a slot on an executable page for an instruction.
150 * We allocate an executable page if there's no room on existing ones.
152 static kprobe_opcode_t __kprobes *__get_insn_slot(void)
154 struct kprobe_insn_page *kip;
155 struct hlist_node *pos;
157 retry:
158 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
159 if (kip->nused < INSNS_PER_PAGE) {
160 int i;
161 for (i = 0; i < INSNS_PER_PAGE; i++) {
162 if (kip->slot_used[i] == SLOT_CLEAN) {
163 kip->slot_used[i] = SLOT_USED;
164 kip->nused++;
165 return kip->insns + (i * MAX_INSN_SIZE);
168 /* Surprise! No unused slots. Fix kip->nused. */
169 kip->nused = INSNS_PER_PAGE;
173 /* If there are any garbage slots, collect it and try again. */
174 if (kprobe_garbage_slots && collect_garbage_slots() == 0) {
175 goto retry;
177 /* All out of space. Need to allocate a new page. Use slot 0. */
178 kip = kmalloc(sizeof(struct kprobe_insn_page), GFP_KERNEL);
179 if (!kip)
180 return NULL;
183 * Use module_alloc so this page is within +/- 2GB of where the
184 * kernel image and loaded module images reside. This is required
185 * so x86_64 can correctly handle the %rip-relative fixups.
187 kip->insns = module_alloc(PAGE_SIZE);
188 if (!kip->insns) {
189 kfree(kip);
190 return NULL;
192 INIT_HLIST_NODE(&kip->hlist);
193 hlist_add_head(&kip->hlist, &kprobe_insn_pages);
194 memset(kip->slot_used, SLOT_CLEAN, INSNS_PER_PAGE);
195 kip->slot_used[0] = SLOT_USED;
196 kip->nused = 1;
197 kip->ngarbage = 0;
198 return kip->insns;
201 kprobe_opcode_t __kprobes *get_insn_slot(void)
203 kprobe_opcode_t *ret;
204 mutex_lock(&kprobe_insn_mutex);
205 ret = __get_insn_slot();
206 mutex_unlock(&kprobe_insn_mutex);
207 return ret;
210 /* Return 1 if all garbages are collected, otherwise 0. */
211 static int __kprobes collect_one_slot(struct kprobe_insn_page *kip, int idx)
213 kip->slot_used[idx] = SLOT_CLEAN;
214 kip->nused--;
215 if (kip->nused == 0) {
217 * Page is no longer in use. Free it unless
218 * it's the last one. We keep the last one
219 * so as not to have to set it up again the
220 * next time somebody inserts a probe.
222 hlist_del(&kip->hlist);
223 if (hlist_empty(&kprobe_insn_pages)) {
224 INIT_HLIST_NODE(&kip->hlist);
225 hlist_add_head(&kip->hlist,
226 &kprobe_insn_pages);
227 } else {
228 module_free(NULL, kip->insns);
229 kfree(kip);
231 return 1;
233 return 0;
236 static int __kprobes collect_garbage_slots(void)
238 struct kprobe_insn_page *kip;
239 struct hlist_node *pos, *next;
241 /* Ensure no-one is preepmted on the garbages */
242 if (check_safety())
243 return -EAGAIN;
245 hlist_for_each_entry_safe(kip, pos, next, &kprobe_insn_pages, hlist) {
246 int i;
247 if (kip->ngarbage == 0)
248 continue;
249 kip->ngarbage = 0; /* we will collect all garbages */
250 for (i = 0; i < INSNS_PER_PAGE; i++) {
251 if (kip->slot_used[i] == SLOT_DIRTY &&
252 collect_one_slot(kip, i))
253 break;
256 kprobe_garbage_slots = 0;
257 return 0;
260 void __kprobes free_insn_slot(kprobe_opcode_t * slot, int dirty)
262 struct kprobe_insn_page *kip;
263 struct hlist_node *pos;
265 mutex_lock(&kprobe_insn_mutex);
266 hlist_for_each_entry(kip, pos, &kprobe_insn_pages, hlist) {
267 if (kip->insns <= slot &&
268 slot < kip->insns + (INSNS_PER_PAGE * MAX_INSN_SIZE)) {
269 int i = (slot - kip->insns) / MAX_INSN_SIZE;
270 if (dirty) {
271 kip->slot_used[i] = SLOT_DIRTY;
272 kip->ngarbage++;
273 } else {
274 collect_one_slot(kip, i);
276 break;
280 if (dirty && ++kprobe_garbage_slots > INSNS_PER_PAGE)
281 collect_garbage_slots();
283 mutex_unlock(&kprobe_insn_mutex);
285 #endif
287 /* We have preemption disabled.. so it is safe to use __ versions */
288 static inline void set_kprobe_instance(struct kprobe *kp)
290 __get_cpu_var(kprobe_instance) = kp;
293 static inline void reset_kprobe_instance(void)
295 __get_cpu_var(kprobe_instance) = NULL;
299 * This routine is called either:
300 * - under the kprobe_mutex - during kprobe_[un]register()
301 * OR
302 * - with preemption disabled - from arch/xxx/kernel/kprobes.c
304 struct kprobe __kprobes *get_kprobe(void *addr)
306 struct hlist_head *head;
307 struct hlist_node *node;
308 struct kprobe *p;
310 head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
311 hlist_for_each_entry_rcu(p, node, head, hlist) {
312 if (p->addr == addr)
313 return p;
315 return NULL;
318 /* Arm a kprobe with text_mutex */
319 static void __kprobes arm_kprobe(struct kprobe *kp)
321 mutex_lock(&text_mutex);
322 arch_arm_kprobe(kp);
323 mutex_unlock(&text_mutex);
326 /* Disarm a kprobe with text_mutex */
327 static void __kprobes disarm_kprobe(struct kprobe *kp)
329 mutex_lock(&text_mutex);
330 arch_disarm_kprobe(kp);
331 mutex_unlock(&text_mutex);
335 * Aggregate handlers for multiple kprobes support - these handlers
336 * take care of invoking the individual kprobe handlers on p->list
338 static int __kprobes aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
340 struct kprobe *kp;
342 list_for_each_entry_rcu(kp, &p->list, list) {
343 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
344 set_kprobe_instance(kp);
345 if (kp->pre_handler(kp, regs))
346 return 1;
348 reset_kprobe_instance();
350 return 0;
353 static void __kprobes aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
354 unsigned long flags)
356 struct kprobe *kp;
358 list_for_each_entry_rcu(kp, &p->list, list) {
359 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
360 set_kprobe_instance(kp);
361 kp->post_handler(kp, regs, flags);
362 reset_kprobe_instance();
367 static int __kprobes aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
368 int trapnr)
370 struct kprobe *cur = __get_cpu_var(kprobe_instance);
373 * if we faulted "during" the execution of a user specified
374 * probe handler, invoke just that probe's fault handler
376 if (cur && cur->fault_handler) {
377 if (cur->fault_handler(cur, regs, trapnr))
378 return 1;
380 return 0;
383 static int __kprobes aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
385 struct kprobe *cur = __get_cpu_var(kprobe_instance);
386 int ret = 0;
388 if (cur && cur->break_handler) {
389 if (cur->break_handler(cur, regs))
390 ret = 1;
392 reset_kprobe_instance();
393 return ret;
396 /* Walks the list and increments nmissed count for multiprobe case */
397 void __kprobes kprobes_inc_nmissed_count(struct kprobe *p)
399 struct kprobe *kp;
400 if (p->pre_handler != aggr_pre_handler) {
401 p->nmissed++;
402 } else {
403 list_for_each_entry_rcu(kp, &p->list, list)
404 kp->nmissed++;
406 return;
409 void __kprobes recycle_rp_inst(struct kretprobe_instance *ri,
410 struct hlist_head *head)
412 struct kretprobe *rp = ri->rp;
414 /* remove rp inst off the rprobe_inst_table */
415 hlist_del(&ri->hlist);
416 INIT_HLIST_NODE(&ri->hlist);
417 if (likely(rp)) {
418 spin_lock(&rp->lock);
419 hlist_add_head(&ri->hlist, &rp->free_instances);
420 spin_unlock(&rp->lock);
421 } else
422 /* Unregistering */
423 hlist_add_head(&ri->hlist, head);
426 void __kprobes kretprobe_hash_lock(struct task_struct *tsk,
427 struct hlist_head **head, unsigned long *flags)
429 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
430 spinlock_t *hlist_lock;
432 *head = &kretprobe_inst_table[hash];
433 hlist_lock = kretprobe_table_lock_ptr(hash);
434 spin_lock_irqsave(hlist_lock, *flags);
437 static void __kprobes kretprobe_table_lock(unsigned long hash,
438 unsigned long *flags)
440 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
441 spin_lock_irqsave(hlist_lock, *flags);
444 void __kprobes kretprobe_hash_unlock(struct task_struct *tsk,
445 unsigned long *flags)
447 unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
448 spinlock_t *hlist_lock;
450 hlist_lock = kretprobe_table_lock_ptr(hash);
451 spin_unlock_irqrestore(hlist_lock, *flags);
454 void __kprobes kretprobe_table_unlock(unsigned long hash, unsigned long *flags)
456 spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
457 spin_unlock_irqrestore(hlist_lock, *flags);
461 * This function is called from finish_task_switch when task tk becomes dead,
462 * so that we can recycle any function-return probe instances associated
463 * with this task. These left over instances represent probed functions
464 * that have been called but will never return.
466 void __kprobes kprobe_flush_task(struct task_struct *tk)
468 struct kretprobe_instance *ri;
469 struct hlist_head *head, empty_rp;
470 struct hlist_node *node, *tmp;
471 unsigned long hash, flags = 0;
473 if (unlikely(!kprobes_initialized))
474 /* Early boot. kretprobe_table_locks not yet initialized. */
475 return;
477 hash = hash_ptr(tk, KPROBE_HASH_BITS);
478 head = &kretprobe_inst_table[hash];
479 kretprobe_table_lock(hash, &flags);
480 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
481 if (ri->task == tk)
482 recycle_rp_inst(ri, &empty_rp);
484 kretprobe_table_unlock(hash, &flags);
485 INIT_HLIST_HEAD(&empty_rp);
486 hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) {
487 hlist_del(&ri->hlist);
488 kfree(ri);
492 static inline void free_rp_inst(struct kretprobe *rp)
494 struct kretprobe_instance *ri;
495 struct hlist_node *pos, *next;
497 hlist_for_each_entry_safe(ri, pos, next, &rp->free_instances, hlist) {
498 hlist_del(&ri->hlist);
499 kfree(ri);
503 static void __kprobes cleanup_rp_inst(struct kretprobe *rp)
505 unsigned long flags, hash;
506 struct kretprobe_instance *ri;
507 struct hlist_node *pos, *next;
508 struct hlist_head *head;
510 /* No race here */
511 for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
512 kretprobe_table_lock(hash, &flags);
513 head = &kretprobe_inst_table[hash];
514 hlist_for_each_entry_safe(ri, pos, next, head, hlist) {
515 if (ri->rp == rp)
516 ri->rp = NULL;
518 kretprobe_table_unlock(hash, &flags);
520 free_rp_inst(rp);
524 * Keep all fields in the kprobe consistent
526 static inline void copy_kprobe(struct kprobe *old_p, struct kprobe *p)
528 memcpy(&p->opcode, &old_p->opcode, sizeof(kprobe_opcode_t));
529 memcpy(&p->ainsn, &old_p->ainsn, sizeof(struct arch_specific_insn));
533 * Add the new probe to ap->list. Fail if this is the
534 * second jprobe at the address - two jprobes can't coexist
536 static int __kprobes add_new_kprobe(struct kprobe *ap, struct kprobe *p)
538 BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
539 if (p->break_handler) {
540 if (ap->break_handler)
541 return -EEXIST;
542 list_add_tail_rcu(&p->list, &ap->list);
543 ap->break_handler = aggr_break_handler;
544 } else
545 list_add_rcu(&p->list, &ap->list);
546 if (p->post_handler && !ap->post_handler)
547 ap->post_handler = aggr_post_handler;
549 if (kprobe_disabled(ap) && !kprobe_disabled(p)) {
550 ap->flags &= ~KPROBE_FLAG_DISABLED;
551 if (!kprobes_all_disarmed)
552 /* Arm the breakpoint again. */
553 arm_kprobe(ap);
555 return 0;
559 * Fill in the required fields of the "manager kprobe". Replace the
560 * earlier kprobe in the hlist with the manager kprobe
562 static inline void add_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
564 copy_kprobe(p, ap);
565 flush_insn_slot(ap);
566 ap->addr = p->addr;
567 ap->flags = p->flags;
568 ap->pre_handler = aggr_pre_handler;
569 ap->fault_handler = aggr_fault_handler;
570 /* We don't care the kprobe which has gone. */
571 if (p->post_handler && !kprobe_gone(p))
572 ap->post_handler = aggr_post_handler;
573 if (p->break_handler && !kprobe_gone(p))
574 ap->break_handler = aggr_break_handler;
576 INIT_LIST_HEAD(&ap->list);
577 list_add_rcu(&p->list, &ap->list);
579 hlist_replace_rcu(&p->hlist, &ap->hlist);
583 * This is the second or subsequent kprobe at the address - handle
584 * the intricacies
586 static int __kprobes register_aggr_kprobe(struct kprobe *old_p,
587 struct kprobe *p)
589 int ret = 0;
590 struct kprobe *ap = old_p;
592 if (old_p->pre_handler != aggr_pre_handler) {
593 /* If old_p is not an aggr_probe, create new aggr_kprobe. */
594 ap = kzalloc(sizeof(struct kprobe), GFP_KERNEL);
595 if (!ap)
596 return -ENOMEM;
597 add_aggr_kprobe(ap, old_p);
600 if (kprobe_gone(ap)) {
602 * Attempting to insert new probe at the same location that
603 * had a probe in the module vaddr area which already
604 * freed. So, the instruction slot has already been
605 * released. We need a new slot for the new probe.
607 ret = arch_prepare_kprobe(ap);
608 if (ret)
610 * Even if fail to allocate new slot, don't need to
611 * free aggr_probe. It will be used next time, or
612 * freed by unregister_kprobe.
614 return ret;
617 * Clear gone flag to prevent allocating new slot again, and
618 * set disabled flag because it is not armed yet.
620 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
621 | KPROBE_FLAG_DISABLED;
624 copy_kprobe(ap, p);
625 return add_new_kprobe(ap, p);
628 /* Try to disable aggr_kprobe, and return 1 if succeeded.*/
629 static int __kprobes try_to_disable_aggr_kprobe(struct kprobe *p)
631 struct kprobe *kp;
633 list_for_each_entry_rcu(kp, &p->list, list) {
634 if (!kprobe_disabled(kp))
636 * There is an active probe on the list.
637 * We can't disable aggr_kprobe.
639 return 0;
641 p->flags |= KPROBE_FLAG_DISABLED;
642 return 1;
645 static int __kprobes in_kprobes_functions(unsigned long addr)
647 struct kprobe_blackpoint *kb;
649 if (addr >= (unsigned long)__kprobes_text_start &&
650 addr < (unsigned long)__kprobes_text_end)
651 return -EINVAL;
653 * If there exists a kprobe_blacklist, verify and
654 * fail any probe registration in the prohibited area
656 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
657 if (kb->start_addr) {
658 if (addr >= kb->start_addr &&
659 addr < (kb->start_addr + kb->range))
660 return -EINVAL;
663 return 0;
667 * If we have a symbol_name argument, look it up and add the offset field
668 * to it. This way, we can specify a relative address to a symbol.
670 static kprobe_opcode_t __kprobes *kprobe_addr(struct kprobe *p)
672 kprobe_opcode_t *addr = p->addr;
673 if (p->symbol_name) {
674 if (addr)
675 return NULL;
676 kprobe_lookup_name(p->symbol_name, addr);
679 if (!addr)
680 return NULL;
681 return (kprobe_opcode_t *)(((char *)addr) + p->offset);
684 int __kprobes register_kprobe(struct kprobe *p)
686 int ret = 0;
687 struct kprobe *old_p;
688 struct module *probed_mod;
689 kprobe_opcode_t *addr;
691 addr = kprobe_addr(p);
692 if (!addr)
693 return -EINVAL;
694 p->addr = addr;
696 preempt_disable();
697 if (!kernel_text_address((unsigned long) p->addr) ||
698 in_kprobes_functions((unsigned long) p->addr)) {
699 preempt_enable();
700 return -EINVAL;
703 /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
704 p->flags &= KPROBE_FLAG_DISABLED;
707 * Check if are we probing a module.
709 probed_mod = __module_text_address((unsigned long) p->addr);
710 if (probed_mod) {
712 * We must hold a refcount of the probed module while updating
713 * its code to prohibit unexpected unloading.
715 if (unlikely(!try_module_get(probed_mod))) {
716 preempt_enable();
717 return -EINVAL;
720 * If the module freed .init.text, we couldn't insert
721 * kprobes in there.
723 if (within_module_init((unsigned long)p->addr, probed_mod) &&
724 probed_mod->state != MODULE_STATE_COMING) {
725 module_put(probed_mod);
726 preempt_enable();
727 return -EINVAL;
730 preempt_enable();
732 p->nmissed = 0;
733 INIT_LIST_HEAD(&p->list);
734 mutex_lock(&kprobe_mutex);
735 old_p = get_kprobe(p->addr);
736 if (old_p) {
737 ret = register_aggr_kprobe(old_p, p);
738 goto out;
741 mutex_lock(&text_mutex);
742 ret = arch_prepare_kprobe(p);
743 if (ret)
744 goto out_unlock_text;
746 INIT_HLIST_NODE(&p->hlist);
747 hlist_add_head_rcu(&p->hlist,
748 &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
750 if (!kprobes_all_disarmed && !kprobe_disabled(p))
751 arch_arm_kprobe(p);
753 out_unlock_text:
754 mutex_unlock(&text_mutex);
755 out:
756 mutex_unlock(&kprobe_mutex);
758 if (probed_mod)
759 module_put(probed_mod);
761 return ret;
763 EXPORT_SYMBOL_GPL(register_kprobe);
765 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
766 static struct kprobe * __kprobes __get_valid_kprobe(struct kprobe *p)
768 struct kprobe *old_p, *list_p;
770 old_p = get_kprobe(p->addr);
771 if (unlikely(!old_p))
772 return NULL;
774 if (p != old_p) {
775 list_for_each_entry_rcu(list_p, &old_p->list, list)
776 if (list_p == p)
777 /* kprobe p is a valid probe */
778 goto valid;
779 return NULL;
781 valid:
782 return old_p;
786 * Unregister a kprobe without a scheduler synchronization.
788 static int __kprobes __unregister_kprobe_top(struct kprobe *p)
790 struct kprobe *old_p, *list_p;
792 old_p = __get_valid_kprobe(p);
793 if (old_p == NULL)
794 return -EINVAL;
796 if (old_p == p ||
797 (old_p->pre_handler == aggr_pre_handler &&
798 list_is_singular(&old_p->list))) {
800 * Only probe on the hash list. Disarm only if kprobes are
801 * enabled and not gone - otherwise, the breakpoint would
802 * already have been removed. We save on flushing icache.
804 if (!kprobes_all_disarmed && !kprobe_disabled(old_p))
805 disarm_kprobe(p);
806 hlist_del_rcu(&old_p->hlist);
807 } else {
808 if (p->break_handler && !kprobe_gone(p))
809 old_p->break_handler = NULL;
810 if (p->post_handler && !kprobe_gone(p)) {
811 list_for_each_entry_rcu(list_p, &old_p->list, list) {
812 if ((list_p != p) && (list_p->post_handler))
813 goto noclean;
815 old_p->post_handler = NULL;
817 noclean:
818 list_del_rcu(&p->list);
819 if (!kprobe_disabled(old_p)) {
820 try_to_disable_aggr_kprobe(old_p);
821 if (!kprobes_all_disarmed && kprobe_disabled(old_p))
822 disarm_kprobe(old_p);
825 return 0;
828 static void __kprobes __unregister_kprobe_bottom(struct kprobe *p)
830 struct kprobe *old_p;
832 if (list_empty(&p->list))
833 arch_remove_kprobe(p);
834 else if (list_is_singular(&p->list)) {
835 /* "p" is the last child of an aggr_kprobe */
836 old_p = list_entry(p->list.next, struct kprobe, list);
837 list_del(&p->list);
838 arch_remove_kprobe(old_p);
839 kfree(old_p);
843 int __kprobes register_kprobes(struct kprobe **kps, int num)
845 int i, ret = 0;
847 if (num <= 0)
848 return -EINVAL;
849 for (i = 0; i < num; i++) {
850 ret = register_kprobe(kps[i]);
851 if (ret < 0) {
852 if (i > 0)
853 unregister_kprobes(kps, i);
854 break;
857 return ret;
859 EXPORT_SYMBOL_GPL(register_kprobes);
861 void __kprobes unregister_kprobe(struct kprobe *p)
863 unregister_kprobes(&p, 1);
865 EXPORT_SYMBOL_GPL(unregister_kprobe);
867 void __kprobes unregister_kprobes(struct kprobe **kps, int num)
869 int i;
871 if (num <= 0)
872 return;
873 mutex_lock(&kprobe_mutex);
874 for (i = 0; i < num; i++)
875 if (__unregister_kprobe_top(kps[i]) < 0)
876 kps[i]->addr = NULL;
877 mutex_unlock(&kprobe_mutex);
879 synchronize_sched();
880 for (i = 0; i < num; i++)
881 if (kps[i]->addr)
882 __unregister_kprobe_bottom(kps[i]);
884 EXPORT_SYMBOL_GPL(unregister_kprobes);
886 static struct notifier_block kprobe_exceptions_nb = {
887 .notifier_call = kprobe_exceptions_notify,
888 .priority = 0x7fffffff /* we need to be notified first */
891 unsigned long __weak arch_deref_entry_point(void *entry)
893 return (unsigned long)entry;
896 int __kprobes register_jprobes(struct jprobe **jps, int num)
898 struct jprobe *jp;
899 int ret = 0, i;
901 if (num <= 0)
902 return -EINVAL;
903 for (i = 0; i < num; i++) {
904 unsigned long addr;
905 jp = jps[i];
906 addr = arch_deref_entry_point(jp->entry);
908 if (!kernel_text_address(addr))
909 ret = -EINVAL;
910 else {
911 /* Todo: Verify probepoint is a function entry point */
912 jp->kp.pre_handler = setjmp_pre_handler;
913 jp->kp.break_handler = longjmp_break_handler;
914 ret = register_kprobe(&jp->kp);
916 if (ret < 0) {
917 if (i > 0)
918 unregister_jprobes(jps, i);
919 break;
922 return ret;
924 EXPORT_SYMBOL_GPL(register_jprobes);
926 int __kprobes register_jprobe(struct jprobe *jp)
928 return register_jprobes(&jp, 1);
930 EXPORT_SYMBOL_GPL(register_jprobe);
932 void __kprobes unregister_jprobe(struct jprobe *jp)
934 unregister_jprobes(&jp, 1);
936 EXPORT_SYMBOL_GPL(unregister_jprobe);
938 void __kprobes unregister_jprobes(struct jprobe **jps, int num)
940 int i;
942 if (num <= 0)
943 return;
944 mutex_lock(&kprobe_mutex);
945 for (i = 0; i < num; i++)
946 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
947 jps[i]->kp.addr = NULL;
948 mutex_unlock(&kprobe_mutex);
950 synchronize_sched();
951 for (i = 0; i < num; i++) {
952 if (jps[i]->kp.addr)
953 __unregister_kprobe_bottom(&jps[i]->kp);
956 EXPORT_SYMBOL_GPL(unregister_jprobes);
958 #ifdef CONFIG_KRETPROBES
960 * This kprobe pre_handler is registered with every kretprobe. When probe
961 * hits it will set up the return probe.
963 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
964 struct pt_regs *regs)
966 struct kretprobe *rp = container_of(p, struct kretprobe, kp);
967 unsigned long hash, flags = 0;
968 struct kretprobe_instance *ri;
970 /*TODO: consider to only swap the RA after the last pre_handler fired */
971 hash = hash_ptr(current, KPROBE_HASH_BITS);
972 spin_lock_irqsave(&rp->lock, flags);
973 if (!hlist_empty(&rp->free_instances)) {
974 ri = hlist_entry(rp->free_instances.first,
975 struct kretprobe_instance, hlist);
976 hlist_del(&ri->hlist);
977 spin_unlock_irqrestore(&rp->lock, flags);
979 ri->rp = rp;
980 ri->task = current;
982 if (rp->entry_handler && rp->entry_handler(ri, regs))
983 return 0;
985 arch_prepare_kretprobe(ri, regs);
987 /* XXX(hch): why is there no hlist_move_head? */
988 INIT_HLIST_NODE(&ri->hlist);
989 kretprobe_table_lock(hash, &flags);
990 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
991 kretprobe_table_unlock(hash, &flags);
992 } else {
993 rp->nmissed++;
994 spin_unlock_irqrestore(&rp->lock, flags);
996 return 0;
999 int __kprobes register_kretprobe(struct kretprobe *rp)
1001 int ret = 0;
1002 struct kretprobe_instance *inst;
1003 int i;
1004 void *addr;
1006 if (kretprobe_blacklist_size) {
1007 addr = kprobe_addr(&rp->kp);
1008 if (!addr)
1009 return -EINVAL;
1011 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1012 if (kretprobe_blacklist[i].addr == addr)
1013 return -EINVAL;
1017 rp->kp.pre_handler = pre_handler_kretprobe;
1018 rp->kp.post_handler = NULL;
1019 rp->kp.fault_handler = NULL;
1020 rp->kp.break_handler = NULL;
1022 /* Pre-allocate memory for max kretprobe instances */
1023 if (rp->maxactive <= 0) {
1024 #ifdef CONFIG_PREEMPT
1025 rp->maxactive = max(10, 2 * NR_CPUS);
1026 #else
1027 rp->maxactive = NR_CPUS;
1028 #endif
1030 spin_lock_init(&rp->lock);
1031 INIT_HLIST_HEAD(&rp->free_instances);
1032 for (i = 0; i < rp->maxactive; i++) {
1033 inst = kmalloc(sizeof(struct kretprobe_instance) +
1034 rp->data_size, GFP_KERNEL);
1035 if (inst == NULL) {
1036 free_rp_inst(rp);
1037 return -ENOMEM;
1039 INIT_HLIST_NODE(&inst->hlist);
1040 hlist_add_head(&inst->hlist, &rp->free_instances);
1043 rp->nmissed = 0;
1044 /* Establish function entry probe point */
1045 ret = register_kprobe(&rp->kp);
1046 if (ret != 0)
1047 free_rp_inst(rp);
1048 return ret;
1050 EXPORT_SYMBOL_GPL(register_kretprobe);
1052 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1054 int ret = 0, i;
1056 if (num <= 0)
1057 return -EINVAL;
1058 for (i = 0; i < num; i++) {
1059 ret = register_kretprobe(rps[i]);
1060 if (ret < 0) {
1061 if (i > 0)
1062 unregister_kretprobes(rps, i);
1063 break;
1066 return ret;
1068 EXPORT_SYMBOL_GPL(register_kretprobes);
1070 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1072 unregister_kretprobes(&rp, 1);
1074 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1076 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1078 int i;
1080 if (num <= 0)
1081 return;
1082 mutex_lock(&kprobe_mutex);
1083 for (i = 0; i < num; i++)
1084 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
1085 rps[i]->kp.addr = NULL;
1086 mutex_unlock(&kprobe_mutex);
1088 synchronize_sched();
1089 for (i = 0; i < num; i++) {
1090 if (rps[i]->kp.addr) {
1091 __unregister_kprobe_bottom(&rps[i]->kp);
1092 cleanup_rp_inst(rps[i]);
1096 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1098 #else /* CONFIG_KRETPROBES */
1099 int __kprobes register_kretprobe(struct kretprobe *rp)
1101 return -ENOSYS;
1103 EXPORT_SYMBOL_GPL(register_kretprobe);
1105 int __kprobes register_kretprobes(struct kretprobe **rps, int num)
1107 return -ENOSYS;
1109 EXPORT_SYMBOL_GPL(register_kretprobes);
1111 void __kprobes unregister_kretprobe(struct kretprobe *rp)
1114 EXPORT_SYMBOL_GPL(unregister_kretprobe);
1116 void __kprobes unregister_kretprobes(struct kretprobe **rps, int num)
1119 EXPORT_SYMBOL_GPL(unregister_kretprobes);
1121 static int __kprobes pre_handler_kretprobe(struct kprobe *p,
1122 struct pt_regs *regs)
1124 return 0;
1127 #endif /* CONFIG_KRETPROBES */
1129 /* Set the kprobe gone and remove its instruction buffer. */
1130 static void __kprobes kill_kprobe(struct kprobe *p)
1132 struct kprobe *kp;
1134 p->flags |= KPROBE_FLAG_GONE;
1135 if (p->pre_handler == aggr_pre_handler) {
1137 * If this is an aggr_kprobe, we have to list all the
1138 * chained probes and mark them GONE.
1140 list_for_each_entry_rcu(kp, &p->list, list)
1141 kp->flags |= KPROBE_FLAG_GONE;
1142 p->post_handler = NULL;
1143 p->break_handler = NULL;
1146 * Here, we can remove insn_slot safely, because no thread calls
1147 * the original probed function (which will be freed soon) any more.
1149 arch_remove_kprobe(p);
1152 /* Module notifier call back, checking kprobes on the module */
1153 static int __kprobes kprobes_module_callback(struct notifier_block *nb,
1154 unsigned long val, void *data)
1156 struct module *mod = data;
1157 struct hlist_head *head;
1158 struct hlist_node *node;
1159 struct kprobe *p;
1160 unsigned int i;
1161 int checkcore = (val == MODULE_STATE_GOING);
1163 if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
1164 return NOTIFY_DONE;
1167 * When MODULE_STATE_GOING was notified, both of module .text and
1168 * .init.text sections would be freed. When MODULE_STATE_LIVE was
1169 * notified, only .init.text section would be freed. We need to
1170 * disable kprobes which have been inserted in the sections.
1172 mutex_lock(&kprobe_mutex);
1173 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1174 head = &kprobe_table[i];
1175 hlist_for_each_entry_rcu(p, node, head, hlist)
1176 if (within_module_init((unsigned long)p->addr, mod) ||
1177 (checkcore &&
1178 within_module_core((unsigned long)p->addr, mod))) {
1180 * The vaddr this probe is installed will soon
1181 * be vfreed buy not synced to disk. Hence,
1182 * disarming the breakpoint isn't needed.
1184 kill_kprobe(p);
1187 mutex_unlock(&kprobe_mutex);
1188 return NOTIFY_DONE;
1191 static struct notifier_block kprobe_module_nb = {
1192 .notifier_call = kprobes_module_callback,
1193 .priority = 0
1196 static int __init init_kprobes(void)
1198 int i, err = 0;
1199 unsigned long offset = 0, size = 0;
1200 char *modname, namebuf[128];
1201 const char *symbol_name;
1202 void *addr;
1203 struct kprobe_blackpoint *kb;
1205 /* FIXME allocate the probe table, currently defined statically */
1206 /* initialize all list heads */
1207 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1208 INIT_HLIST_HEAD(&kprobe_table[i]);
1209 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
1210 spin_lock_init(&(kretprobe_table_locks[i].lock));
1214 * Lookup and populate the kprobe_blacklist.
1216 * Unlike the kretprobe blacklist, we'll need to determine
1217 * the range of addresses that belong to the said functions,
1218 * since a kprobe need not necessarily be at the beginning
1219 * of a function.
1221 for (kb = kprobe_blacklist; kb->name != NULL; kb++) {
1222 kprobe_lookup_name(kb->name, addr);
1223 if (!addr)
1224 continue;
1226 kb->start_addr = (unsigned long)addr;
1227 symbol_name = kallsyms_lookup(kb->start_addr,
1228 &size, &offset, &modname, namebuf);
1229 if (!symbol_name)
1230 kb->range = 0;
1231 else
1232 kb->range = size;
1235 if (kretprobe_blacklist_size) {
1236 /* lookup the function address from its name */
1237 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1238 kprobe_lookup_name(kretprobe_blacklist[i].name,
1239 kretprobe_blacklist[i].addr);
1240 if (!kretprobe_blacklist[i].addr)
1241 printk("kretprobe: lookup failed: %s\n",
1242 kretprobe_blacklist[i].name);
1246 /* By default, kprobes are armed */
1247 kprobes_all_disarmed = false;
1249 err = arch_init_kprobes();
1250 if (!err)
1251 err = register_die_notifier(&kprobe_exceptions_nb);
1252 if (!err)
1253 err = register_module_notifier(&kprobe_module_nb);
1255 kprobes_initialized = (err == 0);
1257 if (!err)
1258 init_test_probes();
1259 return err;
1262 #ifdef CONFIG_DEBUG_FS
1263 static void __kprobes report_probe(struct seq_file *pi, struct kprobe *p,
1264 const char *sym, int offset,char *modname)
1266 char *kprobe_type;
1268 if (p->pre_handler == pre_handler_kretprobe)
1269 kprobe_type = "r";
1270 else if (p->pre_handler == setjmp_pre_handler)
1271 kprobe_type = "j";
1272 else
1273 kprobe_type = "k";
1274 if (sym)
1275 seq_printf(pi, "%p %s %s+0x%x %s %s%s\n",
1276 p->addr, kprobe_type, sym, offset,
1277 (modname ? modname : " "),
1278 (kprobe_gone(p) ? "[GONE]" : ""),
1279 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1280 "[DISABLED]" : ""));
1281 else
1282 seq_printf(pi, "%p %s %p %s%s\n",
1283 p->addr, kprobe_type, p->addr,
1284 (kprobe_gone(p) ? "[GONE]" : ""),
1285 ((kprobe_disabled(p) && !kprobe_gone(p)) ?
1286 "[DISABLED]" : ""));
1289 static void __kprobes *kprobe_seq_start(struct seq_file *f, loff_t *pos)
1291 return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
1294 static void __kprobes *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
1296 (*pos)++;
1297 if (*pos >= KPROBE_TABLE_SIZE)
1298 return NULL;
1299 return pos;
1302 static void __kprobes kprobe_seq_stop(struct seq_file *f, void *v)
1304 /* Nothing to do */
1307 static int __kprobes show_kprobe_addr(struct seq_file *pi, void *v)
1309 struct hlist_head *head;
1310 struct hlist_node *node;
1311 struct kprobe *p, *kp;
1312 const char *sym = NULL;
1313 unsigned int i = *(loff_t *) v;
1314 unsigned long offset = 0;
1315 char *modname, namebuf[128];
1317 head = &kprobe_table[i];
1318 preempt_disable();
1319 hlist_for_each_entry_rcu(p, node, head, hlist) {
1320 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
1321 &offset, &modname, namebuf);
1322 if (p->pre_handler == aggr_pre_handler) {
1323 list_for_each_entry_rcu(kp, &p->list, list)
1324 report_probe(pi, kp, sym, offset, modname);
1325 } else
1326 report_probe(pi, p, sym, offset, modname);
1328 preempt_enable();
1329 return 0;
1332 static struct seq_operations kprobes_seq_ops = {
1333 .start = kprobe_seq_start,
1334 .next = kprobe_seq_next,
1335 .stop = kprobe_seq_stop,
1336 .show = show_kprobe_addr
1339 static int __kprobes kprobes_open(struct inode *inode, struct file *filp)
1341 return seq_open(filp, &kprobes_seq_ops);
1344 static struct file_operations debugfs_kprobes_operations = {
1345 .open = kprobes_open,
1346 .read = seq_read,
1347 .llseek = seq_lseek,
1348 .release = seq_release,
1351 /* Disable one kprobe */
1352 int __kprobes disable_kprobe(struct kprobe *kp)
1354 int ret = 0;
1355 struct kprobe *p;
1357 mutex_lock(&kprobe_mutex);
1359 /* Check whether specified probe is valid. */
1360 p = __get_valid_kprobe(kp);
1361 if (unlikely(p == NULL)) {
1362 ret = -EINVAL;
1363 goto out;
1366 /* If the probe is already disabled (or gone), just return */
1367 if (kprobe_disabled(kp))
1368 goto out;
1370 kp->flags |= KPROBE_FLAG_DISABLED;
1371 if (p != kp)
1372 /* When kp != p, p is always enabled. */
1373 try_to_disable_aggr_kprobe(p);
1375 if (!kprobes_all_disarmed && kprobe_disabled(p))
1376 disarm_kprobe(p);
1377 out:
1378 mutex_unlock(&kprobe_mutex);
1379 return ret;
1381 EXPORT_SYMBOL_GPL(disable_kprobe);
1383 /* Enable one kprobe */
1384 int __kprobes enable_kprobe(struct kprobe *kp)
1386 int ret = 0;
1387 struct kprobe *p;
1389 mutex_lock(&kprobe_mutex);
1391 /* Check whether specified probe is valid. */
1392 p = __get_valid_kprobe(kp);
1393 if (unlikely(p == NULL)) {
1394 ret = -EINVAL;
1395 goto out;
1398 if (kprobe_gone(kp)) {
1399 /* This kprobe has gone, we couldn't enable it. */
1400 ret = -EINVAL;
1401 goto out;
1404 if (!kprobes_all_disarmed && kprobe_disabled(p))
1405 arm_kprobe(p);
1407 p->flags &= ~KPROBE_FLAG_DISABLED;
1408 if (p != kp)
1409 kp->flags &= ~KPROBE_FLAG_DISABLED;
1410 out:
1411 mutex_unlock(&kprobe_mutex);
1412 return ret;
1414 EXPORT_SYMBOL_GPL(enable_kprobe);
1416 static void __kprobes arm_all_kprobes(void)
1418 struct hlist_head *head;
1419 struct hlist_node *node;
1420 struct kprobe *p;
1421 unsigned int i;
1423 mutex_lock(&kprobe_mutex);
1425 /* If kprobes are armed, just return */
1426 if (!kprobes_all_disarmed)
1427 goto already_enabled;
1429 mutex_lock(&text_mutex);
1430 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1431 head = &kprobe_table[i];
1432 hlist_for_each_entry_rcu(p, node, head, hlist)
1433 if (!kprobe_disabled(p))
1434 arch_arm_kprobe(p);
1436 mutex_unlock(&text_mutex);
1438 kprobes_all_disarmed = false;
1439 printk(KERN_INFO "Kprobes globally enabled\n");
1441 already_enabled:
1442 mutex_unlock(&kprobe_mutex);
1443 return;
1446 static void __kprobes disarm_all_kprobes(void)
1448 struct hlist_head *head;
1449 struct hlist_node *node;
1450 struct kprobe *p;
1451 unsigned int i;
1453 mutex_lock(&kprobe_mutex);
1455 /* If kprobes are already disarmed, just return */
1456 if (kprobes_all_disarmed)
1457 goto already_disabled;
1459 kprobes_all_disarmed = true;
1460 printk(KERN_INFO "Kprobes globally disabled\n");
1461 mutex_lock(&text_mutex);
1462 for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
1463 head = &kprobe_table[i];
1464 hlist_for_each_entry_rcu(p, node, head, hlist) {
1465 if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
1466 arch_disarm_kprobe(p);
1470 mutex_unlock(&text_mutex);
1471 mutex_unlock(&kprobe_mutex);
1472 /* Allow all currently running kprobes to complete */
1473 synchronize_sched();
1474 return;
1476 already_disabled:
1477 mutex_unlock(&kprobe_mutex);
1478 return;
1482 * XXX: The debugfs bool file interface doesn't allow for callbacks
1483 * when the bool state is switched. We can reuse that facility when
1484 * available
1486 static ssize_t read_enabled_file_bool(struct file *file,
1487 char __user *user_buf, size_t count, loff_t *ppos)
1489 char buf[3];
1491 if (!kprobes_all_disarmed)
1492 buf[0] = '1';
1493 else
1494 buf[0] = '0';
1495 buf[1] = '\n';
1496 buf[2] = 0x00;
1497 return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
1500 static ssize_t write_enabled_file_bool(struct file *file,
1501 const char __user *user_buf, size_t count, loff_t *ppos)
1503 char buf[32];
1504 int buf_size;
1506 buf_size = min(count, (sizeof(buf)-1));
1507 if (copy_from_user(buf, user_buf, buf_size))
1508 return -EFAULT;
1510 switch (buf[0]) {
1511 case 'y':
1512 case 'Y':
1513 case '1':
1514 arm_all_kprobes();
1515 break;
1516 case 'n':
1517 case 'N':
1518 case '0':
1519 disarm_all_kprobes();
1520 break;
1523 return count;
1526 static struct file_operations fops_kp = {
1527 .read = read_enabled_file_bool,
1528 .write = write_enabled_file_bool,
1531 static int __kprobes debugfs_kprobe_init(void)
1533 struct dentry *dir, *file;
1534 unsigned int value = 1;
1536 dir = debugfs_create_dir("kprobes", NULL);
1537 if (!dir)
1538 return -ENOMEM;
1540 file = debugfs_create_file("list", 0444, dir, NULL,
1541 &debugfs_kprobes_operations);
1542 if (!file) {
1543 debugfs_remove(dir);
1544 return -ENOMEM;
1547 file = debugfs_create_file("enabled", 0600, dir,
1548 &value, &fops_kp);
1549 if (!file) {
1550 debugfs_remove(dir);
1551 return -ENOMEM;
1554 return 0;
1557 late_initcall(debugfs_kprobe_init);
1558 #endif /* CONFIG_DEBUG_FS */
1560 module_init(init_kprobes);
1562 /* defined in arch/.../kernel/kprobes.c */
1563 EXPORT_SYMBOL_GPL(jprobe_return);