2 * Performance counter core code
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/sysfs.h>
19 #include <linux/dcache.h>
20 #include <linux/percpu.h>
21 #include <linux/ptrace.h>
22 #include <linux/vmstat.h>
23 #include <linux/hardirq.h>
24 #include <linux/rculist.h>
25 #include <linux/uaccess.h>
26 #include <linux/syscalls.h>
27 #include <linux/anon_inodes.h>
28 #include <linux/kernel_stat.h>
29 #include <linux/perf_counter.h>
31 #include <asm/irq_regs.h>
34 * Each CPU has a list of per CPU counters:
36 DEFINE_PER_CPU(struct perf_cpu_context
, perf_cpu_context
);
38 int perf_max_counters __read_mostly
= 1;
39 static int perf_reserved_percpu __read_mostly
;
40 static int perf_overcommit __read_mostly
= 1;
42 static atomic_t nr_counters __read_mostly
;
43 static atomic_t nr_mmap_counters __read_mostly
;
44 static atomic_t nr_comm_counters __read_mostly
;
45 static atomic_t nr_task_counters __read_mostly
;
48 * perf counter paranoia level:
50 * 1 - disallow cpu counters to unpriv
51 * 2 - disallow kernel profiling to unpriv
53 int sysctl_perf_counter_paranoid __read_mostly
= 1;
55 static inline bool perf_paranoid_cpu(void)
57 return sysctl_perf_counter_paranoid
> 0;
60 static inline bool perf_paranoid_kernel(void)
62 return sysctl_perf_counter_paranoid
> 1;
65 int sysctl_perf_counter_mlock __read_mostly
= 512; /* 'free' kb per user */
68 * max perf counter sample rate
70 int sysctl_perf_counter_sample_rate __read_mostly
= 100000;
72 static atomic64_t perf_counter_id
;
75 * Lock for (sysadmin-configurable) counter reservations:
77 static DEFINE_SPINLOCK(perf_resource_lock
);
80 * Architecture provided APIs - weak aliases:
82 extern __weak
const struct pmu
*hw_perf_counter_init(struct perf_counter
*counter
)
87 void __weak
hw_perf_disable(void) { barrier(); }
88 void __weak
hw_perf_enable(void) { barrier(); }
90 void __weak
hw_perf_counter_setup(int cpu
) { barrier(); }
91 void __weak
hw_perf_counter_setup_online(int cpu
) { barrier(); }
94 hw_perf_group_sched_in(struct perf_counter
*group_leader
,
95 struct perf_cpu_context
*cpuctx
,
96 struct perf_counter_context
*ctx
, int cpu
)
101 void __weak
perf_counter_print_debug(void) { }
103 static DEFINE_PER_CPU(int, disable_count
);
105 void __perf_disable(void)
107 __get_cpu_var(disable_count
)++;
110 bool __perf_enable(void)
112 return !--__get_cpu_var(disable_count
);
115 void perf_disable(void)
121 void perf_enable(void)
127 static void get_ctx(struct perf_counter_context
*ctx
)
129 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
132 static void free_ctx(struct rcu_head
*head
)
134 struct perf_counter_context
*ctx
;
136 ctx
= container_of(head
, struct perf_counter_context
, rcu_head
);
140 static void put_ctx(struct perf_counter_context
*ctx
)
142 if (atomic_dec_and_test(&ctx
->refcount
)) {
144 put_ctx(ctx
->parent_ctx
);
146 put_task_struct(ctx
->task
);
147 call_rcu(&ctx
->rcu_head
, free_ctx
);
151 static void unclone_ctx(struct perf_counter_context
*ctx
)
153 if (ctx
->parent_ctx
) {
154 put_ctx(ctx
->parent_ctx
);
155 ctx
->parent_ctx
= NULL
;
160 * If we inherit counters we want to return the parent counter id
163 static u64
primary_counter_id(struct perf_counter
*counter
)
165 u64 id
= counter
->id
;
168 id
= counter
->parent
->id
;
174 * Get the perf_counter_context for a task and lock it.
175 * This has to cope with with the fact that until it is locked,
176 * the context could get moved to another task.
178 static struct perf_counter_context
*
179 perf_lock_task_context(struct task_struct
*task
, unsigned long *flags
)
181 struct perf_counter_context
*ctx
;
185 ctx
= rcu_dereference(task
->perf_counter_ctxp
);
188 * If this context is a clone of another, it might
189 * get swapped for another underneath us by
190 * perf_counter_task_sched_out, though the
191 * rcu_read_lock() protects us from any context
192 * getting freed. Lock the context and check if it
193 * got swapped before we could get the lock, and retry
194 * if so. If we locked the right context, then it
195 * can't get swapped on us any more.
197 spin_lock_irqsave(&ctx
->lock
, *flags
);
198 if (ctx
!= rcu_dereference(task
->perf_counter_ctxp
)) {
199 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
203 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
204 spin_unlock_irqrestore(&ctx
->lock
, *flags
);
213 * Get the context for a task and increment its pin_count so it
214 * can't get swapped to another task. This also increments its
215 * reference count so that the context can't get freed.
217 static struct perf_counter_context
*perf_pin_task_context(struct task_struct
*task
)
219 struct perf_counter_context
*ctx
;
222 ctx
= perf_lock_task_context(task
, &flags
);
225 spin_unlock_irqrestore(&ctx
->lock
, flags
);
230 static void perf_unpin_context(struct perf_counter_context
*ctx
)
234 spin_lock_irqsave(&ctx
->lock
, flags
);
236 spin_unlock_irqrestore(&ctx
->lock
, flags
);
241 * Add a counter from the lists for its context.
242 * Must be called with ctx->mutex and ctx->lock held.
245 list_add_counter(struct perf_counter
*counter
, struct perf_counter_context
*ctx
)
247 struct perf_counter
*group_leader
= counter
->group_leader
;
250 * Depending on whether it is a standalone or sibling counter,
251 * add it straight to the context's counter list, or to the group
252 * leader's sibling list:
254 if (group_leader
== counter
)
255 list_add_tail(&counter
->list_entry
, &ctx
->counter_list
);
257 list_add_tail(&counter
->list_entry
, &group_leader
->sibling_list
);
258 group_leader
->nr_siblings
++;
261 list_add_rcu(&counter
->event_entry
, &ctx
->event_list
);
263 if (counter
->attr
.inherit_stat
)
268 * Remove a counter from the lists for its context.
269 * Must be called with ctx->mutex and ctx->lock held.
272 list_del_counter(struct perf_counter
*counter
, struct perf_counter_context
*ctx
)
274 struct perf_counter
*sibling
, *tmp
;
276 if (list_empty(&counter
->list_entry
))
279 if (counter
->attr
.inherit_stat
)
282 list_del_init(&counter
->list_entry
);
283 list_del_rcu(&counter
->event_entry
);
285 if (counter
->group_leader
!= counter
)
286 counter
->group_leader
->nr_siblings
--;
289 * If this was a group counter with sibling counters then
290 * upgrade the siblings to singleton counters by adding them
291 * to the context list directly:
293 list_for_each_entry_safe(sibling
, tmp
,
294 &counter
->sibling_list
, list_entry
) {
296 list_move_tail(&sibling
->list_entry
, &ctx
->counter_list
);
297 sibling
->group_leader
= sibling
;
302 counter_sched_out(struct perf_counter
*counter
,
303 struct perf_cpu_context
*cpuctx
,
304 struct perf_counter_context
*ctx
)
306 if (counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
309 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
310 if (counter
->pending_disable
) {
311 counter
->pending_disable
= 0;
312 counter
->state
= PERF_COUNTER_STATE_OFF
;
314 counter
->tstamp_stopped
= ctx
->time
;
315 counter
->pmu
->disable(counter
);
318 if (!is_software_counter(counter
))
319 cpuctx
->active_oncpu
--;
321 if (counter
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
322 cpuctx
->exclusive
= 0;
326 group_sched_out(struct perf_counter
*group_counter
,
327 struct perf_cpu_context
*cpuctx
,
328 struct perf_counter_context
*ctx
)
330 struct perf_counter
*counter
;
332 if (group_counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
335 counter_sched_out(group_counter
, cpuctx
, ctx
);
338 * Schedule out siblings (if any):
340 list_for_each_entry(counter
, &group_counter
->sibling_list
, list_entry
)
341 counter_sched_out(counter
, cpuctx
, ctx
);
343 if (group_counter
->attr
.exclusive
)
344 cpuctx
->exclusive
= 0;
348 * Cross CPU call to remove a performance counter
350 * We disable the counter on the hardware level first. After that we
351 * remove it from the context list.
353 static void __perf_counter_remove_from_context(void *info
)
355 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
356 struct perf_counter
*counter
= info
;
357 struct perf_counter_context
*ctx
= counter
->ctx
;
360 * If this is a task context, we need to check whether it is
361 * the current task context of this cpu. If not it has been
362 * scheduled out before the smp call arrived.
364 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
367 spin_lock(&ctx
->lock
);
369 * Protect the list operation against NMI by disabling the
370 * counters on a global level.
374 counter_sched_out(counter
, cpuctx
, ctx
);
376 list_del_counter(counter
, ctx
);
380 * Allow more per task counters with respect to the
383 cpuctx
->max_pertask
=
384 min(perf_max_counters
- ctx
->nr_counters
,
385 perf_max_counters
- perf_reserved_percpu
);
389 spin_unlock(&ctx
->lock
);
394 * Remove the counter from a task's (or a CPU's) list of counters.
396 * Must be called with ctx->mutex held.
398 * CPU counters are removed with a smp call. For task counters we only
399 * call when the task is on a CPU.
401 * If counter->ctx is a cloned context, callers must make sure that
402 * every task struct that counter->ctx->task could possibly point to
403 * remains valid. This is OK when called from perf_release since
404 * that only calls us on the top-level context, which can't be a clone.
405 * When called from perf_counter_exit_task, it's OK because the
406 * context has been detached from its task.
408 static void perf_counter_remove_from_context(struct perf_counter
*counter
)
410 struct perf_counter_context
*ctx
= counter
->ctx
;
411 struct task_struct
*task
= ctx
->task
;
415 * Per cpu counters are removed via an smp call and
416 * the removal is always sucessful.
418 smp_call_function_single(counter
->cpu
,
419 __perf_counter_remove_from_context
,
425 task_oncpu_function_call(task
, __perf_counter_remove_from_context
,
428 spin_lock_irq(&ctx
->lock
);
430 * If the context is active we need to retry the smp call.
432 if (ctx
->nr_active
&& !list_empty(&counter
->list_entry
)) {
433 spin_unlock_irq(&ctx
->lock
);
438 * The lock prevents that this context is scheduled in so we
439 * can remove the counter safely, if the call above did not
442 if (!list_empty(&counter
->list_entry
)) {
443 list_del_counter(counter
, ctx
);
445 spin_unlock_irq(&ctx
->lock
);
448 static inline u64
perf_clock(void)
450 return cpu_clock(smp_processor_id());
454 * Update the record of the current time in a context.
456 static void update_context_time(struct perf_counter_context
*ctx
)
458 u64 now
= perf_clock();
460 ctx
->time
+= now
- ctx
->timestamp
;
461 ctx
->timestamp
= now
;
465 * Update the total_time_enabled and total_time_running fields for a counter.
467 static void update_counter_times(struct perf_counter
*counter
)
469 struct perf_counter_context
*ctx
= counter
->ctx
;
472 if (counter
->state
< PERF_COUNTER_STATE_INACTIVE
||
473 counter
->group_leader
->state
< PERF_COUNTER_STATE_INACTIVE
)
476 counter
->total_time_enabled
= ctx
->time
- counter
->tstamp_enabled
;
478 if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
)
479 run_end
= counter
->tstamp_stopped
;
483 counter
->total_time_running
= run_end
- counter
->tstamp_running
;
487 * Update total_time_enabled and total_time_running for all counters in a group.
489 static void update_group_times(struct perf_counter
*leader
)
491 struct perf_counter
*counter
;
493 update_counter_times(leader
);
494 list_for_each_entry(counter
, &leader
->sibling_list
, list_entry
)
495 update_counter_times(counter
);
499 * Cross CPU call to disable a performance counter
501 static void __perf_counter_disable(void *info
)
503 struct perf_counter
*counter
= info
;
504 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
505 struct perf_counter_context
*ctx
= counter
->ctx
;
508 * If this is a per-task counter, need to check whether this
509 * counter's task is the current task on this cpu.
511 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
514 spin_lock(&ctx
->lock
);
517 * If the counter is on, turn it off.
518 * If it is in error state, leave it in error state.
520 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
) {
521 update_context_time(ctx
);
522 update_group_times(counter
);
523 if (counter
== counter
->group_leader
)
524 group_sched_out(counter
, cpuctx
, ctx
);
526 counter_sched_out(counter
, cpuctx
, ctx
);
527 counter
->state
= PERF_COUNTER_STATE_OFF
;
530 spin_unlock(&ctx
->lock
);
536 * If counter->ctx is a cloned context, callers must make sure that
537 * every task struct that counter->ctx->task could possibly point to
538 * remains valid. This condition is satisifed when called through
539 * perf_counter_for_each_child or perf_counter_for_each because they
540 * hold the top-level counter's child_mutex, so any descendant that
541 * goes to exit will block in sync_child_counter.
542 * When called from perf_pending_counter it's OK because counter->ctx
543 * is the current context on this CPU and preemption is disabled,
544 * hence we can't get into perf_counter_task_sched_out for this context.
546 static void perf_counter_disable(struct perf_counter
*counter
)
548 struct perf_counter_context
*ctx
= counter
->ctx
;
549 struct task_struct
*task
= ctx
->task
;
553 * Disable the counter on the cpu that it's on
555 smp_call_function_single(counter
->cpu
, __perf_counter_disable
,
561 task_oncpu_function_call(task
, __perf_counter_disable
, counter
);
563 spin_lock_irq(&ctx
->lock
);
565 * If the counter is still active, we need to retry the cross-call.
567 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
) {
568 spin_unlock_irq(&ctx
->lock
);
573 * Since we have the lock this context can't be scheduled
574 * in, so we can change the state safely.
576 if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
) {
577 update_group_times(counter
);
578 counter
->state
= PERF_COUNTER_STATE_OFF
;
581 spin_unlock_irq(&ctx
->lock
);
585 counter_sched_in(struct perf_counter
*counter
,
586 struct perf_cpu_context
*cpuctx
,
587 struct perf_counter_context
*ctx
,
590 if (counter
->state
<= PERF_COUNTER_STATE_OFF
)
593 counter
->state
= PERF_COUNTER_STATE_ACTIVE
;
594 counter
->oncpu
= cpu
; /* TODO: put 'cpu' into cpuctx->cpu */
596 * The new state must be visible before we turn it on in the hardware:
600 if (counter
->pmu
->enable(counter
)) {
601 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
606 counter
->tstamp_running
+= ctx
->time
- counter
->tstamp_stopped
;
608 if (!is_software_counter(counter
))
609 cpuctx
->active_oncpu
++;
612 if (counter
->attr
.exclusive
)
613 cpuctx
->exclusive
= 1;
619 group_sched_in(struct perf_counter
*group_counter
,
620 struct perf_cpu_context
*cpuctx
,
621 struct perf_counter_context
*ctx
,
624 struct perf_counter
*counter
, *partial_group
;
627 if (group_counter
->state
== PERF_COUNTER_STATE_OFF
)
630 ret
= hw_perf_group_sched_in(group_counter
, cpuctx
, ctx
, cpu
);
632 return ret
< 0 ? ret
: 0;
634 if (counter_sched_in(group_counter
, cpuctx
, ctx
, cpu
))
638 * Schedule in siblings as one group (if any):
640 list_for_each_entry(counter
, &group_counter
->sibling_list
, list_entry
) {
641 if (counter_sched_in(counter
, cpuctx
, ctx
, cpu
)) {
642 partial_group
= counter
;
651 * Groups can be scheduled in as one unit only, so undo any
652 * partial group before returning:
654 list_for_each_entry(counter
, &group_counter
->sibling_list
, list_entry
) {
655 if (counter
== partial_group
)
657 counter_sched_out(counter
, cpuctx
, ctx
);
659 counter_sched_out(group_counter
, cpuctx
, ctx
);
665 * Return 1 for a group consisting entirely of software counters,
666 * 0 if the group contains any hardware counters.
668 static int is_software_only_group(struct perf_counter
*leader
)
670 struct perf_counter
*counter
;
672 if (!is_software_counter(leader
))
675 list_for_each_entry(counter
, &leader
->sibling_list
, list_entry
)
676 if (!is_software_counter(counter
))
683 * Work out whether we can put this counter group on the CPU now.
685 static int group_can_go_on(struct perf_counter
*counter
,
686 struct perf_cpu_context
*cpuctx
,
690 * Groups consisting entirely of software counters can always go on.
692 if (is_software_only_group(counter
))
695 * If an exclusive group is already on, no other hardware
696 * counters can go on.
698 if (cpuctx
->exclusive
)
701 * If this group is exclusive and there are already
702 * counters on the CPU, it can't go on.
704 if (counter
->attr
.exclusive
&& cpuctx
->active_oncpu
)
707 * Otherwise, try to add it if all previous groups were able
713 static void add_counter_to_ctx(struct perf_counter
*counter
,
714 struct perf_counter_context
*ctx
)
716 list_add_counter(counter
, ctx
);
717 counter
->tstamp_enabled
= ctx
->time
;
718 counter
->tstamp_running
= ctx
->time
;
719 counter
->tstamp_stopped
= ctx
->time
;
723 * Cross CPU call to install and enable a performance counter
725 * Must be called with ctx->mutex held
727 static void __perf_install_in_context(void *info
)
729 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
730 struct perf_counter
*counter
= info
;
731 struct perf_counter_context
*ctx
= counter
->ctx
;
732 struct perf_counter
*leader
= counter
->group_leader
;
733 int cpu
= smp_processor_id();
737 * If this is a task context, we need to check whether it is
738 * the current task context of this cpu. If not it has been
739 * scheduled out before the smp call arrived.
740 * Or possibly this is the right context but it isn't
741 * on this cpu because it had no counters.
743 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
744 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
746 cpuctx
->task_ctx
= ctx
;
749 spin_lock(&ctx
->lock
);
751 update_context_time(ctx
);
754 * Protect the list operation against NMI by disabling the
755 * counters on a global level. NOP for non NMI based counters.
759 add_counter_to_ctx(counter
, ctx
);
762 * Don't put the counter on if it is disabled or if
763 * it is in a group and the group isn't on.
765 if (counter
->state
!= PERF_COUNTER_STATE_INACTIVE
||
766 (leader
!= counter
&& leader
->state
!= PERF_COUNTER_STATE_ACTIVE
))
770 * An exclusive counter can't go on if there are already active
771 * hardware counters, and no hardware counter can go on if there
772 * is already an exclusive counter on.
774 if (!group_can_go_on(counter
, cpuctx
, 1))
777 err
= counter_sched_in(counter
, cpuctx
, ctx
, cpu
);
781 * This counter couldn't go on. If it is in a group
782 * then we have to pull the whole group off.
783 * If the counter group is pinned then put it in error state.
785 if (leader
!= counter
)
786 group_sched_out(leader
, cpuctx
, ctx
);
787 if (leader
->attr
.pinned
) {
788 update_group_times(leader
);
789 leader
->state
= PERF_COUNTER_STATE_ERROR
;
793 if (!err
&& !ctx
->task
&& cpuctx
->max_pertask
)
794 cpuctx
->max_pertask
--;
799 spin_unlock(&ctx
->lock
);
803 * Attach a performance counter to a context
805 * First we add the counter to the list with the hardware enable bit
806 * in counter->hw_config cleared.
808 * If the counter is attached to a task which is on a CPU we use a smp
809 * call to enable it in the task context. The task might have been
810 * scheduled away, but we check this in the smp call again.
812 * Must be called with ctx->mutex held.
815 perf_install_in_context(struct perf_counter_context
*ctx
,
816 struct perf_counter
*counter
,
819 struct task_struct
*task
= ctx
->task
;
823 * Per cpu counters are installed via an smp call and
824 * the install is always sucessful.
826 smp_call_function_single(cpu
, __perf_install_in_context
,
832 task_oncpu_function_call(task
, __perf_install_in_context
,
835 spin_lock_irq(&ctx
->lock
);
837 * we need to retry the smp call.
839 if (ctx
->is_active
&& list_empty(&counter
->list_entry
)) {
840 spin_unlock_irq(&ctx
->lock
);
845 * The lock prevents that this context is scheduled in so we
846 * can add the counter safely, if it the call above did not
849 if (list_empty(&counter
->list_entry
))
850 add_counter_to_ctx(counter
, ctx
);
851 spin_unlock_irq(&ctx
->lock
);
855 * Put a counter into inactive state and update time fields.
856 * Enabling the leader of a group effectively enables all
857 * the group members that aren't explicitly disabled, so we
858 * have to update their ->tstamp_enabled also.
859 * Note: this works for group members as well as group leaders
860 * since the non-leader members' sibling_lists will be empty.
862 static void __perf_counter_mark_enabled(struct perf_counter
*counter
,
863 struct perf_counter_context
*ctx
)
865 struct perf_counter
*sub
;
867 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
868 counter
->tstamp_enabled
= ctx
->time
- counter
->total_time_enabled
;
869 list_for_each_entry(sub
, &counter
->sibling_list
, list_entry
)
870 if (sub
->state
>= PERF_COUNTER_STATE_INACTIVE
)
871 sub
->tstamp_enabled
=
872 ctx
->time
- sub
->total_time_enabled
;
876 * Cross CPU call to enable a performance counter
878 static void __perf_counter_enable(void *info
)
880 struct perf_counter
*counter
= info
;
881 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
882 struct perf_counter_context
*ctx
= counter
->ctx
;
883 struct perf_counter
*leader
= counter
->group_leader
;
887 * If this is a per-task counter, need to check whether this
888 * counter's task is the current task on this cpu.
890 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
891 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
893 cpuctx
->task_ctx
= ctx
;
896 spin_lock(&ctx
->lock
);
898 update_context_time(ctx
);
900 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
902 __perf_counter_mark_enabled(counter
, ctx
);
905 * If the counter is in a group and isn't the group leader,
906 * then don't put it on unless the group is on.
908 if (leader
!= counter
&& leader
->state
!= PERF_COUNTER_STATE_ACTIVE
)
911 if (!group_can_go_on(counter
, cpuctx
, 1)) {
915 if (counter
== leader
)
916 err
= group_sched_in(counter
, cpuctx
, ctx
,
919 err
= counter_sched_in(counter
, cpuctx
, ctx
,
926 * If this counter can't go on and it's part of a
927 * group, then the whole group has to come off.
929 if (leader
!= counter
)
930 group_sched_out(leader
, cpuctx
, ctx
);
931 if (leader
->attr
.pinned
) {
932 update_group_times(leader
);
933 leader
->state
= PERF_COUNTER_STATE_ERROR
;
938 spin_unlock(&ctx
->lock
);
944 * If counter->ctx is a cloned context, callers must make sure that
945 * every task struct that counter->ctx->task could possibly point to
946 * remains valid. This condition is satisfied when called through
947 * perf_counter_for_each_child or perf_counter_for_each as described
948 * for perf_counter_disable.
950 static void perf_counter_enable(struct perf_counter
*counter
)
952 struct perf_counter_context
*ctx
= counter
->ctx
;
953 struct task_struct
*task
= ctx
->task
;
957 * Enable the counter on the cpu that it's on
959 smp_call_function_single(counter
->cpu
, __perf_counter_enable
,
964 spin_lock_irq(&ctx
->lock
);
965 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
969 * If the counter is in error state, clear that first.
970 * That way, if we see the counter in error state below, we
971 * know that it has gone back into error state, as distinct
972 * from the task having been scheduled away before the
973 * cross-call arrived.
975 if (counter
->state
== PERF_COUNTER_STATE_ERROR
)
976 counter
->state
= PERF_COUNTER_STATE_OFF
;
979 spin_unlock_irq(&ctx
->lock
);
980 task_oncpu_function_call(task
, __perf_counter_enable
, counter
);
982 spin_lock_irq(&ctx
->lock
);
985 * If the context is active and the counter is still off,
986 * we need to retry the cross-call.
988 if (ctx
->is_active
&& counter
->state
== PERF_COUNTER_STATE_OFF
)
992 * Since we have the lock this context can't be scheduled
993 * in, so we can change the state safely.
995 if (counter
->state
== PERF_COUNTER_STATE_OFF
)
996 __perf_counter_mark_enabled(counter
, ctx
);
999 spin_unlock_irq(&ctx
->lock
);
1002 static int perf_counter_refresh(struct perf_counter
*counter
, int refresh
)
1005 * not supported on inherited counters
1007 if (counter
->attr
.inherit
)
1010 atomic_add(refresh
, &counter
->event_limit
);
1011 perf_counter_enable(counter
);
1016 void __perf_counter_sched_out(struct perf_counter_context
*ctx
,
1017 struct perf_cpu_context
*cpuctx
)
1019 struct perf_counter
*counter
;
1021 spin_lock(&ctx
->lock
);
1023 if (likely(!ctx
->nr_counters
))
1025 update_context_time(ctx
);
1028 if (ctx
->nr_active
) {
1029 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1030 if (counter
!= counter
->group_leader
)
1031 counter_sched_out(counter
, cpuctx
, ctx
);
1033 group_sched_out(counter
, cpuctx
, ctx
);
1038 spin_unlock(&ctx
->lock
);
1042 * Test whether two contexts are equivalent, i.e. whether they
1043 * have both been cloned from the same version of the same context
1044 * and they both have the same number of enabled counters.
1045 * If the number of enabled counters is the same, then the set
1046 * of enabled counters should be the same, because these are both
1047 * inherited contexts, therefore we can't access individual counters
1048 * in them directly with an fd; we can only enable/disable all
1049 * counters via prctl, or enable/disable all counters in a family
1050 * via ioctl, which will have the same effect on both contexts.
1052 static int context_equiv(struct perf_counter_context
*ctx1
,
1053 struct perf_counter_context
*ctx2
)
1055 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1056 && ctx1
->parent_gen
== ctx2
->parent_gen
1057 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1060 static void __perf_counter_read(void *counter
);
1062 static void __perf_counter_sync_stat(struct perf_counter
*counter
,
1063 struct perf_counter
*next_counter
)
1067 if (!counter
->attr
.inherit_stat
)
1071 * Update the counter value, we cannot use perf_counter_read()
1072 * because we're in the middle of a context switch and have IRQs
1073 * disabled, which upsets smp_call_function_single(), however
1074 * we know the counter must be on the current CPU, therefore we
1075 * don't need to use it.
1077 switch (counter
->state
) {
1078 case PERF_COUNTER_STATE_ACTIVE
:
1079 __perf_counter_read(counter
);
1082 case PERF_COUNTER_STATE_INACTIVE
:
1083 update_counter_times(counter
);
1091 * In order to keep per-task stats reliable we need to flip the counter
1092 * values when we flip the contexts.
1094 value
= atomic64_read(&next_counter
->count
);
1095 value
= atomic64_xchg(&counter
->count
, value
);
1096 atomic64_set(&next_counter
->count
, value
);
1098 swap(counter
->total_time_enabled
, next_counter
->total_time_enabled
);
1099 swap(counter
->total_time_running
, next_counter
->total_time_running
);
1102 * Since we swizzled the values, update the user visible data too.
1104 perf_counter_update_userpage(counter
);
1105 perf_counter_update_userpage(next_counter
);
1108 #define list_next_entry(pos, member) \
1109 list_entry(pos->member.next, typeof(*pos), member)
1111 static void perf_counter_sync_stat(struct perf_counter_context
*ctx
,
1112 struct perf_counter_context
*next_ctx
)
1114 struct perf_counter
*counter
, *next_counter
;
1119 counter
= list_first_entry(&ctx
->event_list
,
1120 struct perf_counter
, event_entry
);
1122 next_counter
= list_first_entry(&next_ctx
->event_list
,
1123 struct perf_counter
, event_entry
);
1125 while (&counter
->event_entry
!= &ctx
->event_list
&&
1126 &next_counter
->event_entry
!= &next_ctx
->event_list
) {
1128 __perf_counter_sync_stat(counter
, next_counter
);
1130 counter
= list_next_entry(counter
, event_entry
);
1131 next_counter
= list_next_entry(next_counter
, event_entry
);
1136 * Called from scheduler to remove the counters of the current task,
1137 * with interrupts disabled.
1139 * We stop each counter and update the counter value in counter->count.
1141 * This does not protect us against NMI, but disable()
1142 * sets the disabled bit in the control field of counter _before_
1143 * accessing the counter control register. If a NMI hits, then it will
1144 * not restart the counter.
1146 void perf_counter_task_sched_out(struct task_struct
*task
,
1147 struct task_struct
*next
, int cpu
)
1149 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1150 struct perf_counter_context
*ctx
= task
->perf_counter_ctxp
;
1151 struct perf_counter_context
*next_ctx
;
1152 struct perf_counter_context
*parent
;
1153 struct pt_regs
*regs
;
1156 regs
= task_pt_regs(task
);
1157 perf_swcounter_event(PERF_COUNT_SW_CONTEXT_SWITCHES
, 1, 1, regs
, 0);
1159 if (likely(!ctx
|| !cpuctx
->task_ctx
))
1162 update_context_time(ctx
);
1165 parent
= rcu_dereference(ctx
->parent_ctx
);
1166 next_ctx
= next
->perf_counter_ctxp
;
1167 if (parent
&& next_ctx
&&
1168 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1170 * Looks like the two contexts are clones, so we might be
1171 * able to optimize the context switch. We lock both
1172 * contexts and check that they are clones under the
1173 * lock (including re-checking that neither has been
1174 * uncloned in the meantime). It doesn't matter which
1175 * order we take the locks because no other cpu could
1176 * be trying to lock both of these tasks.
1178 spin_lock(&ctx
->lock
);
1179 spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1180 if (context_equiv(ctx
, next_ctx
)) {
1182 * XXX do we need a memory barrier of sorts
1183 * wrt to rcu_dereference() of perf_counter_ctxp
1185 task
->perf_counter_ctxp
= next_ctx
;
1186 next
->perf_counter_ctxp
= ctx
;
1188 next_ctx
->task
= task
;
1191 perf_counter_sync_stat(ctx
, next_ctx
);
1193 spin_unlock(&next_ctx
->lock
);
1194 spin_unlock(&ctx
->lock
);
1199 __perf_counter_sched_out(ctx
, cpuctx
);
1200 cpuctx
->task_ctx
= NULL
;
1205 * Called with IRQs disabled
1207 static void __perf_counter_task_sched_out(struct perf_counter_context
*ctx
)
1209 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1211 if (!cpuctx
->task_ctx
)
1214 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1217 __perf_counter_sched_out(ctx
, cpuctx
);
1218 cpuctx
->task_ctx
= NULL
;
1222 * Called with IRQs disabled
1224 static void perf_counter_cpu_sched_out(struct perf_cpu_context
*cpuctx
)
1226 __perf_counter_sched_out(&cpuctx
->ctx
, cpuctx
);
1230 __perf_counter_sched_in(struct perf_counter_context
*ctx
,
1231 struct perf_cpu_context
*cpuctx
, int cpu
)
1233 struct perf_counter
*counter
;
1236 spin_lock(&ctx
->lock
);
1238 if (likely(!ctx
->nr_counters
))
1241 ctx
->timestamp
= perf_clock();
1246 * First go through the list and put on any pinned groups
1247 * in order to give them the best chance of going on.
1249 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1250 if (counter
->state
<= PERF_COUNTER_STATE_OFF
||
1251 !counter
->attr
.pinned
)
1253 if (counter
->cpu
!= -1 && counter
->cpu
!= cpu
)
1256 if (counter
!= counter
->group_leader
)
1257 counter_sched_in(counter
, cpuctx
, ctx
, cpu
);
1259 if (group_can_go_on(counter
, cpuctx
, 1))
1260 group_sched_in(counter
, cpuctx
, ctx
, cpu
);
1264 * If this pinned group hasn't been scheduled,
1265 * put it in error state.
1267 if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
) {
1268 update_group_times(counter
);
1269 counter
->state
= PERF_COUNTER_STATE_ERROR
;
1273 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1275 * Ignore counters in OFF or ERROR state, and
1276 * ignore pinned counters since we did them already.
1278 if (counter
->state
<= PERF_COUNTER_STATE_OFF
||
1279 counter
->attr
.pinned
)
1283 * Listen to the 'cpu' scheduling filter constraint
1286 if (counter
->cpu
!= -1 && counter
->cpu
!= cpu
)
1289 if (counter
!= counter
->group_leader
) {
1290 if (counter_sched_in(counter
, cpuctx
, ctx
, cpu
))
1293 if (group_can_go_on(counter
, cpuctx
, can_add_hw
)) {
1294 if (group_sched_in(counter
, cpuctx
, ctx
, cpu
))
1301 spin_unlock(&ctx
->lock
);
1305 * Called from scheduler to add the counters of the current task
1306 * with interrupts disabled.
1308 * We restore the counter value and then enable it.
1310 * This does not protect us against NMI, but enable()
1311 * sets the enabled bit in the control field of counter _before_
1312 * accessing the counter control register. If a NMI hits, then it will
1313 * keep the counter running.
1315 void perf_counter_task_sched_in(struct task_struct
*task
, int cpu
)
1317 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1318 struct perf_counter_context
*ctx
= task
->perf_counter_ctxp
;
1322 if (cpuctx
->task_ctx
== ctx
)
1324 __perf_counter_sched_in(ctx
, cpuctx
, cpu
);
1325 cpuctx
->task_ctx
= ctx
;
1328 static void perf_counter_cpu_sched_in(struct perf_cpu_context
*cpuctx
, int cpu
)
1330 struct perf_counter_context
*ctx
= &cpuctx
->ctx
;
1332 __perf_counter_sched_in(ctx
, cpuctx
, cpu
);
1335 #define MAX_INTERRUPTS (~0ULL)
1337 static void perf_log_throttle(struct perf_counter
*counter
, int enable
);
1339 static void perf_adjust_period(struct perf_counter
*counter
, u64 events
)
1341 struct hw_perf_counter
*hwc
= &counter
->hw
;
1342 u64 period
, sample_period
;
1345 events
*= hwc
->sample_period
;
1346 period
= div64_u64(events
, counter
->attr
.sample_freq
);
1348 delta
= (s64
)(period
- hwc
->sample_period
);
1349 delta
= (delta
+ 7) / 8; /* low pass filter */
1351 sample_period
= hwc
->sample_period
+ delta
;
1356 hwc
->sample_period
= sample_period
;
1359 static void perf_ctx_adjust_freq(struct perf_counter_context
*ctx
)
1361 struct perf_counter
*counter
;
1362 struct hw_perf_counter
*hwc
;
1363 u64 interrupts
, freq
;
1365 spin_lock(&ctx
->lock
);
1366 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1367 if (counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
1372 interrupts
= hwc
->interrupts
;
1373 hwc
->interrupts
= 0;
1376 * unthrottle counters on the tick
1378 if (interrupts
== MAX_INTERRUPTS
) {
1379 perf_log_throttle(counter
, 1);
1380 counter
->pmu
->unthrottle(counter
);
1381 interrupts
= 2*sysctl_perf_counter_sample_rate
/HZ
;
1384 if (!counter
->attr
.freq
|| !counter
->attr
.sample_freq
)
1388 * if the specified freq < HZ then we need to skip ticks
1390 if (counter
->attr
.sample_freq
< HZ
) {
1391 freq
= counter
->attr
.sample_freq
;
1393 hwc
->freq_count
+= freq
;
1394 hwc
->freq_interrupts
+= interrupts
;
1396 if (hwc
->freq_count
< HZ
)
1399 interrupts
= hwc
->freq_interrupts
;
1400 hwc
->freq_interrupts
= 0;
1401 hwc
->freq_count
-= HZ
;
1405 perf_adjust_period(counter
, freq
* interrupts
);
1408 * In order to avoid being stalled by an (accidental) huge
1409 * sample period, force reset the sample period if we didn't
1410 * get any events in this freq period.
1414 counter
->pmu
->disable(counter
);
1415 atomic64_set(&hwc
->period_left
, 0);
1416 counter
->pmu
->enable(counter
);
1420 spin_unlock(&ctx
->lock
);
1424 * Round-robin a context's counters:
1426 static void rotate_ctx(struct perf_counter_context
*ctx
)
1428 struct perf_counter
*counter
;
1430 if (!ctx
->nr_counters
)
1433 spin_lock(&ctx
->lock
);
1435 * Rotate the first entry last (works just fine for group counters too):
1438 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1439 list_move_tail(&counter
->list_entry
, &ctx
->counter_list
);
1444 spin_unlock(&ctx
->lock
);
1447 void perf_counter_task_tick(struct task_struct
*curr
, int cpu
)
1449 struct perf_cpu_context
*cpuctx
;
1450 struct perf_counter_context
*ctx
;
1452 if (!atomic_read(&nr_counters
))
1455 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1456 ctx
= curr
->perf_counter_ctxp
;
1458 perf_ctx_adjust_freq(&cpuctx
->ctx
);
1460 perf_ctx_adjust_freq(ctx
);
1462 perf_counter_cpu_sched_out(cpuctx
);
1464 __perf_counter_task_sched_out(ctx
);
1466 rotate_ctx(&cpuctx
->ctx
);
1470 perf_counter_cpu_sched_in(cpuctx
, cpu
);
1472 perf_counter_task_sched_in(curr
, cpu
);
1476 * Enable all of a task's counters that have been marked enable-on-exec.
1477 * This expects task == current.
1479 static void perf_counter_enable_on_exec(struct task_struct
*task
)
1481 struct perf_counter_context
*ctx
;
1482 struct perf_counter
*counter
;
1483 unsigned long flags
;
1486 local_irq_save(flags
);
1487 ctx
= task
->perf_counter_ctxp
;
1488 if (!ctx
|| !ctx
->nr_counters
)
1491 __perf_counter_task_sched_out(ctx
);
1493 spin_lock(&ctx
->lock
);
1495 list_for_each_entry(counter
, &ctx
->counter_list
, list_entry
) {
1496 if (!counter
->attr
.enable_on_exec
)
1498 counter
->attr
.enable_on_exec
= 0;
1499 if (counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
1501 __perf_counter_mark_enabled(counter
, ctx
);
1506 * Unclone this context if we enabled any counter.
1511 spin_unlock(&ctx
->lock
);
1513 perf_counter_task_sched_in(task
, smp_processor_id());
1515 local_irq_restore(flags
);
1519 * Cross CPU call to read the hardware counter
1521 static void __perf_counter_read(void *info
)
1523 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
1524 struct perf_counter
*counter
= info
;
1525 struct perf_counter_context
*ctx
= counter
->ctx
;
1526 unsigned long flags
;
1529 * If this is a task context, we need to check whether it is
1530 * the current task context of this cpu. If not it has been
1531 * scheduled out before the smp call arrived. In that case
1532 * counter->count would have been updated to a recent sample
1533 * when the counter was scheduled out.
1535 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1538 local_irq_save(flags
);
1540 update_context_time(ctx
);
1541 counter
->pmu
->read(counter
);
1542 update_counter_times(counter
);
1543 local_irq_restore(flags
);
1546 static u64
perf_counter_read(struct perf_counter
*counter
)
1549 * If counter is enabled and currently active on a CPU, update the
1550 * value in the counter structure:
1552 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
) {
1553 smp_call_function_single(counter
->oncpu
,
1554 __perf_counter_read
, counter
, 1);
1555 } else if (counter
->state
== PERF_COUNTER_STATE_INACTIVE
) {
1556 update_counter_times(counter
);
1559 return atomic64_read(&counter
->count
);
1563 * Initialize the perf_counter context in a task_struct:
1566 __perf_counter_init_context(struct perf_counter_context
*ctx
,
1567 struct task_struct
*task
)
1569 memset(ctx
, 0, sizeof(*ctx
));
1570 spin_lock_init(&ctx
->lock
);
1571 mutex_init(&ctx
->mutex
);
1572 INIT_LIST_HEAD(&ctx
->counter_list
);
1573 INIT_LIST_HEAD(&ctx
->event_list
);
1574 atomic_set(&ctx
->refcount
, 1);
1578 static struct perf_counter_context
*find_get_context(pid_t pid
, int cpu
)
1580 struct perf_counter_context
*ctx
;
1581 struct perf_cpu_context
*cpuctx
;
1582 struct task_struct
*task
;
1583 unsigned long flags
;
1587 * If cpu is not a wildcard then this is a percpu counter:
1590 /* Must be root to operate on a CPU counter: */
1591 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
1592 return ERR_PTR(-EACCES
);
1594 if (cpu
< 0 || cpu
> num_possible_cpus())
1595 return ERR_PTR(-EINVAL
);
1598 * We could be clever and allow to attach a counter to an
1599 * offline CPU and activate it when the CPU comes up, but
1602 if (!cpu_isset(cpu
, cpu_online_map
))
1603 return ERR_PTR(-ENODEV
);
1605 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
1616 task
= find_task_by_vpid(pid
);
1618 get_task_struct(task
);
1622 return ERR_PTR(-ESRCH
);
1625 * Can't attach counters to a dying task.
1628 if (task
->flags
& PF_EXITING
)
1631 /* Reuse ptrace permission checks for now. */
1633 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
1637 ctx
= perf_lock_task_context(task
, &flags
);
1640 spin_unlock_irqrestore(&ctx
->lock
, flags
);
1644 ctx
= kmalloc(sizeof(struct perf_counter_context
), GFP_KERNEL
);
1648 __perf_counter_init_context(ctx
, task
);
1650 if (cmpxchg(&task
->perf_counter_ctxp
, NULL
, ctx
)) {
1652 * We raced with some other task; use
1653 * the context they set.
1658 get_task_struct(task
);
1661 put_task_struct(task
);
1665 put_task_struct(task
);
1666 return ERR_PTR(err
);
1669 static void free_counter_rcu(struct rcu_head
*head
)
1671 struct perf_counter
*counter
;
1673 counter
= container_of(head
, struct perf_counter
, rcu_head
);
1675 put_pid_ns(counter
->ns
);
1679 static void perf_pending_sync(struct perf_counter
*counter
);
1681 static void free_counter(struct perf_counter
*counter
)
1683 perf_pending_sync(counter
);
1685 if (!counter
->parent
) {
1686 atomic_dec(&nr_counters
);
1687 if (counter
->attr
.mmap
)
1688 atomic_dec(&nr_mmap_counters
);
1689 if (counter
->attr
.comm
)
1690 atomic_dec(&nr_comm_counters
);
1691 if (counter
->attr
.task
)
1692 atomic_dec(&nr_task_counters
);
1695 if (counter
->destroy
)
1696 counter
->destroy(counter
);
1698 put_ctx(counter
->ctx
);
1699 call_rcu(&counter
->rcu_head
, free_counter_rcu
);
1703 * Called when the last reference to the file is gone.
1705 static int perf_release(struct inode
*inode
, struct file
*file
)
1707 struct perf_counter
*counter
= file
->private_data
;
1708 struct perf_counter_context
*ctx
= counter
->ctx
;
1710 file
->private_data
= NULL
;
1712 WARN_ON_ONCE(ctx
->parent_ctx
);
1713 mutex_lock(&ctx
->mutex
);
1714 perf_counter_remove_from_context(counter
);
1715 mutex_unlock(&ctx
->mutex
);
1717 mutex_lock(&counter
->owner
->perf_counter_mutex
);
1718 list_del_init(&counter
->owner_entry
);
1719 mutex_unlock(&counter
->owner
->perf_counter_mutex
);
1720 put_task_struct(counter
->owner
);
1722 free_counter(counter
);
1727 static int perf_counter_read_size(struct perf_counter
*counter
)
1729 int entry
= sizeof(u64
); /* value */
1733 if (counter
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
1734 size
+= sizeof(u64
);
1736 if (counter
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
1737 size
+= sizeof(u64
);
1739 if (counter
->attr
.read_format
& PERF_FORMAT_ID
)
1740 entry
+= sizeof(u64
);
1742 if (counter
->attr
.read_format
& PERF_FORMAT_GROUP
) {
1743 nr
+= counter
->group_leader
->nr_siblings
;
1744 size
+= sizeof(u64
);
1752 static u64
perf_counter_read_value(struct perf_counter
*counter
)
1754 struct perf_counter
*child
;
1757 total
+= perf_counter_read(counter
);
1758 list_for_each_entry(child
, &counter
->child_list
, child_list
)
1759 total
+= perf_counter_read(child
);
1764 static int perf_counter_read_entry(struct perf_counter
*counter
,
1765 u64 read_format
, char __user
*buf
)
1767 int n
= 0, count
= 0;
1770 values
[n
++] = perf_counter_read_value(counter
);
1771 if (read_format
& PERF_FORMAT_ID
)
1772 values
[n
++] = primary_counter_id(counter
);
1774 count
= n
* sizeof(u64
);
1776 if (copy_to_user(buf
, values
, count
))
1782 static int perf_counter_read_group(struct perf_counter
*counter
,
1783 u64 read_format
, char __user
*buf
)
1785 struct perf_counter
*leader
= counter
->group_leader
, *sub
;
1786 int n
= 0, size
= 0, err
= -EFAULT
;
1789 values
[n
++] = 1 + leader
->nr_siblings
;
1790 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1791 values
[n
++] = leader
->total_time_enabled
+
1792 atomic64_read(&leader
->child_total_time_enabled
);
1794 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1795 values
[n
++] = leader
->total_time_running
+
1796 atomic64_read(&leader
->child_total_time_running
);
1799 size
= n
* sizeof(u64
);
1801 if (copy_to_user(buf
, values
, size
))
1804 err
= perf_counter_read_entry(leader
, read_format
, buf
+ size
);
1810 list_for_each_entry(sub
, &leader
->sibling_list
, list_entry
) {
1811 err
= perf_counter_read_entry(sub
, read_format
,
1822 static int perf_counter_read_one(struct perf_counter
*counter
,
1823 u64 read_format
, char __user
*buf
)
1828 values
[n
++] = perf_counter_read_value(counter
);
1829 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
1830 values
[n
++] = counter
->total_time_enabled
+
1831 atomic64_read(&counter
->child_total_time_enabled
);
1833 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
1834 values
[n
++] = counter
->total_time_running
+
1835 atomic64_read(&counter
->child_total_time_running
);
1837 if (read_format
& PERF_FORMAT_ID
)
1838 values
[n
++] = primary_counter_id(counter
);
1840 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
1843 return n
* sizeof(u64
);
1847 * Read the performance counter - simple non blocking version for now
1850 perf_read_hw(struct perf_counter
*counter
, char __user
*buf
, size_t count
)
1852 u64 read_format
= counter
->attr
.read_format
;
1856 * Return end-of-file for a read on a counter that is in
1857 * error state (i.e. because it was pinned but it couldn't be
1858 * scheduled on to the CPU at some point).
1860 if (counter
->state
== PERF_COUNTER_STATE_ERROR
)
1863 if (count
< perf_counter_read_size(counter
))
1866 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
1867 mutex_lock(&counter
->child_mutex
);
1868 if (read_format
& PERF_FORMAT_GROUP
)
1869 ret
= perf_counter_read_group(counter
, read_format
, buf
);
1871 ret
= perf_counter_read_one(counter
, read_format
, buf
);
1872 mutex_unlock(&counter
->child_mutex
);
1878 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
1880 struct perf_counter
*counter
= file
->private_data
;
1882 return perf_read_hw(counter
, buf
, count
);
1885 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
1887 struct perf_counter
*counter
= file
->private_data
;
1888 struct perf_mmap_data
*data
;
1889 unsigned int events
= POLL_HUP
;
1892 data
= rcu_dereference(counter
->data
);
1894 events
= atomic_xchg(&data
->poll
, 0);
1897 poll_wait(file
, &counter
->waitq
, wait
);
1902 static void perf_counter_reset(struct perf_counter
*counter
)
1904 (void)perf_counter_read(counter
);
1905 atomic64_set(&counter
->count
, 0);
1906 perf_counter_update_userpage(counter
);
1910 * Holding the top-level counter's child_mutex means that any
1911 * descendant process that has inherited this counter will block
1912 * in sync_child_counter if it goes to exit, thus satisfying the
1913 * task existence requirements of perf_counter_enable/disable.
1915 static void perf_counter_for_each_child(struct perf_counter
*counter
,
1916 void (*func
)(struct perf_counter
*))
1918 struct perf_counter
*child
;
1920 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
1921 mutex_lock(&counter
->child_mutex
);
1923 list_for_each_entry(child
, &counter
->child_list
, child_list
)
1925 mutex_unlock(&counter
->child_mutex
);
1928 static void perf_counter_for_each(struct perf_counter
*counter
,
1929 void (*func
)(struct perf_counter
*))
1931 struct perf_counter_context
*ctx
= counter
->ctx
;
1932 struct perf_counter
*sibling
;
1934 WARN_ON_ONCE(ctx
->parent_ctx
);
1935 mutex_lock(&ctx
->mutex
);
1936 counter
= counter
->group_leader
;
1938 perf_counter_for_each_child(counter
, func
);
1940 list_for_each_entry(sibling
, &counter
->sibling_list
, list_entry
)
1941 perf_counter_for_each_child(counter
, func
);
1942 mutex_unlock(&ctx
->mutex
);
1945 static int perf_counter_period(struct perf_counter
*counter
, u64 __user
*arg
)
1947 struct perf_counter_context
*ctx
= counter
->ctx
;
1952 if (!counter
->attr
.sample_period
)
1955 size
= copy_from_user(&value
, arg
, sizeof(value
));
1956 if (size
!= sizeof(value
))
1962 spin_lock_irq(&ctx
->lock
);
1963 if (counter
->attr
.freq
) {
1964 if (value
> sysctl_perf_counter_sample_rate
) {
1969 counter
->attr
.sample_freq
= value
;
1971 counter
->attr
.sample_period
= value
;
1972 counter
->hw
.sample_period
= value
;
1975 spin_unlock_irq(&ctx
->lock
);
1980 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1982 struct perf_counter
*counter
= file
->private_data
;
1983 void (*func
)(struct perf_counter
*);
1987 case PERF_COUNTER_IOC_ENABLE
:
1988 func
= perf_counter_enable
;
1990 case PERF_COUNTER_IOC_DISABLE
:
1991 func
= perf_counter_disable
;
1993 case PERF_COUNTER_IOC_RESET
:
1994 func
= perf_counter_reset
;
1997 case PERF_COUNTER_IOC_REFRESH
:
1998 return perf_counter_refresh(counter
, arg
);
2000 case PERF_COUNTER_IOC_PERIOD
:
2001 return perf_counter_period(counter
, (u64 __user
*)arg
);
2007 if (flags
& PERF_IOC_FLAG_GROUP
)
2008 perf_counter_for_each(counter
, func
);
2010 perf_counter_for_each_child(counter
, func
);
2015 int perf_counter_task_enable(void)
2017 struct perf_counter
*counter
;
2019 mutex_lock(¤t
->perf_counter_mutex
);
2020 list_for_each_entry(counter
, ¤t
->perf_counter_list
, owner_entry
)
2021 perf_counter_for_each_child(counter
, perf_counter_enable
);
2022 mutex_unlock(¤t
->perf_counter_mutex
);
2027 int perf_counter_task_disable(void)
2029 struct perf_counter
*counter
;
2031 mutex_lock(¤t
->perf_counter_mutex
);
2032 list_for_each_entry(counter
, ¤t
->perf_counter_list
, owner_entry
)
2033 perf_counter_for_each_child(counter
, perf_counter_disable
);
2034 mutex_unlock(¤t
->perf_counter_mutex
);
2039 #ifndef PERF_COUNTER_INDEX_OFFSET
2040 # define PERF_COUNTER_INDEX_OFFSET 0
2043 static int perf_counter_index(struct perf_counter
*counter
)
2045 if (counter
->state
!= PERF_COUNTER_STATE_ACTIVE
)
2048 return counter
->hw
.idx
+ 1 - PERF_COUNTER_INDEX_OFFSET
;
2052 * Callers need to ensure there can be no nesting of this function, otherwise
2053 * the seqlock logic goes bad. We can not serialize this because the arch
2054 * code calls this from NMI context.
2056 void perf_counter_update_userpage(struct perf_counter
*counter
)
2058 struct perf_counter_mmap_page
*userpg
;
2059 struct perf_mmap_data
*data
;
2062 data
= rcu_dereference(counter
->data
);
2066 userpg
= data
->user_page
;
2069 * Disable preemption so as to not let the corresponding user-space
2070 * spin too long if we get preempted.
2075 userpg
->index
= perf_counter_index(counter
);
2076 userpg
->offset
= atomic64_read(&counter
->count
);
2077 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
)
2078 userpg
->offset
-= atomic64_read(&counter
->hw
.prev_count
);
2080 userpg
->time_enabled
= counter
->total_time_enabled
+
2081 atomic64_read(&counter
->child_total_time_enabled
);
2083 userpg
->time_running
= counter
->total_time_running
+
2084 atomic64_read(&counter
->child_total_time_running
);
2093 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2095 struct perf_counter
*counter
= vma
->vm_file
->private_data
;
2096 struct perf_mmap_data
*data
;
2097 int ret
= VM_FAULT_SIGBUS
;
2099 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
2100 if (vmf
->pgoff
== 0)
2106 data
= rcu_dereference(counter
->data
);
2110 if (vmf
->pgoff
== 0) {
2111 vmf
->page
= virt_to_page(data
->user_page
);
2113 int nr
= vmf
->pgoff
- 1;
2115 if ((unsigned)nr
> data
->nr_pages
)
2118 if (vmf
->flags
& FAULT_FLAG_WRITE
)
2121 vmf
->page
= virt_to_page(data
->data_pages
[nr
]);
2124 get_page(vmf
->page
);
2125 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
2126 vmf
->page
->index
= vmf
->pgoff
;
2135 static int perf_mmap_data_alloc(struct perf_counter
*counter
, int nr_pages
)
2137 struct perf_mmap_data
*data
;
2141 WARN_ON(atomic_read(&counter
->mmap_count
));
2143 size
= sizeof(struct perf_mmap_data
);
2144 size
+= nr_pages
* sizeof(void *);
2146 data
= kzalloc(size
, GFP_KERNEL
);
2150 data
->user_page
= (void *)get_zeroed_page(GFP_KERNEL
);
2151 if (!data
->user_page
)
2152 goto fail_user_page
;
2154 for (i
= 0; i
< nr_pages
; i
++) {
2155 data
->data_pages
[i
] = (void *)get_zeroed_page(GFP_KERNEL
);
2156 if (!data
->data_pages
[i
])
2157 goto fail_data_pages
;
2160 data
->nr_pages
= nr_pages
;
2161 atomic_set(&data
->lock
, -1);
2163 rcu_assign_pointer(counter
->data
, data
);
2168 for (i
--; i
>= 0; i
--)
2169 free_page((unsigned long)data
->data_pages
[i
]);
2171 free_page((unsigned long)data
->user_page
);
2180 static void perf_mmap_free_page(unsigned long addr
)
2182 struct page
*page
= virt_to_page((void *)addr
);
2184 page
->mapping
= NULL
;
2188 static void __perf_mmap_data_free(struct rcu_head
*rcu_head
)
2190 struct perf_mmap_data
*data
;
2193 data
= container_of(rcu_head
, struct perf_mmap_data
, rcu_head
);
2195 perf_mmap_free_page((unsigned long)data
->user_page
);
2196 for (i
= 0; i
< data
->nr_pages
; i
++)
2197 perf_mmap_free_page((unsigned long)data
->data_pages
[i
]);
2202 static void perf_mmap_data_free(struct perf_counter
*counter
)
2204 struct perf_mmap_data
*data
= counter
->data
;
2206 WARN_ON(atomic_read(&counter
->mmap_count
));
2208 rcu_assign_pointer(counter
->data
, NULL
);
2209 call_rcu(&data
->rcu_head
, __perf_mmap_data_free
);
2212 static void perf_mmap_open(struct vm_area_struct
*vma
)
2214 struct perf_counter
*counter
= vma
->vm_file
->private_data
;
2216 atomic_inc(&counter
->mmap_count
);
2219 static void perf_mmap_close(struct vm_area_struct
*vma
)
2221 struct perf_counter
*counter
= vma
->vm_file
->private_data
;
2223 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
2224 if (atomic_dec_and_mutex_lock(&counter
->mmap_count
, &counter
->mmap_mutex
)) {
2225 struct user_struct
*user
= current_user();
2227 atomic_long_sub(counter
->data
->nr_pages
+ 1, &user
->locked_vm
);
2228 vma
->vm_mm
->locked_vm
-= counter
->data
->nr_locked
;
2229 perf_mmap_data_free(counter
);
2230 mutex_unlock(&counter
->mmap_mutex
);
2234 static struct vm_operations_struct perf_mmap_vmops
= {
2235 .open
= perf_mmap_open
,
2236 .close
= perf_mmap_close
,
2237 .fault
= perf_mmap_fault
,
2238 .page_mkwrite
= perf_mmap_fault
,
2241 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2243 struct perf_counter
*counter
= file
->private_data
;
2244 unsigned long user_locked
, user_lock_limit
;
2245 struct user_struct
*user
= current_user();
2246 unsigned long locked
, lock_limit
;
2247 unsigned long vma_size
;
2248 unsigned long nr_pages
;
2249 long user_extra
, extra
;
2252 if (!(vma
->vm_flags
& VM_SHARED
))
2255 vma_size
= vma
->vm_end
- vma
->vm_start
;
2256 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
2259 * If we have data pages ensure they're a power-of-two number, so we
2260 * can do bitmasks instead of modulo.
2262 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
2265 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
2268 if (vma
->vm_pgoff
!= 0)
2271 WARN_ON_ONCE(counter
->ctx
->parent_ctx
);
2272 mutex_lock(&counter
->mmap_mutex
);
2273 if (atomic_inc_not_zero(&counter
->mmap_count
)) {
2274 if (nr_pages
!= counter
->data
->nr_pages
)
2279 user_extra
= nr_pages
+ 1;
2280 user_lock_limit
= sysctl_perf_counter_mlock
>> (PAGE_SHIFT
- 10);
2283 * Increase the limit linearly with more CPUs:
2285 user_lock_limit
*= num_online_cpus();
2287 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
2290 if (user_locked
> user_lock_limit
)
2291 extra
= user_locked
- user_lock_limit
;
2293 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2294 lock_limit
>>= PAGE_SHIFT
;
2295 locked
= vma
->vm_mm
->locked_vm
+ extra
;
2297 if ((locked
> lock_limit
) && !capable(CAP_IPC_LOCK
)) {
2302 WARN_ON(counter
->data
);
2303 ret
= perf_mmap_data_alloc(counter
, nr_pages
);
2307 atomic_set(&counter
->mmap_count
, 1);
2308 atomic_long_add(user_extra
, &user
->locked_vm
);
2309 vma
->vm_mm
->locked_vm
+= extra
;
2310 counter
->data
->nr_locked
= extra
;
2311 if (vma
->vm_flags
& VM_WRITE
)
2312 counter
->data
->writable
= 1;
2315 mutex_unlock(&counter
->mmap_mutex
);
2317 vma
->vm_flags
|= VM_RESERVED
;
2318 vma
->vm_ops
= &perf_mmap_vmops
;
2323 static int perf_fasync(int fd
, struct file
*filp
, int on
)
2325 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
2326 struct perf_counter
*counter
= filp
->private_data
;
2329 mutex_lock(&inode
->i_mutex
);
2330 retval
= fasync_helper(fd
, filp
, on
, &counter
->fasync
);
2331 mutex_unlock(&inode
->i_mutex
);
2339 static const struct file_operations perf_fops
= {
2340 .release
= perf_release
,
2343 .unlocked_ioctl
= perf_ioctl
,
2344 .compat_ioctl
= perf_ioctl
,
2346 .fasync
= perf_fasync
,
2350 * Perf counter wakeup
2352 * If there's data, ensure we set the poll() state and publish everything
2353 * to user-space before waking everybody up.
2356 void perf_counter_wakeup(struct perf_counter
*counter
)
2358 wake_up_all(&counter
->waitq
);
2360 if (counter
->pending_kill
) {
2361 kill_fasync(&counter
->fasync
, SIGIO
, counter
->pending_kill
);
2362 counter
->pending_kill
= 0;
2369 * Handle the case where we need to wakeup up from NMI (or rq->lock) context.
2371 * The NMI bit means we cannot possibly take locks. Therefore, maintain a
2372 * single linked list and use cmpxchg() to add entries lockless.
2375 static void perf_pending_counter(struct perf_pending_entry
*entry
)
2377 struct perf_counter
*counter
= container_of(entry
,
2378 struct perf_counter
, pending
);
2380 if (counter
->pending_disable
) {
2381 counter
->pending_disable
= 0;
2382 __perf_counter_disable(counter
);
2385 if (counter
->pending_wakeup
) {
2386 counter
->pending_wakeup
= 0;
2387 perf_counter_wakeup(counter
);
2391 #define PENDING_TAIL ((struct perf_pending_entry *)-1UL)
2393 static DEFINE_PER_CPU(struct perf_pending_entry
*, perf_pending_head
) = {
2397 static void perf_pending_queue(struct perf_pending_entry
*entry
,
2398 void (*func
)(struct perf_pending_entry
*))
2400 struct perf_pending_entry
**head
;
2402 if (cmpxchg(&entry
->next
, NULL
, PENDING_TAIL
) != NULL
)
2407 head
= &get_cpu_var(perf_pending_head
);
2410 entry
->next
= *head
;
2411 } while (cmpxchg(head
, entry
->next
, entry
) != entry
->next
);
2413 set_perf_counter_pending();
2415 put_cpu_var(perf_pending_head
);
2418 static int __perf_pending_run(void)
2420 struct perf_pending_entry
*list
;
2423 list
= xchg(&__get_cpu_var(perf_pending_head
), PENDING_TAIL
);
2424 while (list
!= PENDING_TAIL
) {
2425 void (*func
)(struct perf_pending_entry
*);
2426 struct perf_pending_entry
*entry
= list
;
2433 * Ensure we observe the unqueue before we issue the wakeup,
2434 * so that we won't be waiting forever.
2435 * -- see perf_not_pending().
2446 static inline int perf_not_pending(struct perf_counter
*counter
)
2449 * If we flush on whatever cpu we run, there is a chance we don't
2453 __perf_pending_run();
2457 * Ensure we see the proper queue state before going to sleep
2458 * so that we do not miss the wakeup. -- see perf_pending_handle()
2461 return counter
->pending
.next
== NULL
;
2464 static void perf_pending_sync(struct perf_counter
*counter
)
2466 wait_event(counter
->waitq
, perf_not_pending(counter
));
2469 void perf_counter_do_pending(void)
2471 __perf_pending_run();
2475 * Callchain support -- arch specific
2478 __weak
struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2487 struct perf_output_handle
{
2488 struct perf_counter
*counter
;
2489 struct perf_mmap_data
*data
;
2491 unsigned long offset
;
2495 unsigned long flags
;
2498 static bool perf_output_space(struct perf_mmap_data
*data
,
2499 unsigned int offset
, unsigned int head
)
2504 if (!data
->writable
)
2507 mask
= (data
->nr_pages
<< PAGE_SHIFT
) - 1;
2509 * Userspace could choose to issue a mb() before updating the tail
2510 * pointer. So that all reads will be completed before the write is
2513 tail
= ACCESS_ONCE(data
->user_page
->data_tail
);
2516 offset
= (offset
- tail
) & mask
;
2517 head
= (head
- tail
) & mask
;
2519 if ((int)(head
- offset
) < 0)
2525 static void perf_output_wakeup(struct perf_output_handle
*handle
)
2527 atomic_set(&handle
->data
->poll
, POLL_IN
);
2530 handle
->counter
->pending_wakeup
= 1;
2531 perf_pending_queue(&handle
->counter
->pending
,
2532 perf_pending_counter
);
2534 perf_counter_wakeup(handle
->counter
);
2538 * Curious locking construct.
2540 * We need to ensure a later event doesn't publish a head when a former
2541 * event isn't done writing. However since we need to deal with NMIs we
2542 * cannot fully serialize things.
2544 * What we do is serialize between CPUs so we only have to deal with NMI
2545 * nesting on a single CPU.
2547 * We only publish the head (and generate a wakeup) when the outer-most
2550 static void perf_output_lock(struct perf_output_handle
*handle
)
2552 struct perf_mmap_data
*data
= handle
->data
;
2557 local_irq_save(handle
->flags
);
2558 cpu
= smp_processor_id();
2560 if (in_nmi() && atomic_read(&data
->lock
) == cpu
)
2563 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2569 static void perf_output_unlock(struct perf_output_handle
*handle
)
2571 struct perf_mmap_data
*data
= handle
->data
;
2575 data
->done_head
= data
->head
;
2577 if (!handle
->locked
)
2582 * The xchg implies a full barrier that ensures all writes are done
2583 * before we publish the new head, matched by a rmb() in userspace when
2584 * reading this position.
2586 while ((head
= atomic_long_xchg(&data
->done_head
, 0)))
2587 data
->user_page
->data_head
= head
;
2590 * NMI can happen here, which means we can miss a done_head update.
2593 cpu
= atomic_xchg(&data
->lock
, -1);
2594 WARN_ON_ONCE(cpu
!= smp_processor_id());
2597 * Therefore we have to validate we did not indeed do so.
2599 if (unlikely(atomic_long_read(&data
->done_head
))) {
2601 * Since we had it locked, we can lock it again.
2603 while (atomic_cmpxchg(&data
->lock
, -1, cpu
) != -1)
2609 if (atomic_xchg(&data
->wakeup
, 0))
2610 perf_output_wakeup(handle
);
2612 local_irq_restore(handle
->flags
);
2615 static void perf_output_copy(struct perf_output_handle
*handle
,
2616 const void *buf
, unsigned int len
)
2618 unsigned int pages_mask
;
2619 unsigned int offset
;
2623 offset
= handle
->offset
;
2624 pages_mask
= handle
->data
->nr_pages
- 1;
2625 pages
= handle
->data
->data_pages
;
2628 unsigned int page_offset
;
2631 nr
= (offset
>> PAGE_SHIFT
) & pages_mask
;
2632 page_offset
= offset
& (PAGE_SIZE
- 1);
2633 size
= min_t(unsigned int, PAGE_SIZE
- page_offset
, len
);
2635 memcpy(pages
[nr
] + page_offset
, buf
, size
);
2642 handle
->offset
= offset
;
2645 * Check we didn't copy past our reservation window, taking the
2646 * possible unsigned int wrap into account.
2648 WARN_ON_ONCE(((long)(handle
->head
- handle
->offset
)) < 0);
2651 #define perf_output_put(handle, x) \
2652 perf_output_copy((handle), &(x), sizeof(x))
2654 static int perf_output_begin(struct perf_output_handle
*handle
,
2655 struct perf_counter
*counter
, unsigned int size
,
2656 int nmi
, int sample
)
2658 struct perf_mmap_data
*data
;
2659 unsigned int offset
, head
;
2662 struct perf_event_header header
;
2668 * For inherited counters we send all the output towards the parent.
2670 if (counter
->parent
)
2671 counter
= counter
->parent
;
2674 data
= rcu_dereference(counter
->data
);
2678 handle
->data
= data
;
2679 handle
->counter
= counter
;
2681 handle
->sample
= sample
;
2683 if (!data
->nr_pages
)
2686 have_lost
= atomic_read(&data
->lost
);
2688 size
+= sizeof(lost_event
);
2690 perf_output_lock(handle
);
2693 offset
= head
= atomic_long_read(&data
->head
);
2695 if (unlikely(!perf_output_space(data
, offset
, head
)))
2697 } while (atomic_long_cmpxchg(&data
->head
, offset
, head
) != offset
);
2699 handle
->offset
= offset
;
2700 handle
->head
= head
;
2702 if ((offset
>> PAGE_SHIFT
) != (head
>> PAGE_SHIFT
))
2703 atomic_set(&data
->wakeup
, 1);
2706 lost_event
.header
.type
= PERF_EVENT_LOST
;
2707 lost_event
.header
.misc
= 0;
2708 lost_event
.header
.size
= sizeof(lost_event
);
2709 lost_event
.id
= counter
->id
;
2710 lost_event
.lost
= atomic_xchg(&data
->lost
, 0);
2712 perf_output_put(handle
, lost_event
);
2718 atomic_inc(&data
->lost
);
2719 perf_output_unlock(handle
);
2726 static void perf_output_end(struct perf_output_handle
*handle
)
2728 struct perf_counter
*counter
= handle
->counter
;
2729 struct perf_mmap_data
*data
= handle
->data
;
2731 int wakeup_events
= counter
->attr
.wakeup_events
;
2733 if (handle
->sample
&& wakeup_events
) {
2734 int events
= atomic_inc_return(&data
->events
);
2735 if (events
>= wakeup_events
) {
2736 atomic_sub(wakeup_events
, &data
->events
);
2737 atomic_set(&data
->wakeup
, 1);
2741 perf_output_unlock(handle
);
2745 static u32
perf_counter_pid(struct perf_counter
*counter
, struct task_struct
*p
)
2748 * only top level counters have the pid namespace they were created in
2750 if (counter
->parent
)
2751 counter
= counter
->parent
;
2753 return task_tgid_nr_ns(p
, counter
->ns
);
2756 static u32
perf_counter_tid(struct perf_counter
*counter
, struct task_struct
*p
)
2759 * only top level counters have the pid namespace they were created in
2761 if (counter
->parent
)
2762 counter
= counter
->parent
;
2764 return task_pid_nr_ns(p
, counter
->ns
);
2767 static void perf_output_read_one(struct perf_output_handle
*handle
,
2768 struct perf_counter
*counter
)
2770 u64 read_format
= counter
->attr
.read_format
;
2774 values
[n
++] = atomic64_read(&counter
->count
);
2775 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
2776 values
[n
++] = counter
->total_time_enabled
+
2777 atomic64_read(&counter
->child_total_time_enabled
);
2779 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
2780 values
[n
++] = counter
->total_time_running
+
2781 atomic64_read(&counter
->child_total_time_running
);
2783 if (read_format
& PERF_FORMAT_ID
)
2784 values
[n
++] = primary_counter_id(counter
);
2786 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2790 * XXX PERF_FORMAT_GROUP vs inherited counters seems difficult.
2792 static void perf_output_read_group(struct perf_output_handle
*handle
,
2793 struct perf_counter
*counter
)
2795 struct perf_counter
*leader
= counter
->group_leader
, *sub
;
2796 u64 read_format
= counter
->attr
.read_format
;
2800 values
[n
++] = 1 + leader
->nr_siblings
;
2802 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2803 values
[n
++] = leader
->total_time_enabled
;
2805 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2806 values
[n
++] = leader
->total_time_running
;
2808 if (leader
!= counter
)
2809 leader
->pmu
->read(leader
);
2811 values
[n
++] = atomic64_read(&leader
->count
);
2812 if (read_format
& PERF_FORMAT_ID
)
2813 values
[n
++] = primary_counter_id(leader
);
2815 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2817 list_for_each_entry(sub
, &leader
->sibling_list
, list_entry
) {
2821 sub
->pmu
->read(sub
);
2823 values
[n
++] = atomic64_read(&sub
->count
);
2824 if (read_format
& PERF_FORMAT_ID
)
2825 values
[n
++] = primary_counter_id(sub
);
2827 perf_output_copy(handle
, values
, n
* sizeof(u64
));
2831 static void perf_output_read(struct perf_output_handle
*handle
,
2832 struct perf_counter
*counter
)
2834 if (counter
->attr
.read_format
& PERF_FORMAT_GROUP
)
2835 perf_output_read_group(handle
, counter
);
2837 perf_output_read_one(handle
, counter
);
2840 void perf_counter_output(struct perf_counter
*counter
, int nmi
,
2841 struct perf_sample_data
*data
)
2844 u64 sample_type
= counter
->attr
.sample_type
;
2845 struct perf_output_handle handle
;
2846 struct perf_event_header header
;
2851 struct perf_callchain_entry
*callchain
= NULL
;
2852 int callchain_size
= 0;
2858 header
.type
= PERF_EVENT_SAMPLE
;
2859 header
.size
= sizeof(header
);
2862 header
.misc
|= perf_misc_flags(data
->regs
);
2864 if (sample_type
& PERF_SAMPLE_IP
) {
2865 ip
= perf_instruction_pointer(data
->regs
);
2866 header
.size
+= sizeof(ip
);
2869 if (sample_type
& PERF_SAMPLE_TID
) {
2870 /* namespace issues */
2871 tid_entry
.pid
= perf_counter_pid(counter
, current
);
2872 tid_entry
.tid
= perf_counter_tid(counter
, current
);
2874 header
.size
+= sizeof(tid_entry
);
2877 if (sample_type
& PERF_SAMPLE_TIME
) {
2879 * Maybe do better on x86 and provide cpu_clock_nmi()
2881 time
= sched_clock();
2883 header
.size
+= sizeof(u64
);
2886 if (sample_type
& PERF_SAMPLE_ADDR
)
2887 header
.size
+= sizeof(u64
);
2889 if (sample_type
& PERF_SAMPLE_ID
)
2890 header
.size
+= sizeof(u64
);
2892 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
2893 header
.size
+= sizeof(u64
);
2895 if (sample_type
& PERF_SAMPLE_CPU
) {
2896 header
.size
+= sizeof(cpu_entry
);
2898 cpu_entry
.cpu
= raw_smp_processor_id();
2899 cpu_entry
.reserved
= 0;
2902 if (sample_type
& PERF_SAMPLE_PERIOD
)
2903 header
.size
+= sizeof(u64
);
2905 if (sample_type
& PERF_SAMPLE_READ
)
2906 header
.size
+= perf_counter_read_size(counter
);
2908 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
2909 callchain
= perf_callchain(data
->regs
);
2912 callchain_size
= (1 + callchain
->nr
) * sizeof(u64
);
2913 header
.size
+= callchain_size
;
2915 header
.size
+= sizeof(u64
);
2918 if (sample_type
& PERF_SAMPLE_RAW
) {
2919 int size
= sizeof(u32
);
2922 size
+= data
->raw
->size
;
2924 size
+= sizeof(u32
);
2926 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
2927 header
.size
+= size
;
2930 ret
= perf_output_begin(&handle
, counter
, header
.size
, nmi
, 1);
2934 perf_output_put(&handle
, header
);
2936 if (sample_type
& PERF_SAMPLE_IP
)
2937 perf_output_put(&handle
, ip
);
2939 if (sample_type
& PERF_SAMPLE_TID
)
2940 perf_output_put(&handle
, tid_entry
);
2942 if (sample_type
& PERF_SAMPLE_TIME
)
2943 perf_output_put(&handle
, time
);
2945 if (sample_type
& PERF_SAMPLE_ADDR
)
2946 perf_output_put(&handle
, data
->addr
);
2948 if (sample_type
& PERF_SAMPLE_ID
) {
2949 u64 id
= primary_counter_id(counter
);
2951 perf_output_put(&handle
, id
);
2954 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
2955 perf_output_put(&handle
, counter
->id
);
2957 if (sample_type
& PERF_SAMPLE_CPU
)
2958 perf_output_put(&handle
, cpu_entry
);
2960 if (sample_type
& PERF_SAMPLE_PERIOD
)
2961 perf_output_put(&handle
, data
->period
);
2963 if (sample_type
& PERF_SAMPLE_READ
)
2964 perf_output_read(&handle
, counter
);
2966 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
2968 perf_output_copy(&handle
, callchain
, callchain_size
);
2971 perf_output_put(&handle
, nr
);
2975 if (sample_type
& PERF_SAMPLE_RAW
) {
2977 perf_output_put(&handle
, data
->raw
->size
);
2978 perf_output_copy(&handle
, data
->raw
->data
, data
->raw
->size
);
2984 .size
= sizeof(u32
),
2987 perf_output_put(&handle
, raw
);
2991 perf_output_end(&handle
);
2998 struct perf_read_event
{
2999 struct perf_event_header header
;
3006 perf_counter_read_event(struct perf_counter
*counter
,
3007 struct task_struct
*task
)
3009 struct perf_output_handle handle
;
3010 struct perf_read_event event
= {
3012 .type
= PERF_EVENT_READ
,
3014 .size
= sizeof(event
) + perf_counter_read_size(counter
),
3016 .pid
= perf_counter_pid(counter
, task
),
3017 .tid
= perf_counter_tid(counter
, task
),
3021 ret
= perf_output_begin(&handle
, counter
, event
.header
.size
, 0, 0);
3025 perf_output_put(&handle
, event
);
3026 perf_output_read(&handle
, counter
);
3028 perf_output_end(&handle
);
3032 * task tracking -- fork/exit
3034 * enabled by: attr.comm | attr.mmap | attr.task
3037 struct perf_task_event
{
3038 struct task_struct
*task
;
3039 struct perf_counter_context
*task_ctx
;
3042 struct perf_event_header header
;
3051 static void perf_counter_task_output(struct perf_counter
*counter
,
3052 struct perf_task_event
*task_event
)
3054 struct perf_output_handle handle
;
3055 int size
= task_event
->event
.header
.size
;
3056 struct task_struct
*task
= task_event
->task
;
3057 int ret
= perf_output_begin(&handle
, counter
, size
, 0, 0);
3062 task_event
->event
.pid
= perf_counter_pid(counter
, task
);
3063 task_event
->event
.ppid
= perf_counter_pid(counter
, current
);
3065 task_event
->event
.tid
= perf_counter_tid(counter
, task
);
3066 task_event
->event
.ptid
= perf_counter_tid(counter
, current
);
3068 perf_output_put(&handle
, task_event
->event
);
3069 perf_output_end(&handle
);
3072 static int perf_counter_task_match(struct perf_counter
*counter
)
3074 if (counter
->attr
.comm
|| counter
->attr
.mmap
|| counter
->attr
.task
)
3080 static void perf_counter_task_ctx(struct perf_counter_context
*ctx
,
3081 struct perf_task_event
*task_event
)
3083 struct perf_counter
*counter
;
3085 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3089 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
3090 if (perf_counter_task_match(counter
))
3091 perf_counter_task_output(counter
, task_event
);
3096 static void perf_counter_task_event(struct perf_task_event
*task_event
)
3098 struct perf_cpu_context
*cpuctx
;
3099 struct perf_counter_context
*ctx
= task_event
->task_ctx
;
3101 cpuctx
= &get_cpu_var(perf_cpu_context
);
3102 perf_counter_task_ctx(&cpuctx
->ctx
, task_event
);
3103 put_cpu_var(perf_cpu_context
);
3107 ctx
= rcu_dereference(task_event
->task
->perf_counter_ctxp
);
3109 perf_counter_task_ctx(ctx
, task_event
);
3113 static void perf_counter_task(struct task_struct
*task
,
3114 struct perf_counter_context
*task_ctx
,
3117 struct perf_task_event task_event
;
3119 if (!atomic_read(&nr_comm_counters
) &&
3120 !atomic_read(&nr_mmap_counters
) &&
3121 !atomic_read(&nr_task_counters
))
3124 task_event
= (struct perf_task_event
){
3126 .task_ctx
= task_ctx
,
3129 .type
= new ? PERF_EVENT_FORK
: PERF_EVENT_EXIT
,
3131 .size
= sizeof(task_event
.event
),
3140 perf_counter_task_event(&task_event
);
3143 void perf_counter_fork(struct task_struct
*task
)
3145 perf_counter_task(task
, NULL
, 1);
3152 struct perf_comm_event
{
3153 struct task_struct
*task
;
3158 struct perf_event_header header
;
3165 static void perf_counter_comm_output(struct perf_counter
*counter
,
3166 struct perf_comm_event
*comm_event
)
3168 struct perf_output_handle handle
;
3169 int size
= comm_event
->event
.header
.size
;
3170 int ret
= perf_output_begin(&handle
, counter
, size
, 0, 0);
3175 comm_event
->event
.pid
= perf_counter_pid(counter
, comm_event
->task
);
3176 comm_event
->event
.tid
= perf_counter_tid(counter
, comm_event
->task
);
3178 perf_output_put(&handle
, comm_event
->event
);
3179 perf_output_copy(&handle
, comm_event
->comm
,
3180 comm_event
->comm_size
);
3181 perf_output_end(&handle
);
3184 static int perf_counter_comm_match(struct perf_counter
*counter
)
3186 if (counter
->attr
.comm
)
3192 static void perf_counter_comm_ctx(struct perf_counter_context
*ctx
,
3193 struct perf_comm_event
*comm_event
)
3195 struct perf_counter
*counter
;
3197 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3201 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
3202 if (perf_counter_comm_match(counter
))
3203 perf_counter_comm_output(counter
, comm_event
);
3208 static void perf_counter_comm_event(struct perf_comm_event
*comm_event
)
3210 struct perf_cpu_context
*cpuctx
;
3211 struct perf_counter_context
*ctx
;
3213 char comm
[TASK_COMM_LEN
];
3215 memset(comm
, 0, sizeof(comm
));
3216 strncpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
3217 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
3219 comm_event
->comm
= comm
;
3220 comm_event
->comm_size
= size
;
3222 comm_event
->event
.header
.size
= sizeof(comm_event
->event
) + size
;
3224 cpuctx
= &get_cpu_var(perf_cpu_context
);
3225 perf_counter_comm_ctx(&cpuctx
->ctx
, comm_event
);
3226 put_cpu_var(perf_cpu_context
);
3230 * doesn't really matter which of the child contexts the
3231 * events ends up in.
3233 ctx
= rcu_dereference(current
->perf_counter_ctxp
);
3235 perf_counter_comm_ctx(ctx
, comm_event
);
3239 void perf_counter_comm(struct task_struct
*task
)
3241 struct perf_comm_event comm_event
;
3243 if (task
->perf_counter_ctxp
)
3244 perf_counter_enable_on_exec(task
);
3246 if (!atomic_read(&nr_comm_counters
))
3249 comm_event
= (struct perf_comm_event
){
3255 .type
= PERF_EVENT_COMM
,
3264 perf_counter_comm_event(&comm_event
);
3271 struct perf_mmap_event
{
3272 struct vm_area_struct
*vma
;
3274 const char *file_name
;
3278 struct perf_event_header header
;
3288 static void perf_counter_mmap_output(struct perf_counter
*counter
,
3289 struct perf_mmap_event
*mmap_event
)
3291 struct perf_output_handle handle
;
3292 int size
= mmap_event
->event
.header
.size
;
3293 int ret
= perf_output_begin(&handle
, counter
, size
, 0, 0);
3298 mmap_event
->event
.pid
= perf_counter_pid(counter
, current
);
3299 mmap_event
->event
.tid
= perf_counter_tid(counter
, current
);
3301 perf_output_put(&handle
, mmap_event
->event
);
3302 perf_output_copy(&handle
, mmap_event
->file_name
,
3303 mmap_event
->file_size
);
3304 perf_output_end(&handle
);
3307 static int perf_counter_mmap_match(struct perf_counter
*counter
,
3308 struct perf_mmap_event
*mmap_event
)
3310 if (counter
->attr
.mmap
)
3316 static void perf_counter_mmap_ctx(struct perf_counter_context
*ctx
,
3317 struct perf_mmap_event
*mmap_event
)
3319 struct perf_counter
*counter
;
3321 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3325 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
3326 if (perf_counter_mmap_match(counter
, mmap_event
))
3327 perf_counter_mmap_output(counter
, mmap_event
);
3332 static void perf_counter_mmap_event(struct perf_mmap_event
*mmap_event
)
3334 struct perf_cpu_context
*cpuctx
;
3335 struct perf_counter_context
*ctx
;
3336 struct vm_area_struct
*vma
= mmap_event
->vma
;
3337 struct file
*file
= vma
->vm_file
;
3343 memset(tmp
, 0, sizeof(tmp
));
3347 * d_path works from the end of the buffer backwards, so we
3348 * need to add enough zero bytes after the string to handle
3349 * the 64bit alignment we do later.
3351 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
3353 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
3356 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
3358 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
3362 if (arch_vma_name(mmap_event
->vma
)) {
3363 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
3369 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
3373 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
3378 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
3380 mmap_event
->file_name
= name
;
3381 mmap_event
->file_size
= size
;
3383 mmap_event
->event
.header
.size
= sizeof(mmap_event
->event
) + size
;
3385 cpuctx
= &get_cpu_var(perf_cpu_context
);
3386 perf_counter_mmap_ctx(&cpuctx
->ctx
, mmap_event
);
3387 put_cpu_var(perf_cpu_context
);
3391 * doesn't really matter which of the child contexts the
3392 * events ends up in.
3394 ctx
= rcu_dereference(current
->perf_counter_ctxp
);
3396 perf_counter_mmap_ctx(ctx
, mmap_event
);
3402 void __perf_counter_mmap(struct vm_area_struct
*vma
)
3404 struct perf_mmap_event mmap_event
;
3406 if (!atomic_read(&nr_mmap_counters
))
3409 mmap_event
= (struct perf_mmap_event
){
3415 .type
= PERF_EVENT_MMAP
,
3421 .start
= vma
->vm_start
,
3422 .len
= vma
->vm_end
- vma
->vm_start
,
3423 .pgoff
= vma
->vm_pgoff
,
3427 perf_counter_mmap_event(&mmap_event
);
3431 * IRQ throttle logging
3434 static void perf_log_throttle(struct perf_counter
*counter
, int enable
)
3436 struct perf_output_handle handle
;
3440 struct perf_event_header header
;
3444 } throttle_event
= {
3446 .type
= PERF_EVENT_THROTTLE
,
3448 .size
= sizeof(throttle_event
),
3450 .time
= sched_clock(),
3451 .id
= primary_counter_id(counter
),
3452 .stream_id
= counter
->id
,
3456 throttle_event
.header
.type
= PERF_EVENT_UNTHROTTLE
;
3458 ret
= perf_output_begin(&handle
, counter
, sizeof(throttle_event
), 1, 0);
3462 perf_output_put(&handle
, throttle_event
);
3463 perf_output_end(&handle
);
3467 * Generic counter overflow handling, sampling.
3470 int perf_counter_overflow(struct perf_counter
*counter
, int nmi
,
3471 struct perf_sample_data
*data
)
3473 int events
= atomic_read(&counter
->event_limit
);
3474 int throttle
= counter
->pmu
->unthrottle
!= NULL
;
3475 struct hw_perf_counter
*hwc
= &counter
->hw
;
3481 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
3483 if (HZ
* hwc
->interrupts
>
3484 (u64
)sysctl_perf_counter_sample_rate
) {
3485 hwc
->interrupts
= MAX_INTERRUPTS
;
3486 perf_log_throttle(counter
, 0);
3491 * Keep re-disabling counters even though on the previous
3492 * pass we disabled it - just in case we raced with a
3493 * sched-in and the counter got enabled again:
3499 if (counter
->attr
.freq
) {
3500 u64 now
= sched_clock();
3501 s64 delta
= now
- hwc
->freq_stamp
;
3503 hwc
->freq_stamp
= now
;
3505 if (delta
> 0 && delta
< TICK_NSEC
)
3506 perf_adjust_period(counter
, NSEC_PER_SEC
/ (int)delta
);
3510 * XXX event_limit might not quite work as expected on inherited
3514 counter
->pending_kill
= POLL_IN
;
3515 if (events
&& atomic_dec_and_test(&counter
->event_limit
)) {
3517 counter
->pending_kill
= POLL_HUP
;
3519 counter
->pending_disable
= 1;
3520 perf_pending_queue(&counter
->pending
,
3521 perf_pending_counter
);
3523 perf_counter_disable(counter
);
3526 perf_counter_output(counter
, nmi
, data
);
3531 * Generic software counter infrastructure
3535 * We directly increment counter->count and keep a second value in
3536 * counter->hw.period_left to count intervals. This period counter
3537 * is kept in the range [-sample_period, 0] so that we can use the
3541 static u64
perf_swcounter_set_period(struct perf_counter
*counter
)
3543 struct hw_perf_counter
*hwc
= &counter
->hw
;
3544 u64 period
= hwc
->last_period
;
3548 hwc
->last_period
= hwc
->sample_period
;
3551 old
= val
= atomic64_read(&hwc
->period_left
);
3555 nr
= div64_u64(period
+ val
, period
);
3556 offset
= nr
* period
;
3558 if (atomic64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
3564 static void perf_swcounter_overflow(struct perf_counter
*counter
,
3565 int nmi
, struct perf_sample_data
*data
)
3567 struct hw_perf_counter
*hwc
= &counter
->hw
;
3570 data
->period
= counter
->hw
.last_period
;
3571 overflow
= perf_swcounter_set_period(counter
);
3573 if (hwc
->interrupts
== MAX_INTERRUPTS
)
3576 for (; overflow
; overflow
--) {
3577 if (perf_counter_overflow(counter
, nmi
, data
)) {
3579 * We inhibit the overflow from happening when
3580 * hwc->interrupts == MAX_INTERRUPTS.
3587 static void perf_swcounter_unthrottle(struct perf_counter
*counter
)
3590 * Nothing to do, we already reset hwc->interrupts.
3594 static void perf_swcounter_add(struct perf_counter
*counter
, u64 nr
,
3595 int nmi
, struct perf_sample_data
*data
)
3597 struct hw_perf_counter
*hwc
= &counter
->hw
;
3599 atomic64_add(nr
, &counter
->count
);
3601 if (!hwc
->sample_period
)
3607 if (!atomic64_add_negative(nr
, &hwc
->period_left
))
3608 perf_swcounter_overflow(counter
, nmi
, data
);
3611 static int perf_swcounter_is_counting(struct perf_counter
*counter
)
3614 * The counter is active, we're good!
3616 if (counter
->state
== PERF_COUNTER_STATE_ACTIVE
)
3620 * The counter is off/error, not counting.
3622 if (counter
->state
!= PERF_COUNTER_STATE_INACTIVE
)
3626 * The counter is inactive, if the context is active
3627 * we're part of a group that didn't make it on the 'pmu',
3630 if (counter
->ctx
->is_active
)
3634 * We're inactive and the context is too, this means the
3635 * task is scheduled out, we're counting events that happen
3636 * to us, like migration events.
3641 static int perf_swcounter_match(struct perf_counter
*counter
,
3642 enum perf_type_id type
,
3643 u32 event
, struct pt_regs
*regs
)
3645 if (!perf_swcounter_is_counting(counter
))
3648 if (counter
->attr
.type
!= type
)
3650 if (counter
->attr
.config
!= event
)
3654 if (counter
->attr
.exclude_user
&& user_mode(regs
))
3657 if (counter
->attr
.exclude_kernel
&& !user_mode(regs
))
3664 static void perf_swcounter_ctx_event(struct perf_counter_context
*ctx
,
3665 enum perf_type_id type
,
3666 u32 event
, u64 nr
, int nmi
,
3667 struct perf_sample_data
*data
)
3669 struct perf_counter
*counter
;
3671 if (system_state
!= SYSTEM_RUNNING
|| list_empty(&ctx
->event_list
))
3675 list_for_each_entry_rcu(counter
, &ctx
->event_list
, event_entry
) {
3676 if (perf_swcounter_match(counter
, type
, event
, data
->regs
))
3677 perf_swcounter_add(counter
, nr
, nmi
, data
);
3682 static int *perf_swcounter_recursion_context(struct perf_cpu_context
*cpuctx
)
3685 return &cpuctx
->recursion
[3];
3688 return &cpuctx
->recursion
[2];
3691 return &cpuctx
->recursion
[1];
3693 return &cpuctx
->recursion
[0];
3696 static void do_perf_swcounter_event(enum perf_type_id type
, u32 event
,
3698 struct perf_sample_data
*data
)
3700 struct perf_cpu_context
*cpuctx
= &get_cpu_var(perf_cpu_context
);
3701 int *recursion
= perf_swcounter_recursion_context(cpuctx
);
3702 struct perf_counter_context
*ctx
;
3710 perf_swcounter_ctx_event(&cpuctx
->ctx
, type
, event
,
3714 * doesn't really matter which of the child contexts the
3715 * events ends up in.
3717 ctx
= rcu_dereference(current
->perf_counter_ctxp
);
3719 perf_swcounter_ctx_event(ctx
, type
, event
, nr
, nmi
, data
);
3726 put_cpu_var(perf_cpu_context
);
3729 void __perf_swcounter_event(u32 event
, u64 nr
, int nmi
,
3730 struct pt_regs
*regs
, u64 addr
)
3732 struct perf_sample_data data
= {
3737 do_perf_swcounter_event(PERF_TYPE_SOFTWARE
, event
, nr
, nmi
, &data
);
3740 static void perf_swcounter_read(struct perf_counter
*counter
)
3744 static int perf_swcounter_enable(struct perf_counter
*counter
)
3746 struct hw_perf_counter
*hwc
= &counter
->hw
;
3748 if (hwc
->sample_period
) {
3749 hwc
->last_period
= hwc
->sample_period
;
3750 perf_swcounter_set_period(counter
);
3755 static void perf_swcounter_disable(struct perf_counter
*counter
)
3759 static const struct pmu perf_ops_generic
= {
3760 .enable
= perf_swcounter_enable
,
3761 .disable
= perf_swcounter_disable
,
3762 .read
= perf_swcounter_read
,
3763 .unthrottle
= perf_swcounter_unthrottle
,
3767 * hrtimer based swcounter callback
3770 static enum hrtimer_restart
perf_swcounter_hrtimer(struct hrtimer
*hrtimer
)
3772 enum hrtimer_restart ret
= HRTIMER_RESTART
;
3773 struct perf_sample_data data
;
3774 struct perf_counter
*counter
;
3777 counter
= container_of(hrtimer
, struct perf_counter
, hw
.hrtimer
);
3778 counter
->pmu
->read(counter
);
3781 data
.regs
= get_irq_regs();
3783 * In case we exclude kernel IPs or are somehow not in interrupt
3784 * context, provide the next best thing, the user IP.
3786 if ((counter
->attr
.exclude_kernel
|| !data
.regs
) &&
3787 !counter
->attr
.exclude_user
)
3788 data
.regs
= task_pt_regs(current
);
3791 if (perf_counter_overflow(counter
, 0, &data
))
3792 ret
= HRTIMER_NORESTART
;
3795 period
= max_t(u64
, 10000, counter
->hw
.sample_period
);
3796 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
3802 * Software counter: cpu wall time clock
3805 static void cpu_clock_perf_counter_update(struct perf_counter
*counter
)
3807 int cpu
= raw_smp_processor_id();
3811 now
= cpu_clock(cpu
);
3812 prev
= atomic64_read(&counter
->hw
.prev_count
);
3813 atomic64_set(&counter
->hw
.prev_count
, now
);
3814 atomic64_add(now
- prev
, &counter
->count
);
3817 static int cpu_clock_perf_counter_enable(struct perf_counter
*counter
)
3819 struct hw_perf_counter
*hwc
= &counter
->hw
;
3820 int cpu
= raw_smp_processor_id();
3822 atomic64_set(&hwc
->prev_count
, cpu_clock(cpu
));
3823 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3824 hwc
->hrtimer
.function
= perf_swcounter_hrtimer
;
3825 if (hwc
->sample_period
) {
3826 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
3827 __hrtimer_start_range_ns(&hwc
->hrtimer
,
3828 ns_to_ktime(period
), 0,
3829 HRTIMER_MODE_REL
, 0);
3835 static void cpu_clock_perf_counter_disable(struct perf_counter
*counter
)
3837 if (counter
->hw
.sample_period
)
3838 hrtimer_cancel(&counter
->hw
.hrtimer
);
3839 cpu_clock_perf_counter_update(counter
);
3842 static void cpu_clock_perf_counter_read(struct perf_counter
*counter
)
3844 cpu_clock_perf_counter_update(counter
);
3847 static const struct pmu perf_ops_cpu_clock
= {
3848 .enable
= cpu_clock_perf_counter_enable
,
3849 .disable
= cpu_clock_perf_counter_disable
,
3850 .read
= cpu_clock_perf_counter_read
,
3854 * Software counter: task time clock
3857 static void task_clock_perf_counter_update(struct perf_counter
*counter
, u64 now
)
3862 prev
= atomic64_xchg(&counter
->hw
.prev_count
, now
);
3864 atomic64_add(delta
, &counter
->count
);
3867 static int task_clock_perf_counter_enable(struct perf_counter
*counter
)
3869 struct hw_perf_counter
*hwc
= &counter
->hw
;
3872 now
= counter
->ctx
->time
;
3874 atomic64_set(&hwc
->prev_count
, now
);
3875 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
3876 hwc
->hrtimer
.function
= perf_swcounter_hrtimer
;
3877 if (hwc
->sample_period
) {
3878 u64 period
= max_t(u64
, 10000, hwc
->sample_period
);
3879 __hrtimer_start_range_ns(&hwc
->hrtimer
,
3880 ns_to_ktime(period
), 0,
3881 HRTIMER_MODE_REL
, 0);
3887 static void task_clock_perf_counter_disable(struct perf_counter
*counter
)
3889 if (counter
->hw
.sample_period
)
3890 hrtimer_cancel(&counter
->hw
.hrtimer
);
3891 task_clock_perf_counter_update(counter
, counter
->ctx
->time
);
3895 static void task_clock_perf_counter_read(struct perf_counter
*counter
)
3900 update_context_time(counter
->ctx
);
3901 time
= counter
->ctx
->time
;
3903 u64 now
= perf_clock();
3904 u64 delta
= now
- counter
->ctx
->timestamp
;
3905 time
= counter
->ctx
->time
+ delta
;
3908 task_clock_perf_counter_update(counter
, time
);
3911 static const struct pmu perf_ops_task_clock
= {
3912 .enable
= task_clock_perf_counter_enable
,
3913 .disable
= task_clock_perf_counter_disable
,
3914 .read
= task_clock_perf_counter_read
,
3917 #ifdef CONFIG_EVENT_PROFILE
3918 void perf_tpcounter_event(int event_id
, u64 addr
, u64 count
, void *record
,
3921 struct perf_raw_record raw
= {
3926 struct perf_sample_data data
= {
3927 .regs
= get_irq_regs(),
3933 data
.regs
= task_pt_regs(current
);
3935 do_perf_swcounter_event(PERF_TYPE_TRACEPOINT
, event_id
, count
, 1, &data
);
3937 EXPORT_SYMBOL_GPL(perf_tpcounter_event
);
3939 extern int ftrace_profile_enable(int);
3940 extern void ftrace_profile_disable(int);
3942 static void tp_perf_counter_destroy(struct perf_counter
*counter
)
3944 ftrace_profile_disable(counter
->attr
.config
);
3947 static const struct pmu
*tp_perf_counter_init(struct perf_counter
*counter
)
3950 * Raw tracepoint data is a severe data leak, only allow root to
3953 if ((counter
->attr
.sample_type
& PERF_SAMPLE_RAW
) &&
3954 !capable(CAP_SYS_ADMIN
))
3955 return ERR_PTR(-EPERM
);
3957 if (ftrace_profile_enable(counter
->attr
.config
))
3960 counter
->destroy
= tp_perf_counter_destroy
;
3962 return &perf_ops_generic
;
3965 static const struct pmu
*tp_perf_counter_init(struct perf_counter
*counter
)
3971 atomic_t perf_swcounter_enabled
[PERF_COUNT_SW_MAX
];
3973 static void sw_perf_counter_destroy(struct perf_counter
*counter
)
3975 u64 event
= counter
->attr
.config
;
3977 WARN_ON(counter
->parent
);
3979 atomic_dec(&perf_swcounter_enabled
[event
]);
3982 static const struct pmu
*sw_perf_counter_init(struct perf_counter
*counter
)
3984 const struct pmu
*pmu
= NULL
;
3985 u64 event
= counter
->attr
.config
;
3988 * Software counters (currently) can't in general distinguish
3989 * between user, kernel and hypervisor events.
3990 * However, context switches and cpu migrations are considered
3991 * to be kernel events, and page faults are never hypervisor
3995 case PERF_COUNT_SW_CPU_CLOCK
:
3996 pmu
= &perf_ops_cpu_clock
;
3999 case PERF_COUNT_SW_TASK_CLOCK
:
4001 * If the user instantiates this as a per-cpu counter,
4002 * use the cpu_clock counter instead.
4004 if (counter
->ctx
->task
)
4005 pmu
= &perf_ops_task_clock
;
4007 pmu
= &perf_ops_cpu_clock
;
4010 case PERF_COUNT_SW_PAGE_FAULTS
:
4011 case PERF_COUNT_SW_PAGE_FAULTS_MIN
:
4012 case PERF_COUNT_SW_PAGE_FAULTS_MAJ
:
4013 case PERF_COUNT_SW_CONTEXT_SWITCHES
:
4014 case PERF_COUNT_SW_CPU_MIGRATIONS
:
4015 if (!counter
->parent
) {
4016 atomic_inc(&perf_swcounter_enabled
[event
]);
4017 counter
->destroy
= sw_perf_counter_destroy
;
4019 pmu
= &perf_ops_generic
;
4027 * Allocate and initialize a counter structure
4029 static struct perf_counter
*
4030 perf_counter_alloc(struct perf_counter_attr
*attr
,
4032 struct perf_counter_context
*ctx
,
4033 struct perf_counter
*group_leader
,
4034 struct perf_counter
*parent_counter
,
4037 const struct pmu
*pmu
;
4038 struct perf_counter
*counter
;
4039 struct hw_perf_counter
*hwc
;
4042 counter
= kzalloc(sizeof(*counter
), gfpflags
);
4044 return ERR_PTR(-ENOMEM
);
4047 * Single counters are their own group leaders, with an
4048 * empty sibling list:
4051 group_leader
= counter
;
4053 mutex_init(&counter
->child_mutex
);
4054 INIT_LIST_HEAD(&counter
->child_list
);
4056 INIT_LIST_HEAD(&counter
->list_entry
);
4057 INIT_LIST_HEAD(&counter
->event_entry
);
4058 INIT_LIST_HEAD(&counter
->sibling_list
);
4059 init_waitqueue_head(&counter
->waitq
);
4061 mutex_init(&counter
->mmap_mutex
);
4064 counter
->attr
= *attr
;
4065 counter
->group_leader
= group_leader
;
4066 counter
->pmu
= NULL
;
4068 counter
->oncpu
= -1;
4070 counter
->parent
= parent_counter
;
4072 counter
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
4073 counter
->id
= atomic64_inc_return(&perf_counter_id
);
4075 counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
4078 counter
->state
= PERF_COUNTER_STATE_OFF
;
4083 hwc
->sample_period
= attr
->sample_period
;
4084 if (attr
->freq
&& attr
->sample_freq
)
4085 hwc
->sample_period
= 1;
4086 hwc
->last_period
= hwc
->sample_period
;
4088 atomic64_set(&hwc
->period_left
, hwc
->sample_period
);
4091 * we currently do not support PERF_FORMAT_GROUP on inherited counters
4093 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
4096 switch (attr
->type
) {
4098 case PERF_TYPE_HARDWARE
:
4099 case PERF_TYPE_HW_CACHE
:
4100 pmu
= hw_perf_counter_init(counter
);
4103 case PERF_TYPE_SOFTWARE
:
4104 pmu
= sw_perf_counter_init(counter
);
4107 case PERF_TYPE_TRACEPOINT
:
4108 pmu
= tp_perf_counter_init(counter
);
4118 else if (IS_ERR(pmu
))
4123 put_pid_ns(counter
->ns
);
4125 return ERR_PTR(err
);
4130 if (!counter
->parent
) {
4131 atomic_inc(&nr_counters
);
4132 if (counter
->attr
.mmap
)
4133 atomic_inc(&nr_mmap_counters
);
4134 if (counter
->attr
.comm
)
4135 atomic_inc(&nr_comm_counters
);
4136 if (counter
->attr
.task
)
4137 atomic_inc(&nr_task_counters
);
4143 static int perf_copy_attr(struct perf_counter_attr __user
*uattr
,
4144 struct perf_counter_attr
*attr
)
4149 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
4153 * zero the full structure, so that a short copy will be nice.
4155 memset(attr
, 0, sizeof(*attr
));
4157 ret
= get_user(size
, &uattr
->size
);
4161 if (size
> PAGE_SIZE
) /* silly large */
4164 if (!size
) /* abi compat */
4165 size
= PERF_ATTR_SIZE_VER0
;
4167 if (size
< PERF_ATTR_SIZE_VER0
)
4171 * If we're handed a bigger struct than we know of,
4172 * ensure all the unknown bits are 0 - i.e. new
4173 * user-space does not rely on any kernel feature
4174 * extensions we dont know about yet.
4176 if (size
> sizeof(*attr
)) {
4177 unsigned char __user
*addr
;
4178 unsigned char __user
*end
;
4181 addr
= (void __user
*)uattr
+ sizeof(*attr
);
4182 end
= (void __user
*)uattr
+ size
;
4184 for (; addr
< end
; addr
++) {
4185 ret
= get_user(val
, addr
);
4191 size
= sizeof(*attr
);
4194 ret
= copy_from_user(attr
, uattr
, size
);
4199 * If the type exists, the corresponding creation will verify
4202 if (attr
->type
>= PERF_TYPE_MAX
)
4205 if (attr
->__reserved_1
|| attr
->__reserved_2
|| attr
->__reserved_3
)
4208 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
4211 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
4218 put_user(sizeof(*attr
), &uattr
->size
);
4224 * sys_perf_counter_open - open a performance counter, associate it to a task/cpu
4226 * @attr_uptr: event type attributes for monitoring/sampling
4229 * @group_fd: group leader counter fd
4231 SYSCALL_DEFINE5(perf_counter_open
,
4232 struct perf_counter_attr __user
*, attr_uptr
,
4233 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
4235 struct perf_counter
*counter
, *group_leader
;
4236 struct perf_counter_attr attr
;
4237 struct perf_counter_context
*ctx
;
4238 struct file
*counter_file
= NULL
;
4239 struct file
*group_file
= NULL
;
4240 int fput_needed
= 0;
4241 int fput_needed2
= 0;
4244 /* for future expandability... */
4248 ret
= perf_copy_attr(attr_uptr
, &attr
);
4252 if (!attr
.exclude_kernel
) {
4253 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
4258 if (attr
.sample_freq
> sysctl_perf_counter_sample_rate
)
4263 * Get the target context (task or percpu):
4265 ctx
= find_get_context(pid
, cpu
);
4267 return PTR_ERR(ctx
);
4270 * Look up the group leader (we will attach this counter to it):
4272 group_leader
= NULL
;
4273 if (group_fd
!= -1) {
4275 group_file
= fget_light(group_fd
, &fput_needed
);
4277 goto err_put_context
;
4278 if (group_file
->f_op
!= &perf_fops
)
4279 goto err_put_context
;
4281 group_leader
= group_file
->private_data
;
4283 * Do not allow a recursive hierarchy (this new sibling
4284 * becoming part of another group-sibling):
4286 if (group_leader
->group_leader
!= group_leader
)
4287 goto err_put_context
;
4289 * Do not allow to attach to a group in a different
4290 * task or CPU context:
4292 if (group_leader
->ctx
!= ctx
)
4293 goto err_put_context
;
4295 * Only a group leader can be exclusive or pinned
4297 if (attr
.exclusive
|| attr
.pinned
)
4298 goto err_put_context
;
4301 counter
= perf_counter_alloc(&attr
, cpu
, ctx
, group_leader
,
4303 ret
= PTR_ERR(counter
);
4304 if (IS_ERR(counter
))
4305 goto err_put_context
;
4307 ret
= anon_inode_getfd("[perf_counter]", &perf_fops
, counter
, 0);
4309 goto err_free_put_context
;
4311 counter_file
= fget_light(ret
, &fput_needed2
);
4313 goto err_free_put_context
;
4315 counter
->filp
= counter_file
;
4316 WARN_ON_ONCE(ctx
->parent_ctx
);
4317 mutex_lock(&ctx
->mutex
);
4318 perf_install_in_context(ctx
, counter
, cpu
);
4320 mutex_unlock(&ctx
->mutex
);
4322 counter
->owner
= current
;
4323 get_task_struct(current
);
4324 mutex_lock(¤t
->perf_counter_mutex
);
4325 list_add_tail(&counter
->owner_entry
, ¤t
->perf_counter_list
);
4326 mutex_unlock(¤t
->perf_counter_mutex
);
4328 fput_light(counter_file
, fput_needed2
);
4331 fput_light(group_file
, fput_needed
);
4335 err_free_put_context
:
4345 * inherit a counter from parent task to child task:
4347 static struct perf_counter
*
4348 inherit_counter(struct perf_counter
*parent_counter
,
4349 struct task_struct
*parent
,
4350 struct perf_counter_context
*parent_ctx
,
4351 struct task_struct
*child
,
4352 struct perf_counter
*group_leader
,
4353 struct perf_counter_context
*child_ctx
)
4355 struct perf_counter
*child_counter
;
4358 * Instead of creating recursive hierarchies of counters,
4359 * we link inherited counters back to the original parent,
4360 * which has a filp for sure, which we use as the reference
4363 if (parent_counter
->parent
)
4364 parent_counter
= parent_counter
->parent
;
4366 child_counter
= perf_counter_alloc(&parent_counter
->attr
,
4367 parent_counter
->cpu
, child_ctx
,
4368 group_leader
, parent_counter
,
4370 if (IS_ERR(child_counter
))
4371 return child_counter
;
4375 * Make the child state follow the state of the parent counter,
4376 * not its attr.disabled bit. We hold the parent's mutex,
4377 * so we won't race with perf_counter_{en, dis}able_family.
4379 if (parent_counter
->state
>= PERF_COUNTER_STATE_INACTIVE
)
4380 child_counter
->state
= PERF_COUNTER_STATE_INACTIVE
;
4382 child_counter
->state
= PERF_COUNTER_STATE_OFF
;
4384 if (parent_counter
->attr
.freq
)
4385 child_counter
->hw
.sample_period
= parent_counter
->hw
.sample_period
;
4388 * Link it up in the child's context:
4390 add_counter_to_ctx(child_counter
, child_ctx
);
4393 * Get a reference to the parent filp - we will fput it
4394 * when the child counter exits. This is safe to do because
4395 * we are in the parent and we know that the filp still
4396 * exists and has a nonzero count:
4398 atomic_long_inc(&parent_counter
->filp
->f_count
);
4401 * Link this into the parent counter's child list
4403 WARN_ON_ONCE(parent_counter
->ctx
->parent_ctx
);
4404 mutex_lock(&parent_counter
->child_mutex
);
4405 list_add_tail(&child_counter
->child_list
, &parent_counter
->child_list
);
4406 mutex_unlock(&parent_counter
->child_mutex
);
4408 return child_counter
;
4411 static int inherit_group(struct perf_counter
*parent_counter
,
4412 struct task_struct
*parent
,
4413 struct perf_counter_context
*parent_ctx
,
4414 struct task_struct
*child
,
4415 struct perf_counter_context
*child_ctx
)
4417 struct perf_counter
*leader
;
4418 struct perf_counter
*sub
;
4419 struct perf_counter
*child_ctr
;
4421 leader
= inherit_counter(parent_counter
, parent
, parent_ctx
,
4422 child
, NULL
, child_ctx
);
4424 return PTR_ERR(leader
);
4425 list_for_each_entry(sub
, &parent_counter
->sibling_list
, list_entry
) {
4426 child_ctr
= inherit_counter(sub
, parent
, parent_ctx
,
4427 child
, leader
, child_ctx
);
4428 if (IS_ERR(child_ctr
))
4429 return PTR_ERR(child_ctr
);
4434 static void sync_child_counter(struct perf_counter
*child_counter
,
4435 struct task_struct
*child
)
4437 struct perf_counter
*parent_counter
= child_counter
->parent
;
4440 if (child_counter
->attr
.inherit_stat
)
4441 perf_counter_read_event(child_counter
, child
);
4443 child_val
= atomic64_read(&child_counter
->count
);
4446 * Add back the child's count to the parent's count:
4448 atomic64_add(child_val
, &parent_counter
->count
);
4449 atomic64_add(child_counter
->total_time_enabled
,
4450 &parent_counter
->child_total_time_enabled
);
4451 atomic64_add(child_counter
->total_time_running
,
4452 &parent_counter
->child_total_time_running
);
4455 * Remove this counter from the parent's list
4457 WARN_ON_ONCE(parent_counter
->ctx
->parent_ctx
);
4458 mutex_lock(&parent_counter
->child_mutex
);
4459 list_del_init(&child_counter
->child_list
);
4460 mutex_unlock(&parent_counter
->child_mutex
);
4463 * Release the parent counter, if this was the last
4466 fput(parent_counter
->filp
);
4470 __perf_counter_exit_task(struct perf_counter
*child_counter
,
4471 struct perf_counter_context
*child_ctx
,
4472 struct task_struct
*child
)
4474 struct perf_counter
*parent_counter
;
4476 update_counter_times(child_counter
);
4477 perf_counter_remove_from_context(child_counter
);
4479 parent_counter
= child_counter
->parent
;
4481 * It can happen that parent exits first, and has counters
4482 * that are still around due to the child reference. These
4483 * counters need to be zapped - but otherwise linger.
4485 if (parent_counter
) {
4486 sync_child_counter(child_counter
, child
);
4487 free_counter(child_counter
);
4492 * When a child task exits, feed back counter values to parent counters.
4494 void perf_counter_exit_task(struct task_struct
*child
)
4496 struct perf_counter
*child_counter
, *tmp
;
4497 struct perf_counter_context
*child_ctx
;
4498 unsigned long flags
;
4500 if (likely(!child
->perf_counter_ctxp
)) {
4501 perf_counter_task(child
, NULL
, 0);
4505 local_irq_save(flags
);
4507 * We can't reschedule here because interrupts are disabled,
4508 * and either child is current or it is a task that can't be
4509 * scheduled, so we are now safe from rescheduling changing
4512 child_ctx
= child
->perf_counter_ctxp
;
4513 __perf_counter_task_sched_out(child_ctx
);
4516 * Take the context lock here so that if find_get_context is
4517 * reading child->perf_counter_ctxp, we wait until it has
4518 * incremented the context's refcount before we do put_ctx below.
4520 spin_lock(&child_ctx
->lock
);
4521 child
->perf_counter_ctxp
= NULL
;
4523 * If this context is a clone; unclone it so it can't get
4524 * swapped to another process while we're removing all
4525 * the counters from it.
4527 unclone_ctx(child_ctx
);
4528 spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
4531 * Report the task dead after unscheduling the counters so that we
4532 * won't get any samples after PERF_EVENT_EXIT. We can however still
4533 * get a few PERF_EVENT_READ events.
4535 perf_counter_task(child
, child_ctx
, 0);
4538 * We can recurse on the same lock type through:
4540 * __perf_counter_exit_task()
4541 * sync_child_counter()
4542 * fput(parent_counter->filp)
4544 * mutex_lock(&ctx->mutex)
4546 * But since its the parent context it won't be the same instance.
4548 mutex_lock_nested(&child_ctx
->mutex
, SINGLE_DEPTH_NESTING
);
4551 list_for_each_entry_safe(child_counter
, tmp
, &child_ctx
->counter_list
,
4553 __perf_counter_exit_task(child_counter
, child_ctx
, child
);
4556 * If the last counter was a group counter, it will have appended all
4557 * its siblings to the list, but we obtained 'tmp' before that which
4558 * will still point to the list head terminating the iteration.
4560 if (!list_empty(&child_ctx
->counter_list
))
4563 mutex_unlock(&child_ctx
->mutex
);
4569 * free an unexposed, unused context as created by inheritance by
4570 * init_task below, used by fork() in case of fail.
4572 void perf_counter_free_task(struct task_struct
*task
)
4574 struct perf_counter_context
*ctx
= task
->perf_counter_ctxp
;
4575 struct perf_counter
*counter
, *tmp
;
4580 mutex_lock(&ctx
->mutex
);
4582 list_for_each_entry_safe(counter
, tmp
, &ctx
->counter_list
, list_entry
) {
4583 struct perf_counter
*parent
= counter
->parent
;
4585 if (WARN_ON_ONCE(!parent
))
4588 mutex_lock(&parent
->child_mutex
);
4589 list_del_init(&counter
->child_list
);
4590 mutex_unlock(&parent
->child_mutex
);
4594 list_del_counter(counter
, ctx
);
4595 free_counter(counter
);
4598 if (!list_empty(&ctx
->counter_list
))
4601 mutex_unlock(&ctx
->mutex
);
4607 * Initialize the perf_counter context in task_struct
4609 int perf_counter_init_task(struct task_struct
*child
)
4611 struct perf_counter_context
*child_ctx
, *parent_ctx
;
4612 struct perf_counter_context
*cloned_ctx
;
4613 struct perf_counter
*counter
;
4614 struct task_struct
*parent
= current
;
4615 int inherited_all
= 1;
4618 child
->perf_counter_ctxp
= NULL
;
4620 mutex_init(&child
->perf_counter_mutex
);
4621 INIT_LIST_HEAD(&child
->perf_counter_list
);
4623 if (likely(!parent
->perf_counter_ctxp
))
4627 * This is executed from the parent task context, so inherit
4628 * counters that have been marked for cloning.
4629 * First allocate and initialize a context for the child.
4632 child_ctx
= kmalloc(sizeof(struct perf_counter_context
), GFP_KERNEL
);
4636 __perf_counter_init_context(child_ctx
, child
);
4637 child
->perf_counter_ctxp
= child_ctx
;
4638 get_task_struct(child
);
4641 * If the parent's context is a clone, pin it so it won't get
4644 parent_ctx
= perf_pin_task_context(parent
);
4647 * No need to check if parent_ctx != NULL here; since we saw
4648 * it non-NULL earlier, the only reason for it to become NULL
4649 * is if we exit, and since we're currently in the middle of
4650 * a fork we can't be exiting at the same time.
4654 * Lock the parent list. No need to lock the child - not PID
4655 * hashed yet and not running, so nobody can access it.
4657 mutex_lock(&parent_ctx
->mutex
);
4660 * We dont have to disable NMIs - we are only looking at
4661 * the list, not manipulating it:
4663 list_for_each_entry_rcu(counter
, &parent_ctx
->event_list
, event_entry
) {
4664 if (counter
!= counter
->group_leader
)
4667 if (!counter
->attr
.inherit
) {
4672 ret
= inherit_group(counter
, parent
, parent_ctx
,
4680 if (inherited_all
) {
4682 * Mark the child context as a clone of the parent
4683 * context, or of whatever the parent is a clone of.
4684 * Note that if the parent is a clone, it could get
4685 * uncloned at any point, but that doesn't matter
4686 * because the list of counters and the generation
4687 * count can't have changed since we took the mutex.
4689 cloned_ctx
= rcu_dereference(parent_ctx
->parent_ctx
);
4691 child_ctx
->parent_ctx
= cloned_ctx
;
4692 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
4694 child_ctx
->parent_ctx
= parent_ctx
;
4695 child_ctx
->parent_gen
= parent_ctx
->generation
;
4697 get_ctx(child_ctx
->parent_ctx
);
4700 mutex_unlock(&parent_ctx
->mutex
);
4702 perf_unpin_context(parent_ctx
);
4707 static void __cpuinit
perf_counter_init_cpu(int cpu
)
4709 struct perf_cpu_context
*cpuctx
;
4711 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4712 __perf_counter_init_context(&cpuctx
->ctx
, NULL
);
4714 spin_lock(&perf_resource_lock
);
4715 cpuctx
->max_pertask
= perf_max_counters
- perf_reserved_percpu
;
4716 spin_unlock(&perf_resource_lock
);
4718 hw_perf_counter_setup(cpu
);
4721 #ifdef CONFIG_HOTPLUG_CPU
4722 static void __perf_counter_exit_cpu(void *info
)
4724 struct perf_cpu_context
*cpuctx
= &__get_cpu_var(perf_cpu_context
);
4725 struct perf_counter_context
*ctx
= &cpuctx
->ctx
;
4726 struct perf_counter
*counter
, *tmp
;
4728 list_for_each_entry_safe(counter
, tmp
, &ctx
->counter_list
, list_entry
)
4729 __perf_counter_remove_from_context(counter
);
4731 static void perf_counter_exit_cpu(int cpu
)
4733 struct perf_cpu_context
*cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4734 struct perf_counter_context
*ctx
= &cpuctx
->ctx
;
4736 mutex_lock(&ctx
->mutex
);
4737 smp_call_function_single(cpu
, __perf_counter_exit_cpu
, NULL
, 1);
4738 mutex_unlock(&ctx
->mutex
);
4741 static inline void perf_counter_exit_cpu(int cpu
) { }
4744 static int __cpuinit
4745 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
4747 unsigned int cpu
= (long)hcpu
;
4751 case CPU_UP_PREPARE
:
4752 case CPU_UP_PREPARE_FROZEN
:
4753 perf_counter_init_cpu(cpu
);
4757 case CPU_ONLINE_FROZEN
:
4758 hw_perf_counter_setup_online(cpu
);
4761 case CPU_DOWN_PREPARE
:
4762 case CPU_DOWN_PREPARE_FROZEN
:
4763 perf_counter_exit_cpu(cpu
);
4774 * This has to have a higher priority than migration_notifier in sched.c.
4776 static struct notifier_block __cpuinitdata perf_cpu_nb
= {
4777 .notifier_call
= perf_cpu_notify
,
4781 void __init
perf_counter_init(void)
4783 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_UP_PREPARE
,
4784 (void *)(long)smp_processor_id());
4785 perf_cpu_notify(&perf_cpu_nb
, (unsigned long)CPU_ONLINE
,
4786 (void *)(long)smp_processor_id());
4787 register_cpu_notifier(&perf_cpu_nb
);
4790 static ssize_t
perf_show_reserve_percpu(struct sysdev_class
*class, char *buf
)
4792 return sprintf(buf
, "%d\n", perf_reserved_percpu
);
4796 perf_set_reserve_percpu(struct sysdev_class
*class,
4800 struct perf_cpu_context
*cpuctx
;
4804 err
= strict_strtoul(buf
, 10, &val
);
4807 if (val
> perf_max_counters
)
4810 spin_lock(&perf_resource_lock
);
4811 perf_reserved_percpu
= val
;
4812 for_each_online_cpu(cpu
) {
4813 cpuctx
= &per_cpu(perf_cpu_context
, cpu
);
4814 spin_lock_irq(&cpuctx
->ctx
.lock
);
4815 mpt
= min(perf_max_counters
- cpuctx
->ctx
.nr_counters
,
4816 perf_max_counters
- perf_reserved_percpu
);
4817 cpuctx
->max_pertask
= mpt
;
4818 spin_unlock_irq(&cpuctx
->ctx
.lock
);
4820 spin_unlock(&perf_resource_lock
);
4825 static ssize_t
perf_show_overcommit(struct sysdev_class
*class, char *buf
)
4827 return sprintf(buf
, "%d\n", perf_overcommit
);
4831 perf_set_overcommit(struct sysdev_class
*class, const char *buf
, size_t count
)
4836 err
= strict_strtoul(buf
, 10, &val
);
4842 spin_lock(&perf_resource_lock
);
4843 perf_overcommit
= val
;
4844 spin_unlock(&perf_resource_lock
);
4849 static SYSDEV_CLASS_ATTR(
4852 perf_show_reserve_percpu
,
4853 perf_set_reserve_percpu
4856 static SYSDEV_CLASS_ATTR(
4859 perf_show_overcommit
,
4863 static struct attribute
*perfclass_attrs
[] = {
4864 &attr_reserve_percpu
.attr
,
4865 &attr_overcommit
.attr
,
4869 static struct attribute_group perfclass_attr_group
= {
4870 .attrs
= perfclass_attrs
,
4871 .name
= "perf_counters",
4874 static int __init
perf_counter_sysfs_init(void)
4876 return sysfs_create_group(&cpu_sysdev_class
.kset
.kobj
,
4877 &perfclass_attr_group
);
4879 device_initcall(perf_counter_sysfs_init
);