PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / net / ipv4 / tcp_input.c
blob2bdb0da237e69f52f411dd8bcd87219a9b1c14e9
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Implementation of the Transmission Control Protocol(TCP).
8 * Authors: Ross Biro
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Mark Evans, <evansmp@uhura.aston.ac.uk>
11 * Corey Minyard <wf-rch!minyard@relay.EU.net>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
14 * Linus Torvalds, <torvalds@cs.helsinki.fi>
15 * Alan Cox, <gw4pts@gw4pts.ampr.org>
16 * Matthew Dillon, <dillon@apollo.west.oic.com>
17 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
18 * Jorge Cwik, <jorge@laser.satlink.net>
22 * Changes:
23 * Pedro Roque : Fast Retransmit/Recovery.
24 * Two receive queues.
25 * Retransmit queue handled by TCP.
26 * Better retransmit timer handling.
27 * New congestion avoidance.
28 * Header prediction.
29 * Variable renaming.
31 * Eric : Fast Retransmit.
32 * Randy Scott : MSS option defines.
33 * Eric Schenk : Fixes to slow start algorithm.
34 * Eric Schenk : Yet another double ACK bug.
35 * Eric Schenk : Delayed ACK bug fixes.
36 * Eric Schenk : Floyd style fast retrans war avoidance.
37 * David S. Miller : Don't allow zero congestion window.
38 * Eric Schenk : Fix retransmitter so that it sends
39 * next packet on ack of previous packet.
40 * Andi Kleen : Moved open_request checking here
41 * and process RSTs for open_requests.
42 * Andi Kleen : Better prune_queue, and other fixes.
43 * Andrey Savochkin: Fix RTT measurements in the presence of
44 * timestamps.
45 * Andrey Savochkin: Check sequence numbers correctly when
46 * removing SACKs due to in sequence incoming
47 * data segments.
48 * Andi Kleen: Make sure we never ack data there is not
49 * enough room for. Also make this condition
50 * a fatal error if it might still happen.
51 * Andi Kleen: Add tcp_measure_rcv_mss to make
52 * connections with MSS<min(MTU,ann. MSS)
53 * work without delayed acks.
54 * Andi Kleen: Process packets with PSH set in the
55 * fast path.
56 * J Hadi Salim: ECN support
57 * Andrei Gurtov,
58 * Pasi Sarolahti,
59 * Panu Kuhlberg: Experimental audit of TCP (re)transmission
60 * engine. Lots of bugs are found.
61 * Pasi Sarolahti: F-RTO for dealing with spurious RTOs
64 #include <linux/mm.h>
65 #include <linux/module.h>
66 #include <linux/sysctl.h>
67 #include <linux/kernel.h>
68 #include <net/dst.h>
69 #include <net/tcp.h>
70 #include <net/inet_common.h>
71 #include <linux/ipsec.h>
72 #include <asm/unaligned.h>
73 #include <net/netdma.h>
75 int sysctl_tcp_timestamps __read_mostly = 1;
76 int sysctl_tcp_window_scaling __read_mostly = 1;
77 int sysctl_tcp_sack __read_mostly = 1;
78 int sysctl_tcp_fack __read_mostly = 1;
79 int sysctl_tcp_reordering __read_mostly = TCP_FASTRETRANS_THRESH;
80 int sysctl_tcp_ecn __read_mostly = 2;
81 int sysctl_tcp_dsack __read_mostly = 1;
82 int sysctl_tcp_app_win __read_mostly = 31;
83 int sysctl_tcp_adv_win_scale __read_mostly = 2;
85 int sysctl_tcp_stdurg __read_mostly;
86 int sysctl_tcp_rfc1337 __read_mostly;
87 int sysctl_tcp_max_orphans __read_mostly = NR_FILE;
88 int sysctl_tcp_frto __read_mostly = 2;
89 int sysctl_tcp_frto_response __read_mostly;
90 int sysctl_tcp_nometrics_save __read_mostly;
92 int sysctl_tcp_moderate_rcvbuf __read_mostly = 1;
93 int sysctl_tcp_abc __read_mostly;
95 #define FLAG_DATA 0x01 /* Incoming frame contained data. */
96 #define FLAG_WIN_UPDATE 0x02 /* Incoming ACK was a window update. */
97 #define FLAG_DATA_ACKED 0x04 /* This ACK acknowledged new data. */
98 #define FLAG_RETRANS_DATA_ACKED 0x08 /* "" "" some of which was retransmitted. */
99 #define FLAG_SYN_ACKED 0x10 /* This ACK acknowledged SYN. */
100 #define FLAG_DATA_SACKED 0x20 /* New SACK. */
101 #define FLAG_ECE 0x40 /* ECE in this ACK */
102 #define FLAG_DATA_LOST 0x80 /* SACK detected data lossage. */
103 #define FLAG_SLOWPATH 0x100 /* Do not skip RFC checks for window update.*/
104 #define FLAG_ONLY_ORIG_SACKED 0x200 /* SACKs only non-rexmit sent before RTO */
105 #define FLAG_SND_UNA_ADVANCED 0x400 /* Snd_una was changed (!= FLAG_DATA_ACKED) */
106 #define FLAG_DSACKING_ACK 0x800 /* SACK blocks contained D-SACK info */
107 #define FLAG_NONHEAD_RETRANS_ACKED 0x1000 /* Non-head rexmitted data was ACKed */
108 #define FLAG_SACK_RENEGING 0x2000 /* snd_una advanced to a sacked seq */
110 #define FLAG_ACKED (FLAG_DATA_ACKED|FLAG_SYN_ACKED)
111 #define FLAG_NOT_DUP (FLAG_DATA|FLAG_WIN_UPDATE|FLAG_ACKED)
112 #define FLAG_CA_ALERT (FLAG_DATA_SACKED|FLAG_ECE)
113 #define FLAG_FORWARD_PROGRESS (FLAG_ACKED|FLAG_DATA_SACKED)
114 #define FLAG_ANY_PROGRESS (FLAG_FORWARD_PROGRESS|FLAG_SND_UNA_ADVANCED)
116 #define TCP_REMNANT (TCP_FLAG_FIN|TCP_FLAG_URG|TCP_FLAG_SYN|TCP_FLAG_PSH)
117 #define TCP_HP_BITS (~(TCP_RESERVED_BITS|TCP_FLAG_PSH))
119 /* Adapt the MSS value used to make delayed ack decision to the
120 * real world.
122 static void tcp_measure_rcv_mss(struct sock *sk, const struct sk_buff *skb)
124 struct inet_connection_sock *icsk = inet_csk(sk);
125 const unsigned int lss = icsk->icsk_ack.last_seg_size;
126 unsigned int len;
128 icsk->icsk_ack.last_seg_size = 0;
130 /* skb->len may jitter because of SACKs, even if peer
131 * sends good full-sized frames.
133 len = skb_shinfo(skb)->gso_size ? : skb->len;
134 if (len >= icsk->icsk_ack.rcv_mss) {
135 icsk->icsk_ack.rcv_mss = len;
136 } else {
137 /* Otherwise, we make more careful check taking into account,
138 * that SACKs block is variable.
140 * "len" is invariant segment length, including TCP header.
142 len += skb->data - skb_transport_header(skb);
143 if (len >= TCP_MIN_RCVMSS + sizeof(struct tcphdr) ||
144 /* If PSH is not set, packet should be
145 * full sized, provided peer TCP is not badly broken.
146 * This observation (if it is correct 8)) allows
147 * to handle super-low mtu links fairly.
149 (len >= TCP_MIN_MSS + sizeof(struct tcphdr) &&
150 !(tcp_flag_word(tcp_hdr(skb)) & TCP_REMNANT))) {
151 /* Subtract also invariant (if peer is RFC compliant),
152 * tcp header plus fixed timestamp option length.
153 * Resulting "len" is MSS free of SACK jitter.
155 len -= tcp_sk(sk)->tcp_header_len;
156 icsk->icsk_ack.last_seg_size = len;
157 if (len == lss) {
158 icsk->icsk_ack.rcv_mss = len;
159 return;
162 if (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)
163 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED2;
164 icsk->icsk_ack.pending |= ICSK_ACK_PUSHED;
168 static void tcp_incr_quickack(struct sock *sk)
170 struct inet_connection_sock *icsk = inet_csk(sk);
171 unsigned quickacks = tcp_sk(sk)->rcv_wnd / (2 * icsk->icsk_ack.rcv_mss);
173 if (quickacks == 0)
174 quickacks = 2;
175 if (quickacks > icsk->icsk_ack.quick)
176 icsk->icsk_ack.quick = min(quickacks, TCP_MAX_QUICKACKS);
179 void tcp_enter_quickack_mode(struct sock *sk)
181 struct inet_connection_sock *icsk = inet_csk(sk);
182 tcp_incr_quickack(sk);
183 icsk->icsk_ack.pingpong = 0;
184 icsk->icsk_ack.ato = TCP_ATO_MIN;
187 /* Send ACKs quickly, if "quick" count is not exhausted
188 * and the session is not interactive.
191 static inline int tcp_in_quickack_mode(const struct sock *sk)
193 const struct inet_connection_sock *icsk = inet_csk(sk);
194 return icsk->icsk_ack.quick && !icsk->icsk_ack.pingpong;
197 static inline void TCP_ECN_queue_cwr(struct tcp_sock *tp)
199 if (tp->ecn_flags & TCP_ECN_OK)
200 tp->ecn_flags |= TCP_ECN_QUEUE_CWR;
203 static inline void TCP_ECN_accept_cwr(struct tcp_sock *tp, struct sk_buff *skb)
205 if (tcp_hdr(skb)->cwr)
206 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
209 static inline void TCP_ECN_withdraw_cwr(struct tcp_sock *tp)
211 tp->ecn_flags &= ~TCP_ECN_DEMAND_CWR;
214 static inline void TCP_ECN_check_ce(struct tcp_sock *tp, struct sk_buff *skb)
216 if (tp->ecn_flags & TCP_ECN_OK) {
217 if (INET_ECN_is_ce(TCP_SKB_CB(skb)->flags))
218 tp->ecn_flags |= TCP_ECN_DEMAND_CWR;
219 /* Funny extension: if ECT is not set on a segment,
220 * it is surely retransmit. It is not in ECN RFC,
221 * but Linux follows this rule. */
222 else if (INET_ECN_is_not_ect((TCP_SKB_CB(skb)->flags)))
223 tcp_enter_quickack_mode((struct sock *)tp);
227 static inline void TCP_ECN_rcv_synack(struct tcp_sock *tp, struct tcphdr *th)
229 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || th->cwr))
230 tp->ecn_flags &= ~TCP_ECN_OK;
233 static inline void TCP_ECN_rcv_syn(struct tcp_sock *tp, struct tcphdr *th)
235 if ((tp->ecn_flags & TCP_ECN_OK) && (!th->ece || !th->cwr))
236 tp->ecn_flags &= ~TCP_ECN_OK;
239 static inline int TCP_ECN_rcv_ecn_echo(struct tcp_sock *tp, struct tcphdr *th)
241 if (th->ece && !th->syn && (tp->ecn_flags & TCP_ECN_OK))
242 return 1;
243 return 0;
246 /* Buffer size and advertised window tuning.
248 * 1. Tuning sk->sk_sndbuf, when connection enters established state.
251 static void tcp_fixup_sndbuf(struct sock *sk)
253 int sndmem = tcp_sk(sk)->rx_opt.mss_clamp + MAX_TCP_HEADER + 16 +
254 sizeof(struct sk_buff);
256 if (sk->sk_sndbuf < 3 * sndmem)
257 sk->sk_sndbuf = min(3 * sndmem, sysctl_tcp_wmem[2]);
260 /* 2. Tuning advertised window (window_clamp, rcv_ssthresh)
262 * All tcp_full_space() is split to two parts: "network" buffer, allocated
263 * forward and advertised in receiver window (tp->rcv_wnd) and
264 * "application buffer", required to isolate scheduling/application
265 * latencies from network.
266 * window_clamp is maximal advertised window. It can be less than
267 * tcp_full_space(), in this case tcp_full_space() - window_clamp
268 * is reserved for "application" buffer. The less window_clamp is
269 * the smoother our behaviour from viewpoint of network, but the lower
270 * throughput and the higher sensitivity of the connection to losses. 8)
272 * rcv_ssthresh is more strict window_clamp used at "slow start"
273 * phase to predict further behaviour of this connection.
274 * It is used for two goals:
275 * - to enforce header prediction at sender, even when application
276 * requires some significant "application buffer". It is check #1.
277 * - to prevent pruning of receive queue because of misprediction
278 * of receiver window. Check #2.
280 * The scheme does not work when sender sends good segments opening
281 * window and then starts to feed us spaghetti. But it should work
282 * in common situations. Otherwise, we have to rely on queue collapsing.
285 /* Slow part of check#2. */
286 static int __tcp_grow_window(const struct sock *sk, const struct sk_buff *skb)
288 struct tcp_sock *tp = tcp_sk(sk);
289 /* Optimize this! */
290 int truesize = tcp_win_from_space(skb->truesize) >> 1;
291 int window = tcp_win_from_space(sysctl_tcp_rmem[2]) >> 1;
293 while (tp->rcv_ssthresh <= window) {
294 if (truesize <= skb->len)
295 return 2 * inet_csk(sk)->icsk_ack.rcv_mss;
297 truesize >>= 1;
298 window >>= 1;
300 return 0;
303 static void tcp_grow_window(struct sock *sk, struct sk_buff *skb)
305 struct tcp_sock *tp = tcp_sk(sk);
307 /* Check #1 */
308 if (tp->rcv_ssthresh < tp->window_clamp &&
309 (int)tp->rcv_ssthresh < tcp_space(sk) &&
310 !tcp_memory_pressure) {
311 int incr;
313 /* Check #2. Increase window, if skb with such overhead
314 * will fit to rcvbuf in future.
316 if (tcp_win_from_space(skb->truesize) <= skb->len)
317 incr = 2 * tp->advmss;
318 else
319 incr = __tcp_grow_window(sk, skb);
321 if (incr) {
322 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
323 tp->window_clamp);
324 inet_csk(sk)->icsk_ack.quick |= 1;
329 /* 3. Tuning rcvbuf, when connection enters established state. */
331 static void tcp_fixup_rcvbuf(struct sock *sk)
333 struct tcp_sock *tp = tcp_sk(sk);
334 int rcvmem = tp->advmss + MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
336 /* Try to select rcvbuf so that 4 mss-sized segments
337 * will fit to window and corresponding skbs will fit to our rcvbuf.
338 * (was 3; 4 is minimum to allow fast retransmit to work.)
340 while (tcp_win_from_space(rcvmem) < tp->advmss)
341 rcvmem += 128;
342 if (sk->sk_rcvbuf < 4 * rcvmem)
343 sk->sk_rcvbuf = min(4 * rcvmem, sysctl_tcp_rmem[2]);
346 /* 4. Try to fixup all. It is made immediately after connection enters
347 * established state.
349 static void tcp_init_buffer_space(struct sock *sk)
351 struct tcp_sock *tp = tcp_sk(sk);
352 int maxwin;
354 if (!(sk->sk_userlocks & SOCK_RCVBUF_LOCK))
355 tcp_fixup_rcvbuf(sk);
356 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK))
357 tcp_fixup_sndbuf(sk);
359 tp->rcvq_space.space = tp->rcv_wnd;
361 maxwin = tcp_full_space(sk);
363 if (tp->window_clamp >= maxwin) {
364 tp->window_clamp = maxwin;
366 if (sysctl_tcp_app_win && maxwin > 4 * tp->advmss)
367 tp->window_clamp = max(maxwin -
368 (maxwin >> sysctl_tcp_app_win),
369 4 * tp->advmss);
372 /* Force reservation of one segment. */
373 if (sysctl_tcp_app_win &&
374 tp->window_clamp > 2 * tp->advmss &&
375 tp->window_clamp + tp->advmss > maxwin)
376 tp->window_clamp = max(2 * tp->advmss, maxwin - tp->advmss);
378 tp->rcv_ssthresh = min(tp->rcv_ssthresh, tp->window_clamp);
379 tp->snd_cwnd_stamp = tcp_time_stamp;
382 /* 5. Recalculate window clamp after socket hit its memory bounds. */
383 static void tcp_clamp_window(struct sock *sk)
385 struct tcp_sock *tp = tcp_sk(sk);
386 struct inet_connection_sock *icsk = inet_csk(sk);
388 icsk->icsk_ack.quick = 0;
390 if (sk->sk_rcvbuf < sysctl_tcp_rmem[2] &&
391 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK) &&
392 !tcp_memory_pressure &&
393 atomic_read(&tcp_memory_allocated) < sysctl_tcp_mem[0]) {
394 sk->sk_rcvbuf = min(atomic_read(&sk->sk_rmem_alloc),
395 sysctl_tcp_rmem[2]);
397 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf)
398 tp->rcv_ssthresh = min(tp->window_clamp, 2U * tp->advmss);
401 /* Initialize RCV_MSS value.
402 * RCV_MSS is an our guess about MSS used by the peer.
403 * We haven't any direct information about the MSS.
404 * It's better to underestimate the RCV_MSS rather than overestimate.
405 * Overestimations make us ACKing less frequently than needed.
406 * Underestimations are more easy to detect and fix by tcp_measure_rcv_mss().
408 void tcp_initialize_rcv_mss(struct sock *sk)
410 struct tcp_sock *tp = tcp_sk(sk);
411 unsigned int hint = min_t(unsigned int, tp->advmss, tp->mss_cache);
413 hint = min(hint, tp->rcv_wnd / 2);
414 hint = min(hint, TCP_MIN_RCVMSS);
415 hint = max(hint, TCP_MIN_MSS);
417 inet_csk(sk)->icsk_ack.rcv_mss = hint;
420 /* Receiver "autotuning" code.
422 * The algorithm for RTT estimation w/o timestamps is based on
423 * Dynamic Right-Sizing (DRS) by Wu Feng and Mike Fisk of LANL.
424 * <http://www.lanl.gov/radiant/website/pubs/drs/lacsi2001.ps>
426 * More detail on this code can be found at
427 * <http://www.psc.edu/~jheffner/senior_thesis.ps>,
428 * though this reference is out of date. A new paper
429 * is pending.
431 static void tcp_rcv_rtt_update(struct tcp_sock *tp, u32 sample, int win_dep)
433 u32 new_sample = tp->rcv_rtt_est.rtt;
434 long m = sample;
436 if (m == 0)
437 m = 1;
439 if (new_sample != 0) {
440 /* If we sample in larger samples in the non-timestamp
441 * case, we could grossly overestimate the RTT especially
442 * with chatty applications or bulk transfer apps which
443 * are stalled on filesystem I/O.
445 * Also, since we are only going for a minimum in the
446 * non-timestamp case, we do not smooth things out
447 * else with timestamps disabled convergence takes too
448 * long.
450 if (!win_dep) {
451 m -= (new_sample >> 3);
452 new_sample += m;
453 } else if (m < new_sample)
454 new_sample = m << 3;
455 } else {
456 /* No previous measure. */
457 new_sample = m << 3;
460 if (tp->rcv_rtt_est.rtt != new_sample)
461 tp->rcv_rtt_est.rtt = new_sample;
464 static inline void tcp_rcv_rtt_measure(struct tcp_sock *tp)
466 if (tp->rcv_rtt_est.time == 0)
467 goto new_measure;
468 if (before(tp->rcv_nxt, tp->rcv_rtt_est.seq))
469 return;
470 tcp_rcv_rtt_update(tp, jiffies - tp->rcv_rtt_est.time, 1);
472 new_measure:
473 tp->rcv_rtt_est.seq = tp->rcv_nxt + tp->rcv_wnd;
474 tp->rcv_rtt_est.time = tcp_time_stamp;
477 static inline void tcp_rcv_rtt_measure_ts(struct sock *sk,
478 const struct sk_buff *skb)
480 struct tcp_sock *tp = tcp_sk(sk);
481 if (tp->rx_opt.rcv_tsecr &&
482 (TCP_SKB_CB(skb)->end_seq -
483 TCP_SKB_CB(skb)->seq >= inet_csk(sk)->icsk_ack.rcv_mss))
484 tcp_rcv_rtt_update(tp, tcp_time_stamp - tp->rx_opt.rcv_tsecr, 0);
488 * This function should be called every time data is copied to user space.
489 * It calculates the appropriate TCP receive buffer space.
491 void tcp_rcv_space_adjust(struct sock *sk)
493 struct tcp_sock *tp = tcp_sk(sk);
494 int time;
495 int space;
497 if (tp->rcvq_space.time == 0)
498 goto new_measure;
500 time = tcp_time_stamp - tp->rcvq_space.time;
501 if (time < (tp->rcv_rtt_est.rtt >> 3) || tp->rcv_rtt_est.rtt == 0)
502 return;
504 space = 2 * (tp->copied_seq - tp->rcvq_space.seq);
506 space = max(tp->rcvq_space.space, space);
508 if (tp->rcvq_space.space != space) {
509 int rcvmem;
511 tp->rcvq_space.space = space;
513 if (sysctl_tcp_moderate_rcvbuf &&
514 !(sk->sk_userlocks & SOCK_RCVBUF_LOCK)) {
515 int new_clamp = space;
517 /* Receive space grows, normalize in order to
518 * take into account packet headers and sk_buff
519 * structure overhead.
521 space /= tp->advmss;
522 if (!space)
523 space = 1;
524 rcvmem = (tp->advmss + MAX_TCP_HEADER +
525 16 + sizeof(struct sk_buff));
526 while (tcp_win_from_space(rcvmem) < tp->advmss)
527 rcvmem += 128;
528 space *= rcvmem;
529 space = min(space, sysctl_tcp_rmem[2]);
530 if (space > sk->sk_rcvbuf) {
531 sk->sk_rcvbuf = space;
533 /* Make the window clamp follow along. */
534 tp->window_clamp = new_clamp;
539 new_measure:
540 tp->rcvq_space.seq = tp->copied_seq;
541 tp->rcvq_space.time = tcp_time_stamp;
544 /* There is something which you must keep in mind when you analyze the
545 * behavior of the tp->ato delayed ack timeout interval. When a
546 * connection starts up, we want to ack as quickly as possible. The
547 * problem is that "good" TCP's do slow start at the beginning of data
548 * transmission. The means that until we send the first few ACK's the
549 * sender will sit on his end and only queue most of his data, because
550 * he can only send snd_cwnd unacked packets at any given time. For
551 * each ACK we send, he increments snd_cwnd and transmits more of his
552 * queue. -DaveM
554 static void tcp_event_data_recv(struct sock *sk, struct sk_buff *skb)
556 struct tcp_sock *tp = tcp_sk(sk);
557 struct inet_connection_sock *icsk = inet_csk(sk);
558 u32 now;
560 inet_csk_schedule_ack(sk);
562 tcp_measure_rcv_mss(sk, skb);
564 tcp_rcv_rtt_measure(tp);
566 now = tcp_time_stamp;
568 if (!icsk->icsk_ack.ato) {
569 /* The _first_ data packet received, initialize
570 * delayed ACK engine.
572 tcp_incr_quickack(sk);
573 icsk->icsk_ack.ato = TCP_ATO_MIN;
574 } else {
575 int m = now - icsk->icsk_ack.lrcvtime;
577 if (m <= TCP_ATO_MIN / 2) {
578 /* The fastest case is the first. */
579 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + TCP_ATO_MIN / 2;
580 } else if (m < icsk->icsk_ack.ato) {
581 icsk->icsk_ack.ato = (icsk->icsk_ack.ato >> 1) + m;
582 if (icsk->icsk_ack.ato > icsk->icsk_rto)
583 icsk->icsk_ack.ato = icsk->icsk_rto;
584 } else if (m > icsk->icsk_rto) {
585 /* Too long gap. Apparently sender failed to
586 * restart window, so that we send ACKs quickly.
588 tcp_incr_quickack(sk);
589 sk_mem_reclaim(sk);
592 icsk->icsk_ack.lrcvtime = now;
594 TCP_ECN_check_ce(tp, skb);
596 if (skb->len >= 128)
597 tcp_grow_window(sk, skb);
600 /* Called to compute a smoothed rtt estimate. The data fed to this
601 * routine either comes from timestamps, or from segments that were
602 * known _not_ to have been retransmitted [see Karn/Partridge
603 * Proceedings SIGCOMM 87]. The algorithm is from the SIGCOMM 88
604 * piece by Van Jacobson.
605 * NOTE: the next three routines used to be one big routine.
606 * To save cycles in the RFC 1323 implementation it was better to break
607 * it up into three procedures. -- erics
609 static void tcp_rtt_estimator(struct sock *sk, const __u32 mrtt)
611 struct tcp_sock *tp = tcp_sk(sk);
612 long m = mrtt; /* RTT */
614 /* The following amusing code comes from Jacobson's
615 * article in SIGCOMM '88. Note that rtt and mdev
616 * are scaled versions of rtt and mean deviation.
617 * This is designed to be as fast as possible
618 * m stands for "measurement".
620 * On a 1990 paper the rto value is changed to:
621 * RTO = rtt + 4 * mdev
623 * Funny. This algorithm seems to be very broken.
624 * These formulae increase RTO, when it should be decreased, increase
625 * too slowly, when it should be increased quickly, decrease too quickly
626 * etc. I guess in BSD RTO takes ONE value, so that it is absolutely
627 * does not matter how to _calculate_ it. Seems, it was trap
628 * that VJ failed to avoid. 8)
630 if (m == 0)
631 m = 1;
632 if (tp->srtt != 0) {
633 m -= (tp->srtt >> 3); /* m is now error in rtt est */
634 tp->srtt += m; /* rtt = 7/8 rtt + 1/8 new */
635 if (m < 0) {
636 m = -m; /* m is now abs(error) */
637 m -= (tp->mdev >> 2); /* similar update on mdev */
638 /* This is similar to one of Eifel findings.
639 * Eifel blocks mdev updates when rtt decreases.
640 * This solution is a bit different: we use finer gain
641 * for mdev in this case (alpha*beta).
642 * Like Eifel it also prevents growth of rto,
643 * but also it limits too fast rto decreases,
644 * happening in pure Eifel.
646 if (m > 0)
647 m >>= 3;
648 } else {
649 m -= (tp->mdev >> 2); /* similar update on mdev */
651 tp->mdev += m; /* mdev = 3/4 mdev + 1/4 new */
652 if (tp->mdev > tp->mdev_max) {
653 tp->mdev_max = tp->mdev;
654 if (tp->mdev_max > tp->rttvar)
655 tp->rttvar = tp->mdev_max;
657 if (after(tp->snd_una, tp->rtt_seq)) {
658 if (tp->mdev_max < tp->rttvar)
659 tp->rttvar -= (tp->rttvar - tp->mdev_max) >> 2;
660 tp->rtt_seq = tp->snd_nxt;
661 tp->mdev_max = tcp_rto_min(sk);
663 } else {
664 /* no previous measure. */
665 tp->srtt = m << 3; /* take the measured time to be rtt */
666 tp->mdev = m << 1; /* make sure rto = 3*rtt */
667 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
668 tp->rtt_seq = tp->snd_nxt;
672 /* Calculate rto without backoff. This is the second half of Van Jacobson's
673 * routine referred to above.
675 static inline void tcp_set_rto(struct sock *sk)
677 const struct tcp_sock *tp = tcp_sk(sk);
678 /* Old crap is replaced with new one. 8)
680 * More seriously:
681 * 1. If rtt variance happened to be less 50msec, it is hallucination.
682 * It cannot be less due to utterly erratic ACK generation made
683 * at least by solaris and freebsd. "Erratic ACKs" has _nothing_
684 * to do with delayed acks, because at cwnd>2 true delack timeout
685 * is invisible. Actually, Linux-2.4 also generates erratic
686 * ACKs in some circumstances.
688 inet_csk(sk)->icsk_rto = (tp->srtt >> 3) + tp->rttvar;
690 /* 2. Fixups made earlier cannot be right.
691 * If we do not estimate RTO correctly without them,
692 * all the algo is pure shit and should be replaced
693 * with correct one. It is exactly, which we pretend to do.
696 /* NOTE: clamping at TCP_RTO_MIN is not required, current algo
697 * guarantees that rto is higher.
699 if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
700 inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
703 /* Save metrics learned by this TCP session.
704 This function is called only, when TCP finishes successfully
705 i.e. when it enters TIME-WAIT or goes from LAST-ACK to CLOSE.
707 void tcp_update_metrics(struct sock *sk)
709 struct tcp_sock *tp = tcp_sk(sk);
710 struct dst_entry *dst = __sk_dst_get(sk);
712 if (sysctl_tcp_nometrics_save)
713 return;
715 dst_confirm(dst);
717 if (dst && (dst->flags & DST_HOST)) {
718 const struct inet_connection_sock *icsk = inet_csk(sk);
719 int m;
720 unsigned long rtt;
722 if (icsk->icsk_backoff || !tp->srtt) {
723 /* This session failed to estimate rtt. Why?
724 * Probably, no packets returned in time.
725 * Reset our results.
727 if (!(dst_metric_locked(dst, RTAX_RTT)))
728 dst->metrics[RTAX_RTT - 1] = 0;
729 return;
732 rtt = dst_metric_rtt(dst, RTAX_RTT);
733 m = rtt - tp->srtt;
735 /* If newly calculated rtt larger than stored one,
736 * store new one. Otherwise, use EWMA. Remember,
737 * rtt overestimation is always better than underestimation.
739 if (!(dst_metric_locked(dst, RTAX_RTT))) {
740 if (m <= 0)
741 set_dst_metric_rtt(dst, RTAX_RTT, tp->srtt);
742 else
743 set_dst_metric_rtt(dst, RTAX_RTT, rtt - (m >> 3));
746 if (!(dst_metric_locked(dst, RTAX_RTTVAR))) {
747 unsigned long var;
748 if (m < 0)
749 m = -m;
751 /* Scale deviation to rttvar fixed point */
752 m >>= 1;
753 if (m < tp->mdev)
754 m = tp->mdev;
756 var = dst_metric_rtt(dst, RTAX_RTTVAR);
757 if (m >= var)
758 var = m;
759 else
760 var -= (var - m) >> 2;
762 set_dst_metric_rtt(dst, RTAX_RTTVAR, var);
765 if (tp->snd_ssthresh >= 0xFFFF) {
766 /* Slow start still did not finish. */
767 if (dst_metric(dst, RTAX_SSTHRESH) &&
768 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
769 (tp->snd_cwnd >> 1) > dst_metric(dst, RTAX_SSTHRESH))
770 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_cwnd >> 1;
771 if (!dst_metric_locked(dst, RTAX_CWND) &&
772 tp->snd_cwnd > dst_metric(dst, RTAX_CWND))
773 dst->metrics[RTAX_CWND - 1] = tp->snd_cwnd;
774 } else if (tp->snd_cwnd > tp->snd_ssthresh &&
775 icsk->icsk_ca_state == TCP_CA_Open) {
776 /* Cong. avoidance phase, cwnd is reliable. */
777 if (!dst_metric_locked(dst, RTAX_SSTHRESH))
778 dst->metrics[RTAX_SSTHRESH-1] =
779 max(tp->snd_cwnd >> 1, tp->snd_ssthresh);
780 if (!dst_metric_locked(dst, RTAX_CWND))
781 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_cwnd) >> 1;
782 } else {
783 /* Else slow start did not finish, cwnd is non-sense,
784 ssthresh may be also invalid.
786 if (!dst_metric_locked(dst, RTAX_CWND))
787 dst->metrics[RTAX_CWND-1] = (dst_metric(dst, RTAX_CWND) + tp->snd_ssthresh) >> 1;
788 if (dst_metric(dst, RTAX_SSTHRESH) &&
789 !dst_metric_locked(dst, RTAX_SSTHRESH) &&
790 tp->snd_ssthresh > dst_metric(dst, RTAX_SSTHRESH))
791 dst->metrics[RTAX_SSTHRESH-1] = tp->snd_ssthresh;
794 if (!dst_metric_locked(dst, RTAX_REORDERING)) {
795 if (dst_metric(dst, RTAX_REORDERING) < tp->reordering &&
796 tp->reordering != sysctl_tcp_reordering)
797 dst->metrics[RTAX_REORDERING-1] = tp->reordering;
802 /* Numbers are taken from RFC3390.
804 * John Heffner states:
806 * The RFC specifies a window of no more than 4380 bytes
807 * unless 2*MSS > 4380. Reading the pseudocode in the RFC
808 * is a bit misleading because they use a clamp at 4380 bytes
809 * rather than use a multiplier in the relevant range.
811 __u32 tcp_init_cwnd(struct tcp_sock *tp, struct dst_entry *dst)
813 __u32 cwnd = (dst ? dst_metric(dst, RTAX_INITCWND) : 0);
815 if (!cwnd) {
816 if (tp->mss_cache > 1460)
817 cwnd = 2;
818 else
819 cwnd = (tp->mss_cache > 1095) ? 3 : 4;
821 return min_t(__u32, cwnd, tp->snd_cwnd_clamp);
824 /* Set slow start threshold and cwnd not falling to slow start */
825 void tcp_enter_cwr(struct sock *sk, const int set_ssthresh)
827 struct tcp_sock *tp = tcp_sk(sk);
828 const struct inet_connection_sock *icsk = inet_csk(sk);
830 tp->prior_ssthresh = 0;
831 tp->bytes_acked = 0;
832 if (icsk->icsk_ca_state < TCP_CA_CWR) {
833 tp->undo_marker = 0;
834 if (set_ssthresh)
835 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
836 tp->snd_cwnd = min(tp->snd_cwnd,
837 tcp_packets_in_flight(tp) + 1U);
838 tp->snd_cwnd_cnt = 0;
839 tp->high_seq = tp->snd_nxt;
840 tp->snd_cwnd_stamp = tcp_time_stamp;
841 TCP_ECN_queue_cwr(tp);
843 tcp_set_ca_state(sk, TCP_CA_CWR);
848 * Packet counting of FACK is based on in-order assumptions, therefore TCP
849 * disables it when reordering is detected
851 static void tcp_disable_fack(struct tcp_sock *tp)
853 /* RFC3517 uses different metric in lost marker => reset on change */
854 if (tcp_is_fack(tp))
855 tp->lost_skb_hint = NULL;
856 tp->rx_opt.sack_ok &= ~2;
859 /* Take a notice that peer is sending D-SACKs */
860 static void tcp_dsack_seen(struct tcp_sock *tp)
862 tp->rx_opt.sack_ok |= 4;
865 /* Initialize metrics on socket. */
867 static void tcp_init_metrics(struct sock *sk)
869 struct tcp_sock *tp = tcp_sk(sk);
870 struct dst_entry *dst = __sk_dst_get(sk);
872 if (dst == NULL)
873 goto reset;
875 dst_confirm(dst);
877 if (dst_metric_locked(dst, RTAX_CWND))
878 tp->snd_cwnd_clamp = dst_metric(dst, RTAX_CWND);
879 if (dst_metric(dst, RTAX_SSTHRESH)) {
880 tp->snd_ssthresh = dst_metric(dst, RTAX_SSTHRESH);
881 if (tp->snd_ssthresh > tp->snd_cwnd_clamp)
882 tp->snd_ssthresh = tp->snd_cwnd_clamp;
884 if (dst_metric(dst, RTAX_REORDERING) &&
885 tp->reordering != dst_metric(dst, RTAX_REORDERING)) {
886 tcp_disable_fack(tp);
887 tp->reordering = dst_metric(dst, RTAX_REORDERING);
890 if (dst_metric(dst, RTAX_RTT) == 0)
891 goto reset;
893 if (!tp->srtt && dst_metric_rtt(dst, RTAX_RTT) < (TCP_TIMEOUT_INIT << 3))
894 goto reset;
896 /* Initial rtt is determined from SYN,SYN-ACK.
897 * The segment is small and rtt may appear much
898 * less than real one. Use per-dst memory
899 * to make it more realistic.
901 * A bit of theory. RTT is time passed after "normal" sized packet
902 * is sent until it is ACKed. In normal circumstances sending small
903 * packets force peer to delay ACKs and calculation is correct too.
904 * The algorithm is adaptive and, provided we follow specs, it
905 * NEVER underestimate RTT. BUT! If peer tries to make some clever
906 * tricks sort of "quick acks" for time long enough to decrease RTT
907 * to low value, and then abruptly stops to do it and starts to delay
908 * ACKs, wait for troubles.
910 if (dst_metric_rtt(dst, RTAX_RTT) > tp->srtt) {
911 tp->srtt = dst_metric_rtt(dst, RTAX_RTT);
912 tp->rtt_seq = tp->snd_nxt;
914 if (dst_metric_rtt(dst, RTAX_RTTVAR) > tp->mdev) {
915 tp->mdev = dst_metric_rtt(dst, RTAX_RTTVAR);
916 tp->mdev_max = tp->rttvar = max(tp->mdev, tcp_rto_min(sk));
918 tcp_set_rto(sk);
919 if (inet_csk(sk)->icsk_rto < TCP_TIMEOUT_INIT && !tp->rx_opt.saw_tstamp)
920 goto reset;
922 cwnd:
923 tp->snd_cwnd = tcp_init_cwnd(tp, dst);
924 tp->snd_cwnd_stamp = tcp_time_stamp;
925 return;
927 reset:
928 /* Play conservative. If timestamps are not
929 * supported, TCP will fail to recalculate correct
930 * rtt, if initial rto is too small. FORGET ALL AND RESET!
932 if (!tp->rx_opt.saw_tstamp && tp->srtt) {
933 tp->srtt = 0;
934 tp->mdev = tp->mdev_max = tp->rttvar = TCP_TIMEOUT_INIT;
935 inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT;
937 goto cwnd;
940 static void tcp_update_reordering(struct sock *sk, const int metric,
941 const int ts)
943 struct tcp_sock *tp = tcp_sk(sk);
944 if (metric > tp->reordering) {
945 int mib_idx;
947 tp->reordering = min(TCP_MAX_REORDERING, metric);
949 /* This exciting event is worth to be remembered. 8) */
950 if (ts)
951 mib_idx = LINUX_MIB_TCPTSREORDER;
952 else if (tcp_is_reno(tp))
953 mib_idx = LINUX_MIB_TCPRENOREORDER;
954 else if (tcp_is_fack(tp))
955 mib_idx = LINUX_MIB_TCPFACKREORDER;
956 else
957 mib_idx = LINUX_MIB_TCPSACKREORDER;
959 NET_INC_STATS_BH(sock_net(sk), mib_idx);
960 #if FASTRETRANS_DEBUG > 1
961 printk(KERN_DEBUG "Disorder%d %d %u f%u s%u rr%d\n",
962 tp->rx_opt.sack_ok, inet_csk(sk)->icsk_ca_state,
963 tp->reordering,
964 tp->fackets_out,
965 tp->sacked_out,
966 tp->undo_marker ? tp->undo_retrans : 0);
967 #endif
968 tcp_disable_fack(tp);
972 /* This must be called before lost_out is incremented */
973 static void tcp_verify_retransmit_hint(struct tcp_sock *tp, struct sk_buff *skb)
975 if ((tp->retransmit_skb_hint == NULL) ||
976 before(TCP_SKB_CB(skb)->seq,
977 TCP_SKB_CB(tp->retransmit_skb_hint)->seq))
978 tp->retransmit_skb_hint = skb;
980 if (!tp->lost_out ||
981 after(TCP_SKB_CB(skb)->end_seq, tp->retransmit_high))
982 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
985 static void tcp_skb_mark_lost(struct tcp_sock *tp, struct sk_buff *skb)
987 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
988 tcp_verify_retransmit_hint(tp, skb);
990 tp->lost_out += tcp_skb_pcount(skb);
991 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
995 static void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp,
996 struct sk_buff *skb)
998 tcp_verify_retransmit_hint(tp, skb);
1000 if (!(TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_ACKED))) {
1001 tp->lost_out += tcp_skb_pcount(skb);
1002 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
1006 /* This procedure tags the retransmission queue when SACKs arrive.
1008 * We have three tag bits: SACKED(S), RETRANS(R) and LOST(L).
1009 * Packets in queue with these bits set are counted in variables
1010 * sacked_out, retrans_out and lost_out, correspondingly.
1012 * Valid combinations are:
1013 * Tag InFlight Description
1014 * 0 1 - orig segment is in flight.
1015 * S 0 - nothing flies, orig reached receiver.
1016 * L 0 - nothing flies, orig lost by net.
1017 * R 2 - both orig and retransmit are in flight.
1018 * L|R 1 - orig is lost, retransmit is in flight.
1019 * S|R 1 - orig reached receiver, retrans is still in flight.
1020 * (L|S|R is logically valid, it could occur when L|R is sacked,
1021 * but it is equivalent to plain S and code short-curcuits it to S.
1022 * L|S is logically invalid, it would mean -1 packet in flight 8))
1024 * These 6 states form finite state machine, controlled by the following events:
1025 * 1. New ACK (+SACK) arrives. (tcp_sacktag_write_queue())
1026 * 2. Retransmission. (tcp_retransmit_skb(), tcp_xmit_retransmit_queue())
1027 * 3. Loss detection event of one of three flavors:
1028 * A. Scoreboard estimator decided the packet is lost.
1029 * A'. Reno "three dupacks" marks head of queue lost.
1030 * A''. Its FACK modfication, head until snd.fack is lost.
1031 * B. SACK arrives sacking data transmitted after never retransmitted
1032 * hole was sent out.
1033 * C. SACK arrives sacking SND.NXT at the moment, when the
1034 * segment was retransmitted.
1035 * 4. D-SACK added new rule: D-SACK changes any tag to S.
1037 * It is pleasant to note, that state diagram turns out to be commutative,
1038 * so that we are allowed not to be bothered by order of our actions,
1039 * when multiple events arrive simultaneously. (see the function below).
1041 * Reordering detection.
1042 * --------------------
1043 * Reordering metric is maximal distance, which a packet can be displaced
1044 * in packet stream. With SACKs we can estimate it:
1046 * 1. SACK fills old hole and the corresponding segment was not
1047 * ever retransmitted -> reordering. Alas, we cannot use it
1048 * when segment was retransmitted.
1049 * 2. The last flaw is solved with D-SACK. D-SACK arrives
1050 * for retransmitted and already SACKed segment -> reordering..
1051 * Both of these heuristics are not used in Loss state, when we cannot
1052 * account for retransmits accurately.
1054 * SACK block validation.
1055 * ----------------------
1057 * SACK block range validation checks that the received SACK block fits to
1058 * the expected sequence limits, i.e., it is between SND.UNA and SND.NXT.
1059 * Note that SND.UNA is not included to the range though being valid because
1060 * it means that the receiver is rather inconsistent with itself reporting
1061 * SACK reneging when it should advance SND.UNA. Such SACK block this is
1062 * perfectly valid, however, in light of RFC2018 which explicitly states
1063 * that "SACK block MUST reflect the newest segment. Even if the newest
1064 * segment is going to be discarded ...", not that it looks very clever
1065 * in case of head skb. Due to potentional receiver driven attacks, we
1066 * choose to avoid immediate execution of a walk in write queue due to
1067 * reneging and defer head skb's loss recovery to standard loss recovery
1068 * procedure that will eventually trigger (nothing forbids us doing this).
1070 * Implements also blockage to start_seq wrap-around. Problem lies in the
1071 * fact that though start_seq (s) is before end_seq (i.e., not reversed),
1072 * there's no guarantee that it will be before snd_nxt (n). The problem
1073 * happens when start_seq resides between end_seq wrap (e_w) and snd_nxt
1074 * wrap (s_w):
1076 * <- outs wnd -> <- wrapzone ->
1077 * u e n u_w e_w s n_w
1078 * | | | | | | |
1079 * |<------------+------+----- TCP seqno space --------------+---------->|
1080 * ...-- <2^31 ->| |<--------...
1081 * ...---- >2^31 ------>| |<--------...
1083 * Current code wouldn't be vulnerable but it's better still to discard such
1084 * crazy SACK blocks. Doing this check for start_seq alone closes somewhat
1085 * similar case (end_seq after snd_nxt wrap) as earlier reversed check in
1086 * snd_nxt wrap -> snd_una region will then become "well defined", i.e.,
1087 * equal to the ideal case (infinite seqno space without wrap caused issues).
1089 * With D-SACK the lower bound is extended to cover sequence space below
1090 * SND.UNA down to undo_marker, which is the last point of interest. Yet
1091 * again, D-SACK block must not to go across snd_una (for the same reason as
1092 * for the normal SACK blocks, explained above). But there all simplicity
1093 * ends, TCP might receive valid D-SACKs below that. As long as they reside
1094 * fully below undo_marker they do not affect behavior in anyway and can
1095 * therefore be safely ignored. In rare cases (which are more or less
1096 * theoretical ones), the D-SACK will nicely cross that boundary due to skb
1097 * fragmentation and packet reordering past skb's retransmission. To consider
1098 * them correctly, the acceptable range must be extended even more though
1099 * the exact amount is rather hard to quantify. However, tp->max_window can
1100 * be used as an exaggerated estimate.
1102 static int tcp_is_sackblock_valid(struct tcp_sock *tp, int is_dsack,
1103 u32 start_seq, u32 end_seq)
1105 /* Too far in future, or reversed (interpretation is ambiguous) */
1106 if (after(end_seq, tp->snd_nxt) || !before(start_seq, end_seq))
1107 return 0;
1109 /* Nasty start_seq wrap-around check (see comments above) */
1110 if (!before(start_seq, tp->snd_nxt))
1111 return 0;
1113 /* In outstanding window? ...This is valid exit for D-SACKs too.
1114 * start_seq == snd_una is non-sensical (see comments above)
1116 if (after(start_seq, tp->snd_una))
1117 return 1;
1119 if (!is_dsack || !tp->undo_marker)
1120 return 0;
1122 /* ...Then it's D-SACK, and must reside below snd_una completely */
1123 if (!after(end_seq, tp->snd_una))
1124 return 0;
1126 if (!before(start_seq, tp->undo_marker))
1127 return 1;
1129 /* Too old */
1130 if (!after(end_seq, tp->undo_marker))
1131 return 0;
1133 /* Undo_marker boundary crossing (overestimates a lot). Known already:
1134 * start_seq < undo_marker and end_seq >= undo_marker.
1136 return !before(start_seq, end_seq - tp->max_window);
1139 /* Check for lost retransmit. This superb idea is borrowed from "ratehalving".
1140 * Event "C". Later note: FACK people cheated me again 8), we have to account
1141 * for reordering! Ugly, but should help.
1143 * Search retransmitted skbs from write_queue that were sent when snd_nxt was
1144 * less than what is now known to be received by the other end (derived from
1145 * highest SACK block). Also calculate the lowest snd_nxt among the remaining
1146 * retransmitted skbs to avoid some costly processing per ACKs.
1148 static void tcp_mark_lost_retrans(struct sock *sk)
1150 const struct inet_connection_sock *icsk = inet_csk(sk);
1151 struct tcp_sock *tp = tcp_sk(sk);
1152 struct sk_buff *skb;
1153 int cnt = 0;
1154 u32 new_low_seq = tp->snd_nxt;
1155 u32 received_upto = tcp_highest_sack_seq(tp);
1157 if (!tcp_is_fack(tp) || !tp->retrans_out ||
1158 !after(received_upto, tp->lost_retrans_low) ||
1159 icsk->icsk_ca_state != TCP_CA_Recovery)
1160 return;
1162 tcp_for_write_queue(skb, sk) {
1163 u32 ack_seq = TCP_SKB_CB(skb)->ack_seq;
1165 if (skb == tcp_send_head(sk))
1166 break;
1167 if (cnt == tp->retrans_out)
1168 break;
1169 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1170 continue;
1172 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS))
1173 continue;
1175 /* TODO: We would like to get rid of tcp_is_fack(tp) only
1176 * constraint here (see above) but figuring out that at
1177 * least tp->reordering SACK blocks reside between ack_seq
1178 * and received_upto is not easy task to do cheaply with
1179 * the available datastructures.
1181 * Whether FACK should check here for tp->reordering segs
1182 * in-between one could argue for either way (it would be
1183 * rather simple to implement as we could count fack_count
1184 * during the walk and do tp->fackets_out - fack_count).
1186 if (after(received_upto, ack_seq)) {
1187 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
1188 tp->retrans_out -= tcp_skb_pcount(skb);
1190 tcp_skb_mark_lost_uncond_verify(tp, skb);
1191 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSTRETRANSMIT);
1192 } else {
1193 if (before(ack_seq, new_low_seq))
1194 new_low_seq = ack_seq;
1195 cnt += tcp_skb_pcount(skb);
1199 if (tp->retrans_out)
1200 tp->lost_retrans_low = new_low_seq;
1203 static int tcp_check_dsack(struct sock *sk, struct sk_buff *ack_skb,
1204 struct tcp_sack_block_wire *sp, int num_sacks,
1205 u32 prior_snd_una)
1207 struct tcp_sock *tp = tcp_sk(sk);
1208 u32 start_seq_0 = get_unaligned_be32(&sp[0].start_seq);
1209 u32 end_seq_0 = get_unaligned_be32(&sp[0].end_seq);
1210 int dup_sack = 0;
1212 if (before(start_seq_0, TCP_SKB_CB(ack_skb)->ack_seq)) {
1213 dup_sack = 1;
1214 tcp_dsack_seen(tp);
1215 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKRECV);
1216 } else if (num_sacks > 1) {
1217 u32 end_seq_1 = get_unaligned_be32(&sp[1].end_seq);
1218 u32 start_seq_1 = get_unaligned_be32(&sp[1].start_seq);
1220 if (!after(end_seq_0, end_seq_1) &&
1221 !before(start_seq_0, start_seq_1)) {
1222 dup_sack = 1;
1223 tcp_dsack_seen(tp);
1224 NET_INC_STATS_BH(sock_net(sk),
1225 LINUX_MIB_TCPDSACKOFORECV);
1229 /* D-SACK for already forgotten data... Do dumb counting. */
1230 if (dup_sack &&
1231 !after(end_seq_0, prior_snd_una) &&
1232 after(end_seq_0, tp->undo_marker))
1233 tp->undo_retrans--;
1235 return dup_sack;
1238 struct tcp_sacktag_state {
1239 int reord;
1240 int fack_count;
1241 int flag;
1244 /* Check if skb is fully within the SACK block. In presence of GSO skbs,
1245 * the incoming SACK may not exactly match but we can find smaller MSS
1246 * aligned portion of it that matches. Therefore we might need to fragment
1247 * which may fail and creates some hassle (caller must handle error case
1248 * returns).
1250 * FIXME: this could be merged to shift decision code
1252 static int tcp_match_skb_to_sack(struct sock *sk, struct sk_buff *skb,
1253 u32 start_seq, u32 end_seq)
1255 int in_sack, err;
1256 unsigned int pkt_len;
1257 unsigned int mss;
1259 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1260 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1262 if (tcp_skb_pcount(skb) > 1 && !in_sack &&
1263 after(TCP_SKB_CB(skb)->end_seq, start_seq)) {
1264 mss = tcp_skb_mss(skb);
1265 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1267 if (!in_sack) {
1268 pkt_len = start_seq - TCP_SKB_CB(skb)->seq;
1269 if (pkt_len < mss)
1270 pkt_len = mss;
1271 } else {
1272 pkt_len = end_seq - TCP_SKB_CB(skb)->seq;
1273 if (pkt_len < mss)
1274 return -EINVAL;
1277 /* Round if necessary so that SACKs cover only full MSSes
1278 * and/or the remaining small portion (if present)
1280 if (pkt_len > mss) {
1281 unsigned int new_len = (pkt_len / mss) * mss;
1282 if (!in_sack && new_len < pkt_len) {
1283 new_len += mss;
1284 if (new_len > skb->len)
1285 return 0;
1287 pkt_len = new_len;
1289 err = tcp_fragment(sk, skb, pkt_len, mss);
1290 if (err < 0)
1291 return err;
1294 return in_sack;
1297 static u8 tcp_sacktag_one(struct sk_buff *skb, struct sock *sk,
1298 struct tcp_sacktag_state *state,
1299 int dup_sack, int pcount)
1301 struct tcp_sock *tp = tcp_sk(sk);
1302 u8 sacked = TCP_SKB_CB(skb)->sacked;
1303 int fack_count = state->fack_count;
1305 /* Account D-SACK for retransmitted packet. */
1306 if (dup_sack && (sacked & TCPCB_RETRANS)) {
1307 if (after(TCP_SKB_CB(skb)->end_seq, tp->undo_marker))
1308 tp->undo_retrans--;
1309 if (sacked & TCPCB_SACKED_ACKED)
1310 state->reord = min(fack_count, state->reord);
1313 /* Nothing to do; acked frame is about to be dropped (was ACKed). */
1314 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1315 return sacked;
1317 if (!(sacked & TCPCB_SACKED_ACKED)) {
1318 if (sacked & TCPCB_SACKED_RETRANS) {
1319 /* If the segment is not tagged as lost,
1320 * we do not clear RETRANS, believing
1321 * that retransmission is still in flight.
1323 if (sacked & TCPCB_LOST) {
1324 sacked &= ~(TCPCB_LOST|TCPCB_SACKED_RETRANS);
1325 tp->lost_out -= pcount;
1326 tp->retrans_out -= pcount;
1328 } else {
1329 if (!(sacked & TCPCB_RETRANS)) {
1330 /* New sack for not retransmitted frame,
1331 * which was in hole. It is reordering.
1333 if (before(TCP_SKB_CB(skb)->seq,
1334 tcp_highest_sack_seq(tp)))
1335 state->reord = min(fack_count,
1336 state->reord);
1338 /* SACK enhanced F-RTO (RFC4138; Appendix B) */
1339 if (!after(TCP_SKB_CB(skb)->end_seq, tp->frto_highmark))
1340 state->flag |= FLAG_ONLY_ORIG_SACKED;
1343 if (sacked & TCPCB_LOST) {
1344 sacked &= ~TCPCB_LOST;
1345 tp->lost_out -= pcount;
1349 sacked |= TCPCB_SACKED_ACKED;
1350 state->flag |= FLAG_DATA_SACKED;
1351 tp->sacked_out += pcount;
1353 fack_count += pcount;
1355 /* Lost marker hint past SACKed? Tweak RFC3517 cnt */
1356 if (!tcp_is_fack(tp) && (tp->lost_skb_hint != NULL) &&
1357 before(TCP_SKB_CB(skb)->seq,
1358 TCP_SKB_CB(tp->lost_skb_hint)->seq))
1359 tp->lost_cnt_hint += pcount;
1361 if (fack_count > tp->fackets_out)
1362 tp->fackets_out = fack_count;
1365 /* D-SACK. We can detect redundant retransmission in S|R and plain R
1366 * frames and clear it. undo_retrans is decreased above, L|R frames
1367 * are accounted above as well.
1369 if (dup_sack && (sacked & TCPCB_SACKED_RETRANS)) {
1370 sacked &= ~TCPCB_SACKED_RETRANS;
1371 tp->retrans_out -= pcount;
1374 return sacked;
1377 static int tcp_shifted_skb(struct sock *sk, struct sk_buff *skb,
1378 struct tcp_sacktag_state *state,
1379 unsigned int pcount, int shifted, int mss,
1380 int dup_sack)
1382 struct tcp_sock *tp = tcp_sk(sk);
1383 struct sk_buff *prev = tcp_write_queue_prev(sk, skb);
1385 BUG_ON(!pcount);
1387 /* Tweak before seqno plays */
1388 if (!tcp_is_fack(tp) && tcp_is_sack(tp) && tp->lost_skb_hint &&
1389 !before(TCP_SKB_CB(tp->lost_skb_hint)->seq, TCP_SKB_CB(skb)->seq))
1390 tp->lost_cnt_hint += pcount;
1392 TCP_SKB_CB(prev)->end_seq += shifted;
1393 TCP_SKB_CB(skb)->seq += shifted;
1395 skb_shinfo(prev)->gso_segs += pcount;
1396 BUG_ON(skb_shinfo(skb)->gso_segs < pcount);
1397 skb_shinfo(skb)->gso_segs -= pcount;
1399 /* When we're adding to gso_segs == 1, gso_size will be zero,
1400 * in theory this shouldn't be necessary but as long as DSACK
1401 * code can come after this skb later on it's better to keep
1402 * setting gso_size to something.
1404 if (!skb_shinfo(prev)->gso_size) {
1405 skb_shinfo(prev)->gso_size = mss;
1406 skb_shinfo(prev)->gso_type = sk->sk_gso_type;
1409 /* CHECKME: To clear or not to clear? Mimics normal skb currently */
1410 if (skb_shinfo(skb)->gso_segs <= 1) {
1411 skb_shinfo(skb)->gso_size = 0;
1412 skb_shinfo(skb)->gso_type = 0;
1415 /* We discard results */
1416 tcp_sacktag_one(skb, sk, state, dup_sack, pcount);
1418 /* Difference in this won't matter, both ACKed by the same cumul. ACK */
1419 TCP_SKB_CB(prev)->sacked |= (TCP_SKB_CB(skb)->sacked & TCPCB_EVER_RETRANS);
1421 if (skb->len > 0) {
1422 BUG_ON(!tcp_skb_pcount(skb));
1423 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTED);
1424 return 0;
1427 /* Whole SKB was eaten :-) */
1429 if (skb == tp->retransmit_skb_hint)
1430 tp->retransmit_skb_hint = prev;
1431 if (skb == tp->scoreboard_skb_hint)
1432 tp->scoreboard_skb_hint = prev;
1433 if (skb == tp->lost_skb_hint) {
1434 tp->lost_skb_hint = prev;
1435 tp->lost_cnt_hint -= tcp_skb_pcount(prev);
1438 TCP_SKB_CB(skb)->flags |= TCP_SKB_CB(prev)->flags;
1439 if (skb == tcp_highest_sack(sk))
1440 tcp_advance_highest_sack(sk, skb);
1442 tcp_unlink_write_queue(skb, sk);
1443 sk_wmem_free_skb(sk, skb);
1445 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKMERGED);
1447 return 1;
1450 /* I wish gso_size would have a bit more sane initialization than
1451 * something-or-zero which complicates things
1453 static int tcp_skb_seglen(struct sk_buff *skb)
1455 return tcp_skb_pcount(skb) == 1 ? skb->len : tcp_skb_mss(skb);
1458 /* Shifting pages past head area doesn't work */
1459 static int skb_can_shift(struct sk_buff *skb)
1461 return !skb_headlen(skb) && skb_is_nonlinear(skb);
1464 /* Try collapsing SACK blocks spanning across multiple skbs to a single
1465 * skb.
1467 static struct sk_buff *tcp_shift_skb_data(struct sock *sk, struct sk_buff *skb,
1468 struct tcp_sacktag_state *state,
1469 u32 start_seq, u32 end_seq,
1470 int dup_sack)
1472 struct tcp_sock *tp = tcp_sk(sk);
1473 struct sk_buff *prev;
1474 int mss;
1475 int pcount = 0;
1476 int len;
1477 int in_sack;
1479 if (!sk_can_gso(sk))
1480 goto fallback;
1482 /* Normally R but no L won't result in plain S */
1483 if (!dup_sack &&
1484 (TCP_SKB_CB(skb)->sacked & (TCPCB_LOST|TCPCB_SACKED_RETRANS)) == TCPCB_SACKED_RETRANS)
1485 goto fallback;
1486 if (!skb_can_shift(skb))
1487 goto fallback;
1488 /* This frame is about to be dropped (was ACKed). */
1489 if (!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una))
1490 goto fallback;
1492 /* Can only happen with delayed DSACK + discard craziness */
1493 if (unlikely(skb == tcp_write_queue_head(sk)))
1494 goto fallback;
1495 prev = tcp_write_queue_prev(sk, skb);
1497 if ((TCP_SKB_CB(prev)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED)
1498 goto fallback;
1500 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq) &&
1501 !before(end_seq, TCP_SKB_CB(skb)->end_seq);
1503 if (in_sack) {
1504 len = skb->len;
1505 pcount = tcp_skb_pcount(skb);
1506 mss = tcp_skb_seglen(skb);
1508 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1509 * drop this restriction as unnecessary
1511 if (mss != tcp_skb_seglen(prev))
1512 goto fallback;
1513 } else {
1514 if (!after(TCP_SKB_CB(skb)->end_seq, start_seq))
1515 goto noop;
1516 /* CHECKME: This is non-MSS split case only?, this will
1517 * cause skipped skbs due to advancing loop btw, original
1518 * has that feature too
1520 if (tcp_skb_pcount(skb) <= 1)
1521 goto noop;
1523 in_sack = !after(start_seq, TCP_SKB_CB(skb)->seq);
1524 if (!in_sack) {
1525 /* TODO: head merge to next could be attempted here
1526 * if (!after(TCP_SKB_CB(skb)->end_seq, end_seq)),
1527 * though it might not be worth of the additional hassle
1529 * ...we can probably just fallback to what was done
1530 * previously. We could try merging non-SACKed ones
1531 * as well but it probably isn't going to buy off
1532 * because later SACKs might again split them, and
1533 * it would make skb timestamp tracking considerably
1534 * harder problem.
1536 goto fallback;
1539 len = end_seq - TCP_SKB_CB(skb)->seq;
1540 BUG_ON(len < 0);
1541 BUG_ON(len > skb->len);
1543 /* MSS boundaries should be honoured or else pcount will
1544 * severely break even though it makes things bit trickier.
1545 * Optimize common case to avoid most of the divides
1547 mss = tcp_skb_mss(skb);
1549 /* TODO: Fix DSACKs to not fragment already SACKed and we can
1550 * drop this restriction as unnecessary
1552 if (mss != tcp_skb_seglen(prev))
1553 goto fallback;
1555 if (len == mss) {
1556 pcount = 1;
1557 } else if (len < mss) {
1558 goto noop;
1559 } else {
1560 pcount = len / mss;
1561 len = pcount * mss;
1565 if (!skb_shift(prev, skb, len))
1566 goto fallback;
1567 if (!tcp_shifted_skb(sk, skb, state, pcount, len, mss, dup_sack))
1568 goto out;
1570 /* Hole filled allows collapsing with the next as well, this is very
1571 * useful when hole on every nth skb pattern happens
1573 if (prev == tcp_write_queue_tail(sk))
1574 goto out;
1575 skb = tcp_write_queue_next(sk, prev);
1577 if (!skb_can_shift(skb) ||
1578 (skb == tcp_send_head(sk)) ||
1579 ((TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) != TCPCB_SACKED_ACKED) ||
1580 (mss != tcp_skb_seglen(skb)))
1581 goto out;
1583 len = skb->len;
1584 if (skb_shift(prev, skb, len)) {
1585 pcount += tcp_skb_pcount(skb);
1586 tcp_shifted_skb(sk, skb, state, tcp_skb_pcount(skb), len, mss, 0);
1589 out:
1590 state->fack_count += pcount;
1591 return prev;
1593 noop:
1594 return skb;
1596 fallback:
1597 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SACKSHIFTFALLBACK);
1598 return NULL;
1601 static struct sk_buff *tcp_sacktag_walk(struct sk_buff *skb, struct sock *sk,
1602 struct tcp_sack_block *next_dup,
1603 struct tcp_sacktag_state *state,
1604 u32 start_seq, u32 end_seq,
1605 int dup_sack_in)
1607 struct tcp_sock *tp = tcp_sk(sk);
1608 struct sk_buff *tmp;
1610 tcp_for_write_queue_from(skb, sk) {
1611 int in_sack = 0;
1612 int dup_sack = dup_sack_in;
1614 if (skb == tcp_send_head(sk))
1615 break;
1617 /* queue is in-order => we can short-circuit the walk early */
1618 if (!before(TCP_SKB_CB(skb)->seq, end_seq))
1619 break;
1621 if ((next_dup != NULL) &&
1622 before(TCP_SKB_CB(skb)->seq, next_dup->end_seq)) {
1623 in_sack = tcp_match_skb_to_sack(sk, skb,
1624 next_dup->start_seq,
1625 next_dup->end_seq);
1626 if (in_sack > 0)
1627 dup_sack = 1;
1630 /* skb reference here is a bit tricky to get right, since
1631 * shifting can eat and free both this skb and the next,
1632 * so not even _safe variant of the loop is enough.
1634 if (in_sack <= 0) {
1635 tmp = tcp_shift_skb_data(sk, skb, state,
1636 start_seq, end_seq, dup_sack);
1637 if (tmp != NULL) {
1638 if (tmp != skb) {
1639 skb = tmp;
1640 continue;
1643 in_sack = 0;
1644 } else {
1645 in_sack = tcp_match_skb_to_sack(sk, skb,
1646 start_seq,
1647 end_seq);
1651 if (unlikely(in_sack < 0))
1652 break;
1654 if (in_sack) {
1655 TCP_SKB_CB(skb)->sacked = tcp_sacktag_one(skb, sk,
1656 state,
1657 dup_sack,
1658 tcp_skb_pcount(skb));
1660 if (!before(TCP_SKB_CB(skb)->seq,
1661 tcp_highest_sack_seq(tp)))
1662 tcp_advance_highest_sack(sk, skb);
1665 state->fack_count += tcp_skb_pcount(skb);
1667 return skb;
1670 /* Avoid all extra work that is being done by sacktag while walking in
1671 * a normal way
1673 static struct sk_buff *tcp_sacktag_skip(struct sk_buff *skb, struct sock *sk,
1674 struct tcp_sacktag_state *state,
1675 u32 skip_to_seq)
1677 tcp_for_write_queue_from(skb, sk) {
1678 if (skb == tcp_send_head(sk))
1679 break;
1681 if (after(TCP_SKB_CB(skb)->end_seq, skip_to_seq))
1682 break;
1684 state->fack_count += tcp_skb_pcount(skb);
1686 return skb;
1689 static struct sk_buff *tcp_maybe_skipping_dsack(struct sk_buff *skb,
1690 struct sock *sk,
1691 struct tcp_sack_block *next_dup,
1692 struct tcp_sacktag_state *state,
1693 u32 skip_to_seq)
1695 if (next_dup == NULL)
1696 return skb;
1698 if (before(next_dup->start_seq, skip_to_seq)) {
1699 skb = tcp_sacktag_skip(skb, sk, state, next_dup->start_seq);
1700 skb = tcp_sacktag_walk(skb, sk, NULL, state,
1701 next_dup->start_seq, next_dup->end_seq,
1705 return skb;
1708 static int tcp_sack_cache_ok(struct tcp_sock *tp, struct tcp_sack_block *cache)
1710 return cache < tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1713 static int
1714 tcp_sacktag_write_queue(struct sock *sk, struct sk_buff *ack_skb,
1715 u32 prior_snd_una)
1717 const struct inet_connection_sock *icsk = inet_csk(sk);
1718 struct tcp_sock *tp = tcp_sk(sk);
1719 unsigned char *ptr = (skb_transport_header(ack_skb) +
1720 TCP_SKB_CB(ack_skb)->sacked);
1721 struct tcp_sack_block_wire *sp_wire = (struct tcp_sack_block_wire *)(ptr+2);
1722 struct tcp_sack_block sp[TCP_NUM_SACKS];
1723 struct tcp_sack_block *cache;
1724 struct tcp_sacktag_state state;
1725 struct sk_buff *skb;
1726 int num_sacks = min(TCP_NUM_SACKS, (ptr[1] - TCPOLEN_SACK_BASE) >> 3);
1727 int used_sacks;
1728 int found_dup_sack = 0;
1729 int i, j;
1730 int first_sack_index;
1732 state.flag = 0;
1733 state.reord = tp->packets_out;
1735 if (!tp->sacked_out) {
1736 if (WARN_ON(tp->fackets_out))
1737 tp->fackets_out = 0;
1738 tcp_highest_sack_reset(sk);
1741 found_dup_sack = tcp_check_dsack(sk, ack_skb, sp_wire,
1742 num_sacks, prior_snd_una);
1743 if (found_dup_sack)
1744 state.flag |= FLAG_DSACKING_ACK;
1746 /* Eliminate too old ACKs, but take into
1747 * account more or less fresh ones, they can
1748 * contain valid SACK info.
1750 if (before(TCP_SKB_CB(ack_skb)->ack_seq, prior_snd_una - tp->max_window))
1751 return 0;
1753 if (!tp->packets_out)
1754 goto out;
1756 used_sacks = 0;
1757 first_sack_index = 0;
1758 for (i = 0; i < num_sacks; i++) {
1759 int dup_sack = !i && found_dup_sack;
1761 sp[used_sacks].start_seq = get_unaligned_be32(&sp_wire[i].start_seq);
1762 sp[used_sacks].end_seq = get_unaligned_be32(&sp_wire[i].end_seq);
1764 if (!tcp_is_sackblock_valid(tp, dup_sack,
1765 sp[used_sacks].start_seq,
1766 sp[used_sacks].end_seq)) {
1767 int mib_idx;
1769 if (dup_sack) {
1770 if (!tp->undo_marker)
1771 mib_idx = LINUX_MIB_TCPDSACKIGNOREDNOUNDO;
1772 else
1773 mib_idx = LINUX_MIB_TCPDSACKIGNOREDOLD;
1774 } else {
1775 /* Don't count olds caused by ACK reordering */
1776 if ((TCP_SKB_CB(ack_skb)->ack_seq != tp->snd_una) &&
1777 !after(sp[used_sacks].end_seq, tp->snd_una))
1778 continue;
1779 mib_idx = LINUX_MIB_TCPSACKDISCARD;
1782 NET_INC_STATS_BH(sock_net(sk), mib_idx);
1783 if (i == 0)
1784 first_sack_index = -1;
1785 continue;
1788 /* Ignore very old stuff early */
1789 if (!after(sp[used_sacks].end_seq, prior_snd_una))
1790 continue;
1792 used_sacks++;
1795 /* order SACK blocks to allow in order walk of the retrans queue */
1796 for (i = used_sacks - 1; i > 0; i--) {
1797 for (j = 0; j < i; j++) {
1798 if (after(sp[j].start_seq, sp[j + 1].start_seq)) {
1799 swap(sp[j], sp[j + 1]);
1801 /* Track where the first SACK block goes to */
1802 if (j == first_sack_index)
1803 first_sack_index = j + 1;
1808 skb = tcp_write_queue_head(sk);
1809 state.fack_count = 0;
1810 i = 0;
1812 if (!tp->sacked_out) {
1813 /* It's already past, so skip checking against it */
1814 cache = tp->recv_sack_cache + ARRAY_SIZE(tp->recv_sack_cache);
1815 } else {
1816 cache = tp->recv_sack_cache;
1817 /* Skip empty blocks in at head of the cache */
1818 while (tcp_sack_cache_ok(tp, cache) && !cache->start_seq &&
1819 !cache->end_seq)
1820 cache++;
1823 while (i < used_sacks) {
1824 u32 start_seq = sp[i].start_seq;
1825 u32 end_seq = sp[i].end_seq;
1826 int dup_sack = (found_dup_sack && (i == first_sack_index));
1827 struct tcp_sack_block *next_dup = NULL;
1829 if (found_dup_sack && ((i + 1) == first_sack_index))
1830 next_dup = &sp[i + 1];
1832 /* Event "B" in the comment above. */
1833 if (after(end_seq, tp->high_seq))
1834 state.flag |= FLAG_DATA_LOST;
1836 /* Skip too early cached blocks */
1837 while (tcp_sack_cache_ok(tp, cache) &&
1838 !before(start_seq, cache->end_seq))
1839 cache++;
1841 /* Can skip some work by looking recv_sack_cache? */
1842 if (tcp_sack_cache_ok(tp, cache) && !dup_sack &&
1843 after(end_seq, cache->start_seq)) {
1845 /* Head todo? */
1846 if (before(start_seq, cache->start_seq)) {
1847 skb = tcp_sacktag_skip(skb, sk, &state,
1848 start_seq);
1849 skb = tcp_sacktag_walk(skb, sk, next_dup,
1850 &state,
1851 start_seq,
1852 cache->start_seq,
1853 dup_sack);
1856 /* Rest of the block already fully processed? */
1857 if (!after(end_seq, cache->end_seq))
1858 goto advance_sp;
1860 skb = tcp_maybe_skipping_dsack(skb, sk, next_dup,
1861 &state,
1862 cache->end_seq);
1864 /* ...tail remains todo... */
1865 if (tcp_highest_sack_seq(tp) == cache->end_seq) {
1866 /* ...but better entrypoint exists! */
1867 skb = tcp_highest_sack(sk);
1868 if (skb == NULL)
1869 break;
1870 state.fack_count = tp->fackets_out;
1871 cache++;
1872 goto walk;
1875 skb = tcp_sacktag_skip(skb, sk, &state, cache->end_seq);
1876 /* Check overlap against next cached too (past this one already) */
1877 cache++;
1878 continue;
1881 if (!before(start_seq, tcp_highest_sack_seq(tp))) {
1882 skb = tcp_highest_sack(sk);
1883 if (skb == NULL)
1884 break;
1885 state.fack_count = tp->fackets_out;
1887 skb = tcp_sacktag_skip(skb, sk, &state, start_seq);
1889 walk:
1890 skb = tcp_sacktag_walk(skb, sk, next_dup, &state,
1891 start_seq, end_seq, dup_sack);
1893 advance_sp:
1894 /* SACK enhanced FRTO (RFC4138, Appendix B): Clearing correct
1895 * due to in-order walk
1897 if (after(end_seq, tp->frto_highmark))
1898 state.flag &= ~FLAG_ONLY_ORIG_SACKED;
1900 i++;
1903 /* Clear the head of the cache sack blocks so we can skip it next time */
1904 for (i = 0; i < ARRAY_SIZE(tp->recv_sack_cache) - used_sacks; i++) {
1905 tp->recv_sack_cache[i].start_seq = 0;
1906 tp->recv_sack_cache[i].end_seq = 0;
1908 for (j = 0; j < used_sacks; j++)
1909 tp->recv_sack_cache[i++] = sp[j];
1911 tcp_mark_lost_retrans(sk);
1913 tcp_verify_left_out(tp);
1915 if ((state.reord < tp->fackets_out) &&
1916 ((icsk->icsk_ca_state != TCP_CA_Loss) || tp->undo_marker) &&
1917 (!tp->frto_highmark || after(tp->snd_una, tp->frto_highmark)))
1918 tcp_update_reordering(sk, tp->fackets_out - state.reord, 0);
1920 out:
1922 #if FASTRETRANS_DEBUG > 0
1923 WARN_ON((int)tp->sacked_out < 0);
1924 WARN_ON((int)tp->lost_out < 0);
1925 WARN_ON((int)tp->retrans_out < 0);
1926 WARN_ON((int)tcp_packets_in_flight(tp) < 0);
1927 #endif
1928 return state.flag;
1931 /* Limits sacked_out so that sum with lost_out isn't ever larger than
1932 * packets_out. Returns zero if sacked_out adjustement wasn't necessary.
1934 static int tcp_limit_reno_sacked(struct tcp_sock *tp)
1936 u32 holes;
1938 holes = max(tp->lost_out, 1U);
1939 holes = min(holes, tp->packets_out);
1941 if ((tp->sacked_out + holes) > tp->packets_out) {
1942 tp->sacked_out = tp->packets_out - holes;
1943 return 1;
1945 return 0;
1948 /* If we receive more dupacks than we expected counting segments
1949 * in assumption of absent reordering, interpret this as reordering.
1950 * The only another reason could be bug in receiver TCP.
1952 static void tcp_check_reno_reordering(struct sock *sk, const int addend)
1954 struct tcp_sock *tp = tcp_sk(sk);
1955 if (tcp_limit_reno_sacked(tp))
1956 tcp_update_reordering(sk, tp->packets_out + addend, 0);
1959 /* Emulate SACKs for SACKless connection: account for a new dupack. */
1961 static void tcp_add_reno_sack(struct sock *sk)
1963 struct tcp_sock *tp = tcp_sk(sk);
1964 tp->sacked_out++;
1965 tcp_check_reno_reordering(sk, 0);
1966 tcp_verify_left_out(tp);
1969 /* Account for ACK, ACKing some data in Reno Recovery phase. */
1971 static void tcp_remove_reno_sacks(struct sock *sk, int acked)
1973 struct tcp_sock *tp = tcp_sk(sk);
1975 if (acked > 0) {
1976 /* One ACK acked hole. The rest eat duplicate ACKs. */
1977 if (acked - 1 >= tp->sacked_out)
1978 tp->sacked_out = 0;
1979 else
1980 tp->sacked_out -= acked - 1;
1982 tcp_check_reno_reordering(sk, acked);
1983 tcp_verify_left_out(tp);
1986 static inline void tcp_reset_reno_sack(struct tcp_sock *tp)
1988 tp->sacked_out = 0;
1991 static int tcp_is_sackfrto(const struct tcp_sock *tp)
1993 return (sysctl_tcp_frto == 0x2) && !tcp_is_reno(tp);
1996 /* F-RTO can only be used if TCP has never retransmitted anything other than
1997 * head (SACK enhanced variant from Appendix B of RFC4138 is more robust here)
1999 int tcp_use_frto(struct sock *sk)
2001 const struct tcp_sock *tp = tcp_sk(sk);
2002 const struct inet_connection_sock *icsk = inet_csk(sk);
2003 struct sk_buff *skb;
2005 if (!sysctl_tcp_frto)
2006 return 0;
2008 /* MTU probe and F-RTO won't really play nicely along currently */
2009 if (icsk->icsk_mtup.probe_size)
2010 return 0;
2012 if (tcp_is_sackfrto(tp))
2013 return 1;
2015 /* Avoid expensive walking of rexmit queue if possible */
2016 if (tp->retrans_out > 1)
2017 return 0;
2019 skb = tcp_write_queue_head(sk);
2020 if (tcp_skb_is_last(sk, skb))
2021 return 1;
2022 skb = tcp_write_queue_next(sk, skb); /* Skips head */
2023 tcp_for_write_queue_from(skb, sk) {
2024 if (skb == tcp_send_head(sk))
2025 break;
2026 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2027 return 0;
2028 /* Short-circuit when first non-SACKed skb has been checked */
2029 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2030 break;
2032 return 1;
2035 /* RTO occurred, but do not yet enter Loss state. Instead, defer RTO
2036 * recovery a bit and use heuristics in tcp_process_frto() to detect if
2037 * the RTO was spurious. Only clear SACKED_RETRANS of the head here to
2038 * keep retrans_out counting accurate (with SACK F-RTO, other than head
2039 * may still have that bit set); TCPCB_LOST and remaining SACKED_RETRANS
2040 * bits are handled if the Loss state is really to be entered (in
2041 * tcp_enter_frto_loss).
2043 * Do like tcp_enter_loss() would; when RTO expires the second time it
2044 * does:
2045 * "Reduce ssthresh if it has not yet been made inside this window."
2047 void tcp_enter_frto(struct sock *sk)
2049 const struct inet_connection_sock *icsk = inet_csk(sk);
2050 struct tcp_sock *tp = tcp_sk(sk);
2051 struct sk_buff *skb;
2053 if ((!tp->frto_counter && icsk->icsk_ca_state <= TCP_CA_Disorder) ||
2054 tp->snd_una == tp->high_seq ||
2055 ((icsk->icsk_ca_state == TCP_CA_Loss || tp->frto_counter) &&
2056 !icsk->icsk_retransmits)) {
2057 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2058 /* Our state is too optimistic in ssthresh() call because cwnd
2059 * is not reduced until tcp_enter_frto_loss() when previous F-RTO
2060 * recovery has not yet completed. Pattern would be this: RTO,
2061 * Cumulative ACK, RTO (2xRTO for the same segment does not end
2062 * up here twice).
2063 * RFC4138 should be more specific on what to do, even though
2064 * RTO is quite unlikely to occur after the first Cumulative ACK
2065 * due to back-off and complexity of triggering events ...
2067 if (tp->frto_counter) {
2068 u32 stored_cwnd;
2069 stored_cwnd = tp->snd_cwnd;
2070 tp->snd_cwnd = 2;
2071 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2072 tp->snd_cwnd = stored_cwnd;
2073 } else {
2074 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2076 /* ... in theory, cong.control module could do "any tricks" in
2077 * ssthresh(), which means that ca_state, lost bits and lost_out
2078 * counter would have to be faked before the call occurs. We
2079 * consider that too expensive, unlikely and hacky, so modules
2080 * using these in ssthresh() must deal these incompatibility
2081 * issues if they receives CA_EVENT_FRTO and frto_counter != 0
2083 tcp_ca_event(sk, CA_EVENT_FRTO);
2086 tp->undo_marker = tp->snd_una;
2087 tp->undo_retrans = 0;
2089 skb = tcp_write_queue_head(sk);
2090 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2091 tp->undo_marker = 0;
2092 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2093 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2094 tp->retrans_out -= tcp_skb_pcount(skb);
2096 tcp_verify_left_out(tp);
2098 /* Too bad if TCP was application limited */
2099 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2101 /* Earlier loss recovery underway (see RFC4138; Appendix B).
2102 * The last condition is necessary at least in tp->frto_counter case.
2104 if (tcp_is_sackfrto(tp) && (tp->frto_counter ||
2105 ((1 << icsk->icsk_ca_state) & (TCPF_CA_Recovery|TCPF_CA_Loss))) &&
2106 after(tp->high_seq, tp->snd_una)) {
2107 tp->frto_highmark = tp->high_seq;
2108 } else {
2109 tp->frto_highmark = tp->snd_nxt;
2111 tcp_set_ca_state(sk, TCP_CA_Disorder);
2112 tp->high_seq = tp->snd_nxt;
2113 tp->frto_counter = 1;
2116 /* Enter Loss state after F-RTO was applied. Dupack arrived after RTO,
2117 * which indicates that we should follow the traditional RTO recovery,
2118 * i.e. mark everything lost and do go-back-N retransmission.
2120 static void tcp_enter_frto_loss(struct sock *sk, int allowed_segments, int flag)
2122 struct tcp_sock *tp = tcp_sk(sk);
2123 struct sk_buff *skb;
2125 tp->lost_out = 0;
2126 tp->retrans_out = 0;
2127 if (tcp_is_reno(tp))
2128 tcp_reset_reno_sack(tp);
2130 tcp_for_write_queue(skb, sk) {
2131 if (skb == tcp_send_head(sk))
2132 break;
2134 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2136 * Count the retransmission made on RTO correctly (only when
2137 * waiting for the first ACK and did not get it)...
2139 if ((tp->frto_counter == 1) && !(flag & FLAG_DATA_ACKED)) {
2140 /* For some reason this R-bit might get cleared? */
2141 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS)
2142 tp->retrans_out += tcp_skb_pcount(skb);
2143 /* ...enter this if branch just for the first segment */
2144 flag |= FLAG_DATA_ACKED;
2145 } else {
2146 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2147 tp->undo_marker = 0;
2148 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2151 /* Marking forward transmissions that were made after RTO lost
2152 * can cause unnecessary retransmissions in some scenarios,
2153 * SACK blocks will mitigate that in some but not in all cases.
2154 * We used to not mark them but it was causing break-ups with
2155 * receivers that do only in-order receival.
2157 * TODO: we could detect presence of such receiver and select
2158 * different behavior per flow.
2160 if (!(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2161 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2162 tp->lost_out += tcp_skb_pcount(skb);
2163 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2166 tcp_verify_left_out(tp);
2168 tp->snd_cwnd = tcp_packets_in_flight(tp) + allowed_segments;
2169 tp->snd_cwnd_cnt = 0;
2170 tp->snd_cwnd_stamp = tcp_time_stamp;
2171 tp->frto_counter = 0;
2172 tp->bytes_acked = 0;
2174 tp->reordering = min_t(unsigned int, tp->reordering,
2175 sysctl_tcp_reordering);
2176 tcp_set_ca_state(sk, TCP_CA_Loss);
2177 tp->high_seq = tp->snd_nxt;
2178 TCP_ECN_queue_cwr(tp);
2180 tcp_clear_all_retrans_hints(tp);
2183 static void tcp_clear_retrans_partial(struct tcp_sock *tp)
2185 tp->retrans_out = 0;
2186 tp->lost_out = 0;
2188 tp->undo_marker = 0;
2189 tp->undo_retrans = 0;
2192 void tcp_clear_retrans(struct tcp_sock *tp)
2194 tcp_clear_retrans_partial(tp);
2196 tp->fackets_out = 0;
2197 tp->sacked_out = 0;
2200 /* Enter Loss state. If "how" is not zero, forget all SACK information
2201 * and reset tags completely, otherwise preserve SACKs. If receiver
2202 * dropped its ofo queue, we will know this due to reneging detection.
2204 void tcp_enter_loss(struct sock *sk, int how)
2206 const struct inet_connection_sock *icsk = inet_csk(sk);
2207 struct tcp_sock *tp = tcp_sk(sk);
2208 struct sk_buff *skb;
2210 /* Reduce ssthresh if it has not yet been made inside this window. */
2211 if (icsk->icsk_ca_state <= TCP_CA_Disorder || tp->snd_una == tp->high_seq ||
2212 (icsk->icsk_ca_state == TCP_CA_Loss && !icsk->icsk_retransmits)) {
2213 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2214 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
2215 tcp_ca_event(sk, CA_EVENT_LOSS);
2217 tp->snd_cwnd = 1;
2218 tp->snd_cwnd_cnt = 0;
2219 tp->snd_cwnd_stamp = tcp_time_stamp;
2221 tp->bytes_acked = 0;
2222 tcp_clear_retrans_partial(tp);
2224 if (tcp_is_reno(tp))
2225 tcp_reset_reno_sack(tp);
2227 if (!how) {
2228 /* Push undo marker, if it was plain RTO and nothing
2229 * was retransmitted. */
2230 tp->undo_marker = tp->snd_una;
2231 } else {
2232 tp->sacked_out = 0;
2233 tp->fackets_out = 0;
2235 tcp_clear_all_retrans_hints(tp);
2237 tcp_for_write_queue(skb, sk) {
2238 if (skb == tcp_send_head(sk))
2239 break;
2241 if (TCP_SKB_CB(skb)->sacked & TCPCB_RETRANS)
2242 tp->undo_marker = 0;
2243 TCP_SKB_CB(skb)->sacked &= (~TCPCB_TAGBITS)|TCPCB_SACKED_ACKED;
2244 if (!(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED) || how) {
2245 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_ACKED;
2246 TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
2247 tp->lost_out += tcp_skb_pcount(skb);
2248 tp->retransmit_high = TCP_SKB_CB(skb)->end_seq;
2251 tcp_verify_left_out(tp);
2253 tp->reordering = min_t(unsigned int, tp->reordering,
2254 sysctl_tcp_reordering);
2255 tcp_set_ca_state(sk, TCP_CA_Loss);
2256 tp->high_seq = tp->snd_nxt;
2257 TCP_ECN_queue_cwr(tp);
2258 /* Abort F-RTO algorithm if one is in progress */
2259 tp->frto_counter = 0;
2262 /* If ACK arrived pointing to a remembered SACK, it means that our
2263 * remembered SACKs do not reflect real state of receiver i.e.
2264 * receiver _host_ is heavily congested (or buggy).
2266 * Do processing similar to RTO timeout.
2268 static int tcp_check_sack_reneging(struct sock *sk, int flag)
2270 if (flag & FLAG_SACK_RENEGING) {
2271 struct inet_connection_sock *icsk = inet_csk(sk);
2272 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSACKRENEGING);
2274 tcp_enter_loss(sk, 1);
2275 icsk->icsk_retransmits++;
2276 tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
2277 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
2278 icsk->icsk_rto, TCP_RTO_MAX);
2279 return 1;
2281 return 0;
2284 static inline int tcp_fackets_out(struct tcp_sock *tp)
2286 return tcp_is_reno(tp) ? tp->sacked_out + 1 : tp->fackets_out;
2289 /* Heurestics to calculate number of duplicate ACKs. There's no dupACKs
2290 * counter when SACK is enabled (without SACK, sacked_out is used for
2291 * that purpose).
2293 * Instead, with FACK TCP uses fackets_out that includes both SACKed
2294 * segments up to the highest received SACK block so far and holes in
2295 * between them.
2297 * With reordering, holes may still be in flight, so RFC3517 recovery
2298 * uses pure sacked_out (total number of SACKed segments) even though
2299 * it violates the RFC that uses duplicate ACKs, often these are equal
2300 * but when e.g. out-of-window ACKs or packet duplication occurs,
2301 * they differ. Since neither occurs due to loss, TCP should really
2302 * ignore them.
2304 static inline int tcp_dupack_heurestics(struct tcp_sock *tp)
2306 return tcp_is_fack(tp) ? tp->fackets_out : tp->sacked_out + 1;
2309 static inline int tcp_skb_timedout(struct sock *sk, struct sk_buff *skb)
2311 return (tcp_time_stamp - TCP_SKB_CB(skb)->when > inet_csk(sk)->icsk_rto);
2314 static inline int tcp_head_timedout(struct sock *sk)
2316 struct tcp_sock *tp = tcp_sk(sk);
2318 return tp->packets_out &&
2319 tcp_skb_timedout(sk, tcp_write_queue_head(sk));
2322 /* Linux NewReno/SACK/FACK/ECN state machine.
2323 * --------------------------------------
2325 * "Open" Normal state, no dubious events, fast path.
2326 * "Disorder" In all the respects it is "Open",
2327 * but requires a bit more attention. It is entered when
2328 * we see some SACKs or dupacks. It is split of "Open"
2329 * mainly to move some processing from fast path to slow one.
2330 * "CWR" CWND was reduced due to some Congestion Notification event.
2331 * It can be ECN, ICMP source quench, local device congestion.
2332 * "Recovery" CWND was reduced, we are fast-retransmitting.
2333 * "Loss" CWND was reduced due to RTO timeout or SACK reneging.
2335 * tcp_fastretrans_alert() is entered:
2336 * - each incoming ACK, if state is not "Open"
2337 * - when arrived ACK is unusual, namely:
2338 * * SACK
2339 * * Duplicate ACK.
2340 * * ECN ECE.
2342 * Counting packets in flight is pretty simple.
2344 * in_flight = packets_out - left_out + retrans_out
2346 * packets_out is SND.NXT-SND.UNA counted in packets.
2348 * retrans_out is number of retransmitted segments.
2350 * left_out is number of segments left network, but not ACKed yet.
2352 * left_out = sacked_out + lost_out
2354 * sacked_out: Packets, which arrived to receiver out of order
2355 * and hence not ACKed. With SACKs this number is simply
2356 * amount of SACKed data. Even without SACKs
2357 * it is easy to give pretty reliable estimate of this number,
2358 * counting duplicate ACKs.
2360 * lost_out: Packets lost by network. TCP has no explicit
2361 * "loss notification" feedback from network (for now).
2362 * It means that this number can be only _guessed_.
2363 * Actually, it is the heuristics to predict lossage that
2364 * distinguishes different algorithms.
2366 * F.e. after RTO, when all the queue is considered as lost,
2367 * lost_out = packets_out and in_flight = retrans_out.
2369 * Essentially, we have now two algorithms counting
2370 * lost packets.
2372 * FACK: It is the simplest heuristics. As soon as we decided
2373 * that something is lost, we decide that _all_ not SACKed
2374 * packets until the most forward SACK are lost. I.e.
2375 * lost_out = fackets_out - sacked_out and left_out = fackets_out.
2376 * It is absolutely correct estimate, if network does not reorder
2377 * packets. And it loses any connection to reality when reordering
2378 * takes place. We use FACK by default until reordering
2379 * is suspected on the path to this destination.
2381 * NewReno: when Recovery is entered, we assume that one segment
2382 * is lost (classic Reno). While we are in Recovery and
2383 * a partial ACK arrives, we assume that one more packet
2384 * is lost (NewReno). This heuristics are the same in NewReno
2385 * and SACK.
2387 * Imagine, that's all! Forget about all this shamanism about CWND inflation
2388 * deflation etc. CWND is real congestion window, never inflated, changes
2389 * only according to classic VJ rules.
2391 * Really tricky (and requiring careful tuning) part of algorithm
2392 * is hidden in functions tcp_time_to_recover() and tcp_xmit_retransmit_queue().
2393 * The first determines the moment _when_ we should reduce CWND and,
2394 * hence, slow down forward transmission. In fact, it determines the moment
2395 * when we decide that hole is caused by loss, rather than by a reorder.
2397 * tcp_xmit_retransmit_queue() decides, _what_ we should retransmit to fill
2398 * holes, caused by lost packets.
2400 * And the most logically complicated part of algorithm is undo
2401 * heuristics. We detect false retransmits due to both too early
2402 * fast retransmit (reordering) and underestimated RTO, analyzing
2403 * timestamps and D-SACKs. When we detect that some segments were
2404 * retransmitted by mistake and CWND reduction was wrong, we undo
2405 * window reduction and abort recovery phase. This logic is hidden
2406 * inside several functions named tcp_try_undo_<something>.
2409 /* This function decides, when we should leave Disordered state
2410 * and enter Recovery phase, reducing congestion window.
2412 * Main question: may we further continue forward transmission
2413 * with the same cwnd?
2415 static int tcp_time_to_recover(struct sock *sk)
2417 struct tcp_sock *tp = tcp_sk(sk);
2418 __u32 packets_out;
2420 /* Do not perform any recovery during F-RTO algorithm */
2421 if (tp->frto_counter)
2422 return 0;
2424 /* Trick#1: The loss is proven. */
2425 if (tp->lost_out)
2426 return 1;
2428 /* Not-A-Trick#2 : Classic rule... */
2429 if (tcp_dupack_heurestics(tp) > tp->reordering)
2430 return 1;
2432 /* Trick#3 : when we use RFC2988 timer restart, fast
2433 * retransmit can be triggered by timeout of queue head.
2435 if (tcp_is_fack(tp) && tcp_head_timedout(sk))
2436 return 1;
2438 /* Trick#4: It is still not OK... But will it be useful to delay
2439 * recovery more?
2441 packets_out = tp->packets_out;
2442 if (packets_out <= tp->reordering &&
2443 tp->sacked_out >= max_t(__u32, packets_out/2, sysctl_tcp_reordering) &&
2444 !tcp_may_send_now(sk)) {
2445 /* We have nothing to send. This connection is limited
2446 * either by receiver window or by application.
2448 return 1;
2451 return 0;
2454 /* New heuristics: it is possible only after we switched to restart timer
2455 * each time when something is ACKed. Hence, we can detect timed out packets
2456 * during fast retransmit without falling to slow start.
2458 * Usefulness of this as is very questionable, since we should know which of
2459 * the segments is the next to timeout which is relatively expensive to find
2460 * in general case unless we add some data structure just for that. The
2461 * current approach certainly won't find the right one too often and when it
2462 * finally does find _something_ it usually marks large part of the window
2463 * right away (because a retransmission with a larger timestamp blocks the
2464 * loop from advancing). -ij
2466 static void tcp_timeout_skbs(struct sock *sk)
2468 struct tcp_sock *tp = tcp_sk(sk);
2469 struct sk_buff *skb;
2471 if (!tcp_is_fack(tp) || !tcp_head_timedout(sk))
2472 return;
2474 skb = tp->scoreboard_skb_hint;
2475 if (tp->scoreboard_skb_hint == NULL)
2476 skb = tcp_write_queue_head(sk);
2478 tcp_for_write_queue_from(skb, sk) {
2479 if (skb == tcp_send_head(sk))
2480 break;
2481 if (!tcp_skb_timedout(sk, skb))
2482 break;
2484 tcp_skb_mark_lost(tp, skb);
2487 tp->scoreboard_skb_hint = skb;
2489 tcp_verify_left_out(tp);
2492 /* Mark head of queue up as lost. With RFC3517 SACK, the packets is
2493 * is against sacked "cnt", otherwise it's against facked "cnt"
2495 static void tcp_mark_head_lost(struct sock *sk, int packets)
2497 struct tcp_sock *tp = tcp_sk(sk);
2498 struct sk_buff *skb;
2499 int cnt, oldcnt;
2500 int err;
2501 unsigned int mss;
2503 WARN_ON(packets > tp->packets_out);
2504 if (tp->lost_skb_hint) {
2505 skb = tp->lost_skb_hint;
2506 cnt = tp->lost_cnt_hint;
2507 } else {
2508 skb = tcp_write_queue_head(sk);
2509 cnt = 0;
2512 tcp_for_write_queue_from(skb, sk) {
2513 if (skb == tcp_send_head(sk))
2514 break;
2515 /* TODO: do this better */
2516 /* this is not the most efficient way to do this... */
2517 tp->lost_skb_hint = skb;
2518 tp->lost_cnt_hint = cnt;
2520 if (after(TCP_SKB_CB(skb)->end_seq, tp->high_seq))
2521 break;
2523 oldcnt = cnt;
2524 if (tcp_is_fack(tp) || tcp_is_reno(tp) ||
2525 (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
2526 cnt += tcp_skb_pcount(skb);
2528 if (cnt > packets) {
2529 if (tcp_is_sack(tp) || (oldcnt >= packets))
2530 break;
2532 mss = skb_shinfo(skb)->gso_size;
2533 err = tcp_fragment(sk, skb, (packets - oldcnt) * mss, mss);
2534 if (err < 0)
2535 break;
2536 cnt = packets;
2539 tcp_skb_mark_lost(tp, skb);
2541 tcp_verify_left_out(tp);
2544 /* Account newly detected lost packet(s) */
2546 static void tcp_update_scoreboard(struct sock *sk, int fast_rexmit)
2548 struct tcp_sock *tp = tcp_sk(sk);
2550 if (tcp_is_reno(tp)) {
2551 tcp_mark_head_lost(sk, 1);
2552 } else if (tcp_is_fack(tp)) {
2553 int lost = tp->fackets_out - tp->reordering;
2554 if (lost <= 0)
2555 lost = 1;
2556 tcp_mark_head_lost(sk, lost);
2557 } else {
2558 int sacked_upto = tp->sacked_out - tp->reordering;
2559 if (sacked_upto < fast_rexmit)
2560 sacked_upto = fast_rexmit;
2561 tcp_mark_head_lost(sk, sacked_upto);
2564 tcp_timeout_skbs(sk);
2567 /* CWND moderation, preventing bursts due to too big ACKs
2568 * in dubious situations.
2570 static inline void tcp_moderate_cwnd(struct tcp_sock *tp)
2572 tp->snd_cwnd = min(tp->snd_cwnd,
2573 tcp_packets_in_flight(tp) + tcp_max_burst(tp));
2574 tp->snd_cwnd_stamp = tcp_time_stamp;
2577 /* Lower bound on congestion window is slow start threshold
2578 * unless congestion avoidance choice decides to overide it.
2580 static inline u32 tcp_cwnd_min(const struct sock *sk)
2582 const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
2584 return ca_ops->min_cwnd ? ca_ops->min_cwnd(sk) : tcp_sk(sk)->snd_ssthresh;
2587 /* Decrease cwnd each second ack. */
2588 static void tcp_cwnd_down(struct sock *sk, int flag)
2590 struct tcp_sock *tp = tcp_sk(sk);
2591 int decr = tp->snd_cwnd_cnt + 1;
2593 if ((flag & (FLAG_ANY_PROGRESS | FLAG_DSACKING_ACK)) ||
2594 (tcp_is_reno(tp) && !(flag & FLAG_NOT_DUP))) {
2595 tp->snd_cwnd_cnt = decr & 1;
2596 decr >>= 1;
2598 if (decr && tp->snd_cwnd > tcp_cwnd_min(sk))
2599 tp->snd_cwnd -= decr;
2601 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) + 1);
2602 tp->snd_cwnd_stamp = tcp_time_stamp;
2606 /* Nothing was retransmitted or returned timestamp is less
2607 * than timestamp of the first retransmission.
2609 static inline int tcp_packet_delayed(struct tcp_sock *tp)
2611 return !tp->retrans_stamp ||
2612 (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
2613 before(tp->rx_opt.rcv_tsecr, tp->retrans_stamp));
2616 /* Undo procedures. */
2618 #if FASTRETRANS_DEBUG > 1
2619 static void DBGUNDO(struct sock *sk, const char *msg)
2621 struct tcp_sock *tp = tcp_sk(sk);
2622 struct inet_sock *inet = inet_sk(sk);
2624 if (sk->sk_family == AF_INET) {
2625 printk(KERN_DEBUG "Undo %s %pI4/%u c%u l%u ss%u/%u p%u\n",
2626 msg,
2627 &inet->daddr, ntohs(inet->dport),
2628 tp->snd_cwnd, tcp_left_out(tp),
2629 tp->snd_ssthresh, tp->prior_ssthresh,
2630 tp->packets_out);
2632 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
2633 else if (sk->sk_family == AF_INET6) {
2634 struct ipv6_pinfo *np = inet6_sk(sk);
2635 printk(KERN_DEBUG "Undo %s %pI6/%u c%u l%u ss%u/%u p%u\n",
2636 msg,
2637 &np->daddr, ntohs(inet->dport),
2638 tp->snd_cwnd, tcp_left_out(tp),
2639 tp->snd_ssthresh, tp->prior_ssthresh,
2640 tp->packets_out);
2642 #endif
2644 #else
2645 #define DBGUNDO(x...) do { } while (0)
2646 #endif
2648 static void tcp_undo_cwr(struct sock *sk, const int undo)
2650 struct tcp_sock *tp = tcp_sk(sk);
2652 if (tp->prior_ssthresh) {
2653 const struct inet_connection_sock *icsk = inet_csk(sk);
2655 if (icsk->icsk_ca_ops->undo_cwnd)
2656 tp->snd_cwnd = icsk->icsk_ca_ops->undo_cwnd(sk);
2657 else
2658 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh << 1);
2660 if (undo && tp->prior_ssthresh > tp->snd_ssthresh) {
2661 tp->snd_ssthresh = tp->prior_ssthresh;
2662 TCP_ECN_withdraw_cwr(tp);
2664 } else {
2665 tp->snd_cwnd = max(tp->snd_cwnd, tp->snd_ssthresh);
2667 tcp_moderate_cwnd(tp);
2668 tp->snd_cwnd_stamp = tcp_time_stamp;
2671 static inline int tcp_may_undo(struct tcp_sock *tp)
2673 return tp->undo_marker && (!tp->undo_retrans || tcp_packet_delayed(tp));
2676 /* People celebrate: "We love our President!" */
2677 static int tcp_try_undo_recovery(struct sock *sk)
2679 struct tcp_sock *tp = tcp_sk(sk);
2681 if (tcp_may_undo(tp)) {
2682 int mib_idx;
2684 /* Happy end! We did not retransmit anything
2685 * or our original transmission succeeded.
2687 DBGUNDO(sk, inet_csk(sk)->icsk_ca_state == TCP_CA_Loss ? "loss" : "retrans");
2688 tcp_undo_cwr(sk, 1);
2689 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Loss)
2690 mib_idx = LINUX_MIB_TCPLOSSUNDO;
2691 else
2692 mib_idx = LINUX_MIB_TCPFULLUNDO;
2694 NET_INC_STATS_BH(sock_net(sk), mib_idx);
2695 tp->undo_marker = 0;
2697 if (tp->snd_una == tp->high_seq && tcp_is_reno(tp)) {
2698 /* Hold old state until something *above* high_seq
2699 * is ACKed. For Reno it is MUST to prevent false
2700 * fast retransmits (RFC2582). SACK TCP is safe. */
2701 tcp_moderate_cwnd(tp);
2702 return 1;
2704 tcp_set_ca_state(sk, TCP_CA_Open);
2705 return 0;
2708 /* Try to undo cwnd reduction, because D-SACKs acked all retransmitted data */
2709 static void tcp_try_undo_dsack(struct sock *sk)
2711 struct tcp_sock *tp = tcp_sk(sk);
2713 if (tp->undo_marker && !tp->undo_retrans) {
2714 DBGUNDO(sk, "D-SACK");
2715 tcp_undo_cwr(sk, 1);
2716 tp->undo_marker = 0;
2717 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPDSACKUNDO);
2721 /* Undo during fast recovery after partial ACK. */
2723 static int tcp_try_undo_partial(struct sock *sk, int acked)
2725 struct tcp_sock *tp = tcp_sk(sk);
2726 /* Partial ACK arrived. Force Hoe's retransmit. */
2727 int failed = tcp_is_reno(tp) || (tcp_fackets_out(tp) > tp->reordering);
2729 if (tcp_may_undo(tp)) {
2730 /* Plain luck! Hole if filled with delayed
2731 * packet, rather than with a retransmit.
2733 if (tp->retrans_out == 0)
2734 tp->retrans_stamp = 0;
2736 tcp_update_reordering(sk, tcp_fackets_out(tp) + acked, 1);
2738 DBGUNDO(sk, "Hoe");
2739 tcp_undo_cwr(sk, 0);
2740 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPARTIALUNDO);
2742 /* So... Do not make Hoe's retransmit yet.
2743 * If the first packet was delayed, the rest
2744 * ones are most probably delayed as well.
2746 failed = 0;
2748 return failed;
2751 /* Undo during loss recovery after partial ACK. */
2752 static int tcp_try_undo_loss(struct sock *sk)
2754 struct tcp_sock *tp = tcp_sk(sk);
2756 if (tcp_may_undo(tp)) {
2757 struct sk_buff *skb;
2758 tcp_for_write_queue(skb, sk) {
2759 if (skb == tcp_send_head(sk))
2760 break;
2761 TCP_SKB_CB(skb)->sacked &= ~TCPCB_LOST;
2764 tcp_clear_all_retrans_hints(tp);
2766 DBGUNDO(sk, "partial loss");
2767 tp->lost_out = 0;
2768 tcp_undo_cwr(sk, 1);
2769 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSSUNDO);
2770 inet_csk(sk)->icsk_retransmits = 0;
2771 tp->undo_marker = 0;
2772 if (tcp_is_sack(tp))
2773 tcp_set_ca_state(sk, TCP_CA_Open);
2774 return 1;
2776 return 0;
2779 static inline void tcp_complete_cwr(struct sock *sk)
2781 struct tcp_sock *tp = tcp_sk(sk);
2782 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
2783 tp->snd_cwnd_stamp = tcp_time_stamp;
2784 tcp_ca_event(sk, CA_EVENT_COMPLETE_CWR);
2787 static void tcp_try_keep_open(struct sock *sk)
2789 struct tcp_sock *tp = tcp_sk(sk);
2790 int state = TCP_CA_Open;
2792 if (tcp_left_out(tp) || tp->retrans_out || tp->undo_marker)
2793 state = TCP_CA_Disorder;
2795 if (inet_csk(sk)->icsk_ca_state != state) {
2796 tcp_set_ca_state(sk, state);
2797 tp->high_seq = tp->snd_nxt;
2801 static void tcp_try_to_open(struct sock *sk, int flag)
2803 struct tcp_sock *tp = tcp_sk(sk);
2805 tcp_verify_left_out(tp);
2807 if (!tp->frto_counter && tp->retrans_out == 0)
2808 tp->retrans_stamp = 0;
2810 if (flag & FLAG_ECE)
2811 tcp_enter_cwr(sk, 1);
2813 if (inet_csk(sk)->icsk_ca_state != TCP_CA_CWR) {
2814 tcp_try_keep_open(sk);
2815 tcp_moderate_cwnd(tp);
2816 } else {
2817 tcp_cwnd_down(sk, flag);
2821 static void tcp_mtup_probe_failed(struct sock *sk)
2823 struct inet_connection_sock *icsk = inet_csk(sk);
2825 icsk->icsk_mtup.search_high = icsk->icsk_mtup.probe_size - 1;
2826 icsk->icsk_mtup.probe_size = 0;
2829 static void tcp_mtup_probe_success(struct sock *sk)
2831 struct tcp_sock *tp = tcp_sk(sk);
2832 struct inet_connection_sock *icsk = inet_csk(sk);
2834 /* FIXME: breaks with very large cwnd */
2835 tp->prior_ssthresh = tcp_current_ssthresh(sk);
2836 tp->snd_cwnd = tp->snd_cwnd *
2837 tcp_mss_to_mtu(sk, tp->mss_cache) /
2838 icsk->icsk_mtup.probe_size;
2839 tp->snd_cwnd_cnt = 0;
2840 tp->snd_cwnd_stamp = tcp_time_stamp;
2841 tp->rcv_ssthresh = tcp_current_ssthresh(sk);
2843 icsk->icsk_mtup.search_low = icsk->icsk_mtup.probe_size;
2844 icsk->icsk_mtup.probe_size = 0;
2845 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
2848 /* Do a simple retransmit without using the backoff mechanisms in
2849 * tcp_timer. This is used for path mtu discovery.
2850 * The socket is already locked here.
2852 void tcp_simple_retransmit(struct sock *sk)
2854 const struct inet_connection_sock *icsk = inet_csk(sk);
2855 struct tcp_sock *tp = tcp_sk(sk);
2856 struct sk_buff *skb;
2857 unsigned int mss = tcp_current_mss(sk);
2858 u32 prior_lost = tp->lost_out;
2860 tcp_for_write_queue(skb, sk) {
2861 if (skb == tcp_send_head(sk))
2862 break;
2863 if (tcp_skb_seglen(skb) > mss &&
2864 !(TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED)) {
2865 if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) {
2866 TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS;
2867 tp->retrans_out -= tcp_skb_pcount(skb);
2869 tcp_skb_mark_lost_uncond_verify(tp, skb);
2873 tcp_clear_retrans_hints_partial(tp);
2875 if (prior_lost == tp->lost_out)
2876 return;
2878 if (tcp_is_reno(tp))
2879 tcp_limit_reno_sacked(tp);
2881 tcp_verify_left_out(tp);
2883 /* Don't muck with the congestion window here.
2884 * Reason is that we do not increase amount of _data_
2885 * in network, but units changed and effective
2886 * cwnd/ssthresh really reduced now.
2888 if (icsk->icsk_ca_state != TCP_CA_Loss) {
2889 tp->high_seq = tp->snd_nxt;
2890 tp->snd_ssthresh = tcp_current_ssthresh(sk);
2891 tp->prior_ssthresh = 0;
2892 tp->undo_marker = 0;
2893 tcp_set_ca_state(sk, TCP_CA_Loss);
2895 tcp_xmit_retransmit_queue(sk);
2898 /* Process an event, which can update packets-in-flight not trivially.
2899 * Main goal of this function is to calculate new estimate for left_out,
2900 * taking into account both packets sitting in receiver's buffer and
2901 * packets lost by network.
2903 * Besides that it does CWND reduction, when packet loss is detected
2904 * and changes state of machine.
2906 * It does _not_ decide what to send, it is made in function
2907 * tcp_xmit_retransmit_queue().
2909 static void tcp_fastretrans_alert(struct sock *sk, int pkts_acked, int flag)
2911 struct inet_connection_sock *icsk = inet_csk(sk);
2912 struct tcp_sock *tp = tcp_sk(sk);
2913 int is_dupack = !(flag & (FLAG_SND_UNA_ADVANCED | FLAG_NOT_DUP));
2914 int do_lost = is_dupack || ((flag & FLAG_DATA_SACKED) &&
2915 (tcp_fackets_out(tp) > tp->reordering));
2916 int fast_rexmit = 0, mib_idx;
2918 if (WARN_ON(!tp->packets_out && tp->sacked_out))
2919 tp->sacked_out = 0;
2920 if (WARN_ON(!tp->sacked_out && tp->fackets_out))
2921 tp->fackets_out = 0;
2923 /* Now state machine starts.
2924 * A. ECE, hence prohibit cwnd undoing, the reduction is required. */
2925 if (flag & FLAG_ECE)
2926 tp->prior_ssthresh = 0;
2928 /* B. In all the states check for reneging SACKs. */
2929 if (tcp_check_sack_reneging(sk, flag))
2930 return;
2932 /* C. Process data loss notification, provided it is valid. */
2933 if (tcp_is_fack(tp) && (flag & FLAG_DATA_LOST) &&
2934 before(tp->snd_una, tp->high_seq) &&
2935 icsk->icsk_ca_state != TCP_CA_Open &&
2936 tp->fackets_out > tp->reordering) {
2937 tcp_mark_head_lost(sk, tp->fackets_out - tp->reordering);
2938 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPLOSS);
2941 /* D. Check consistency of the current state. */
2942 tcp_verify_left_out(tp);
2944 /* E. Check state exit conditions. State can be terminated
2945 * when high_seq is ACKed. */
2946 if (icsk->icsk_ca_state == TCP_CA_Open) {
2947 WARN_ON(tp->retrans_out != 0);
2948 tp->retrans_stamp = 0;
2949 } else if (!before(tp->snd_una, tp->high_seq)) {
2950 switch (icsk->icsk_ca_state) {
2951 case TCP_CA_Loss:
2952 icsk->icsk_retransmits = 0;
2953 if (tcp_try_undo_recovery(sk))
2954 return;
2955 break;
2957 case TCP_CA_CWR:
2958 /* CWR is to be held something *above* high_seq
2959 * is ACKed for CWR bit to reach receiver. */
2960 if (tp->snd_una != tp->high_seq) {
2961 tcp_complete_cwr(sk);
2962 tcp_set_ca_state(sk, TCP_CA_Open);
2964 break;
2966 case TCP_CA_Disorder:
2967 tcp_try_undo_dsack(sk);
2968 if (!tp->undo_marker ||
2969 /* For SACK case do not Open to allow to undo
2970 * catching for all duplicate ACKs. */
2971 tcp_is_reno(tp) || tp->snd_una != tp->high_seq) {
2972 tp->undo_marker = 0;
2973 tcp_set_ca_state(sk, TCP_CA_Open);
2975 break;
2977 case TCP_CA_Recovery:
2978 if (tcp_is_reno(tp))
2979 tcp_reset_reno_sack(tp);
2980 if (tcp_try_undo_recovery(sk))
2981 return;
2982 tcp_complete_cwr(sk);
2983 break;
2987 /* F. Process state. */
2988 switch (icsk->icsk_ca_state) {
2989 case TCP_CA_Recovery:
2990 if (!(flag & FLAG_SND_UNA_ADVANCED)) {
2991 if (tcp_is_reno(tp) && is_dupack)
2992 tcp_add_reno_sack(sk);
2993 } else
2994 do_lost = tcp_try_undo_partial(sk, pkts_acked);
2995 break;
2996 case TCP_CA_Loss:
2997 if (flag & FLAG_DATA_ACKED)
2998 icsk->icsk_retransmits = 0;
2999 if (tcp_is_reno(tp) && flag & FLAG_SND_UNA_ADVANCED)
3000 tcp_reset_reno_sack(tp);
3001 if (!tcp_try_undo_loss(sk)) {
3002 tcp_moderate_cwnd(tp);
3003 tcp_xmit_retransmit_queue(sk);
3004 return;
3006 if (icsk->icsk_ca_state != TCP_CA_Open)
3007 return;
3008 /* Loss is undone; fall through to processing in Open state. */
3009 default:
3010 if (tcp_is_reno(tp)) {
3011 if (flag & FLAG_SND_UNA_ADVANCED)
3012 tcp_reset_reno_sack(tp);
3013 if (is_dupack)
3014 tcp_add_reno_sack(sk);
3017 if (icsk->icsk_ca_state == TCP_CA_Disorder)
3018 tcp_try_undo_dsack(sk);
3020 if (!tcp_time_to_recover(sk)) {
3021 tcp_try_to_open(sk, flag);
3022 return;
3025 /* MTU probe failure: don't reduce cwnd */
3026 if (icsk->icsk_ca_state < TCP_CA_CWR &&
3027 icsk->icsk_mtup.probe_size &&
3028 tp->snd_una == tp->mtu_probe.probe_seq_start) {
3029 tcp_mtup_probe_failed(sk);
3030 /* Restores the reduction we did in tcp_mtup_probe() */
3031 tp->snd_cwnd++;
3032 tcp_simple_retransmit(sk);
3033 return;
3036 /* Otherwise enter Recovery state */
3038 if (tcp_is_reno(tp))
3039 mib_idx = LINUX_MIB_TCPRENORECOVERY;
3040 else
3041 mib_idx = LINUX_MIB_TCPSACKRECOVERY;
3043 NET_INC_STATS_BH(sock_net(sk), mib_idx);
3045 tp->high_seq = tp->snd_nxt;
3046 tp->prior_ssthresh = 0;
3047 tp->undo_marker = tp->snd_una;
3048 tp->undo_retrans = tp->retrans_out;
3050 if (icsk->icsk_ca_state < TCP_CA_CWR) {
3051 if (!(flag & FLAG_ECE))
3052 tp->prior_ssthresh = tcp_current_ssthresh(sk);
3053 tp->snd_ssthresh = icsk->icsk_ca_ops->ssthresh(sk);
3054 TCP_ECN_queue_cwr(tp);
3057 tp->bytes_acked = 0;
3058 tp->snd_cwnd_cnt = 0;
3059 tcp_set_ca_state(sk, TCP_CA_Recovery);
3060 fast_rexmit = 1;
3063 if (do_lost || (tcp_is_fack(tp) && tcp_head_timedout(sk)))
3064 tcp_update_scoreboard(sk, fast_rexmit);
3065 tcp_cwnd_down(sk, flag);
3066 tcp_xmit_retransmit_queue(sk);
3069 static void tcp_valid_rtt_meas(struct sock *sk, u32 seq_rtt)
3071 tcp_rtt_estimator(sk, seq_rtt);
3072 tcp_set_rto(sk);
3073 inet_csk(sk)->icsk_backoff = 0;
3076 /* Read draft-ietf-tcplw-high-performance before mucking
3077 * with this code. (Supersedes RFC1323)
3079 static void tcp_ack_saw_tstamp(struct sock *sk, int flag)
3081 /* RTTM Rule: A TSecr value received in a segment is used to
3082 * update the averaged RTT measurement only if the segment
3083 * acknowledges some new data, i.e., only if it advances the
3084 * left edge of the send window.
3086 * See draft-ietf-tcplw-high-performance-00, section 3.3.
3087 * 1998/04/10 Andrey V. Savochkin <saw@msu.ru>
3089 * Changed: reset backoff as soon as we see the first valid sample.
3090 * If we do not, we get strongly overestimated rto. With timestamps
3091 * samples are accepted even from very old segments: f.e., when rtt=1
3092 * increases to 8, we retransmit 5 times and after 8 seconds delayed
3093 * answer arrives rto becomes 120 seconds! If at least one of segments
3094 * in window is lost... Voila. --ANK (010210)
3096 struct tcp_sock *tp = tcp_sk(sk);
3098 tcp_valid_rtt_meas(sk, tcp_time_stamp - tp->rx_opt.rcv_tsecr);
3101 static void tcp_ack_no_tstamp(struct sock *sk, u32 seq_rtt, int flag)
3103 /* We don't have a timestamp. Can only use
3104 * packets that are not retransmitted to determine
3105 * rtt estimates. Also, we must not reset the
3106 * backoff for rto until we get a non-retransmitted
3107 * packet. This allows us to deal with a situation
3108 * where the network delay has increased suddenly.
3109 * I.e. Karn's algorithm. (SIGCOMM '87, p5.)
3112 if (flag & FLAG_RETRANS_DATA_ACKED)
3113 return;
3115 tcp_valid_rtt_meas(sk, seq_rtt);
3118 static inline void tcp_ack_update_rtt(struct sock *sk, const int flag,
3119 const s32 seq_rtt)
3121 const struct tcp_sock *tp = tcp_sk(sk);
3122 /* Note that peer MAY send zero echo. In this case it is ignored. (rfc1323) */
3123 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr)
3124 tcp_ack_saw_tstamp(sk, flag);
3125 else if (seq_rtt >= 0)
3126 tcp_ack_no_tstamp(sk, seq_rtt, flag);
3129 static void tcp_cong_avoid(struct sock *sk, u32 ack, u32 in_flight)
3131 const struct inet_connection_sock *icsk = inet_csk(sk);
3132 icsk->icsk_ca_ops->cong_avoid(sk, ack, in_flight);
3133 tcp_sk(sk)->snd_cwnd_stamp = tcp_time_stamp;
3136 /* Restart timer after forward progress on connection.
3137 * RFC2988 recommends to restart timer to now+rto.
3139 static void tcp_rearm_rto(struct sock *sk)
3141 struct tcp_sock *tp = tcp_sk(sk);
3143 if (!tp->packets_out) {
3144 inet_csk_clear_xmit_timer(sk, ICSK_TIME_RETRANS);
3145 } else {
3146 inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
3147 inet_csk(sk)->icsk_rto, TCP_RTO_MAX);
3151 /* If we get here, the whole TSO packet has not been acked. */
3152 static u32 tcp_tso_acked(struct sock *sk, struct sk_buff *skb)
3154 struct tcp_sock *tp = tcp_sk(sk);
3155 u32 packets_acked;
3157 BUG_ON(!after(TCP_SKB_CB(skb)->end_seq, tp->snd_una));
3159 packets_acked = tcp_skb_pcount(skb);
3160 if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq))
3161 return 0;
3162 packets_acked -= tcp_skb_pcount(skb);
3164 if (packets_acked) {
3165 BUG_ON(tcp_skb_pcount(skb) == 0);
3166 BUG_ON(!before(TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq));
3169 return packets_acked;
3172 /* Remove acknowledged frames from the retransmission queue. If our packet
3173 * is before the ack sequence we can discard it as it's confirmed to have
3174 * arrived at the other end.
3176 static int tcp_clean_rtx_queue(struct sock *sk, int prior_fackets,
3177 u32 prior_snd_una)
3179 struct tcp_sock *tp = tcp_sk(sk);
3180 const struct inet_connection_sock *icsk = inet_csk(sk);
3181 struct sk_buff *skb;
3182 u32 now = tcp_time_stamp;
3183 int fully_acked = 1;
3184 int flag = 0;
3185 u32 pkts_acked = 0;
3186 u32 reord = tp->packets_out;
3187 u32 prior_sacked = tp->sacked_out;
3188 s32 seq_rtt = -1;
3189 s32 ca_seq_rtt = -1;
3190 ktime_t last_ackt = net_invalid_timestamp();
3192 while ((skb = tcp_write_queue_head(sk)) && skb != tcp_send_head(sk)) {
3193 struct tcp_skb_cb *scb = TCP_SKB_CB(skb);
3194 u32 acked_pcount;
3195 u8 sacked = scb->sacked;
3197 /* Determine how many packets and what bytes were acked, tso and else */
3198 if (after(scb->end_seq, tp->snd_una)) {
3199 if (tcp_skb_pcount(skb) == 1 ||
3200 !after(tp->snd_una, scb->seq))
3201 break;
3203 acked_pcount = tcp_tso_acked(sk, skb);
3204 if (!acked_pcount)
3205 break;
3207 fully_acked = 0;
3208 } else {
3209 acked_pcount = tcp_skb_pcount(skb);
3212 if (sacked & TCPCB_RETRANS) {
3213 if (sacked & TCPCB_SACKED_RETRANS)
3214 tp->retrans_out -= acked_pcount;
3215 flag |= FLAG_RETRANS_DATA_ACKED;
3216 ca_seq_rtt = -1;
3217 seq_rtt = -1;
3218 if ((flag & FLAG_DATA_ACKED) || (acked_pcount > 1))
3219 flag |= FLAG_NONHEAD_RETRANS_ACKED;
3220 } else {
3221 ca_seq_rtt = now - scb->when;
3222 last_ackt = skb->tstamp;
3223 if (seq_rtt < 0) {
3224 seq_rtt = ca_seq_rtt;
3226 if (!(sacked & TCPCB_SACKED_ACKED))
3227 reord = min(pkts_acked, reord);
3230 if (sacked & TCPCB_SACKED_ACKED)
3231 tp->sacked_out -= acked_pcount;
3232 if (sacked & TCPCB_LOST)
3233 tp->lost_out -= acked_pcount;
3235 tp->packets_out -= acked_pcount;
3236 pkts_acked += acked_pcount;
3238 /* Initial outgoing SYN's get put onto the write_queue
3239 * just like anything else we transmit. It is not
3240 * true data, and if we misinform our callers that
3241 * this ACK acks real data, we will erroneously exit
3242 * connection startup slow start one packet too
3243 * quickly. This is severely frowned upon behavior.
3245 if (!(scb->flags & TCPCB_FLAG_SYN)) {
3246 flag |= FLAG_DATA_ACKED;
3247 } else {
3248 flag |= FLAG_SYN_ACKED;
3249 tp->retrans_stamp = 0;
3252 if (!fully_acked)
3253 break;
3255 tcp_unlink_write_queue(skb, sk);
3256 sk_wmem_free_skb(sk, skb);
3257 tp->scoreboard_skb_hint = NULL;
3258 if (skb == tp->retransmit_skb_hint)
3259 tp->retransmit_skb_hint = NULL;
3260 if (skb == tp->lost_skb_hint)
3261 tp->lost_skb_hint = NULL;
3264 if (likely(between(tp->snd_up, prior_snd_una, tp->snd_una)))
3265 tp->snd_up = tp->snd_una;
3267 if (skb && (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED))
3268 flag |= FLAG_SACK_RENEGING;
3270 if (flag & FLAG_ACKED) {
3271 const struct tcp_congestion_ops *ca_ops
3272 = inet_csk(sk)->icsk_ca_ops;
3274 if (unlikely(icsk->icsk_mtup.probe_size &&
3275 !after(tp->mtu_probe.probe_seq_end, tp->snd_una))) {
3276 tcp_mtup_probe_success(sk);
3279 tcp_ack_update_rtt(sk, flag, seq_rtt);
3280 tcp_rearm_rto(sk);
3282 if (tcp_is_reno(tp)) {
3283 tcp_remove_reno_sacks(sk, pkts_acked);
3284 } else {
3285 int delta;
3287 /* Non-retransmitted hole got filled? That's reordering */
3288 if (reord < prior_fackets)
3289 tcp_update_reordering(sk, tp->fackets_out - reord, 0);
3291 delta = tcp_is_fack(tp) ? pkts_acked :
3292 prior_sacked - tp->sacked_out;
3293 tp->lost_cnt_hint -= min(tp->lost_cnt_hint, delta);
3296 tp->fackets_out -= min(pkts_acked, tp->fackets_out);
3298 if (ca_ops->pkts_acked) {
3299 s32 rtt_us = -1;
3301 /* Is the ACK triggering packet unambiguous? */
3302 if (!(flag & FLAG_RETRANS_DATA_ACKED)) {
3303 /* High resolution needed and available? */
3304 if (ca_ops->flags & TCP_CONG_RTT_STAMP &&
3305 !ktime_equal(last_ackt,
3306 net_invalid_timestamp()))
3307 rtt_us = ktime_us_delta(ktime_get_real(),
3308 last_ackt);
3309 else if (ca_seq_rtt > 0)
3310 rtt_us = jiffies_to_usecs(ca_seq_rtt);
3313 ca_ops->pkts_acked(sk, pkts_acked, rtt_us);
3317 #if FASTRETRANS_DEBUG > 0
3318 WARN_ON((int)tp->sacked_out < 0);
3319 WARN_ON((int)tp->lost_out < 0);
3320 WARN_ON((int)tp->retrans_out < 0);
3321 if (!tp->packets_out && tcp_is_sack(tp)) {
3322 icsk = inet_csk(sk);
3323 if (tp->lost_out) {
3324 printk(KERN_DEBUG "Leak l=%u %d\n",
3325 tp->lost_out, icsk->icsk_ca_state);
3326 tp->lost_out = 0;
3328 if (tp->sacked_out) {
3329 printk(KERN_DEBUG "Leak s=%u %d\n",
3330 tp->sacked_out, icsk->icsk_ca_state);
3331 tp->sacked_out = 0;
3333 if (tp->retrans_out) {
3334 printk(KERN_DEBUG "Leak r=%u %d\n",
3335 tp->retrans_out, icsk->icsk_ca_state);
3336 tp->retrans_out = 0;
3339 #endif
3340 return flag;
3343 static void tcp_ack_probe(struct sock *sk)
3345 const struct tcp_sock *tp = tcp_sk(sk);
3346 struct inet_connection_sock *icsk = inet_csk(sk);
3348 /* Was it a usable window open? */
3350 if (!after(TCP_SKB_CB(tcp_send_head(sk))->end_seq, tcp_wnd_end(tp))) {
3351 icsk->icsk_backoff = 0;
3352 inet_csk_clear_xmit_timer(sk, ICSK_TIME_PROBE0);
3353 /* Socket must be waked up by subsequent tcp_data_snd_check().
3354 * This function is not for random using!
3356 } else {
3357 inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
3358 min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX),
3359 TCP_RTO_MAX);
3363 static inline int tcp_ack_is_dubious(const struct sock *sk, const int flag)
3365 return (!(flag & FLAG_NOT_DUP) || (flag & FLAG_CA_ALERT) ||
3366 inet_csk(sk)->icsk_ca_state != TCP_CA_Open);
3369 static inline int tcp_may_raise_cwnd(const struct sock *sk, const int flag)
3371 const struct tcp_sock *tp = tcp_sk(sk);
3372 return (!(flag & FLAG_ECE) || tp->snd_cwnd < tp->snd_ssthresh) &&
3373 !((1 << inet_csk(sk)->icsk_ca_state) & (TCPF_CA_Recovery | TCPF_CA_CWR));
3376 /* Check that window update is acceptable.
3377 * The function assumes that snd_una<=ack<=snd_next.
3379 static inline int tcp_may_update_window(const struct tcp_sock *tp,
3380 const u32 ack, const u32 ack_seq,
3381 const u32 nwin)
3383 return (after(ack, tp->snd_una) ||
3384 after(ack_seq, tp->snd_wl1) ||
3385 (ack_seq == tp->snd_wl1 && nwin > tp->snd_wnd));
3388 /* Update our send window.
3390 * Window update algorithm, described in RFC793/RFC1122 (used in linux-2.2
3391 * and in FreeBSD. NetBSD's one is even worse.) is wrong.
3393 static int tcp_ack_update_window(struct sock *sk, struct sk_buff *skb, u32 ack,
3394 u32 ack_seq)
3396 struct tcp_sock *tp = tcp_sk(sk);
3397 int flag = 0;
3398 u32 nwin = ntohs(tcp_hdr(skb)->window);
3400 if (likely(!tcp_hdr(skb)->syn))
3401 nwin <<= tp->rx_opt.snd_wscale;
3403 if (tcp_may_update_window(tp, ack, ack_seq, nwin)) {
3404 flag |= FLAG_WIN_UPDATE;
3405 tcp_update_wl(tp, ack_seq);
3407 if (tp->snd_wnd != nwin) {
3408 tp->snd_wnd = nwin;
3410 /* Note, it is the only place, where
3411 * fast path is recovered for sending TCP.
3413 tp->pred_flags = 0;
3414 tcp_fast_path_check(sk);
3416 if (nwin > tp->max_window) {
3417 tp->max_window = nwin;
3418 tcp_sync_mss(sk, inet_csk(sk)->icsk_pmtu_cookie);
3423 tp->snd_una = ack;
3425 return flag;
3428 /* A very conservative spurious RTO response algorithm: reduce cwnd and
3429 * continue in congestion avoidance.
3431 static void tcp_conservative_spur_to_response(struct tcp_sock *tp)
3433 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);
3434 tp->snd_cwnd_cnt = 0;
3435 tp->bytes_acked = 0;
3436 TCP_ECN_queue_cwr(tp);
3437 tcp_moderate_cwnd(tp);
3440 /* A conservative spurious RTO response algorithm: reduce cwnd using
3441 * rate halving and continue in congestion avoidance.
3443 static void tcp_ratehalving_spur_to_response(struct sock *sk)
3445 tcp_enter_cwr(sk, 0);
3448 static void tcp_undo_spur_to_response(struct sock *sk, int flag)
3450 if (flag & FLAG_ECE)
3451 tcp_ratehalving_spur_to_response(sk);
3452 else
3453 tcp_undo_cwr(sk, 1);
3456 /* F-RTO spurious RTO detection algorithm (RFC4138)
3458 * F-RTO affects during two new ACKs following RTO (well, almost, see inline
3459 * comments). State (ACK number) is kept in frto_counter. When ACK advances
3460 * window (but not to or beyond highest sequence sent before RTO):
3461 * On First ACK, send two new segments out.
3462 * On Second ACK, RTO was likely spurious. Do spurious response (response
3463 * algorithm is not part of the F-RTO detection algorithm
3464 * given in RFC4138 but can be selected separately).
3465 * Otherwise (basically on duplicate ACK), RTO was (likely) caused by a loss
3466 * and TCP falls back to conventional RTO recovery. F-RTO allows overriding
3467 * of Nagle, this is done using frto_counter states 2 and 3, when a new data
3468 * segment of any size sent during F-RTO, state 2 is upgraded to 3.
3470 * Rationale: if the RTO was spurious, new ACKs should arrive from the
3471 * original window even after we transmit two new data segments.
3473 * SACK version:
3474 * on first step, wait until first cumulative ACK arrives, then move to
3475 * the second step. In second step, the next ACK decides.
3477 * F-RTO is implemented (mainly) in four functions:
3478 * - tcp_use_frto() is used to determine if TCP is can use F-RTO
3479 * - tcp_enter_frto() prepares TCP state on RTO if F-RTO is used, it is
3480 * called when tcp_use_frto() showed green light
3481 * - tcp_process_frto() handles incoming ACKs during F-RTO algorithm
3482 * - tcp_enter_frto_loss() is called if there is not enough evidence
3483 * to prove that the RTO is indeed spurious. It transfers the control
3484 * from F-RTO to the conventional RTO recovery
3486 static int tcp_process_frto(struct sock *sk, int flag)
3488 struct tcp_sock *tp = tcp_sk(sk);
3490 tcp_verify_left_out(tp);
3492 /* Duplicate the behavior from Loss state (fastretrans_alert) */
3493 if (flag & FLAG_DATA_ACKED)
3494 inet_csk(sk)->icsk_retransmits = 0;
3496 if ((flag & FLAG_NONHEAD_RETRANS_ACKED) ||
3497 ((tp->frto_counter >= 2) && (flag & FLAG_RETRANS_DATA_ACKED)))
3498 tp->undo_marker = 0;
3500 if (!before(tp->snd_una, tp->frto_highmark)) {
3501 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 2 : 3), flag);
3502 return 1;
3505 if (!tcp_is_sackfrto(tp)) {
3506 /* RFC4138 shortcoming in step 2; should also have case c):
3507 * ACK isn't duplicate nor advances window, e.g., opposite dir
3508 * data, winupdate
3510 if (!(flag & FLAG_ANY_PROGRESS) && (flag & FLAG_NOT_DUP))
3511 return 1;
3513 if (!(flag & FLAG_DATA_ACKED)) {
3514 tcp_enter_frto_loss(sk, (tp->frto_counter == 1 ? 0 : 3),
3515 flag);
3516 return 1;
3518 } else {
3519 if (!(flag & FLAG_DATA_ACKED) && (tp->frto_counter == 1)) {
3520 /* Prevent sending of new data. */
3521 tp->snd_cwnd = min(tp->snd_cwnd,
3522 tcp_packets_in_flight(tp));
3523 return 1;
3526 if ((tp->frto_counter >= 2) &&
3527 (!(flag & FLAG_FORWARD_PROGRESS) ||
3528 ((flag & FLAG_DATA_SACKED) &&
3529 !(flag & FLAG_ONLY_ORIG_SACKED)))) {
3530 /* RFC4138 shortcoming (see comment above) */
3531 if (!(flag & FLAG_FORWARD_PROGRESS) &&
3532 (flag & FLAG_NOT_DUP))
3533 return 1;
3535 tcp_enter_frto_loss(sk, 3, flag);
3536 return 1;
3540 if (tp->frto_counter == 1) {
3541 /* tcp_may_send_now needs to see updated state */
3542 tp->snd_cwnd = tcp_packets_in_flight(tp) + 2;
3543 tp->frto_counter = 2;
3545 if (!tcp_may_send_now(sk))
3546 tcp_enter_frto_loss(sk, 2, flag);
3548 return 1;
3549 } else {
3550 switch (sysctl_tcp_frto_response) {
3551 case 2:
3552 tcp_undo_spur_to_response(sk, flag);
3553 break;
3554 case 1:
3555 tcp_conservative_spur_to_response(tp);
3556 break;
3557 default:
3558 tcp_ratehalving_spur_to_response(sk);
3559 break;
3561 tp->frto_counter = 0;
3562 tp->undo_marker = 0;
3563 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSPURIOUSRTOS);
3565 return 0;
3568 /* This routine deals with incoming acks, but not outgoing ones. */
3569 static int tcp_ack(struct sock *sk, struct sk_buff *skb, int flag)
3571 struct inet_connection_sock *icsk = inet_csk(sk);
3572 struct tcp_sock *tp = tcp_sk(sk);
3573 u32 prior_snd_una = tp->snd_una;
3574 u32 ack_seq = TCP_SKB_CB(skb)->seq;
3575 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3576 u32 prior_in_flight;
3577 u32 prior_fackets;
3578 int prior_packets;
3579 int frto_cwnd = 0;
3581 /* If the ack is older than previous acks
3582 * then we can probably ignore it.
3584 if (before(ack, prior_snd_una))
3585 goto old_ack;
3587 /* If the ack includes data we haven't sent yet, discard
3588 * this segment (RFC793 Section 3.9).
3590 if (after(ack, tp->snd_nxt))
3591 goto invalid_ack;
3593 if (after(ack, prior_snd_una))
3594 flag |= FLAG_SND_UNA_ADVANCED;
3596 if (sysctl_tcp_abc) {
3597 if (icsk->icsk_ca_state < TCP_CA_CWR)
3598 tp->bytes_acked += ack - prior_snd_una;
3599 else if (icsk->icsk_ca_state == TCP_CA_Loss)
3600 /* we assume just one segment left network */
3601 tp->bytes_acked += min(ack - prior_snd_una,
3602 tp->mss_cache);
3605 prior_fackets = tp->fackets_out;
3606 prior_in_flight = tcp_packets_in_flight(tp);
3608 if (!(flag & FLAG_SLOWPATH) && after(ack, prior_snd_una)) {
3609 /* Window is constant, pure forward advance.
3610 * No more checks are required.
3611 * Note, we use the fact that SND.UNA>=SND.WL2.
3613 tcp_update_wl(tp, ack_seq);
3614 tp->snd_una = ack;
3615 flag |= FLAG_WIN_UPDATE;
3617 tcp_ca_event(sk, CA_EVENT_FAST_ACK);
3619 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPACKS);
3620 } else {
3621 if (ack_seq != TCP_SKB_CB(skb)->end_seq)
3622 flag |= FLAG_DATA;
3623 else
3624 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPPUREACKS);
3626 flag |= tcp_ack_update_window(sk, skb, ack, ack_seq);
3628 if (TCP_SKB_CB(skb)->sacked)
3629 flag |= tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3631 if (TCP_ECN_rcv_ecn_echo(tp, tcp_hdr(skb)))
3632 flag |= FLAG_ECE;
3634 tcp_ca_event(sk, CA_EVENT_SLOW_ACK);
3637 /* We passed data and got it acked, remove any soft error
3638 * log. Something worked...
3640 sk->sk_err_soft = 0;
3641 icsk->icsk_probes_out = 0;
3642 tp->rcv_tstamp = tcp_time_stamp;
3643 prior_packets = tp->packets_out;
3644 if (!prior_packets)
3645 goto no_queue;
3647 /* See if we can take anything off of the retransmit queue. */
3648 flag |= tcp_clean_rtx_queue(sk, prior_fackets, prior_snd_una);
3650 if (tp->frto_counter)
3651 frto_cwnd = tcp_process_frto(sk, flag);
3652 /* Guarantee sacktag reordering detection against wrap-arounds */
3653 if (before(tp->frto_highmark, tp->snd_una))
3654 tp->frto_highmark = 0;
3656 if (tcp_ack_is_dubious(sk, flag)) {
3657 /* Advance CWND, if state allows this. */
3658 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd &&
3659 tcp_may_raise_cwnd(sk, flag))
3660 tcp_cong_avoid(sk, ack, prior_in_flight);
3661 tcp_fastretrans_alert(sk, prior_packets - tp->packets_out,
3662 flag);
3663 } else {
3664 if ((flag & FLAG_DATA_ACKED) && !frto_cwnd)
3665 tcp_cong_avoid(sk, ack, prior_in_flight);
3668 if ((flag & FLAG_FORWARD_PROGRESS) || !(flag & FLAG_NOT_DUP))
3669 dst_confirm(sk->sk_dst_cache);
3671 return 1;
3673 no_queue:
3674 /* If this ack opens up a zero window, clear backoff. It was
3675 * being used to time the probes, and is probably far higher than
3676 * it needs to be for normal retransmission.
3678 if (tcp_send_head(sk))
3679 tcp_ack_probe(sk);
3680 return 1;
3682 invalid_ack:
3683 SOCK_DEBUG(sk, "Ack %u after %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3684 return -1;
3686 old_ack:
3687 if (TCP_SKB_CB(skb)->sacked) {
3688 tcp_sacktag_write_queue(sk, skb, prior_snd_una);
3689 if (icsk->icsk_ca_state == TCP_CA_Open)
3690 tcp_try_keep_open(sk);
3693 SOCK_DEBUG(sk, "Ack %u before %u:%u\n", ack, tp->snd_una, tp->snd_nxt);
3694 return 0;
3697 /* Look for tcp options. Normally only called on SYN and SYNACK packets.
3698 * But, this can also be called on packets in the established flow when
3699 * the fast version below fails.
3701 void tcp_parse_options(struct sk_buff *skb, struct tcp_options_received *opt_rx,
3702 int estab)
3704 unsigned char *ptr;
3705 struct tcphdr *th = tcp_hdr(skb);
3706 int length = (th->doff * 4) - sizeof(struct tcphdr);
3708 ptr = (unsigned char *)(th + 1);
3709 opt_rx->saw_tstamp = 0;
3711 while (length > 0) {
3712 int opcode = *ptr++;
3713 int opsize;
3715 switch (opcode) {
3716 case TCPOPT_EOL:
3717 return;
3718 case TCPOPT_NOP: /* Ref: RFC 793 section 3.1 */
3719 length--;
3720 continue;
3721 default:
3722 opsize = *ptr++;
3723 if (opsize < 2) /* "silly options" */
3724 return;
3725 if (opsize > length)
3726 return; /* don't parse partial options */
3727 switch (opcode) {
3728 case TCPOPT_MSS:
3729 if (opsize == TCPOLEN_MSS && th->syn && !estab) {
3730 u16 in_mss = get_unaligned_be16(ptr);
3731 if (in_mss) {
3732 if (opt_rx->user_mss &&
3733 opt_rx->user_mss < in_mss)
3734 in_mss = opt_rx->user_mss;
3735 opt_rx->mss_clamp = in_mss;
3738 break;
3739 case TCPOPT_WINDOW:
3740 if (opsize == TCPOLEN_WINDOW && th->syn &&
3741 !estab && sysctl_tcp_window_scaling) {
3742 __u8 snd_wscale = *(__u8 *)ptr;
3743 opt_rx->wscale_ok = 1;
3744 if (snd_wscale > 14) {
3745 if (net_ratelimit())
3746 printk(KERN_INFO "tcp_parse_options: Illegal window "
3747 "scaling value %d >14 received.\n",
3748 snd_wscale);
3749 snd_wscale = 14;
3751 opt_rx->snd_wscale = snd_wscale;
3753 break;
3754 case TCPOPT_TIMESTAMP:
3755 if ((opsize == TCPOLEN_TIMESTAMP) &&
3756 ((estab && opt_rx->tstamp_ok) ||
3757 (!estab && sysctl_tcp_timestamps))) {
3758 opt_rx->saw_tstamp = 1;
3759 opt_rx->rcv_tsval = get_unaligned_be32(ptr);
3760 opt_rx->rcv_tsecr = get_unaligned_be32(ptr + 4);
3762 break;
3763 case TCPOPT_SACK_PERM:
3764 if (opsize == TCPOLEN_SACK_PERM && th->syn &&
3765 !estab && sysctl_tcp_sack) {
3766 opt_rx->sack_ok = 1;
3767 tcp_sack_reset(opt_rx);
3769 break;
3771 case TCPOPT_SACK:
3772 if ((opsize >= (TCPOLEN_SACK_BASE + TCPOLEN_SACK_PERBLOCK)) &&
3773 !((opsize - TCPOLEN_SACK_BASE) % TCPOLEN_SACK_PERBLOCK) &&
3774 opt_rx->sack_ok) {
3775 TCP_SKB_CB(skb)->sacked = (ptr - 2) - (unsigned char *)th;
3777 break;
3778 #ifdef CONFIG_TCP_MD5SIG
3779 case TCPOPT_MD5SIG:
3781 * The MD5 Hash has already been
3782 * checked (see tcp_v{4,6}_do_rcv()).
3784 break;
3785 #endif
3788 ptr += opsize-2;
3789 length -= opsize;
3794 static int tcp_parse_aligned_timestamp(struct tcp_sock *tp, struct tcphdr *th)
3796 __be32 *ptr = (__be32 *)(th + 1);
3798 if (*ptr == htonl((TCPOPT_NOP << 24) | (TCPOPT_NOP << 16)
3799 | (TCPOPT_TIMESTAMP << 8) | TCPOLEN_TIMESTAMP)) {
3800 tp->rx_opt.saw_tstamp = 1;
3801 ++ptr;
3802 tp->rx_opt.rcv_tsval = ntohl(*ptr);
3803 ++ptr;
3804 tp->rx_opt.rcv_tsecr = ntohl(*ptr);
3805 return 1;
3807 return 0;
3810 /* Fast parse options. This hopes to only see timestamps.
3811 * If it is wrong it falls back on tcp_parse_options().
3813 static int tcp_fast_parse_options(struct sk_buff *skb, struct tcphdr *th,
3814 struct tcp_sock *tp)
3816 if (th->doff == sizeof(struct tcphdr) >> 2) {
3817 tp->rx_opt.saw_tstamp = 0;
3818 return 0;
3819 } else if (tp->rx_opt.tstamp_ok &&
3820 th->doff == (sizeof(struct tcphdr)>>2)+(TCPOLEN_TSTAMP_ALIGNED>>2)) {
3821 if (tcp_parse_aligned_timestamp(tp, th))
3822 return 1;
3824 tcp_parse_options(skb, &tp->rx_opt, 1);
3825 return 1;
3828 #ifdef CONFIG_TCP_MD5SIG
3830 * Parse MD5 Signature option
3832 u8 *tcp_parse_md5sig_option(struct tcphdr *th)
3834 int length = (th->doff << 2) - sizeof (*th);
3835 u8 *ptr = (u8*)(th + 1);
3837 /* If the TCP option is too short, we can short cut */
3838 if (length < TCPOLEN_MD5SIG)
3839 return NULL;
3841 while (length > 0) {
3842 int opcode = *ptr++;
3843 int opsize;
3845 switch(opcode) {
3846 case TCPOPT_EOL:
3847 return NULL;
3848 case TCPOPT_NOP:
3849 length--;
3850 continue;
3851 default:
3852 opsize = *ptr++;
3853 if (opsize < 2 || opsize > length)
3854 return NULL;
3855 if (opcode == TCPOPT_MD5SIG)
3856 return ptr;
3858 ptr += opsize - 2;
3859 length -= opsize;
3861 return NULL;
3863 #endif
3865 static inline void tcp_store_ts_recent(struct tcp_sock *tp)
3867 tp->rx_opt.ts_recent = tp->rx_opt.rcv_tsval;
3868 tp->rx_opt.ts_recent_stamp = get_seconds();
3871 static inline void tcp_replace_ts_recent(struct tcp_sock *tp, u32 seq)
3873 if (tp->rx_opt.saw_tstamp && !after(seq, tp->rcv_wup)) {
3874 /* PAWS bug workaround wrt. ACK frames, the PAWS discard
3875 * extra check below makes sure this can only happen
3876 * for pure ACK frames. -DaveM
3878 * Not only, also it occurs for expired timestamps.
3881 if (tcp_paws_check(&tp->rx_opt, 0))
3882 tcp_store_ts_recent(tp);
3886 /* Sorry, PAWS as specified is broken wrt. pure-ACKs -DaveM
3888 * It is not fatal. If this ACK does _not_ change critical state (seqs, window)
3889 * it can pass through stack. So, the following predicate verifies that
3890 * this segment is not used for anything but congestion avoidance or
3891 * fast retransmit. Moreover, we even are able to eliminate most of such
3892 * second order effects, if we apply some small "replay" window (~RTO)
3893 * to timestamp space.
3895 * All these measures still do not guarantee that we reject wrapped ACKs
3896 * on networks with high bandwidth, when sequence space is recycled fastly,
3897 * but it guarantees that such events will be very rare and do not affect
3898 * connection seriously. This doesn't look nice, but alas, PAWS is really
3899 * buggy extension.
3901 * [ Later note. Even worse! It is buggy for segments _with_ data. RFC
3902 * states that events when retransmit arrives after original data are rare.
3903 * It is a blatant lie. VJ forgot about fast retransmit! 8)8) It is
3904 * the biggest problem on large power networks even with minor reordering.
3905 * OK, let's give it small replay window. If peer clock is even 1hz, it is safe
3906 * up to bandwidth of 18Gigabit/sec. 8) ]
3909 static int tcp_disordered_ack(const struct sock *sk, const struct sk_buff *skb)
3911 struct tcp_sock *tp = tcp_sk(sk);
3912 struct tcphdr *th = tcp_hdr(skb);
3913 u32 seq = TCP_SKB_CB(skb)->seq;
3914 u32 ack = TCP_SKB_CB(skb)->ack_seq;
3916 return (/* 1. Pure ACK with correct sequence number. */
3917 (th->ack && seq == TCP_SKB_CB(skb)->end_seq && seq == tp->rcv_nxt) &&
3919 /* 2. ... and duplicate ACK. */
3920 ack == tp->snd_una &&
3922 /* 3. ... and does not update window. */
3923 !tcp_may_update_window(tp, ack, seq, ntohs(th->window) << tp->rx_opt.snd_wscale) &&
3925 /* 4. ... and sits in replay window. */
3926 (s32)(tp->rx_opt.ts_recent - tp->rx_opt.rcv_tsval) <= (inet_csk(sk)->icsk_rto * 1024) / HZ);
3929 static inline int tcp_paws_discard(const struct sock *sk,
3930 const struct sk_buff *skb)
3932 const struct tcp_sock *tp = tcp_sk(sk);
3934 return !tcp_paws_check(&tp->rx_opt, TCP_PAWS_WINDOW) &&
3935 !tcp_disordered_ack(sk, skb);
3938 /* Check segment sequence number for validity.
3940 * Segment controls are considered valid, if the segment
3941 * fits to the window after truncation to the window. Acceptability
3942 * of data (and SYN, FIN, of course) is checked separately.
3943 * See tcp_data_queue(), for example.
3945 * Also, controls (RST is main one) are accepted using RCV.WUP instead
3946 * of RCV.NXT. Peer still did not advance his SND.UNA when we
3947 * delayed ACK, so that hisSND.UNA<=ourRCV.WUP.
3948 * (borrowed from freebsd)
3951 static inline int tcp_sequence(struct tcp_sock *tp, u32 seq, u32 end_seq)
3953 return !before(end_seq, tp->rcv_wup) &&
3954 !after(seq, tp->rcv_nxt + tcp_receive_window(tp));
3957 /* When we get a reset we do this. */
3958 static void tcp_reset(struct sock *sk)
3960 /* We want the right error as BSD sees it (and indeed as we do). */
3961 switch (sk->sk_state) {
3962 case TCP_SYN_SENT:
3963 sk->sk_err = ECONNREFUSED;
3964 break;
3965 case TCP_CLOSE_WAIT:
3966 sk->sk_err = EPIPE;
3967 break;
3968 case TCP_CLOSE:
3969 return;
3970 default:
3971 sk->sk_err = ECONNRESET;
3974 if (!sock_flag(sk, SOCK_DEAD))
3975 sk->sk_error_report(sk);
3977 tcp_done(sk);
3981 * Process the FIN bit. This now behaves as it is supposed to work
3982 * and the FIN takes effect when it is validly part of sequence
3983 * space. Not before when we get holes.
3985 * If we are ESTABLISHED, a received fin moves us to CLOSE-WAIT
3986 * (and thence onto LAST-ACK and finally, CLOSE, we never enter
3987 * TIME-WAIT)
3989 * If we are in FINWAIT-1, a received FIN indicates simultaneous
3990 * close and we go into CLOSING (and later onto TIME-WAIT)
3992 * If we are in FINWAIT-2, a received FIN moves us to TIME-WAIT.
3994 static void tcp_fin(struct sk_buff *skb, struct sock *sk, struct tcphdr *th)
3996 struct tcp_sock *tp = tcp_sk(sk);
3998 inet_csk_schedule_ack(sk);
4000 sk->sk_shutdown |= RCV_SHUTDOWN;
4001 sock_set_flag(sk, SOCK_DONE);
4003 switch (sk->sk_state) {
4004 case TCP_SYN_RECV:
4005 case TCP_ESTABLISHED:
4006 /* Move to CLOSE_WAIT */
4007 tcp_set_state(sk, TCP_CLOSE_WAIT);
4008 inet_csk(sk)->icsk_ack.pingpong = 1;
4009 break;
4011 case TCP_CLOSE_WAIT:
4012 case TCP_CLOSING:
4013 /* Received a retransmission of the FIN, do
4014 * nothing.
4016 break;
4017 case TCP_LAST_ACK:
4018 /* RFC793: Remain in the LAST-ACK state. */
4019 break;
4021 case TCP_FIN_WAIT1:
4022 /* This case occurs when a simultaneous close
4023 * happens, we must ack the received FIN and
4024 * enter the CLOSING state.
4026 tcp_send_ack(sk);
4027 tcp_set_state(sk, TCP_CLOSING);
4028 break;
4029 case TCP_FIN_WAIT2:
4030 /* Received a FIN -- send ACK and enter TIME_WAIT. */
4031 tcp_send_ack(sk);
4032 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
4033 break;
4034 default:
4035 /* Only TCP_LISTEN and TCP_CLOSE are left, in these
4036 * cases we should never reach this piece of code.
4038 printk(KERN_ERR "%s: Impossible, sk->sk_state=%d\n",
4039 __func__, sk->sk_state);
4040 break;
4043 /* It _is_ possible, that we have something out-of-order _after_ FIN.
4044 * Probably, we should reset in this case. For now drop them.
4046 __skb_queue_purge(&tp->out_of_order_queue);
4047 if (tcp_is_sack(tp))
4048 tcp_sack_reset(&tp->rx_opt);
4049 sk_mem_reclaim(sk);
4051 if (!sock_flag(sk, SOCK_DEAD)) {
4052 sk->sk_state_change(sk);
4054 /* Do not send POLL_HUP for half duplex close. */
4055 if (sk->sk_shutdown == SHUTDOWN_MASK ||
4056 sk->sk_state == TCP_CLOSE)
4057 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_HUP);
4058 else
4059 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
4063 static inline int tcp_sack_extend(struct tcp_sack_block *sp, u32 seq,
4064 u32 end_seq)
4066 if (!after(seq, sp->end_seq) && !after(sp->start_seq, end_seq)) {
4067 if (before(seq, sp->start_seq))
4068 sp->start_seq = seq;
4069 if (after(end_seq, sp->end_seq))
4070 sp->end_seq = end_seq;
4071 return 1;
4073 return 0;
4076 static void tcp_dsack_set(struct sock *sk, u32 seq, u32 end_seq)
4078 struct tcp_sock *tp = tcp_sk(sk);
4080 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4081 int mib_idx;
4083 if (before(seq, tp->rcv_nxt))
4084 mib_idx = LINUX_MIB_TCPDSACKOLDSENT;
4085 else
4086 mib_idx = LINUX_MIB_TCPDSACKOFOSENT;
4088 NET_INC_STATS_BH(sock_net(sk), mib_idx);
4090 tp->rx_opt.dsack = 1;
4091 tp->duplicate_sack[0].start_seq = seq;
4092 tp->duplicate_sack[0].end_seq = end_seq;
4096 static void tcp_dsack_extend(struct sock *sk, u32 seq, u32 end_seq)
4098 struct tcp_sock *tp = tcp_sk(sk);
4100 if (!tp->rx_opt.dsack)
4101 tcp_dsack_set(sk, seq, end_seq);
4102 else
4103 tcp_sack_extend(tp->duplicate_sack, seq, end_seq);
4106 static void tcp_send_dupack(struct sock *sk, struct sk_buff *skb)
4108 struct tcp_sock *tp = tcp_sk(sk);
4110 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
4111 before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4112 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4113 tcp_enter_quickack_mode(sk);
4115 if (tcp_is_sack(tp) && sysctl_tcp_dsack) {
4116 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4118 if (after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt))
4119 end_seq = tp->rcv_nxt;
4120 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, end_seq);
4124 tcp_send_ack(sk);
4127 /* These routines update the SACK block as out-of-order packets arrive or
4128 * in-order packets close up the sequence space.
4130 static void tcp_sack_maybe_coalesce(struct tcp_sock *tp)
4132 int this_sack;
4133 struct tcp_sack_block *sp = &tp->selective_acks[0];
4134 struct tcp_sack_block *swalk = sp + 1;
4136 /* See if the recent change to the first SACK eats into
4137 * or hits the sequence space of other SACK blocks, if so coalesce.
4139 for (this_sack = 1; this_sack < tp->rx_opt.num_sacks;) {
4140 if (tcp_sack_extend(sp, swalk->start_seq, swalk->end_seq)) {
4141 int i;
4143 /* Zap SWALK, by moving every further SACK up by one slot.
4144 * Decrease num_sacks.
4146 tp->rx_opt.num_sacks--;
4147 for (i = this_sack; i < tp->rx_opt.num_sacks; i++)
4148 sp[i] = sp[i + 1];
4149 continue;
4151 this_sack++, swalk++;
4155 static void tcp_sack_new_ofo_skb(struct sock *sk, u32 seq, u32 end_seq)
4157 struct tcp_sock *tp = tcp_sk(sk);
4158 struct tcp_sack_block *sp = &tp->selective_acks[0];
4159 int cur_sacks = tp->rx_opt.num_sacks;
4160 int this_sack;
4162 if (!cur_sacks)
4163 goto new_sack;
4165 for (this_sack = 0; this_sack < cur_sacks; this_sack++, sp++) {
4166 if (tcp_sack_extend(sp, seq, end_seq)) {
4167 /* Rotate this_sack to the first one. */
4168 for (; this_sack > 0; this_sack--, sp--)
4169 swap(*sp, *(sp - 1));
4170 if (cur_sacks > 1)
4171 tcp_sack_maybe_coalesce(tp);
4172 return;
4176 /* Could not find an adjacent existing SACK, build a new one,
4177 * put it at the front, and shift everyone else down. We
4178 * always know there is at least one SACK present already here.
4180 * If the sack array is full, forget about the last one.
4182 if (this_sack >= TCP_NUM_SACKS) {
4183 this_sack--;
4184 tp->rx_opt.num_sacks--;
4185 sp--;
4187 for (; this_sack > 0; this_sack--, sp--)
4188 *sp = *(sp - 1);
4190 new_sack:
4191 /* Build the new head SACK, and we're done. */
4192 sp->start_seq = seq;
4193 sp->end_seq = end_seq;
4194 tp->rx_opt.num_sacks++;
4197 /* RCV.NXT advances, some SACKs should be eaten. */
4199 static void tcp_sack_remove(struct tcp_sock *tp)
4201 struct tcp_sack_block *sp = &tp->selective_acks[0];
4202 int num_sacks = tp->rx_opt.num_sacks;
4203 int this_sack;
4205 /* Empty ofo queue, hence, all the SACKs are eaten. Clear. */
4206 if (skb_queue_empty(&tp->out_of_order_queue)) {
4207 tp->rx_opt.num_sacks = 0;
4208 return;
4211 for (this_sack = 0; this_sack < num_sacks;) {
4212 /* Check if the start of the sack is covered by RCV.NXT. */
4213 if (!before(tp->rcv_nxt, sp->start_seq)) {
4214 int i;
4216 /* RCV.NXT must cover all the block! */
4217 WARN_ON(before(tp->rcv_nxt, sp->end_seq));
4219 /* Zap this SACK, by moving forward any other SACKS. */
4220 for (i=this_sack+1; i < num_sacks; i++)
4221 tp->selective_acks[i-1] = tp->selective_acks[i];
4222 num_sacks--;
4223 continue;
4225 this_sack++;
4226 sp++;
4228 tp->rx_opt.num_sacks = num_sacks;
4231 /* This one checks to see if we can put data from the
4232 * out_of_order queue into the receive_queue.
4234 static void tcp_ofo_queue(struct sock *sk)
4236 struct tcp_sock *tp = tcp_sk(sk);
4237 __u32 dsack_high = tp->rcv_nxt;
4238 struct sk_buff *skb;
4240 while ((skb = skb_peek(&tp->out_of_order_queue)) != NULL) {
4241 if (after(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
4242 break;
4244 if (before(TCP_SKB_CB(skb)->seq, dsack_high)) {
4245 __u32 dsack = dsack_high;
4246 if (before(TCP_SKB_CB(skb)->end_seq, dsack_high))
4247 dsack_high = TCP_SKB_CB(skb)->end_seq;
4248 tcp_dsack_extend(sk, TCP_SKB_CB(skb)->seq, dsack);
4251 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4252 SOCK_DEBUG(sk, "ofo packet was already received \n");
4253 __skb_unlink(skb, &tp->out_of_order_queue);
4254 __kfree_skb(skb);
4255 continue;
4257 SOCK_DEBUG(sk, "ofo requeuing : rcv_next %X seq %X - %X\n",
4258 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4259 TCP_SKB_CB(skb)->end_seq);
4261 __skb_unlink(skb, &tp->out_of_order_queue);
4262 __skb_queue_tail(&sk->sk_receive_queue, skb);
4263 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4264 if (tcp_hdr(skb)->fin)
4265 tcp_fin(skb, sk, tcp_hdr(skb));
4269 static int tcp_prune_ofo_queue(struct sock *sk);
4270 static int tcp_prune_queue(struct sock *sk);
4272 static inline int tcp_try_rmem_schedule(struct sock *sk, unsigned int size)
4274 if (atomic_read(&sk->sk_rmem_alloc) > sk->sk_rcvbuf ||
4275 !sk_rmem_schedule(sk, size)) {
4277 if (tcp_prune_queue(sk) < 0)
4278 return -1;
4280 if (!sk_rmem_schedule(sk, size)) {
4281 if (!tcp_prune_ofo_queue(sk))
4282 return -1;
4284 if (!sk_rmem_schedule(sk, size))
4285 return -1;
4288 return 0;
4291 static void tcp_data_queue(struct sock *sk, struct sk_buff *skb)
4293 struct tcphdr *th = tcp_hdr(skb);
4294 struct tcp_sock *tp = tcp_sk(sk);
4295 int eaten = -1;
4297 if (TCP_SKB_CB(skb)->seq == TCP_SKB_CB(skb)->end_seq)
4298 goto drop;
4300 __skb_pull(skb, th->doff * 4);
4302 TCP_ECN_accept_cwr(tp, skb);
4304 tp->rx_opt.dsack = 0;
4306 /* Queue data for delivery to the user.
4307 * Packets in sequence go to the receive queue.
4308 * Out of sequence packets to the out_of_order_queue.
4310 if (TCP_SKB_CB(skb)->seq == tp->rcv_nxt) {
4311 if (tcp_receive_window(tp) == 0)
4312 goto out_of_window;
4314 /* Ok. In sequence. In window. */
4315 if (tp->ucopy.task == current &&
4316 tp->copied_seq == tp->rcv_nxt && tp->ucopy.len &&
4317 sock_owned_by_user(sk) && !tp->urg_data) {
4318 int chunk = min_t(unsigned int, skb->len,
4319 tp->ucopy.len);
4321 __set_current_state(TASK_RUNNING);
4323 local_bh_enable();
4324 if (!skb_copy_datagram_iovec(skb, 0, tp->ucopy.iov, chunk)) {
4325 tp->ucopy.len -= chunk;
4326 tp->copied_seq += chunk;
4327 eaten = (chunk == skb->len && !th->fin);
4328 tcp_rcv_space_adjust(sk);
4330 local_bh_disable();
4333 if (eaten <= 0) {
4334 queue_and_out:
4335 if (eaten < 0 &&
4336 tcp_try_rmem_schedule(sk, skb->truesize))
4337 goto drop;
4339 skb_set_owner_r(skb, sk);
4340 __skb_queue_tail(&sk->sk_receive_queue, skb);
4342 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
4343 if (skb->len)
4344 tcp_event_data_recv(sk, skb);
4345 if (th->fin)
4346 tcp_fin(skb, sk, th);
4348 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4349 tcp_ofo_queue(sk);
4351 /* RFC2581. 4.2. SHOULD send immediate ACK, when
4352 * gap in queue is filled.
4354 if (skb_queue_empty(&tp->out_of_order_queue))
4355 inet_csk(sk)->icsk_ack.pingpong = 0;
4358 if (tp->rx_opt.num_sacks)
4359 tcp_sack_remove(tp);
4361 tcp_fast_path_check(sk);
4363 if (eaten > 0)
4364 __kfree_skb(skb);
4365 else if (!sock_flag(sk, SOCK_DEAD))
4366 sk->sk_data_ready(sk, 0);
4367 return;
4370 if (!after(TCP_SKB_CB(skb)->end_seq, tp->rcv_nxt)) {
4371 /* A retransmit, 2nd most common case. Force an immediate ack. */
4372 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOST);
4373 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4375 out_of_window:
4376 tcp_enter_quickack_mode(sk);
4377 inet_csk_schedule_ack(sk);
4378 drop:
4379 __kfree_skb(skb);
4380 return;
4383 /* Out of window. F.e. zero window probe. */
4384 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt + tcp_receive_window(tp)))
4385 goto out_of_window;
4387 tcp_enter_quickack_mode(sk);
4389 if (before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
4390 /* Partial packet, seq < rcv_next < end_seq */
4391 SOCK_DEBUG(sk, "partial packet: rcv_next %X seq %X - %X\n",
4392 tp->rcv_nxt, TCP_SKB_CB(skb)->seq,
4393 TCP_SKB_CB(skb)->end_seq);
4395 tcp_dsack_set(sk, TCP_SKB_CB(skb)->seq, tp->rcv_nxt);
4397 /* If window is closed, drop tail of packet. But after
4398 * remembering D-SACK for its head made in previous line.
4400 if (!tcp_receive_window(tp))
4401 goto out_of_window;
4402 goto queue_and_out;
4405 TCP_ECN_check_ce(tp, skb);
4407 if (tcp_try_rmem_schedule(sk, skb->truesize))
4408 goto drop;
4410 /* Disable header prediction. */
4411 tp->pred_flags = 0;
4412 inet_csk_schedule_ack(sk);
4414 SOCK_DEBUG(sk, "out of order segment: rcv_next %X seq %X - %X\n",
4415 tp->rcv_nxt, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq);
4417 skb_set_owner_r(skb, sk);
4419 if (!skb_peek(&tp->out_of_order_queue)) {
4420 /* Initial out of order segment, build 1 SACK. */
4421 if (tcp_is_sack(tp)) {
4422 tp->rx_opt.num_sacks = 1;
4423 tp->selective_acks[0].start_seq = TCP_SKB_CB(skb)->seq;
4424 tp->selective_acks[0].end_seq =
4425 TCP_SKB_CB(skb)->end_seq;
4427 __skb_queue_head(&tp->out_of_order_queue, skb);
4428 } else {
4429 struct sk_buff *skb1 = skb_peek_tail(&tp->out_of_order_queue);
4430 u32 seq = TCP_SKB_CB(skb)->seq;
4431 u32 end_seq = TCP_SKB_CB(skb)->end_seq;
4433 if (seq == TCP_SKB_CB(skb1)->end_seq) {
4434 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4436 if (!tp->rx_opt.num_sacks ||
4437 tp->selective_acks[0].end_seq != seq)
4438 goto add_sack;
4440 /* Common case: data arrive in order after hole. */
4441 tp->selective_acks[0].end_seq = end_seq;
4442 return;
4445 /* Find place to insert this segment. */
4446 while (1) {
4447 if (!after(TCP_SKB_CB(skb1)->seq, seq))
4448 break;
4449 if (skb_queue_is_first(&tp->out_of_order_queue, skb1)) {
4450 skb1 = NULL;
4451 break;
4453 skb1 = skb_queue_prev(&tp->out_of_order_queue, skb1);
4456 /* Do skb overlap to previous one? */
4457 if (skb1 && before(seq, TCP_SKB_CB(skb1)->end_seq)) {
4458 if (!after(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4459 /* All the bits are present. Drop. */
4460 __kfree_skb(skb);
4461 tcp_dsack_set(sk, seq, end_seq);
4462 goto add_sack;
4464 if (after(seq, TCP_SKB_CB(skb1)->seq)) {
4465 /* Partial overlap. */
4466 tcp_dsack_set(sk, seq,
4467 TCP_SKB_CB(skb1)->end_seq);
4468 } else {
4469 if (skb_queue_is_first(&tp->out_of_order_queue,
4470 skb1))
4471 skb1 = NULL;
4472 else
4473 skb1 = skb_queue_prev(
4474 &tp->out_of_order_queue,
4475 skb1);
4478 if (!skb1)
4479 __skb_queue_head(&tp->out_of_order_queue, skb);
4480 else
4481 __skb_queue_after(&tp->out_of_order_queue, skb1, skb);
4483 /* And clean segments covered by new one as whole. */
4484 while (!skb_queue_is_last(&tp->out_of_order_queue, skb)) {
4485 skb1 = skb_queue_next(&tp->out_of_order_queue, skb);
4487 if (!after(end_seq, TCP_SKB_CB(skb1)->seq))
4488 break;
4489 if (before(end_seq, TCP_SKB_CB(skb1)->end_seq)) {
4490 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4491 end_seq);
4492 break;
4494 __skb_unlink(skb1, &tp->out_of_order_queue);
4495 tcp_dsack_extend(sk, TCP_SKB_CB(skb1)->seq,
4496 TCP_SKB_CB(skb1)->end_seq);
4497 __kfree_skb(skb1);
4500 add_sack:
4501 if (tcp_is_sack(tp))
4502 tcp_sack_new_ofo_skb(sk, seq, end_seq);
4506 static struct sk_buff *tcp_collapse_one(struct sock *sk, struct sk_buff *skb,
4507 struct sk_buff_head *list)
4509 struct sk_buff *next = NULL;
4511 if (!skb_queue_is_last(list, skb))
4512 next = skb_queue_next(list, skb);
4514 __skb_unlink(skb, list);
4515 __kfree_skb(skb);
4516 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPRCVCOLLAPSED);
4518 return next;
4521 /* Collapse contiguous sequence of skbs head..tail with
4522 * sequence numbers start..end.
4524 * If tail is NULL, this means until the end of the list.
4526 * Segments with FIN/SYN are not collapsed (only because this
4527 * simplifies code)
4529 static void
4530 tcp_collapse(struct sock *sk, struct sk_buff_head *list,
4531 struct sk_buff *head, struct sk_buff *tail,
4532 u32 start, u32 end)
4534 struct sk_buff *skb, *n;
4535 bool end_of_skbs;
4537 /* First, check that queue is collapsible and find
4538 * the point where collapsing can be useful. */
4539 skb = head;
4540 restart:
4541 end_of_skbs = true;
4542 skb_queue_walk_from_safe(list, skb, n) {
4543 if (skb == tail)
4544 break;
4545 /* No new bits? It is possible on ofo queue. */
4546 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4547 skb = tcp_collapse_one(sk, skb, list);
4548 if (!skb)
4549 break;
4550 goto restart;
4553 /* The first skb to collapse is:
4554 * - not SYN/FIN and
4555 * - bloated or contains data before "start" or
4556 * overlaps to the next one.
4558 if (!tcp_hdr(skb)->syn && !tcp_hdr(skb)->fin &&
4559 (tcp_win_from_space(skb->truesize) > skb->len ||
4560 before(TCP_SKB_CB(skb)->seq, start))) {
4561 end_of_skbs = false;
4562 break;
4565 if (!skb_queue_is_last(list, skb)) {
4566 struct sk_buff *next = skb_queue_next(list, skb);
4567 if (next != tail &&
4568 TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(next)->seq) {
4569 end_of_skbs = false;
4570 break;
4574 /* Decided to skip this, advance start seq. */
4575 start = TCP_SKB_CB(skb)->end_seq;
4577 if (end_of_skbs || tcp_hdr(skb)->syn || tcp_hdr(skb)->fin)
4578 return;
4580 while (before(start, end)) {
4581 struct sk_buff *nskb;
4582 unsigned int header = skb_headroom(skb);
4583 int copy = SKB_MAX_ORDER(header, 0);
4585 /* Too big header? This can happen with IPv6. */
4586 if (copy < 0)
4587 return;
4588 if (end - start < copy)
4589 copy = end - start;
4590 nskb = alloc_skb(copy + header, GFP_ATOMIC);
4591 if (!nskb)
4592 return;
4594 skb_set_mac_header(nskb, skb_mac_header(skb) - skb->head);
4595 skb_set_network_header(nskb, (skb_network_header(skb) -
4596 skb->head));
4597 skb_set_transport_header(nskb, (skb_transport_header(skb) -
4598 skb->head));
4599 skb_reserve(nskb, header);
4600 memcpy(nskb->head, skb->head, header);
4601 memcpy(nskb->cb, skb->cb, sizeof(skb->cb));
4602 TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(nskb)->end_seq = start;
4603 __skb_queue_before(list, skb, nskb);
4604 skb_set_owner_r(nskb, sk);
4606 /* Copy data, releasing collapsed skbs. */
4607 while (copy > 0) {
4608 int offset = start - TCP_SKB_CB(skb)->seq;
4609 int size = TCP_SKB_CB(skb)->end_seq - start;
4611 BUG_ON(offset < 0);
4612 if (size > 0) {
4613 size = min(copy, size);
4614 if (skb_copy_bits(skb, offset, skb_put(nskb, size), size))
4615 BUG();
4616 TCP_SKB_CB(nskb)->end_seq += size;
4617 copy -= size;
4618 start += size;
4620 if (!before(start, TCP_SKB_CB(skb)->end_seq)) {
4621 skb = tcp_collapse_one(sk, skb, list);
4622 if (!skb ||
4623 skb == tail ||
4624 tcp_hdr(skb)->syn ||
4625 tcp_hdr(skb)->fin)
4626 return;
4632 /* Collapse ofo queue. Algorithm: select contiguous sequence of skbs
4633 * and tcp_collapse() them until all the queue is collapsed.
4635 static void tcp_collapse_ofo_queue(struct sock *sk)
4637 struct tcp_sock *tp = tcp_sk(sk);
4638 struct sk_buff *skb = skb_peek(&tp->out_of_order_queue);
4639 struct sk_buff *head;
4640 u32 start, end;
4642 if (skb == NULL)
4643 return;
4645 start = TCP_SKB_CB(skb)->seq;
4646 end = TCP_SKB_CB(skb)->end_seq;
4647 head = skb;
4649 for (;;) {
4650 struct sk_buff *next = NULL;
4652 if (!skb_queue_is_last(&tp->out_of_order_queue, skb))
4653 next = skb_queue_next(&tp->out_of_order_queue, skb);
4654 skb = next;
4656 /* Segment is terminated when we see gap or when
4657 * we are at the end of all the queue. */
4658 if (!skb ||
4659 after(TCP_SKB_CB(skb)->seq, end) ||
4660 before(TCP_SKB_CB(skb)->end_seq, start)) {
4661 tcp_collapse(sk, &tp->out_of_order_queue,
4662 head, skb, start, end);
4663 head = skb;
4664 if (!skb)
4665 break;
4666 /* Start new segment */
4667 start = TCP_SKB_CB(skb)->seq;
4668 end = TCP_SKB_CB(skb)->end_seq;
4669 } else {
4670 if (before(TCP_SKB_CB(skb)->seq, start))
4671 start = TCP_SKB_CB(skb)->seq;
4672 if (after(TCP_SKB_CB(skb)->end_seq, end))
4673 end = TCP_SKB_CB(skb)->end_seq;
4679 * Purge the out-of-order queue.
4680 * Return true if queue was pruned.
4682 static int tcp_prune_ofo_queue(struct sock *sk)
4684 struct tcp_sock *tp = tcp_sk(sk);
4685 int res = 0;
4687 if (!skb_queue_empty(&tp->out_of_order_queue)) {
4688 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_OFOPRUNED);
4689 __skb_queue_purge(&tp->out_of_order_queue);
4691 /* Reset SACK state. A conforming SACK implementation will
4692 * do the same at a timeout based retransmit. When a connection
4693 * is in a sad state like this, we care only about integrity
4694 * of the connection not performance.
4696 if (tp->rx_opt.sack_ok)
4697 tcp_sack_reset(&tp->rx_opt);
4698 sk_mem_reclaim(sk);
4699 res = 1;
4701 return res;
4704 /* Reduce allocated memory if we can, trying to get
4705 * the socket within its memory limits again.
4707 * Return less than zero if we should start dropping frames
4708 * until the socket owning process reads some of the data
4709 * to stabilize the situation.
4711 static int tcp_prune_queue(struct sock *sk)
4713 struct tcp_sock *tp = tcp_sk(sk);
4715 SOCK_DEBUG(sk, "prune_queue: c=%x\n", tp->copied_seq);
4717 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PRUNECALLED);
4719 if (atomic_read(&sk->sk_rmem_alloc) >= sk->sk_rcvbuf)
4720 tcp_clamp_window(sk);
4721 else if (tcp_memory_pressure)
4722 tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U * tp->advmss);
4724 tcp_collapse_ofo_queue(sk);
4725 if (!skb_queue_empty(&sk->sk_receive_queue))
4726 tcp_collapse(sk, &sk->sk_receive_queue,
4727 skb_peek(&sk->sk_receive_queue),
4728 NULL,
4729 tp->copied_seq, tp->rcv_nxt);
4730 sk_mem_reclaim(sk);
4732 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4733 return 0;
4735 /* Collapsing did not help, destructive actions follow.
4736 * This must not ever occur. */
4738 tcp_prune_ofo_queue(sk);
4740 if (atomic_read(&sk->sk_rmem_alloc) <= sk->sk_rcvbuf)
4741 return 0;
4743 /* If we are really being abused, tell the caller to silently
4744 * drop receive data on the floor. It will get retransmitted
4745 * and hopefully then we'll have sufficient space.
4747 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_RCVPRUNED);
4749 /* Massive buffer overcommit. */
4750 tp->pred_flags = 0;
4751 return -1;
4754 /* RFC2861, slow part. Adjust cwnd, after it was not full during one rto.
4755 * As additional protections, we do not touch cwnd in retransmission phases,
4756 * and if application hit its sndbuf limit recently.
4758 void tcp_cwnd_application_limited(struct sock *sk)
4760 struct tcp_sock *tp = tcp_sk(sk);
4762 if (inet_csk(sk)->icsk_ca_state == TCP_CA_Open &&
4763 sk->sk_socket && !test_bit(SOCK_NOSPACE, &sk->sk_socket->flags)) {
4764 /* Limited by application or receiver window. */
4765 u32 init_win = tcp_init_cwnd(tp, __sk_dst_get(sk));
4766 u32 win_used = max(tp->snd_cwnd_used, init_win);
4767 if (win_used < tp->snd_cwnd) {
4768 tp->snd_ssthresh = tcp_current_ssthresh(sk);
4769 tp->snd_cwnd = (tp->snd_cwnd + win_used) >> 1;
4771 tp->snd_cwnd_used = 0;
4773 tp->snd_cwnd_stamp = tcp_time_stamp;
4776 static int tcp_should_expand_sndbuf(struct sock *sk)
4778 struct tcp_sock *tp = tcp_sk(sk);
4780 /* If the user specified a specific send buffer setting, do
4781 * not modify it.
4783 if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
4784 return 0;
4786 /* If we are under global TCP memory pressure, do not expand. */
4787 if (tcp_memory_pressure)
4788 return 0;
4790 /* If we are under soft global TCP memory pressure, do not expand. */
4791 if (atomic_read(&tcp_memory_allocated) >= sysctl_tcp_mem[0])
4792 return 0;
4794 /* If we filled the congestion window, do not expand. */
4795 if (tp->packets_out >= tp->snd_cwnd)
4796 return 0;
4798 return 1;
4801 /* When incoming ACK allowed to free some skb from write_queue,
4802 * we remember this event in flag SOCK_QUEUE_SHRUNK and wake up socket
4803 * on the exit from tcp input handler.
4805 * PROBLEM: sndbuf expansion does not work well with largesend.
4807 static void tcp_new_space(struct sock *sk)
4809 struct tcp_sock *tp = tcp_sk(sk);
4811 if (tcp_should_expand_sndbuf(sk)) {
4812 int sndmem = max_t(u32, tp->rx_opt.mss_clamp, tp->mss_cache) +
4813 MAX_TCP_HEADER + 16 + sizeof(struct sk_buff);
4814 int demanded = max_t(unsigned int, tp->snd_cwnd,
4815 tp->reordering + 1);
4816 sndmem *= 2 * demanded;
4817 if (sndmem > sk->sk_sndbuf)
4818 sk->sk_sndbuf = min(sndmem, sysctl_tcp_wmem[2]);
4819 tp->snd_cwnd_stamp = tcp_time_stamp;
4822 sk->sk_write_space(sk);
4825 static void tcp_check_space(struct sock *sk)
4827 if (sock_flag(sk, SOCK_QUEUE_SHRUNK)) {
4828 sock_reset_flag(sk, SOCK_QUEUE_SHRUNK);
4829 if (sk->sk_socket &&
4830 test_bit(SOCK_NOSPACE, &sk->sk_socket->flags))
4831 tcp_new_space(sk);
4835 static inline void tcp_data_snd_check(struct sock *sk)
4837 tcp_push_pending_frames(sk);
4838 tcp_check_space(sk);
4842 * Check if sending an ack is needed.
4844 static void __tcp_ack_snd_check(struct sock *sk, int ofo_possible)
4846 struct tcp_sock *tp = tcp_sk(sk);
4848 /* More than one full frame received... */
4849 if (((tp->rcv_nxt - tp->rcv_wup) > inet_csk(sk)->icsk_ack.rcv_mss
4850 /* ... and right edge of window advances far enough.
4851 * (tcp_recvmsg() will send ACK otherwise). Or...
4853 && __tcp_select_window(sk) >= tp->rcv_wnd) ||
4854 /* We ACK each frame or... */
4855 tcp_in_quickack_mode(sk) ||
4856 /* We have out of order data. */
4857 (ofo_possible && skb_peek(&tp->out_of_order_queue))) {
4858 /* Then ack it now */
4859 tcp_send_ack(sk);
4860 } else {
4861 /* Else, send delayed ack. */
4862 tcp_send_delayed_ack(sk);
4866 static inline void tcp_ack_snd_check(struct sock *sk)
4868 if (!inet_csk_ack_scheduled(sk)) {
4869 /* We sent a data segment already. */
4870 return;
4872 __tcp_ack_snd_check(sk, 1);
4876 * This routine is only called when we have urgent data
4877 * signaled. Its the 'slow' part of tcp_urg. It could be
4878 * moved inline now as tcp_urg is only called from one
4879 * place. We handle URGent data wrong. We have to - as
4880 * BSD still doesn't use the correction from RFC961.
4881 * For 1003.1g we should support a new option TCP_STDURG to permit
4882 * either form (or just set the sysctl tcp_stdurg).
4885 static void tcp_check_urg(struct sock *sk, struct tcphdr *th)
4887 struct tcp_sock *tp = tcp_sk(sk);
4888 u32 ptr = ntohs(th->urg_ptr);
4890 if (ptr && !sysctl_tcp_stdurg)
4891 ptr--;
4892 ptr += ntohl(th->seq);
4894 /* Ignore urgent data that we've already seen and read. */
4895 if (after(tp->copied_seq, ptr))
4896 return;
4898 /* Do not replay urg ptr.
4900 * NOTE: interesting situation not covered by specs.
4901 * Misbehaving sender may send urg ptr, pointing to segment,
4902 * which we already have in ofo queue. We are not able to fetch
4903 * such data and will stay in TCP_URG_NOTYET until will be eaten
4904 * by recvmsg(). Seems, we are not obliged to handle such wicked
4905 * situations. But it is worth to think about possibility of some
4906 * DoSes using some hypothetical application level deadlock.
4908 if (before(ptr, tp->rcv_nxt))
4909 return;
4911 /* Do we already have a newer (or duplicate) urgent pointer? */
4912 if (tp->urg_data && !after(ptr, tp->urg_seq))
4913 return;
4915 /* Tell the world about our new urgent pointer. */
4916 sk_send_sigurg(sk);
4918 /* We may be adding urgent data when the last byte read was
4919 * urgent. To do this requires some care. We cannot just ignore
4920 * tp->copied_seq since we would read the last urgent byte again
4921 * as data, nor can we alter copied_seq until this data arrives
4922 * or we break the semantics of SIOCATMARK (and thus sockatmark())
4924 * NOTE. Double Dutch. Rendering to plain English: author of comment
4925 * above did something sort of send("A", MSG_OOB); send("B", MSG_OOB);
4926 * and expect that both A and B disappear from stream. This is _wrong_.
4927 * Though this happens in BSD with high probability, this is occasional.
4928 * Any application relying on this is buggy. Note also, that fix "works"
4929 * only in this artificial test. Insert some normal data between A and B and we will
4930 * decline of BSD again. Verdict: it is better to remove to trap
4931 * buggy users.
4933 if (tp->urg_seq == tp->copied_seq && tp->urg_data &&
4934 !sock_flag(sk, SOCK_URGINLINE) && tp->copied_seq != tp->rcv_nxt) {
4935 struct sk_buff *skb = skb_peek(&sk->sk_receive_queue);
4936 tp->copied_seq++;
4937 if (skb && !before(tp->copied_seq, TCP_SKB_CB(skb)->end_seq)) {
4938 __skb_unlink(skb, &sk->sk_receive_queue);
4939 __kfree_skb(skb);
4943 tp->urg_data = TCP_URG_NOTYET;
4944 tp->urg_seq = ptr;
4946 /* Disable header prediction. */
4947 tp->pred_flags = 0;
4950 /* This is the 'fast' part of urgent handling. */
4951 static void tcp_urg(struct sock *sk, struct sk_buff *skb, struct tcphdr *th)
4953 struct tcp_sock *tp = tcp_sk(sk);
4955 /* Check if we get a new urgent pointer - normally not. */
4956 if (th->urg)
4957 tcp_check_urg(sk, th);
4959 /* Do we wait for any urgent data? - normally not... */
4960 if (tp->urg_data == TCP_URG_NOTYET) {
4961 u32 ptr = tp->urg_seq - ntohl(th->seq) + (th->doff * 4) -
4962 th->syn;
4964 /* Is the urgent pointer pointing into this packet? */
4965 if (ptr < skb->len) {
4966 u8 tmp;
4967 if (skb_copy_bits(skb, ptr, &tmp, 1))
4968 BUG();
4969 tp->urg_data = TCP_URG_VALID | tmp;
4970 if (!sock_flag(sk, SOCK_DEAD))
4971 sk->sk_data_ready(sk, 0);
4976 static int tcp_copy_to_iovec(struct sock *sk, struct sk_buff *skb, int hlen)
4978 struct tcp_sock *tp = tcp_sk(sk);
4979 int chunk = skb->len - hlen;
4980 int err;
4982 local_bh_enable();
4983 if (skb_csum_unnecessary(skb))
4984 err = skb_copy_datagram_iovec(skb, hlen, tp->ucopy.iov, chunk);
4985 else
4986 err = skb_copy_and_csum_datagram_iovec(skb, hlen,
4987 tp->ucopy.iov);
4989 if (!err) {
4990 tp->ucopy.len -= chunk;
4991 tp->copied_seq += chunk;
4992 tcp_rcv_space_adjust(sk);
4995 local_bh_disable();
4996 return err;
4999 static __sum16 __tcp_checksum_complete_user(struct sock *sk,
5000 struct sk_buff *skb)
5002 __sum16 result;
5004 if (sock_owned_by_user(sk)) {
5005 local_bh_enable();
5006 result = __tcp_checksum_complete(skb);
5007 local_bh_disable();
5008 } else {
5009 result = __tcp_checksum_complete(skb);
5011 return result;
5014 static inline int tcp_checksum_complete_user(struct sock *sk,
5015 struct sk_buff *skb)
5017 return !skb_csum_unnecessary(skb) &&
5018 __tcp_checksum_complete_user(sk, skb);
5021 #ifdef CONFIG_NET_DMA
5022 static int tcp_dma_try_early_copy(struct sock *sk, struct sk_buff *skb,
5023 int hlen)
5025 struct tcp_sock *tp = tcp_sk(sk);
5026 int chunk = skb->len - hlen;
5027 int dma_cookie;
5028 int copied_early = 0;
5030 if (tp->ucopy.wakeup)
5031 return 0;
5033 if (!tp->ucopy.dma_chan && tp->ucopy.pinned_list)
5034 tp->ucopy.dma_chan = dma_find_channel(DMA_MEMCPY);
5036 if (tp->ucopy.dma_chan && skb_csum_unnecessary(skb)) {
5038 dma_cookie = dma_skb_copy_datagram_iovec(tp->ucopy.dma_chan,
5039 skb, hlen,
5040 tp->ucopy.iov, chunk,
5041 tp->ucopy.pinned_list);
5043 if (dma_cookie < 0)
5044 goto out;
5046 tp->ucopy.dma_cookie = dma_cookie;
5047 copied_early = 1;
5049 tp->ucopy.len -= chunk;
5050 tp->copied_seq += chunk;
5051 tcp_rcv_space_adjust(sk);
5053 if ((tp->ucopy.len == 0) ||
5054 (tcp_flag_word(tcp_hdr(skb)) & TCP_FLAG_PSH) ||
5055 (atomic_read(&sk->sk_rmem_alloc) > (sk->sk_rcvbuf >> 1))) {
5056 tp->ucopy.wakeup = 1;
5057 sk->sk_data_ready(sk, 0);
5059 } else if (chunk > 0) {
5060 tp->ucopy.wakeup = 1;
5061 sk->sk_data_ready(sk, 0);
5063 out:
5064 return copied_early;
5066 #endif /* CONFIG_NET_DMA */
5068 /* Does PAWS and seqno based validation of an incoming segment, flags will
5069 * play significant role here.
5071 static int tcp_validate_incoming(struct sock *sk, struct sk_buff *skb,
5072 struct tcphdr *th, int syn_inerr)
5074 struct tcp_sock *tp = tcp_sk(sk);
5076 /* RFC1323: H1. Apply PAWS check first. */
5077 if (tcp_fast_parse_options(skb, th, tp) && tp->rx_opt.saw_tstamp &&
5078 tcp_paws_discard(sk, skb)) {
5079 if (!th->rst) {
5080 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSESTABREJECTED);
5081 tcp_send_dupack(sk, skb);
5082 goto discard;
5084 /* Reset is accepted even if it did not pass PAWS. */
5087 /* Step 1: check sequence number */
5088 if (!tcp_sequence(tp, TCP_SKB_CB(skb)->seq, TCP_SKB_CB(skb)->end_seq)) {
5089 /* RFC793, page 37: "In all states except SYN-SENT, all reset
5090 * (RST) segments are validated by checking their SEQ-fields."
5091 * And page 69: "If an incoming segment is not acceptable,
5092 * an acknowledgment should be sent in reply (unless the RST
5093 * bit is set, if so drop the segment and return)".
5095 if (!th->rst)
5096 tcp_send_dupack(sk, skb);
5097 goto discard;
5100 /* Step 2: check RST bit */
5101 if (th->rst) {
5102 tcp_reset(sk);
5103 goto discard;
5106 /* ts_recent update must be made after we are sure that the packet
5107 * is in window.
5109 tcp_replace_ts_recent(tp, TCP_SKB_CB(skb)->seq);
5111 /* step 3: check security and precedence [ignored] */
5113 /* step 4: Check for a SYN in window. */
5114 if (th->syn && !before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt)) {
5115 if (syn_inerr)
5116 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5117 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONSYN);
5118 tcp_reset(sk);
5119 return -1;
5122 return 1;
5124 discard:
5125 __kfree_skb(skb);
5126 return 0;
5130 * TCP receive function for the ESTABLISHED state.
5132 * It is split into a fast path and a slow path. The fast path is
5133 * disabled when:
5134 * - A zero window was announced from us - zero window probing
5135 * is only handled properly in the slow path.
5136 * - Out of order segments arrived.
5137 * - Urgent data is expected.
5138 * - There is no buffer space left
5139 * - Unexpected TCP flags/window values/header lengths are received
5140 * (detected by checking the TCP header against pred_flags)
5141 * - Data is sent in both directions. Fast path only supports pure senders
5142 * or pure receivers (this means either the sequence number or the ack
5143 * value must stay constant)
5144 * - Unexpected TCP option.
5146 * When these conditions are not satisfied it drops into a standard
5147 * receive procedure patterned after RFC793 to handle all cases.
5148 * The first three cases are guaranteed by proper pred_flags setting,
5149 * the rest is checked inline. Fast processing is turned on in
5150 * tcp_data_queue when everything is OK.
5152 int tcp_rcv_established(struct sock *sk, struct sk_buff *skb,
5153 struct tcphdr *th, unsigned len)
5155 struct tcp_sock *tp = tcp_sk(sk);
5156 int res;
5159 * Header prediction.
5160 * The code loosely follows the one in the famous
5161 * "30 instruction TCP receive" Van Jacobson mail.
5163 * Van's trick is to deposit buffers into socket queue
5164 * on a device interrupt, to call tcp_recv function
5165 * on the receive process context and checksum and copy
5166 * the buffer to user space. smart...
5168 * Our current scheme is not silly either but we take the
5169 * extra cost of the net_bh soft interrupt processing...
5170 * We do checksum and copy also but from device to kernel.
5173 tp->rx_opt.saw_tstamp = 0;
5175 /* pred_flags is 0xS?10 << 16 + snd_wnd
5176 * if header_prediction is to be made
5177 * 'S' will always be tp->tcp_header_len >> 2
5178 * '?' will be 0 for the fast path, otherwise pred_flags is 0 to
5179 * turn it off (when there are holes in the receive
5180 * space for instance)
5181 * PSH flag is ignored.
5184 if ((tcp_flag_word(th) & TCP_HP_BITS) == tp->pred_flags &&
5185 TCP_SKB_CB(skb)->seq == tp->rcv_nxt &&
5186 !after(TCP_SKB_CB(skb)->ack_seq, tp->snd_nxt)) {
5187 int tcp_header_len = tp->tcp_header_len;
5189 /* Timestamp header prediction: tcp_header_len
5190 * is automatically equal to th->doff*4 due to pred_flags
5191 * match.
5194 /* Check timestamp */
5195 if (tcp_header_len == sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) {
5196 /* No? Slow path! */
5197 if (!tcp_parse_aligned_timestamp(tp, th))
5198 goto slow_path;
5200 /* If PAWS failed, check it more carefully in slow path */
5201 if ((s32)(tp->rx_opt.rcv_tsval - tp->rx_opt.ts_recent) < 0)
5202 goto slow_path;
5204 /* DO NOT update ts_recent here, if checksum fails
5205 * and timestamp was corrupted part, it will result
5206 * in a hung connection since we will drop all
5207 * future packets due to the PAWS test.
5211 if (len <= tcp_header_len) {
5212 /* Bulk data transfer: sender */
5213 if (len == tcp_header_len) {
5214 /* Predicted packet is in window by definition.
5215 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5216 * Hence, check seq<=rcv_wup reduces to:
5218 if (tcp_header_len ==
5219 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5220 tp->rcv_nxt == tp->rcv_wup)
5221 tcp_store_ts_recent(tp);
5223 /* We know that such packets are checksummed
5224 * on entry.
5226 tcp_ack(sk, skb, 0);
5227 __kfree_skb(skb);
5228 tcp_data_snd_check(sk);
5229 return 0;
5230 } else { /* Header too small */
5231 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5232 goto discard;
5234 } else {
5235 int eaten = 0;
5236 int copied_early = 0;
5238 if (tp->copied_seq == tp->rcv_nxt &&
5239 len - tcp_header_len <= tp->ucopy.len) {
5240 #ifdef CONFIG_NET_DMA
5241 if (tcp_dma_try_early_copy(sk, skb, tcp_header_len)) {
5242 copied_early = 1;
5243 eaten = 1;
5245 #endif
5246 if (tp->ucopy.task == current &&
5247 sock_owned_by_user(sk) && !copied_early) {
5248 __set_current_state(TASK_RUNNING);
5250 if (!tcp_copy_to_iovec(sk, skb, tcp_header_len))
5251 eaten = 1;
5253 if (eaten) {
5254 /* Predicted packet is in window by definition.
5255 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5256 * Hence, check seq<=rcv_wup reduces to:
5258 if (tcp_header_len ==
5259 (sizeof(struct tcphdr) +
5260 TCPOLEN_TSTAMP_ALIGNED) &&
5261 tp->rcv_nxt == tp->rcv_wup)
5262 tcp_store_ts_recent(tp);
5264 tcp_rcv_rtt_measure_ts(sk, skb);
5266 __skb_pull(skb, tcp_header_len);
5267 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5268 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITSTOUSER);
5270 if (copied_early)
5271 tcp_cleanup_rbuf(sk, skb->len);
5273 if (!eaten) {
5274 if (tcp_checksum_complete_user(sk, skb))
5275 goto csum_error;
5277 /* Predicted packet is in window by definition.
5278 * seq == rcv_nxt and rcv_wup <= rcv_nxt.
5279 * Hence, check seq<=rcv_wup reduces to:
5281 if (tcp_header_len ==
5282 (sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED) &&
5283 tp->rcv_nxt == tp->rcv_wup)
5284 tcp_store_ts_recent(tp);
5286 tcp_rcv_rtt_measure_ts(sk, skb);
5288 if ((int)skb->truesize > sk->sk_forward_alloc)
5289 goto step5;
5291 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPHPHITS);
5293 /* Bulk data transfer: receiver */
5294 __skb_pull(skb, tcp_header_len);
5295 __skb_queue_tail(&sk->sk_receive_queue, skb);
5296 skb_set_owner_r(skb, sk);
5297 tp->rcv_nxt = TCP_SKB_CB(skb)->end_seq;
5300 tcp_event_data_recv(sk, skb);
5302 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_una) {
5303 /* Well, only one small jumplet in fast path... */
5304 tcp_ack(sk, skb, FLAG_DATA);
5305 tcp_data_snd_check(sk);
5306 if (!inet_csk_ack_scheduled(sk))
5307 goto no_ack;
5310 if (!copied_early || tp->rcv_nxt != tp->rcv_wup)
5311 __tcp_ack_snd_check(sk, 0);
5312 no_ack:
5313 #ifdef CONFIG_NET_DMA
5314 if (copied_early)
5315 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
5316 else
5317 #endif
5318 if (eaten)
5319 __kfree_skb(skb);
5320 else
5321 sk->sk_data_ready(sk, 0);
5322 return 0;
5326 slow_path:
5327 if (len < (th->doff << 2) || tcp_checksum_complete_user(sk, skb))
5328 goto csum_error;
5331 * Standard slow path.
5334 res = tcp_validate_incoming(sk, skb, th, 1);
5335 if (res <= 0)
5336 return -res;
5338 step5:
5339 if (th->ack && tcp_ack(sk, skb, FLAG_SLOWPATH) < 0)
5340 goto discard;
5342 tcp_rcv_rtt_measure_ts(sk, skb);
5344 /* Process urgent data. */
5345 tcp_urg(sk, skb, th);
5347 /* step 7: process the segment text */
5348 tcp_data_queue(sk, skb);
5350 tcp_data_snd_check(sk);
5351 tcp_ack_snd_check(sk);
5352 return 0;
5354 csum_error:
5355 TCP_INC_STATS_BH(sock_net(sk), TCP_MIB_INERRS);
5357 discard:
5358 __kfree_skb(skb);
5359 return 0;
5362 static int tcp_rcv_synsent_state_process(struct sock *sk, struct sk_buff *skb,
5363 struct tcphdr *th, unsigned len)
5365 struct tcp_sock *tp = tcp_sk(sk);
5366 struct inet_connection_sock *icsk = inet_csk(sk);
5367 int saved_clamp = tp->rx_opt.mss_clamp;
5369 tcp_parse_options(skb, &tp->rx_opt, 0);
5371 if (th->ack) {
5372 /* rfc793:
5373 * "If the state is SYN-SENT then
5374 * first check the ACK bit
5375 * If the ACK bit is set
5376 * If SEG.ACK =< ISS, or SEG.ACK > SND.NXT, send
5377 * a reset (unless the RST bit is set, if so drop
5378 * the segment and return)"
5380 * We do not send data with SYN, so that RFC-correct
5381 * test reduces to:
5383 if (TCP_SKB_CB(skb)->ack_seq != tp->snd_nxt)
5384 goto reset_and_undo;
5386 if (tp->rx_opt.saw_tstamp && tp->rx_opt.rcv_tsecr &&
5387 !between(tp->rx_opt.rcv_tsecr, tp->retrans_stamp,
5388 tcp_time_stamp)) {
5389 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_PAWSACTIVEREJECTED);
5390 goto reset_and_undo;
5393 /* Now ACK is acceptable.
5395 * "If the RST bit is set
5396 * If the ACK was acceptable then signal the user "error:
5397 * connection reset", drop the segment, enter CLOSED state,
5398 * delete TCB, and return."
5401 if (th->rst) {
5402 tcp_reset(sk);
5403 goto discard;
5406 /* rfc793:
5407 * "fifth, if neither of the SYN or RST bits is set then
5408 * drop the segment and return."
5410 * See note below!
5411 * --ANK(990513)
5413 if (!th->syn)
5414 goto discard_and_undo;
5416 /* rfc793:
5417 * "If the SYN bit is on ...
5418 * are acceptable then ...
5419 * (our SYN has been ACKed), change the connection
5420 * state to ESTABLISHED..."
5423 TCP_ECN_rcv_synack(tp, th);
5425 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5426 tcp_ack(sk, skb, FLAG_SLOWPATH);
5428 /* Ok.. it's good. Set up sequence numbers and
5429 * move to established.
5431 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5432 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5434 /* RFC1323: The window in SYN & SYN/ACK segments is
5435 * never scaled.
5437 tp->snd_wnd = ntohs(th->window);
5438 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5440 if (!tp->rx_opt.wscale_ok) {
5441 tp->rx_opt.snd_wscale = tp->rx_opt.rcv_wscale = 0;
5442 tp->window_clamp = min(tp->window_clamp, 65535U);
5445 if (tp->rx_opt.saw_tstamp) {
5446 tp->rx_opt.tstamp_ok = 1;
5447 tp->tcp_header_len =
5448 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5449 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5450 tcp_store_ts_recent(tp);
5451 } else {
5452 tp->tcp_header_len = sizeof(struct tcphdr);
5455 if (tcp_is_sack(tp) && sysctl_tcp_fack)
5456 tcp_enable_fack(tp);
5458 tcp_mtup_init(sk);
5459 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5460 tcp_initialize_rcv_mss(sk);
5462 /* Remember, tcp_poll() does not lock socket!
5463 * Change state from SYN-SENT only after copied_seq
5464 * is initialized. */
5465 tp->copied_seq = tp->rcv_nxt;
5466 smp_mb();
5467 tcp_set_state(sk, TCP_ESTABLISHED);
5469 security_inet_conn_established(sk, skb);
5471 /* Make sure socket is routed, for correct metrics. */
5472 icsk->icsk_af_ops->rebuild_header(sk);
5474 tcp_init_metrics(sk);
5476 tcp_init_congestion_control(sk);
5478 /* Prevent spurious tcp_cwnd_restart() on first data
5479 * packet.
5481 tp->lsndtime = tcp_time_stamp;
5483 tcp_init_buffer_space(sk);
5485 if (sock_flag(sk, SOCK_KEEPOPEN))
5486 inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tp));
5488 if (!tp->rx_opt.snd_wscale)
5489 __tcp_fast_path_on(tp, tp->snd_wnd);
5490 else
5491 tp->pred_flags = 0;
5493 if (!sock_flag(sk, SOCK_DEAD)) {
5494 sk->sk_state_change(sk);
5495 sk_wake_async(sk, SOCK_WAKE_IO, POLL_OUT);
5498 if (sk->sk_write_pending ||
5499 icsk->icsk_accept_queue.rskq_defer_accept ||
5500 icsk->icsk_ack.pingpong) {
5501 /* Save one ACK. Data will be ready after
5502 * several ticks, if write_pending is set.
5504 * It may be deleted, but with this feature tcpdumps
5505 * look so _wonderfully_ clever, that I was not able
5506 * to stand against the temptation 8) --ANK
5508 inet_csk_schedule_ack(sk);
5509 icsk->icsk_ack.lrcvtime = tcp_time_stamp;
5510 icsk->icsk_ack.ato = TCP_ATO_MIN;
5511 tcp_incr_quickack(sk);
5512 tcp_enter_quickack_mode(sk);
5513 inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK,
5514 TCP_DELACK_MAX, TCP_RTO_MAX);
5516 discard:
5517 __kfree_skb(skb);
5518 return 0;
5519 } else {
5520 tcp_send_ack(sk);
5522 return -1;
5525 /* No ACK in the segment */
5527 if (th->rst) {
5528 /* rfc793:
5529 * "If the RST bit is set
5531 * Otherwise (no ACK) drop the segment and return."
5534 goto discard_and_undo;
5537 /* PAWS check. */
5538 if (tp->rx_opt.ts_recent_stamp && tp->rx_opt.saw_tstamp &&
5539 tcp_paws_reject(&tp->rx_opt, 0))
5540 goto discard_and_undo;
5542 if (th->syn) {
5543 /* We see SYN without ACK. It is attempt of
5544 * simultaneous connect with crossed SYNs.
5545 * Particularly, it can be connect to self.
5547 tcp_set_state(sk, TCP_SYN_RECV);
5549 if (tp->rx_opt.saw_tstamp) {
5550 tp->rx_opt.tstamp_ok = 1;
5551 tcp_store_ts_recent(tp);
5552 tp->tcp_header_len =
5553 sizeof(struct tcphdr) + TCPOLEN_TSTAMP_ALIGNED;
5554 } else {
5555 tp->tcp_header_len = sizeof(struct tcphdr);
5558 tp->rcv_nxt = TCP_SKB_CB(skb)->seq + 1;
5559 tp->rcv_wup = TCP_SKB_CB(skb)->seq + 1;
5561 /* RFC1323: The window in SYN & SYN/ACK segments is
5562 * never scaled.
5564 tp->snd_wnd = ntohs(th->window);
5565 tp->snd_wl1 = TCP_SKB_CB(skb)->seq;
5566 tp->max_window = tp->snd_wnd;
5568 TCP_ECN_rcv_syn(tp, th);
5570 tcp_mtup_init(sk);
5571 tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
5572 tcp_initialize_rcv_mss(sk);
5574 tcp_send_synack(sk);
5575 #if 0
5576 /* Note, we could accept data and URG from this segment.
5577 * There are no obstacles to make this.
5579 * However, if we ignore data in ACKless segments sometimes,
5580 * we have no reasons to accept it sometimes.
5581 * Also, seems the code doing it in step6 of tcp_rcv_state_process
5582 * is not flawless. So, discard packet for sanity.
5583 * Uncomment this return to process the data.
5585 return -1;
5586 #else
5587 goto discard;
5588 #endif
5590 /* "fifth, if neither of the SYN or RST bits is set then
5591 * drop the segment and return."
5594 discard_and_undo:
5595 tcp_clear_options(&tp->rx_opt);
5596 tp->rx_opt.mss_clamp = saved_clamp;
5597 goto discard;
5599 reset_and_undo:
5600 tcp_clear_options(&tp->rx_opt);
5601 tp->rx_opt.mss_clamp = saved_clamp;
5602 return 1;
5606 * This function implements the receiving procedure of RFC 793 for
5607 * all states except ESTABLISHED and TIME_WAIT.
5608 * It's called from both tcp_v4_rcv and tcp_v6_rcv and should be
5609 * address independent.
5612 int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb,
5613 struct tcphdr *th, unsigned len)
5615 struct tcp_sock *tp = tcp_sk(sk);
5616 struct inet_connection_sock *icsk = inet_csk(sk);
5617 int queued = 0;
5618 int res;
5620 tp->rx_opt.saw_tstamp = 0;
5622 switch (sk->sk_state) {
5623 case TCP_CLOSE:
5624 goto discard;
5626 case TCP_LISTEN:
5627 if (th->ack)
5628 return 1;
5630 if (th->rst)
5631 goto discard;
5633 if (th->syn) {
5634 if (icsk->icsk_af_ops->conn_request(sk, skb) < 0)
5635 return 1;
5637 /* Now we have several options: In theory there is
5638 * nothing else in the frame. KA9Q has an option to
5639 * send data with the syn, BSD accepts data with the
5640 * syn up to the [to be] advertised window and
5641 * Solaris 2.1 gives you a protocol error. For now
5642 * we just ignore it, that fits the spec precisely
5643 * and avoids incompatibilities. It would be nice in
5644 * future to drop through and process the data.
5646 * Now that TTCP is starting to be used we ought to
5647 * queue this data.
5648 * But, this leaves one open to an easy denial of
5649 * service attack, and SYN cookies can't defend
5650 * against this problem. So, we drop the data
5651 * in the interest of security over speed unless
5652 * it's still in use.
5654 kfree_skb(skb);
5655 return 0;
5657 goto discard;
5659 case TCP_SYN_SENT:
5660 queued = tcp_rcv_synsent_state_process(sk, skb, th, len);
5661 if (queued >= 0)
5662 return queued;
5664 /* Do step6 onward by hand. */
5665 tcp_urg(sk, skb, th);
5666 __kfree_skb(skb);
5667 tcp_data_snd_check(sk);
5668 return 0;
5671 res = tcp_validate_incoming(sk, skb, th, 0);
5672 if (res <= 0)
5673 return -res;
5675 /* step 5: check the ACK field */
5676 if (th->ack) {
5677 int acceptable = tcp_ack(sk, skb, FLAG_SLOWPATH) > 0;
5679 switch (sk->sk_state) {
5680 case TCP_SYN_RECV:
5681 if (acceptable) {
5682 tp->copied_seq = tp->rcv_nxt;
5683 smp_mb();
5684 tcp_set_state(sk, TCP_ESTABLISHED);
5685 sk->sk_state_change(sk);
5687 /* Note, that this wakeup is only for marginal
5688 * crossed SYN case. Passively open sockets
5689 * are not waked up, because sk->sk_sleep ==
5690 * NULL and sk->sk_socket == NULL.
5692 if (sk->sk_socket)
5693 sk_wake_async(sk,
5694 SOCK_WAKE_IO, POLL_OUT);
5696 tp->snd_una = TCP_SKB_CB(skb)->ack_seq;
5697 tp->snd_wnd = ntohs(th->window) <<
5698 tp->rx_opt.snd_wscale;
5699 tcp_init_wl(tp, TCP_SKB_CB(skb)->seq);
5701 /* tcp_ack considers this ACK as duplicate
5702 * and does not calculate rtt.
5703 * Fix it at least with timestamps.
5705 if (tp->rx_opt.saw_tstamp &&
5706 tp->rx_opt.rcv_tsecr && !tp->srtt)
5707 tcp_ack_saw_tstamp(sk, 0);
5709 if (tp->rx_opt.tstamp_ok)
5710 tp->advmss -= TCPOLEN_TSTAMP_ALIGNED;
5712 /* Make sure socket is routed, for
5713 * correct metrics.
5715 icsk->icsk_af_ops->rebuild_header(sk);
5717 tcp_init_metrics(sk);
5719 tcp_init_congestion_control(sk);
5721 /* Prevent spurious tcp_cwnd_restart() on
5722 * first data packet.
5724 tp->lsndtime = tcp_time_stamp;
5726 tcp_mtup_init(sk);
5727 tcp_initialize_rcv_mss(sk);
5728 tcp_init_buffer_space(sk);
5729 tcp_fast_path_on(tp);
5730 } else {
5731 return 1;
5733 break;
5735 case TCP_FIN_WAIT1:
5736 if (tp->snd_una == tp->write_seq) {
5737 tcp_set_state(sk, TCP_FIN_WAIT2);
5738 sk->sk_shutdown |= SEND_SHUTDOWN;
5739 dst_confirm(sk->sk_dst_cache);
5741 if (!sock_flag(sk, SOCK_DEAD))
5742 /* Wake up lingering close() */
5743 sk->sk_state_change(sk);
5744 else {
5745 int tmo;
5747 if (tp->linger2 < 0 ||
5748 (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5749 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt))) {
5750 tcp_done(sk);
5751 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5752 return 1;
5755 tmo = tcp_fin_time(sk);
5756 if (tmo > TCP_TIMEWAIT_LEN) {
5757 inet_csk_reset_keepalive_timer(sk, tmo - TCP_TIMEWAIT_LEN);
5758 } else if (th->fin || sock_owned_by_user(sk)) {
5759 /* Bad case. We could lose such FIN otherwise.
5760 * It is not a big problem, but it looks confusing
5761 * and not so rare event. We still can lose it now,
5762 * if it spins in bh_lock_sock(), but it is really
5763 * marginal case.
5765 inet_csk_reset_keepalive_timer(sk, tmo);
5766 } else {
5767 tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
5768 goto discard;
5772 break;
5774 case TCP_CLOSING:
5775 if (tp->snd_una == tp->write_seq) {
5776 tcp_time_wait(sk, TCP_TIME_WAIT, 0);
5777 goto discard;
5779 break;
5781 case TCP_LAST_ACK:
5782 if (tp->snd_una == tp->write_seq) {
5783 tcp_update_metrics(sk);
5784 tcp_done(sk);
5785 goto discard;
5787 break;
5789 } else
5790 goto discard;
5792 /* step 6: check the URG bit */
5793 tcp_urg(sk, skb, th);
5795 /* step 7: process the segment text */
5796 switch (sk->sk_state) {
5797 case TCP_CLOSE_WAIT:
5798 case TCP_CLOSING:
5799 case TCP_LAST_ACK:
5800 if (!before(TCP_SKB_CB(skb)->seq, tp->rcv_nxt))
5801 break;
5802 case TCP_FIN_WAIT1:
5803 case TCP_FIN_WAIT2:
5804 /* RFC 793 says to queue data in these states,
5805 * RFC 1122 says we MUST send a reset.
5806 * BSD 4.4 also does reset.
5808 if (sk->sk_shutdown & RCV_SHUTDOWN) {
5809 if (TCP_SKB_CB(skb)->end_seq != TCP_SKB_CB(skb)->seq &&
5810 after(TCP_SKB_CB(skb)->end_seq - th->fin, tp->rcv_nxt)) {
5811 NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONDATA);
5812 tcp_reset(sk);
5813 return 1;
5816 /* Fall through */
5817 case TCP_ESTABLISHED:
5818 tcp_data_queue(sk, skb);
5819 queued = 1;
5820 break;
5823 /* tcp_data could move socket to TIME-WAIT */
5824 if (sk->sk_state != TCP_CLOSE) {
5825 tcp_data_snd_check(sk);
5826 tcp_ack_snd_check(sk);
5829 if (!queued) {
5830 discard:
5831 __kfree_skb(skb);
5833 return 0;
5836 EXPORT_SYMBOL(sysctl_tcp_ecn);
5837 EXPORT_SYMBOL(sysctl_tcp_reordering);
5838 EXPORT_SYMBOL(sysctl_tcp_adv_win_scale);
5839 EXPORT_SYMBOL(tcp_parse_options);
5840 #ifdef CONFIG_TCP_MD5SIG
5841 EXPORT_SYMBOL(tcp_parse_md5sig_option);
5842 #endif
5843 EXPORT_SYMBOL(tcp_rcv_established);
5844 EXPORT_SYMBOL(tcp_rcv_state_process);
5845 EXPORT_SYMBOL(tcp_initialize_rcv_mss);