PM / yenta: Split resume into early and late parts (rev. 4)
[linux/fpc-iii.git] / net / sunrpc / auth_gss / auth_gss.c
blob66d458fc69206e69a50663f12b0a491a750b7c80
1 /*
2 * linux/net/sunrpc/auth_gss/auth_gss.c
4 * RPCSEC_GSS client authentication.
6 * Copyright (c) 2000 The Regents of the University of Michigan.
7 * All rights reserved.
9 * Dug Song <dugsong@monkey.org>
10 * Andy Adamson <andros@umich.edu>
12 * Redistribution and use in source and binary forms, with or without
13 * modification, are permitted provided that the following conditions
14 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 * 3. Neither the name of the University nor the names of its
22 * contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
25 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
26 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
27 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
28 * DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
29 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
30 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
31 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
32 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
39 #include <linux/module.h>
40 #include <linux/init.h>
41 #include <linux/types.h>
42 #include <linux/slab.h>
43 #include <linux/sched.h>
44 #include <linux/pagemap.h>
45 #include <linux/sunrpc/clnt.h>
46 #include <linux/sunrpc/auth.h>
47 #include <linux/sunrpc/auth_gss.h>
48 #include <linux/sunrpc/svcauth_gss.h>
49 #include <linux/sunrpc/gss_err.h>
50 #include <linux/workqueue.h>
51 #include <linux/sunrpc/rpc_pipe_fs.h>
52 #include <linux/sunrpc/gss_api.h>
53 #include <asm/uaccess.h>
55 static const struct rpc_authops authgss_ops;
57 static const struct rpc_credops gss_credops;
58 static const struct rpc_credops gss_nullops;
60 #ifdef RPC_DEBUG
61 # define RPCDBG_FACILITY RPCDBG_AUTH
62 #endif
64 #define GSS_CRED_SLACK 1024
65 /* length of a krb5 verifier (48), plus data added before arguments when
66 * using integrity (two 4-byte integers): */
67 #define GSS_VERF_SLACK 100
69 struct gss_auth {
70 struct kref kref;
71 struct rpc_auth rpc_auth;
72 struct gss_api_mech *mech;
73 enum rpc_gss_svc service;
74 struct rpc_clnt *client;
76 * There are two upcall pipes; dentry[1], named "gssd", is used
77 * for the new text-based upcall; dentry[0] is named after the
78 * mechanism (for example, "krb5") and exists for
79 * backwards-compatibility with older gssd's.
81 struct dentry *dentry[2];
84 /* pipe_version >= 0 if and only if someone has a pipe open. */
85 static int pipe_version = -1;
86 static atomic_t pipe_users = ATOMIC_INIT(0);
87 static DEFINE_SPINLOCK(pipe_version_lock);
88 static struct rpc_wait_queue pipe_version_rpc_waitqueue;
89 static DECLARE_WAIT_QUEUE_HEAD(pipe_version_waitqueue);
91 static void gss_free_ctx(struct gss_cl_ctx *);
92 static struct rpc_pipe_ops gss_upcall_ops_v0;
93 static struct rpc_pipe_ops gss_upcall_ops_v1;
95 static inline struct gss_cl_ctx *
96 gss_get_ctx(struct gss_cl_ctx *ctx)
98 atomic_inc(&ctx->count);
99 return ctx;
102 static inline void
103 gss_put_ctx(struct gss_cl_ctx *ctx)
105 if (atomic_dec_and_test(&ctx->count))
106 gss_free_ctx(ctx);
109 /* gss_cred_set_ctx:
110 * called by gss_upcall_callback and gss_create_upcall in order
111 * to set the gss context. The actual exchange of an old context
112 * and a new one is protected by the inode->i_lock.
114 static void
115 gss_cred_set_ctx(struct rpc_cred *cred, struct gss_cl_ctx *ctx)
117 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
119 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
120 return;
121 gss_get_ctx(ctx);
122 rcu_assign_pointer(gss_cred->gc_ctx, ctx);
123 set_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
124 smp_mb__before_clear_bit();
125 clear_bit(RPCAUTH_CRED_NEW, &cred->cr_flags);
128 static const void *
129 simple_get_bytes(const void *p, const void *end, void *res, size_t len)
131 const void *q = (const void *)((const char *)p + len);
132 if (unlikely(q > end || q < p))
133 return ERR_PTR(-EFAULT);
134 memcpy(res, p, len);
135 return q;
138 static inline const void *
139 simple_get_netobj(const void *p, const void *end, struct xdr_netobj *dest)
141 const void *q;
142 unsigned int len;
144 p = simple_get_bytes(p, end, &len, sizeof(len));
145 if (IS_ERR(p))
146 return p;
147 q = (const void *)((const char *)p + len);
148 if (unlikely(q > end || q < p))
149 return ERR_PTR(-EFAULT);
150 dest->data = kmemdup(p, len, GFP_NOFS);
151 if (unlikely(dest->data == NULL))
152 return ERR_PTR(-ENOMEM);
153 dest->len = len;
154 return q;
157 static struct gss_cl_ctx *
158 gss_cred_get_ctx(struct rpc_cred *cred)
160 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
161 struct gss_cl_ctx *ctx = NULL;
163 rcu_read_lock();
164 if (gss_cred->gc_ctx)
165 ctx = gss_get_ctx(gss_cred->gc_ctx);
166 rcu_read_unlock();
167 return ctx;
170 static struct gss_cl_ctx *
171 gss_alloc_context(void)
173 struct gss_cl_ctx *ctx;
175 ctx = kzalloc(sizeof(*ctx), GFP_NOFS);
176 if (ctx != NULL) {
177 ctx->gc_proc = RPC_GSS_PROC_DATA;
178 ctx->gc_seq = 1; /* NetApp 6.4R1 doesn't accept seq. no. 0 */
179 spin_lock_init(&ctx->gc_seq_lock);
180 atomic_set(&ctx->count,1);
182 return ctx;
185 #define GSSD_MIN_TIMEOUT (60 * 60)
186 static const void *
187 gss_fill_context(const void *p, const void *end, struct gss_cl_ctx *ctx, struct gss_api_mech *gm)
189 const void *q;
190 unsigned int seclen;
191 unsigned int timeout;
192 u32 window_size;
193 int ret;
195 /* First unsigned int gives the lifetime (in seconds) of the cred */
196 p = simple_get_bytes(p, end, &timeout, sizeof(timeout));
197 if (IS_ERR(p))
198 goto err;
199 if (timeout == 0)
200 timeout = GSSD_MIN_TIMEOUT;
201 ctx->gc_expiry = jiffies + (unsigned long)timeout * HZ * 3 / 4;
202 /* Sequence number window. Determines the maximum number of simultaneous requests */
203 p = simple_get_bytes(p, end, &window_size, sizeof(window_size));
204 if (IS_ERR(p))
205 goto err;
206 ctx->gc_win = window_size;
207 /* gssd signals an error by passing ctx->gc_win = 0: */
208 if (ctx->gc_win == 0) {
209 /* in which case, p points to an error code which we ignore */
210 p = ERR_PTR(-EACCES);
211 goto err;
213 /* copy the opaque wire context */
214 p = simple_get_netobj(p, end, &ctx->gc_wire_ctx);
215 if (IS_ERR(p))
216 goto err;
217 /* import the opaque security context */
218 p = simple_get_bytes(p, end, &seclen, sizeof(seclen));
219 if (IS_ERR(p))
220 goto err;
221 q = (const void *)((const char *)p + seclen);
222 if (unlikely(q > end || q < p)) {
223 p = ERR_PTR(-EFAULT);
224 goto err;
226 ret = gss_import_sec_context(p, seclen, gm, &ctx->gc_gss_ctx);
227 if (ret < 0) {
228 p = ERR_PTR(ret);
229 goto err;
231 return q;
232 err:
233 dprintk("RPC: gss_fill_context returning %ld\n", -PTR_ERR(p));
234 return p;
237 #define UPCALL_BUF_LEN 128
239 struct gss_upcall_msg {
240 atomic_t count;
241 uid_t uid;
242 struct rpc_pipe_msg msg;
243 struct list_head list;
244 struct gss_auth *auth;
245 struct rpc_inode *inode;
246 struct rpc_wait_queue rpc_waitqueue;
247 wait_queue_head_t waitqueue;
248 struct gss_cl_ctx *ctx;
249 char databuf[UPCALL_BUF_LEN];
252 static int get_pipe_version(void)
254 int ret;
256 spin_lock(&pipe_version_lock);
257 if (pipe_version >= 0) {
258 atomic_inc(&pipe_users);
259 ret = pipe_version;
260 } else
261 ret = -EAGAIN;
262 spin_unlock(&pipe_version_lock);
263 return ret;
266 static void put_pipe_version(void)
268 if (atomic_dec_and_lock(&pipe_users, &pipe_version_lock)) {
269 pipe_version = -1;
270 spin_unlock(&pipe_version_lock);
274 static void
275 gss_release_msg(struct gss_upcall_msg *gss_msg)
277 if (!atomic_dec_and_test(&gss_msg->count))
278 return;
279 put_pipe_version();
280 BUG_ON(!list_empty(&gss_msg->list));
281 if (gss_msg->ctx != NULL)
282 gss_put_ctx(gss_msg->ctx);
283 rpc_destroy_wait_queue(&gss_msg->rpc_waitqueue);
284 kfree(gss_msg);
287 static struct gss_upcall_msg *
288 __gss_find_upcall(struct rpc_inode *rpci, uid_t uid)
290 struct gss_upcall_msg *pos;
291 list_for_each_entry(pos, &rpci->in_downcall, list) {
292 if (pos->uid != uid)
293 continue;
294 atomic_inc(&pos->count);
295 dprintk("RPC: gss_find_upcall found msg %p\n", pos);
296 return pos;
298 dprintk("RPC: gss_find_upcall found nothing\n");
299 return NULL;
302 /* Try to add an upcall to the pipefs queue.
303 * If an upcall owned by our uid already exists, then we return a reference
304 * to that upcall instead of adding the new upcall.
306 static inline struct gss_upcall_msg *
307 gss_add_msg(struct gss_auth *gss_auth, struct gss_upcall_msg *gss_msg)
309 struct rpc_inode *rpci = gss_msg->inode;
310 struct inode *inode = &rpci->vfs_inode;
311 struct gss_upcall_msg *old;
313 spin_lock(&inode->i_lock);
314 old = __gss_find_upcall(rpci, gss_msg->uid);
315 if (old == NULL) {
316 atomic_inc(&gss_msg->count);
317 list_add(&gss_msg->list, &rpci->in_downcall);
318 } else
319 gss_msg = old;
320 spin_unlock(&inode->i_lock);
321 return gss_msg;
324 static void
325 __gss_unhash_msg(struct gss_upcall_msg *gss_msg)
327 list_del_init(&gss_msg->list);
328 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
329 wake_up_all(&gss_msg->waitqueue);
330 atomic_dec(&gss_msg->count);
333 static void
334 gss_unhash_msg(struct gss_upcall_msg *gss_msg)
336 struct inode *inode = &gss_msg->inode->vfs_inode;
338 if (list_empty(&gss_msg->list))
339 return;
340 spin_lock(&inode->i_lock);
341 if (!list_empty(&gss_msg->list))
342 __gss_unhash_msg(gss_msg);
343 spin_unlock(&inode->i_lock);
346 static void
347 gss_upcall_callback(struct rpc_task *task)
349 struct gss_cred *gss_cred = container_of(task->tk_msg.rpc_cred,
350 struct gss_cred, gc_base);
351 struct gss_upcall_msg *gss_msg = gss_cred->gc_upcall;
352 struct inode *inode = &gss_msg->inode->vfs_inode;
354 spin_lock(&inode->i_lock);
355 if (gss_msg->ctx)
356 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_msg->ctx);
357 else
358 task->tk_status = gss_msg->msg.errno;
359 gss_cred->gc_upcall = NULL;
360 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
361 spin_unlock(&inode->i_lock);
362 gss_release_msg(gss_msg);
365 static void gss_encode_v0_msg(struct gss_upcall_msg *gss_msg)
367 gss_msg->msg.data = &gss_msg->uid;
368 gss_msg->msg.len = sizeof(gss_msg->uid);
371 static void gss_encode_v1_msg(struct gss_upcall_msg *gss_msg,
372 struct rpc_clnt *clnt, int machine_cred)
374 char *p = gss_msg->databuf;
375 int len = 0;
377 gss_msg->msg.len = sprintf(gss_msg->databuf, "mech=%s uid=%d ",
378 gss_msg->auth->mech->gm_name,
379 gss_msg->uid);
380 p += gss_msg->msg.len;
381 if (clnt->cl_principal) {
382 len = sprintf(p, "target=%s ", clnt->cl_principal);
383 p += len;
384 gss_msg->msg.len += len;
386 if (machine_cred) {
387 len = sprintf(p, "service=* ");
388 p += len;
389 gss_msg->msg.len += len;
390 } else if (!strcmp(clnt->cl_program->name, "nfs4_cb")) {
391 len = sprintf(p, "service=nfs ");
392 p += len;
393 gss_msg->msg.len += len;
395 len = sprintf(p, "\n");
396 gss_msg->msg.len += len;
398 gss_msg->msg.data = gss_msg->databuf;
399 BUG_ON(gss_msg->msg.len > UPCALL_BUF_LEN);
402 static void gss_encode_msg(struct gss_upcall_msg *gss_msg,
403 struct rpc_clnt *clnt, int machine_cred)
405 if (pipe_version == 0)
406 gss_encode_v0_msg(gss_msg);
407 else /* pipe_version == 1 */
408 gss_encode_v1_msg(gss_msg, clnt, machine_cred);
411 static inline struct gss_upcall_msg *
412 gss_alloc_msg(struct gss_auth *gss_auth, uid_t uid, struct rpc_clnt *clnt,
413 int machine_cred)
415 struct gss_upcall_msg *gss_msg;
416 int vers;
418 gss_msg = kzalloc(sizeof(*gss_msg), GFP_NOFS);
419 if (gss_msg == NULL)
420 return ERR_PTR(-ENOMEM);
421 vers = get_pipe_version();
422 if (vers < 0) {
423 kfree(gss_msg);
424 return ERR_PTR(vers);
426 gss_msg->inode = RPC_I(gss_auth->dentry[vers]->d_inode);
427 INIT_LIST_HEAD(&gss_msg->list);
428 rpc_init_wait_queue(&gss_msg->rpc_waitqueue, "RPCSEC_GSS upcall waitq");
429 init_waitqueue_head(&gss_msg->waitqueue);
430 atomic_set(&gss_msg->count, 1);
431 gss_msg->uid = uid;
432 gss_msg->auth = gss_auth;
433 gss_encode_msg(gss_msg, clnt, machine_cred);
434 return gss_msg;
437 static struct gss_upcall_msg *
438 gss_setup_upcall(struct rpc_clnt *clnt, struct gss_auth *gss_auth, struct rpc_cred *cred)
440 struct gss_cred *gss_cred = container_of(cred,
441 struct gss_cred, gc_base);
442 struct gss_upcall_msg *gss_new, *gss_msg;
443 uid_t uid = cred->cr_uid;
445 gss_new = gss_alloc_msg(gss_auth, uid, clnt, gss_cred->gc_machine_cred);
446 if (IS_ERR(gss_new))
447 return gss_new;
448 gss_msg = gss_add_msg(gss_auth, gss_new);
449 if (gss_msg == gss_new) {
450 struct inode *inode = &gss_new->inode->vfs_inode;
451 int res = rpc_queue_upcall(inode, &gss_new->msg);
452 if (res) {
453 gss_unhash_msg(gss_new);
454 gss_msg = ERR_PTR(res);
456 } else
457 gss_release_msg(gss_new);
458 return gss_msg;
461 static void warn_gssd(void)
463 static unsigned long ratelimit;
464 unsigned long now = jiffies;
466 if (time_after(now, ratelimit)) {
467 printk(KERN_WARNING "RPC: AUTH_GSS upcall timed out.\n"
468 "Please check user daemon is running.\n");
469 ratelimit = now + 15*HZ;
473 static inline int
474 gss_refresh_upcall(struct rpc_task *task)
476 struct rpc_cred *cred = task->tk_msg.rpc_cred;
477 struct gss_auth *gss_auth = container_of(cred->cr_auth,
478 struct gss_auth, rpc_auth);
479 struct gss_cred *gss_cred = container_of(cred,
480 struct gss_cred, gc_base);
481 struct gss_upcall_msg *gss_msg;
482 struct inode *inode;
483 int err = 0;
485 dprintk("RPC: %5u gss_refresh_upcall for uid %u\n", task->tk_pid,
486 cred->cr_uid);
487 gss_msg = gss_setup_upcall(task->tk_client, gss_auth, cred);
488 if (IS_ERR(gss_msg) == -EAGAIN) {
489 /* XXX: warning on the first, under the assumption we
490 * shouldn't normally hit this case on a refresh. */
491 warn_gssd();
492 task->tk_timeout = 15*HZ;
493 rpc_sleep_on(&pipe_version_rpc_waitqueue, task, NULL);
494 return 0;
496 if (IS_ERR(gss_msg)) {
497 err = PTR_ERR(gss_msg);
498 goto out;
500 inode = &gss_msg->inode->vfs_inode;
501 spin_lock(&inode->i_lock);
502 if (gss_cred->gc_upcall != NULL)
503 rpc_sleep_on(&gss_cred->gc_upcall->rpc_waitqueue, task, NULL);
504 else if (gss_msg->ctx != NULL) {
505 gss_cred_set_ctx(task->tk_msg.rpc_cred, gss_msg->ctx);
506 gss_cred->gc_upcall = NULL;
507 rpc_wake_up_status(&gss_msg->rpc_waitqueue, gss_msg->msg.errno);
508 } else if (gss_msg->msg.errno >= 0) {
509 task->tk_timeout = 0;
510 gss_cred->gc_upcall = gss_msg;
511 /* gss_upcall_callback will release the reference to gss_upcall_msg */
512 atomic_inc(&gss_msg->count);
513 rpc_sleep_on(&gss_msg->rpc_waitqueue, task, gss_upcall_callback);
514 } else
515 err = gss_msg->msg.errno;
516 spin_unlock(&inode->i_lock);
517 gss_release_msg(gss_msg);
518 out:
519 dprintk("RPC: %5u gss_refresh_upcall for uid %u result %d\n",
520 task->tk_pid, cred->cr_uid, err);
521 return err;
524 static inline int
525 gss_create_upcall(struct gss_auth *gss_auth, struct gss_cred *gss_cred)
527 struct inode *inode;
528 struct rpc_cred *cred = &gss_cred->gc_base;
529 struct gss_upcall_msg *gss_msg;
530 DEFINE_WAIT(wait);
531 int err = 0;
533 dprintk("RPC: gss_upcall for uid %u\n", cred->cr_uid);
534 retry:
535 gss_msg = gss_setup_upcall(gss_auth->client, gss_auth, cred);
536 if (PTR_ERR(gss_msg) == -EAGAIN) {
537 err = wait_event_interruptible_timeout(pipe_version_waitqueue,
538 pipe_version >= 0, 15*HZ);
539 if (err)
540 goto out;
541 if (pipe_version < 0)
542 warn_gssd();
543 goto retry;
545 if (IS_ERR(gss_msg)) {
546 err = PTR_ERR(gss_msg);
547 goto out;
549 inode = &gss_msg->inode->vfs_inode;
550 for (;;) {
551 prepare_to_wait(&gss_msg->waitqueue, &wait, TASK_INTERRUPTIBLE);
552 spin_lock(&inode->i_lock);
553 if (gss_msg->ctx != NULL || gss_msg->msg.errno < 0) {
554 break;
556 spin_unlock(&inode->i_lock);
557 if (signalled()) {
558 err = -ERESTARTSYS;
559 goto out_intr;
561 schedule();
563 if (gss_msg->ctx)
564 gss_cred_set_ctx(cred, gss_msg->ctx);
565 else
566 err = gss_msg->msg.errno;
567 spin_unlock(&inode->i_lock);
568 out_intr:
569 finish_wait(&gss_msg->waitqueue, &wait);
570 gss_release_msg(gss_msg);
571 out:
572 dprintk("RPC: gss_create_upcall for uid %u result %d\n",
573 cred->cr_uid, err);
574 return err;
577 static ssize_t
578 gss_pipe_upcall(struct file *filp, struct rpc_pipe_msg *msg,
579 char __user *dst, size_t buflen)
581 char *data = (char *)msg->data + msg->copied;
582 size_t mlen = min(msg->len, buflen);
583 unsigned long left;
585 left = copy_to_user(dst, data, mlen);
586 if (left == mlen) {
587 msg->errno = -EFAULT;
588 return -EFAULT;
591 mlen -= left;
592 msg->copied += mlen;
593 msg->errno = 0;
594 return mlen;
597 #define MSG_BUF_MAXSIZE 1024
599 static ssize_t
600 gss_pipe_downcall(struct file *filp, const char __user *src, size_t mlen)
602 const void *p, *end;
603 void *buf;
604 struct gss_upcall_msg *gss_msg;
605 struct inode *inode = filp->f_path.dentry->d_inode;
606 struct gss_cl_ctx *ctx;
607 uid_t uid;
608 ssize_t err = -EFBIG;
610 if (mlen > MSG_BUF_MAXSIZE)
611 goto out;
612 err = -ENOMEM;
613 buf = kmalloc(mlen, GFP_NOFS);
614 if (!buf)
615 goto out;
617 err = -EFAULT;
618 if (copy_from_user(buf, src, mlen))
619 goto err;
621 end = (const void *)((char *)buf + mlen);
622 p = simple_get_bytes(buf, end, &uid, sizeof(uid));
623 if (IS_ERR(p)) {
624 err = PTR_ERR(p);
625 goto err;
628 err = -ENOMEM;
629 ctx = gss_alloc_context();
630 if (ctx == NULL)
631 goto err;
633 err = -ENOENT;
634 /* Find a matching upcall */
635 spin_lock(&inode->i_lock);
636 gss_msg = __gss_find_upcall(RPC_I(inode), uid);
637 if (gss_msg == NULL) {
638 spin_unlock(&inode->i_lock);
639 goto err_put_ctx;
641 list_del_init(&gss_msg->list);
642 spin_unlock(&inode->i_lock);
644 p = gss_fill_context(p, end, ctx, gss_msg->auth->mech);
645 if (IS_ERR(p)) {
646 err = PTR_ERR(p);
647 gss_msg->msg.errno = (err == -EAGAIN) ? -EAGAIN : -EACCES;
648 goto err_release_msg;
650 gss_msg->ctx = gss_get_ctx(ctx);
651 err = mlen;
653 err_release_msg:
654 spin_lock(&inode->i_lock);
655 __gss_unhash_msg(gss_msg);
656 spin_unlock(&inode->i_lock);
657 gss_release_msg(gss_msg);
658 err_put_ctx:
659 gss_put_ctx(ctx);
660 err:
661 kfree(buf);
662 out:
663 dprintk("RPC: gss_pipe_downcall returning %Zd\n", err);
664 return err;
667 static int gss_pipe_open(struct inode *inode, int new_version)
669 int ret = 0;
671 spin_lock(&pipe_version_lock);
672 if (pipe_version < 0) {
673 /* First open of any gss pipe determines the version: */
674 pipe_version = new_version;
675 rpc_wake_up(&pipe_version_rpc_waitqueue);
676 wake_up(&pipe_version_waitqueue);
677 } else if (pipe_version != new_version) {
678 /* Trying to open a pipe of a different version */
679 ret = -EBUSY;
680 goto out;
682 atomic_inc(&pipe_users);
683 out:
684 spin_unlock(&pipe_version_lock);
685 return ret;
689 static int gss_pipe_open_v0(struct inode *inode)
691 return gss_pipe_open(inode, 0);
694 static int gss_pipe_open_v1(struct inode *inode)
696 return gss_pipe_open(inode, 1);
699 static void
700 gss_pipe_release(struct inode *inode)
702 struct rpc_inode *rpci = RPC_I(inode);
703 struct gss_upcall_msg *gss_msg;
705 spin_lock(&inode->i_lock);
706 while (!list_empty(&rpci->in_downcall)) {
708 gss_msg = list_entry(rpci->in_downcall.next,
709 struct gss_upcall_msg, list);
710 gss_msg->msg.errno = -EPIPE;
711 atomic_inc(&gss_msg->count);
712 __gss_unhash_msg(gss_msg);
713 spin_unlock(&inode->i_lock);
714 gss_release_msg(gss_msg);
715 spin_lock(&inode->i_lock);
717 spin_unlock(&inode->i_lock);
719 put_pipe_version();
722 static void
723 gss_pipe_destroy_msg(struct rpc_pipe_msg *msg)
725 struct gss_upcall_msg *gss_msg = container_of(msg, struct gss_upcall_msg, msg);
727 if (msg->errno < 0) {
728 dprintk("RPC: gss_pipe_destroy_msg releasing msg %p\n",
729 gss_msg);
730 atomic_inc(&gss_msg->count);
731 gss_unhash_msg(gss_msg);
732 if (msg->errno == -ETIMEDOUT)
733 warn_gssd();
734 gss_release_msg(gss_msg);
739 * NOTE: we have the opportunity to use different
740 * parameters based on the input flavor (which must be a pseudoflavor)
742 static struct rpc_auth *
743 gss_create(struct rpc_clnt *clnt, rpc_authflavor_t flavor)
745 struct gss_auth *gss_auth;
746 struct rpc_auth * auth;
747 int err = -ENOMEM; /* XXX? */
749 dprintk("RPC: creating GSS authenticator for client %p\n", clnt);
751 if (!try_module_get(THIS_MODULE))
752 return ERR_PTR(err);
753 if (!(gss_auth = kmalloc(sizeof(*gss_auth), GFP_KERNEL)))
754 goto out_dec;
755 gss_auth->client = clnt;
756 err = -EINVAL;
757 gss_auth->mech = gss_mech_get_by_pseudoflavor(flavor);
758 if (!gss_auth->mech) {
759 printk(KERN_WARNING "%s: Pseudoflavor %d not found!\n",
760 __func__, flavor);
761 goto err_free;
763 gss_auth->service = gss_pseudoflavor_to_service(gss_auth->mech, flavor);
764 if (gss_auth->service == 0)
765 goto err_put_mech;
766 auth = &gss_auth->rpc_auth;
767 auth->au_cslack = GSS_CRED_SLACK >> 2;
768 auth->au_rslack = GSS_VERF_SLACK >> 2;
769 auth->au_ops = &authgss_ops;
770 auth->au_flavor = flavor;
771 atomic_set(&auth->au_count, 1);
772 kref_init(&gss_auth->kref);
775 * Note: if we created the old pipe first, then someone who
776 * examined the directory at the right moment might conclude
777 * that we supported only the old pipe. So we instead create
778 * the new pipe first.
780 gss_auth->dentry[1] = rpc_mkpipe(clnt->cl_dentry,
781 "gssd",
782 clnt, &gss_upcall_ops_v1,
783 RPC_PIPE_WAIT_FOR_OPEN);
784 if (IS_ERR(gss_auth->dentry[1])) {
785 err = PTR_ERR(gss_auth->dentry[1]);
786 goto err_put_mech;
789 gss_auth->dentry[0] = rpc_mkpipe(clnt->cl_dentry,
790 gss_auth->mech->gm_name,
791 clnt, &gss_upcall_ops_v0,
792 RPC_PIPE_WAIT_FOR_OPEN);
793 if (IS_ERR(gss_auth->dentry[0])) {
794 err = PTR_ERR(gss_auth->dentry[0]);
795 goto err_unlink_pipe_1;
797 err = rpcauth_init_credcache(auth);
798 if (err)
799 goto err_unlink_pipe_0;
801 return auth;
802 err_unlink_pipe_0:
803 rpc_unlink(gss_auth->dentry[0]);
804 err_unlink_pipe_1:
805 rpc_unlink(gss_auth->dentry[1]);
806 err_put_mech:
807 gss_mech_put(gss_auth->mech);
808 err_free:
809 kfree(gss_auth);
810 out_dec:
811 module_put(THIS_MODULE);
812 return ERR_PTR(err);
815 static void
816 gss_free(struct gss_auth *gss_auth)
818 rpc_unlink(gss_auth->dentry[1]);
819 rpc_unlink(gss_auth->dentry[0]);
820 gss_mech_put(gss_auth->mech);
822 kfree(gss_auth);
823 module_put(THIS_MODULE);
826 static void
827 gss_free_callback(struct kref *kref)
829 struct gss_auth *gss_auth = container_of(kref, struct gss_auth, kref);
831 gss_free(gss_auth);
834 static void
835 gss_destroy(struct rpc_auth *auth)
837 struct gss_auth *gss_auth;
839 dprintk("RPC: destroying GSS authenticator %p flavor %d\n",
840 auth, auth->au_flavor);
842 rpcauth_destroy_credcache(auth);
844 gss_auth = container_of(auth, struct gss_auth, rpc_auth);
845 kref_put(&gss_auth->kref, gss_free_callback);
849 * gss_destroying_context will cause the RPCSEC_GSS to send a NULL RPC call
850 * to the server with the GSS control procedure field set to
851 * RPC_GSS_PROC_DESTROY. This should normally cause the server to release
852 * all RPCSEC_GSS state associated with that context.
854 static int
855 gss_destroying_context(struct rpc_cred *cred)
857 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
858 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
859 struct rpc_task *task;
861 if (gss_cred->gc_ctx == NULL ||
862 test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags) == 0)
863 return 0;
865 gss_cred->gc_ctx->gc_proc = RPC_GSS_PROC_DESTROY;
866 cred->cr_ops = &gss_nullops;
868 /* Take a reference to ensure the cred will be destroyed either
869 * by the RPC call or by the put_rpccred() below */
870 get_rpccred(cred);
872 task = rpc_call_null(gss_auth->client, cred, RPC_TASK_ASYNC|RPC_TASK_SOFT);
873 if (!IS_ERR(task))
874 rpc_put_task(task);
876 put_rpccred(cred);
877 return 1;
880 /* gss_destroy_cred (and gss_free_ctx) are used to clean up after failure
881 * to create a new cred or context, so they check that things have been
882 * allocated before freeing them. */
883 static void
884 gss_do_free_ctx(struct gss_cl_ctx *ctx)
886 dprintk("RPC: gss_free_ctx\n");
888 kfree(ctx->gc_wire_ctx.data);
889 kfree(ctx);
892 static void
893 gss_free_ctx_callback(struct rcu_head *head)
895 struct gss_cl_ctx *ctx = container_of(head, struct gss_cl_ctx, gc_rcu);
896 gss_do_free_ctx(ctx);
899 static void
900 gss_free_ctx(struct gss_cl_ctx *ctx)
902 struct gss_ctx *gc_gss_ctx;
904 gc_gss_ctx = rcu_dereference(ctx->gc_gss_ctx);
905 rcu_assign_pointer(ctx->gc_gss_ctx, NULL);
906 call_rcu(&ctx->gc_rcu, gss_free_ctx_callback);
907 if (gc_gss_ctx)
908 gss_delete_sec_context(&gc_gss_ctx);
911 static void
912 gss_free_cred(struct gss_cred *gss_cred)
914 dprintk("RPC: gss_free_cred %p\n", gss_cred);
915 kfree(gss_cred);
918 static void
919 gss_free_cred_callback(struct rcu_head *head)
921 struct gss_cred *gss_cred = container_of(head, struct gss_cred, gc_base.cr_rcu);
922 gss_free_cred(gss_cred);
925 static void
926 gss_destroy_nullcred(struct rpc_cred *cred)
928 struct gss_cred *gss_cred = container_of(cred, struct gss_cred, gc_base);
929 struct gss_auth *gss_auth = container_of(cred->cr_auth, struct gss_auth, rpc_auth);
930 struct gss_cl_ctx *ctx = gss_cred->gc_ctx;
932 rcu_assign_pointer(gss_cred->gc_ctx, NULL);
933 call_rcu(&cred->cr_rcu, gss_free_cred_callback);
934 if (ctx)
935 gss_put_ctx(ctx);
936 kref_put(&gss_auth->kref, gss_free_callback);
939 static void
940 gss_destroy_cred(struct rpc_cred *cred)
943 if (gss_destroying_context(cred))
944 return;
945 gss_destroy_nullcred(cred);
949 * Lookup RPCSEC_GSS cred for the current process
951 static struct rpc_cred *
952 gss_lookup_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
954 return rpcauth_lookup_credcache(auth, acred, flags);
957 static struct rpc_cred *
958 gss_create_cred(struct rpc_auth *auth, struct auth_cred *acred, int flags)
960 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
961 struct gss_cred *cred = NULL;
962 int err = -ENOMEM;
964 dprintk("RPC: gss_create_cred for uid %d, flavor %d\n",
965 acred->uid, auth->au_flavor);
967 if (!(cred = kzalloc(sizeof(*cred), GFP_NOFS)))
968 goto out_err;
970 rpcauth_init_cred(&cred->gc_base, acred, auth, &gss_credops);
972 * Note: in order to force a call to call_refresh(), we deliberately
973 * fail to flag the credential as RPCAUTH_CRED_UPTODATE.
975 cred->gc_base.cr_flags = 1UL << RPCAUTH_CRED_NEW;
976 cred->gc_service = gss_auth->service;
977 cred->gc_machine_cred = acred->machine_cred;
978 kref_get(&gss_auth->kref);
979 return &cred->gc_base;
981 out_err:
982 dprintk("RPC: gss_create_cred failed with error %d\n", err);
983 return ERR_PTR(err);
986 static int
987 gss_cred_init(struct rpc_auth *auth, struct rpc_cred *cred)
989 struct gss_auth *gss_auth = container_of(auth, struct gss_auth, rpc_auth);
990 struct gss_cred *gss_cred = container_of(cred,struct gss_cred, gc_base);
991 int err;
993 do {
994 err = gss_create_upcall(gss_auth, gss_cred);
995 } while (err == -EAGAIN);
996 return err;
999 static int
1000 gss_match(struct auth_cred *acred, struct rpc_cred *rc, int flags)
1002 struct gss_cred *gss_cred = container_of(rc, struct gss_cred, gc_base);
1004 if (test_bit(RPCAUTH_CRED_NEW, &rc->cr_flags))
1005 goto out;
1006 /* Don't match with creds that have expired. */
1007 if (time_after(jiffies, gss_cred->gc_ctx->gc_expiry))
1008 return 0;
1009 if (!test_bit(RPCAUTH_CRED_UPTODATE, &rc->cr_flags))
1010 return 0;
1011 out:
1012 if (acred->machine_cred != gss_cred->gc_machine_cred)
1013 return 0;
1014 return (rc->cr_uid == acred->uid);
1018 * Marshal credentials.
1019 * Maybe we should keep a cached credential for performance reasons.
1021 static __be32 *
1022 gss_marshal(struct rpc_task *task, __be32 *p)
1024 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1025 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1026 gc_base);
1027 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1028 __be32 *cred_len;
1029 struct rpc_rqst *req = task->tk_rqstp;
1030 u32 maj_stat = 0;
1031 struct xdr_netobj mic;
1032 struct kvec iov;
1033 struct xdr_buf verf_buf;
1035 dprintk("RPC: %5u gss_marshal\n", task->tk_pid);
1037 *p++ = htonl(RPC_AUTH_GSS);
1038 cred_len = p++;
1040 spin_lock(&ctx->gc_seq_lock);
1041 req->rq_seqno = ctx->gc_seq++;
1042 spin_unlock(&ctx->gc_seq_lock);
1044 *p++ = htonl((u32) RPC_GSS_VERSION);
1045 *p++ = htonl((u32) ctx->gc_proc);
1046 *p++ = htonl((u32) req->rq_seqno);
1047 *p++ = htonl((u32) gss_cred->gc_service);
1048 p = xdr_encode_netobj(p, &ctx->gc_wire_ctx);
1049 *cred_len = htonl((p - (cred_len + 1)) << 2);
1051 /* We compute the checksum for the verifier over the xdr-encoded bytes
1052 * starting with the xid and ending at the end of the credential: */
1053 iov.iov_base = xprt_skip_transport_header(task->tk_xprt,
1054 req->rq_snd_buf.head[0].iov_base);
1055 iov.iov_len = (u8 *)p - (u8 *)iov.iov_base;
1056 xdr_buf_from_iov(&iov, &verf_buf);
1058 /* set verifier flavor*/
1059 *p++ = htonl(RPC_AUTH_GSS);
1061 mic.data = (u8 *)(p + 1);
1062 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1063 if (maj_stat == GSS_S_CONTEXT_EXPIRED) {
1064 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1065 } else if (maj_stat != 0) {
1066 printk("gss_marshal: gss_get_mic FAILED (%d)\n", maj_stat);
1067 goto out_put_ctx;
1069 p = xdr_encode_opaque(p, NULL, mic.len);
1070 gss_put_ctx(ctx);
1071 return p;
1072 out_put_ctx:
1073 gss_put_ctx(ctx);
1074 return NULL;
1077 static int gss_renew_cred(struct rpc_task *task)
1079 struct rpc_cred *oldcred = task->tk_msg.rpc_cred;
1080 struct gss_cred *gss_cred = container_of(oldcred,
1081 struct gss_cred,
1082 gc_base);
1083 struct rpc_auth *auth = oldcred->cr_auth;
1084 struct auth_cred acred = {
1085 .uid = oldcred->cr_uid,
1086 .machine_cred = gss_cred->gc_machine_cred,
1088 struct rpc_cred *new;
1090 new = gss_lookup_cred(auth, &acred, RPCAUTH_LOOKUP_NEW);
1091 if (IS_ERR(new))
1092 return PTR_ERR(new);
1093 task->tk_msg.rpc_cred = new;
1094 put_rpccred(oldcred);
1095 return 0;
1099 * Refresh credentials. XXX - finish
1101 static int
1102 gss_refresh(struct rpc_task *task)
1104 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1105 int ret = 0;
1107 if (!test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags) &&
1108 !test_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags)) {
1109 ret = gss_renew_cred(task);
1110 if (ret < 0)
1111 goto out;
1112 cred = task->tk_msg.rpc_cred;
1115 if (test_bit(RPCAUTH_CRED_NEW, &cred->cr_flags))
1116 ret = gss_refresh_upcall(task);
1117 out:
1118 return ret;
1121 /* Dummy refresh routine: used only when destroying the context */
1122 static int
1123 gss_refresh_null(struct rpc_task *task)
1125 return -EACCES;
1128 static __be32 *
1129 gss_validate(struct rpc_task *task, __be32 *p)
1131 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1132 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1133 __be32 seq;
1134 struct kvec iov;
1135 struct xdr_buf verf_buf;
1136 struct xdr_netobj mic;
1137 u32 flav,len;
1138 u32 maj_stat;
1140 dprintk("RPC: %5u gss_validate\n", task->tk_pid);
1142 flav = ntohl(*p++);
1143 if ((len = ntohl(*p++)) > RPC_MAX_AUTH_SIZE)
1144 goto out_bad;
1145 if (flav != RPC_AUTH_GSS)
1146 goto out_bad;
1147 seq = htonl(task->tk_rqstp->rq_seqno);
1148 iov.iov_base = &seq;
1149 iov.iov_len = sizeof(seq);
1150 xdr_buf_from_iov(&iov, &verf_buf);
1151 mic.data = (u8 *)p;
1152 mic.len = len;
1154 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &verf_buf, &mic);
1155 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1156 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1157 if (maj_stat) {
1158 dprintk("RPC: %5u gss_validate: gss_verify_mic returned "
1159 "error 0x%08x\n", task->tk_pid, maj_stat);
1160 goto out_bad;
1162 /* We leave it to unwrap to calculate au_rslack. For now we just
1163 * calculate the length of the verifier: */
1164 cred->cr_auth->au_verfsize = XDR_QUADLEN(len) + 2;
1165 gss_put_ctx(ctx);
1166 dprintk("RPC: %5u gss_validate: gss_verify_mic succeeded.\n",
1167 task->tk_pid);
1168 return p + XDR_QUADLEN(len);
1169 out_bad:
1170 gss_put_ctx(ctx);
1171 dprintk("RPC: %5u gss_validate failed.\n", task->tk_pid);
1172 return NULL;
1175 static inline int
1176 gss_wrap_req_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1177 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1179 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1180 struct xdr_buf integ_buf;
1181 __be32 *integ_len = NULL;
1182 struct xdr_netobj mic;
1183 u32 offset;
1184 __be32 *q;
1185 struct kvec *iov;
1186 u32 maj_stat = 0;
1187 int status = -EIO;
1189 integ_len = p++;
1190 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1191 *p++ = htonl(rqstp->rq_seqno);
1193 status = encode(rqstp, p, obj);
1194 if (status)
1195 return status;
1197 if (xdr_buf_subsegment(snd_buf, &integ_buf,
1198 offset, snd_buf->len - offset))
1199 return status;
1200 *integ_len = htonl(integ_buf.len);
1202 /* guess whether we're in the head or the tail: */
1203 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1204 iov = snd_buf->tail;
1205 else
1206 iov = snd_buf->head;
1207 p = iov->iov_base + iov->iov_len;
1208 mic.data = (u8 *)(p + 1);
1210 maj_stat = gss_get_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1211 status = -EIO; /* XXX? */
1212 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1213 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1214 else if (maj_stat)
1215 return status;
1216 q = xdr_encode_opaque(p, NULL, mic.len);
1218 offset = (u8 *)q - (u8 *)p;
1219 iov->iov_len += offset;
1220 snd_buf->len += offset;
1221 return 0;
1224 static void
1225 priv_release_snd_buf(struct rpc_rqst *rqstp)
1227 int i;
1229 for (i=0; i < rqstp->rq_enc_pages_num; i++)
1230 __free_page(rqstp->rq_enc_pages[i]);
1231 kfree(rqstp->rq_enc_pages);
1234 static int
1235 alloc_enc_pages(struct rpc_rqst *rqstp)
1237 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1238 int first, last, i;
1240 if (snd_buf->page_len == 0) {
1241 rqstp->rq_enc_pages_num = 0;
1242 return 0;
1245 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1246 last = (snd_buf->page_base + snd_buf->page_len - 1) >> PAGE_CACHE_SHIFT;
1247 rqstp->rq_enc_pages_num = last - first + 1 + 1;
1248 rqstp->rq_enc_pages
1249 = kmalloc(rqstp->rq_enc_pages_num * sizeof(struct page *),
1250 GFP_NOFS);
1251 if (!rqstp->rq_enc_pages)
1252 goto out;
1253 for (i=0; i < rqstp->rq_enc_pages_num; i++) {
1254 rqstp->rq_enc_pages[i] = alloc_page(GFP_NOFS);
1255 if (rqstp->rq_enc_pages[i] == NULL)
1256 goto out_free;
1258 rqstp->rq_release_snd_buf = priv_release_snd_buf;
1259 return 0;
1260 out_free:
1261 for (i--; i >= 0; i--) {
1262 __free_page(rqstp->rq_enc_pages[i]);
1264 out:
1265 return -EAGAIN;
1268 static inline int
1269 gss_wrap_req_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1270 kxdrproc_t encode, struct rpc_rqst *rqstp, __be32 *p, void *obj)
1272 struct xdr_buf *snd_buf = &rqstp->rq_snd_buf;
1273 u32 offset;
1274 u32 maj_stat;
1275 int status;
1276 __be32 *opaque_len;
1277 struct page **inpages;
1278 int first;
1279 int pad;
1280 struct kvec *iov;
1281 char *tmp;
1283 opaque_len = p++;
1284 offset = (u8 *)p - (u8 *)snd_buf->head[0].iov_base;
1285 *p++ = htonl(rqstp->rq_seqno);
1287 status = encode(rqstp, p, obj);
1288 if (status)
1289 return status;
1291 status = alloc_enc_pages(rqstp);
1292 if (status)
1293 return status;
1294 first = snd_buf->page_base >> PAGE_CACHE_SHIFT;
1295 inpages = snd_buf->pages + first;
1296 snd_buf->pages = rqstp->rq_enc_pages;
1297 snd_buf->page_base -= first << PAGE_CACHE_SHIFT;
1298 /* Give the tail its own page, in case we need extra space in the
1299 * head when wrapping: */
1300 if (snd_buf->page_len || snd_buf->tail[0].iov_len) {
1301 tmp = page_address(rqstp->rq_enc_pages[rqstp->rq_enc_pages_num - 1]);
1302 memcpy(tmp, snd_buf->tail[0].iov_base, snd_buf->tail[0].iov_len);
1303 snd_buf->tail[0].iov_base = tmp;
1305 maj_stat = gss_wrap(ctx->gc_gss_ctx, offset, snd_buf, inpages);
1306 /* RPC_SLACK_SPACE should prevent this ever happening: */
1307 BUG_ON(snd_buf->len > snd_buf->buflen);
1308 status = -EIO;
1309 /* We're assuming that when GSS_S_CONTEXT_EXPIRED, the encryption was
1310 * done anyway, so it's safe to put the request on the wire: */
1311 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1312 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1313 else if (maj_stat)
1314 return status;
1316 *opaque_len = htonl(snd_buf->len - offset);
1317 /* guess whether we're in the head or the tail: */
1318 if (snd_buf->page_len || snd_buf->tail[0].iov_len)
1319 iov = snd_buf->tail;
1320 else
1321 iov = snd_buf->head;
1322 p = iov->iov_base + iov->iov_len;
1323 pad = 3 - ((snd_buf->len - offset - 1) & 3);
1324 memset(p, 0, pad);
1325 iov->iov_len += pad;
1326 snd_buf->len += pad;
1328 return 0;
1331 static int
1332 gss_wrap_req(struct rpc_task *task,
1333 kxdrproc_t encode, void *rqstp, __be32 *p, void *obj)
1335 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1336 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1337 gc_base);
1338 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1339 int status = -EIO;
1341 dprintk("RPC: %5u gss_wrap_req\n", task->tk_pid);
1342 if (ctx->gc_proc != RPC_GSS_PROC_DATA) {
1343 /* The spec seems a little ambiguous here, but I think that not
1344 * wrapping context destruction requests makes the most sense.
1346 status = encode(rqstp, p, obj);
1347 goto out;
1349 switch (gss_cred->gc_service) {
1350 case RPC_GSS_SVC_NONE:
1351 status = encode(rqstp, p, obj);
1352 break;
1353 case RPC_GSS_SVC_INTEGRITY:
1354 status = gss_wrap_req_integ(cred, ctx, encode,
1355 rqstp, p, obj);
1356 break;
1357 case RPC_GSS_SVC_PRIVACY:
1358 status = gss_wrap_req_priv(cred, ctx, encode,
1359 rqstp, p, obj);
1360 break;
1362 out:
1363 gss_put_ctx(ctx);
1364 dprintk("RPC: %5u gss_wrap_req returning %d\n", task->tk_pid, status);
1365 return status;
1368 static inline int
1369 gss_unwrap_resp_integ(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1370 struct rpc_rqst *rqstp, __be32 **p)
1372 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1373 struct xdr_buf integ_buf;
1374 struct xdr_netobj mic;
1375 u32 data_offset, mic_offset;
1376 u32 integ_len;
1377 u32 maj_stat;
1378 int status = -EIO;
1380 integ_len = ntohl(*(*p)++);
1381 if (integ_len & 3)
1382 return status;
1383 data_offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1384 mic_offset = integ_len + data_offset;
1385 if (mic_offset > rcv_buf->len)
1386 return status;
1387 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1388 return status;
1390 if (xdr_buf_subsegment(rcv_buf, &integ_buf, data_offset,
1391 mic_offset - data_offset))
1392 return status;
1394 if (xdr_buf_read_netobj(rcv_buf, &mic, mic_offset))
1395 return status;
1397 maj_stat = gss_verify_mic(ctx->gc_gss_ctx, &integ_buf, &mic);
1398 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1399 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1400 if (maj_stat != GSS_S_COMPLETE)
1401 return status;
1402 return 0;
1405 static inline int
1406 gss_unwrap_resp_priv(struct rpc_cred *cred, struct gss_cl_ctx *ctx,
1407 struct rpc_rqst *rqstp, __be32 **p)
1409 struct xdr_buf *rcv_buf = &rqstp->rq_rcv_buf;
1410 u32 offset;
1411 u32 opaque_len;
1412 u32 maj_stat;
1413 int status = -EIO;
1415 opaque_len = ntohl(*(*p)++);
1416 offset = (u8 *)(*p) - (u8 *)rcv_buf->head[0].iov_base;
1417 if (offset + opaque_len > rcv_buf->len)
1418 return status;
1419 /* remove padding: */
1420 rcv_buf->len = offset + opaque_len;
1422 maj_stat = gss_unwrap(ctx->gc_gss_ctx, offset, rcv_buf);
1423 if (maj_stat == GSS_S_CONTEXT_EXPIRED)
1424 clear_bit(RPCAUTH_CRED_UPTODATE, &cred->cr_flags);
1425 if (maj_stat != GSS_S_COMPLETE)
1426 return status;
1427 if (ntohl(*(*p)++) != rqstp->rq_seqno)
1428 return status;
1430 return 0;
1434 static int
1435 gss_unwrap_resp(struct rpc_task *task,
1436 kxdrproc_t decode, void *rqstp, __be32 *p, void *obj)
1438 struct rpc_cred *cred = task->tk_msg.rpc_cred;
1439 struct gss_cred *gss_cred = container_of(cred, struct gss_cred,
1440 gc_base);
1441 struct gss_cl_ctx *ctx = gss_cred_get_ctx(cred);
1442 __be32 *savedp = p;
1443 struct kvec *head = ((struct rpc_rqst *)rqstp)->rq_rcv_buf.head;
1444 int savedlen = head->iov_len;
1445 int status = -EIO;
1447 if (ctx->gc_proc != RPC_GSS_PROC_DATA)
1448 goto out_decode;
1449 switch (gss_cred->gc_service) {
1450 case RPC_GSS_SVC_NONE:
1451 break;
1452 case RPC_GSS_SVC_INTEGRITY:
1453 status = gss_unwrap_resp_integ(cred, ctx, rqstp, &p);
1454 if (status)
1455 goto out;
1456 break;
1457 case RPC_GSS_SVC_PRIVACY:
1458 status = gss_unwrap_resp_priv(cred, ctx, rqstp, &p);
1459 if (status)
1460 goto out;
1461 break;
1463 /* take into account extra slack for integrity and privacy cases: */
1464 cred->cr_auth->au_rslack = cred->cr_auth->au_verfsize + (p - savedp)
1465 + (savedlen - head->iov_len);
1466 out_decode:
1467 status = decode(rqstp, p, obj);
1468 out:
1469 gss_put_ctx(ctx);
1470 dprintk("RPC: %5u gss_unwrap_resp returning %d\n", task->tk_pid,
1471 status);
1472 return status;
1475 static const struct rpc_authops authgss_ops = {
1476 .owner = THIS_MODULE,
1477 .au_flavor = RPC_AUTH_GSS,
1478 .au_name = "RPCSEC_GSS",
1479 .create = gss_create,
1480 .destroy = gss_destroy,
1481 .lookup_cred = gss_lookup_cred,
1482 .crcreate = gss_create_cred
1485 static const struct rpc_credops gss_credops = {
1486 .cr_name = "AUTH_GSS",
1487 .crdestroy = gss_destroy_cred,
1488 .cr_init = gss_cred_init,
1489 .crbind = rpcauth_generic_bind_cred,
1490 .crmatch = gss_match,
1491 .crmarshal = gss_marshal,
1492 .crrefresh = gss_refresh,
1493 .crvalidate = gss_validate,
1494 .crwrap_req = gss_wrap_req,
1495 .crunwrap_resp = gss_unwrap_resp,
1498 static const struct rpc_credops gss_nullops = {
1499 .cr_name = "AUTH_GSS",
1500 .crdestroy = gss_destroy_nullcred,
1501 .crbind = rpcauth_generic_bind_cred,
1502 .crmatch = gss_match,
1503 .crmarshal = gss_marshal,
1504 .crrefresh = gss_refresh_null,
1505 .crvalidate = gss_validate,
1506 .crwrap_req = gss_wrap_req,
1507 .crunwrap_resp = gss_unwrap_resp,
1510 static struct rpc_pipe_ops gss_upcall_ops_v0 = {
1511 .upcall = gss_pipe_upcall,
1512 .downcall = gss_pipe_downcall,
1513 .destroy_msg = gss_pipe_destroy_msg,
1514 .open_pipe = gss_pipe_open_v0,
1515 .release_pipe = gss_pipe_release,
1518 static struct rpc_pipe_ops gss_upcall_ops_v1 = {
1519 .upcall = gss_pipe_upcall,
1520 .downcall = gss_pipe_downcall,
1521 .destroy_msg = gss_pipe_destroy_msg,
1522 .open_pipe = gss_pipe_open_v1,
1523 .release_pipe = gss_pipe_release,
1527 * Initialize RPCSEC_GSS module
1529 static int __init init_rpcsec_gss(void)
1531 int err = 0;
1533 err = rpcauth_register(&authgss_ops);
1534 if (err)
1535 goto out;
1536 err = gss_svc_init();
1537 if (err)
1538 goto out_unregister;
1539 rpc_init_wait_queue(&pipe_version_rpc_waitqueue, "gss pipe version");
1540 return 0;
1541 out_unregister:
1542 rpcauth_unregister(&authgss_ops);
1543 out:
1544 return err;
1547 static void __exit exit_rpcsec_gss(void)
1549 gss_svc_shutdown();
1550 rpcauth_unregister(&authgss_ops);
1551 rcu_barrier(); /* Wait for completion of call_rcu()'s */
1554 MODULE_LICENSE("GPL");
1555 module_init(init_rpcsec_gss)
1556 module_exit(exit_rpcsec_gss)