Linux 5.9.2
[linux/fpc-iii.git] / mm / hugetlb.c
blob67fc6383995b430c7b6c6ebb0c01dc2128dbe2b4
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
56 * Minimum page order among possible hugepage sizes, set to a proper value
57 * at boot time.
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
61 __initdata LIST_HEAD(huge_boot_pages);
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
73 DEFINE_SPINLOCK(hugetlb_lock);
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
87 bool free = (spool->count == 0) && (spool->used_hpages == 0);
89 spin_unlock(&spool->lock);
91 /* If no pages are used, and no other handles to the subpool
92 * remain, give up any reservations based on minimum size and
93 * free the subpool */
94 if (free) {
95 if (spool->min_hpages != -1)
96 hugetlb_acct_memory(spool->hstate,
97 -spool->min_hpages);
98 kfree(spool);
102 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
103 long min_hpages)
105 struct hugepage_subpool *spool;
107 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
108 if (!spool)
109 return NULL;
111 spin_lock_init(&spool->lock);
112 spool->count = 1;
113 spool->max_hpages = max_hpages;
114 spool->hstate = h;
115 spool->min_hpages = min_hpages;
117 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
118 kfree(spool);
119 return NULL;
121 spool->rsv_hpages = min_hpages;
123 return spool;
126 void hugepage_put_subpool(struct hugepage_subpool *spool)
128 spin_lock(&spool->lock);
129 BUG_ON(!spool->count);
130 spool->count--;
131 unlock_or_release_subpool(spool);
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
137 * request. Otherwise, return the number of pages by which the
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
140 * a subpool minimum size must be maintained.
142 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
143 long delta)
145 long ret = delta;
147 if (!spool)
148 return ret;
150 spin_lock(&spool->lock);
152 if (spool->max_hpages != -1) { /* maximum size accounting */
153 if ((spool->used_hpages + delta) <= spool->max_hpages)
154 spool->used_hpages += delta;
155 else {
156 ret = -ENOMEM;
157 goto unlock_ret;
161 /* minimum size accounting */
162 if (spool->min_hpages != -1 && spool->rsv_hpages) {
163 if (delta > spool->rsv_hpages) {
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
168 ret = delta - spool->rsv_hpages;
169 spool->rsv_hpages = 0;
170 } else {
171 ret = 0; /* reserves already accounted for */
172 spool->rsv_hpages -= delta;
176 unlock_ret:
177 spin_unlock(&spool->lock);
178 return ret;
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
187 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
188 long delta)
190 long ret = delta;
192 if (!spool)
193 return delta;
195 spin_lock(&spool->lock);
197 if (spool->max_hpages != -1) /* maximum size accounting */
198 spool->used_hpages -= delta;
200 /* minimum size accounting */
201 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
202 if (spool->rsv_hpages + delta <= spool->min_hpages)
203 ret = 0;
204 else
205 ret = spool->rsv_hpages + delta - spool->min_hpages;
207 spool->rsv_hpages += delta;
208 if (spool->rsv_hpages > spool->min_hpages)
209 spool->rsv_hpages = spool->min_hpages;
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
216 unlock_or_release_subpool(spool);
218 return ret;
221 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
223 return HUGETLBFS_SB(inode->i_sb)->spool;
226 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
228 return subpool_inode(file_inode(vma->vm_file));
231 /* Helper that removes a struct file_region from the resv_map cache and returns
232 * it for use.
234 static struct file_region *
235 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
237 struct file_region *nrg = NULL;
239 VM_BUG_ON(resv->region_cache_count <= 0);
241 resv->region_cache_count--;
242 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
243 VM_BUG_ON(!nrg);
244 list_del(&nrg->link);
246 nrg->from = from;
247 nrg->to = to;
249 return nrg;
252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
253 struct file_region *rg)
255 #ifdef CONFIG_CGROUP_HUGETLB
256 nrg->reservation_counter = rg->reservation_counter;
257 nrg->css = rg->css;
258 if (rg->css)
259 css_get(rg->css);
260 #endif
263 /* Helper that records hugetlb_cgroup uncharge info. */
264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
265 struct hstate *h,
266 struct resv_map *resv,
267 struct file_region *nrg)
269 #ifdef CONFIG_CGROUP_HUGETLB
270 if (h_cg) {
271 nrg->reservation_counter =
272 &h_cg->rsvd_hugepage[hstate_index(h)];
273 nrg->css = &h_cg->css;
274 if (!resv->pages_per_hpage)
275 resv->pages_per_hpage = pages_per_huge_page(h);
276 /* pages_per_hpage should be the same for all entries in
277 * a resv_map.
279 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
280 } else {
281 nrg->reservation_counter = NULL;
282 nrg->css = NULL;
284 #endif
287 static bool has_same_uncharge_info(struct file_region *rg,
288 struct file_region *org)
290 #ifdef CONFIG_CGROUP_HUGETLB
291 return rg && org &&
292 rg->reservation_counter == org->reservation_counter &&
293 rg->css == org->css;
295 #else
296 return true;
297 #endif
300 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
302 struct file_region *nrg = NULL, *prg = NULL;
304 prg = list_prev_entry(rg, link);
305 if (&prg->link != &resv->regions && prg->to == rg->from &&
306 has_same_uncharge_info(prg, rg)) {
307 prg->to = rg->to;
309 list_del(&rg->link);
310 kfree(rg);
312 coalesce_file_region(resv, prg);
313 return;
316 nrg = list_next_entry(rg, link);
317 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
318 has_same_uncharge_info(nrg, rg)) {
319 nrg->from = rg->from;
321 list_del(&rg->link);
322 kfree(rg);
324 coalesce_file_region(resv, nrg);
325 return;
329 /* Must be called with resv->lock held. Calling this with count_only == true
330 * will count the number of pages to be added but will not modify the linked
331 * list. If regions_needed != NULL and count_only == true, then regions_needed
332 * will indicate the number of file_regions needed in the cache to carry out to
333 * add the regions for this range.
335 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
336 struct hugetlb_cgroup *h_cg,
337 struct hstate *h, long *regions_needed,
338 bool count_only)
340 long add = 0;
341 struct list_head *head = &resv->regions;
342 long last_accounted_offset = f;
343 struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
345 if (regions_needed)
346 *regions_needed = 0;
348 /* In this loop, we essentially handle an entry for the range
349 * [last_accounted_offset, rg->from), at every iteration, with some
350 * bounds checking.
352 list_for_each_entry_safe(rg, trg, head, link) {
353 /* Skip irrelevant regions that start before our range. */
354 if (rg->from < f) {
355 /* If this region ends after the last accounted offset,
356 * then we need to update last_accounted_offset.
358 if (rg->to > last_accounted_offset)
359 last_accounted_offset = rg->to;
360 continue;
363 /* When we find a region that starts beyond our range, we've
364 * finished.
366 if (rg->from > t)
367 break;
369 /* Add an entry for last_accounted_offset -> rg->from, and
370 * update last_accounted_offset.
372 if (rg->from > last_accounted_offset) {
373 add += rg->from - last_accounted_offset;
374 if (!count_only) {
375 nrg = get_file_region_entry_from_cache(
376 resv, last_accounted_offset, rg->from);
377 record_hugetlb_cgroup_uncharge_info(h_cg, h,
378 resv, nrg);
379 list_add(&nrg->link, rg->link.prev);
380 coalesce_file_region(resv, nrg);
381 } else if (regions_needed)
382 *regions_needed += 1;
385 last_accounted_offset = rg->to;
388 /* Handle the case where our range extends beyond
389 * last_accounted_offset.
391 if (last_accounted_offset < t) {
392 add += t - last_accounted_offset;
393 if (!count_only) {
394 nrg = get_file_region_entry_from_cache(
395 resv, last_accounted_offset, t);
396 record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
397 list_add(&nrg->link, rg->link.prev);
398 coalesce_file_region(resv, nrg);
399 } else if (regions_needed)
400 *regions_needed += 1;
403 VM_BUG_ON(add < 0);
404 return add;
407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
409 static int allocate_file_region_entries(struct resv_map *resv,
410 int regions_needed)
411 __must_hold(&resv->lock)
413 struct list_head allocated_regions;
414 int to_allocate = 0, i = 0;
415 struct file_region *trg = NULL, *rg = NULL;
417 VM_BUG_ON(regions_needed < 0);
419 INIT_LIST_HEAD(&allocated_regions);
422 * Check for sufficient descriptors in the cache to accommodate
423 * the number of in progress add operations plus regions_needed.
425 * This is a while loop because when we drop the lock, some other call
426 * to region_add or region_del may have consumed some region_entries,
427 * so we keep looping here until we finally have enough entries for
428 * (adds_in_progress + regions_needed).
430 while (resv->region_cache_count <
431 (resv->adds_in_progress + regions_needed)) {
432 to_allocate = resv->adds_in_progress + regions_needed -
433 resv->region_cache_count;
435 /* At this point, we should have enough entries in the cache
436 * for all the existings adds_in_progress. We should only be
437 * needing to allocate for regions_needed.
439 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
441 spin_unlock(&resv->lock);
442 for (i = 0; i < to_allocate; i++) {
443 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
444 if (!trg)
445 goto out_of_memory;
446 list_add(&trg->link, &allocated_regions);
449 spin_lock(&resv->lock);
451 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
452 list_del(&rg->link);
453 list_add(&rg->link, &resv->region_cache);
454 resv->region_cache_count++;
458 return 0;
460 out_of_memory:
461 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
462 list_del(&rg->link);
463 kfree(rg);
465 return -ENOMEM;
469 * Add the huge page range represented by [f, t) to the reserve
470 * map. Regions will be taken from the cache to fill in this range.
471 * Sufficient regions should exist in the cache due to the previous
472 * call to region_chg with the same range, but in some cases the cache will not
473 * have sufficient entries due to races with other code doing region_add or
474 * region_del. The extra needed entries will be allocated.
476 * regions_needed is the out value provided by a previous call to region_chg.
478 * Return the number of new huge pages added to the map. This number is greater
479 * than or equal to zero. If file_region entries needed to be allocated for
480 * this operation and we were not able to allocate, it returns -ENOMEM.
481 * region_add of regions of length 1 never allocate file_regions and cannot
482 * fail; region_chg will always allocate at least 1 entry and a region_add for
483 * 1 page will only require at most 1 entry.
485 static long region_add(struct resv_map *resv, long f, long t,
486 long in_regions_needed, struct hstate *h,
487 struct hugetlb_cgroup *h_cg)
489 long add = 0, actual_regions_needed = 0;
491 spin_lock(&resv->lock);
492 retry:
494 /* Count how many regions are actually needed to execute this add. */
495 add_reservation_in_range(resv, f, t, NULL, NULL, &actual_regions_needed,
496 true);
499 * Check for sufficient descriptors in the cache to accommodate
500 * this add operation. Note that actual_regions_needed may be greater
501 * than in_regions_needed, as the resv_map may have been modified since
502 * the region_chg call. In this case, we need to make sure that we
503 * allocate extra entries, such that we have enough for all the
504 * existing adds_in_progress, plus the excess needed for this
505 * operation.
507 if (actual_regions_needed > in_regions_needed &&
508 resv->region_cache_count <
509 resv->adds_in_progress +
510 (actual_regions_needed - in_regions_needed)) {
511 /* region_add operation of range 1 should never need to
512 * allocate file_region entries.
514 VM_BUG_ON(t - f <= 1);
516 if (allocate_file_region_entries(
517 resv, actual_regions_needed - in_regions_needed)) {
518 return -ENOMEM;
521 goto retry;
524 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL, false);
526 resv->adds_in_progress -= in_regions_needed;
528 spin_unlock(&resv->lock);
529 VM_BUG_ON(add < 0);
530 return add;
534 * Examine the existing reserve map and determine how many
535 * huge pages in the specified range [f, t) are NOT currently
536 * represented. This routine is called before a subsequent
537 * call to region_add that will actually modify the reserve
538 * map to add the specified range [f, t). region_chg does
539 * not change the number of huge pages represented by the
540 * map. A number of new file_region structures is added to the cache as a
541 * placeholder, for the subsequent region_add call to use. At least 1
542 * file_region structure is added.
544 * out_regions_needed is the number of regions added to the
545 * resv->adds_in_progress. This value needs to be provided to a follow up call
546 * to region_add or region_abort for proper accounting.
548 * Returns the number of huge pages that need to be added to the existing
549 * reservation map for the range [f, t). This number is greater or equal to
550 * zero. -ENOMEM is returned if a new file_region structure or cache entry
551 * is needed and can not be allocated.
553 static long region_chg(struct resv_map *resv, long f, long t,
554 long *out_regions_needed)
556 long chg = 0;
558 spin_lock(&resv->lock);
560 /* Count how many hugepages in this range are NOT respresented. */
561 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
562 out_regions_needed, true);
564 if (*out_regions_needed == 0)
565 *out_regions_needed = 1;
567 if (allocate_file_region_entries(resv, *out_regions_needed))
568 return -ENOMEM;
570 resv->adds_in_progress += *out_regions_needed;
572 spin_unlock(&resv->lock);
573 return chg;
577 * Abort the in progress add operation. The adds_in_progress field
578 * of the resv_map keeps track of the operations in progress between
579 * calls to region_chg and region_add. Operations are sometimes
580 * aborted after the call to region_chg. In such cases, region_abort
581 * is called to decrement the adds_in_progress counter. regions_needed
582 * is the value returned by the region_chg call, it is used to decrement
583 * the adds_in_progress counter.
585 * NOTE: The range arguments [f, t) are not needed or used in this
586 * routine. They are kept to make reading the calling code easier as
587 * arguments will match the associated region_chg call.
589 static void region_abort(struct resv_map *resv, long f, long t,
590 long regions_needed)
592 spin_lock(&resv->lock);
593 VM_BUG_ON(!resv->region_cache_count);
594 resv->adds_in_progress -= regions_needed;
595 spin_unlock(&resv->lock);
599 * Delete the specified range [f, t) from the reserve map. If the
600 * t parameter is LONG_MAX, this indicates that ALL regions after f
601 * should be deleted. Locate the regions which intersect [f, t)
602 * and either trim, delete or split the existing regions.
604 * Returns the number of huge pages deleted from the reserve map.
605 * In the normal case, the return value is zero or more. In the
606 * case where a region must be split, a new region descriptor must
607 * be allocated. If the allocation fails, -ENOMEM will be returned.
608 * NOTE: If the parameter t == LONG_MAX, then we will never split
609 * a region and possibly return -ENOMEM. Callers specifying
610 * t == LONG_MAX do not need to check for -ENOMEM error.
612 static long region_del(struct resv_map *resv, long f, long t)
614 struct list_head *head = &resv->regions;
615 struct file_region *rg, *trg;
616 struct file_region *nrg = NULL;
617 long del = 0;
619 retry:
620 spin_lock(&resv->lock);
621 list_for_each_entry_safe(rg, trg, head, link) {
623 * Skip regions before the range to be deleted. file_region
624 * ranges are normally of the form [from, to). However, there
625 * may be a "placeholder" entry in the map which is of the form
626 * (from, to) with from == to. Check for placeholder entries
627 * at the beginning of the range to be deleted.
629 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
630 continue;
632 if (rg->from >= t)
633 break;
635 if (f > rg->from && t < rg->to) { /* Must split region */
637 * Check for an entry in the cache before dropping
638 * lock and attempting allocation.
640 if (!nrg &&
641 resv->region_cache_count > resv->adds_in_progress) {
642 nrg = list_first_entry(&resv->region_cache,
643 struct file_region,
644 link);
645 list_del(&nrg->link);
646 resv->region_cache_count--;
649 if (!nrg) {
650 spin_unlock(&resv->lock);
651 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
652 if (!nrg)
653 return -ENOMEM;
654 goto retry;
657 del += t - f;
659 /* New entry for end of split region */
660 nrg->from = t;
661 nrg->to = rg->to;
663 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
665 INIT_LIST_HEAD(&nrg->link);
667 /* Original entry is trimmed */
668 rg->to = f;
670 hugetlb_cgroup_uncharge_file_region(
671 resv, rg, nrg->to - nrg->from);
673 list_add(&nrg->link, &rg->link);
674 nrg = NULL;
675 break;
678 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
679 del += rg->to - rg->from;
680 hugetlb_cgroup_uncharge_file_region(resv, rg,
681 rg->to - rg->from);
682 list_del(&rg->link);
683 kfree(rg);
684 continue;
687 if (f <= rg->from) { /* Trim beginning of region */
688 del += t - rg->from;
689 rg->from = t;
691 hugetlb_cgroup_uncharge_file_region(resv, rg,
692 t - rg->from);
693 } else { /* Trim end of region */
694 del += rg->to - f;
695 rg->to = f;
697 hugetlb_cgroup_uncharge_file_region(resv, rg,
698 rg->to - f);
702 spin_unlock(&resv->lock);
703 kfree(nrg);
704 return del;
708 * A rare out of memory error was encountered which prevented removal of
709 * the reserve map region for a page. The huge page itself was free'ed
710 * and removed from the page cache. This routine will adjust the subpool
711 * usage count, and the global reserve count if needed. By incrementing
712 * these counts, the reserve map entry which could not be deleted will
713 * appear as a "reserved" entry instead of simply dangling with incorrect
714 * counts.
716 void hugetlb_fix_reserve_counts(struct inode *inode)
718 struct hugepage_subpool *spool = subpool_inode(inode);
719 long rsv_adjust;
721 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
722 if (rsv_adjust) {
723 struct hstate *h = hstate_inode(inode);
725 hugetlb_acct_memory(h, 1);
730 * Count and return the number of huge pages in the reserve map
731 * that intersect with the range [f, t).
733 static long region_count(struct resv_map *resv, long f, long t)
735 struct list_head *head = &resv->regions;
736 struct file_region *rg;
737 long chg = 0;
739 spin_lock(&resv->lock);
740 /* Locate each segment we overlap with, and count that overlap. */
741 list_for_each_entry(rg, head, link) {
742 long seg_from;
743 long seg_to;
745 if (rg->to <= f)
746 continue;
747 if (rg->from >= t)
748 break;
750 seg_from = max(rg->from, f);
751 seg_to = min(rg->to, t);
753 chg += seg_to - seg_from;
755 spin_unlock(&resv->lock);
757 return chg;
761 * Convert the address within this vma to the page offset within
762 * the mapping, in pagecache page units; huge pages here.
764 static pgoff_t vma_hugecache_offset(struct hstate *h,
765 struct vm_area_struct *vma, unsigned long address)
767 return ((address - vma->vm_start) >> huge_page_shift(h)) +
768 (vma->vm_pgoff >> huge_page_order(h));
771 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
772 unsigned long address)
774 return vma_hugecache_offset(hstate_vma(vma), vma, address);
776 EXPORT_SYMBOL_GPL(linear_hugepage_index);
779 * Return the size of the pages allocated when backing a VMA. In the majority
780 * cases this will be same size as used by the page table entries.
782 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
784 if (vma->vm_ops && vma->vm_ops->pagesize)
785 return vma->vm_ops->pagesize(vma);
786 return PAGE_SIZE;
788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
791 * Return the page size being used by the MMU to back a VMA. In the majority
792 * of cases, the page size used by the kernel matches the MMU size. On
793 * architectures where it differs, an architecture-specific 'strong'
794 * version of this symbol is required.
796 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
798 return vma_kernel_pagesize(vma);
802 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
803 * bits of the reservation map pointer, which are always clear due to
804 * alignment.
806 #define HPAGE_RESV_OWNER (1UL << 0)
807 #define HPAGE_RESV_UNMAPPED (1UL << 1)
808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
811 * These helpers are used to track how many pages are reserved for
812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813 * is guaranteed to have their future faults succeed.
815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816 * the reserve counters are updated with the hugetlb_lock held. It is safe
817 * to reset the VMA at fork() time as it is not in use yet and there is no
818 * chance of the global counters getting corrupted as a result of the values.
820 * The private mapping reservation is represented in a subtly different
821 * manner to a shared mapping. A shared mapping has a region map associated
822 * with the underlying file, this region map represents the backing file
823 * pages which have ever had a reservation assigned which this persists even
824 * after the page is instantiated. A private mapping has a region map
825 * associated with the original mmap which is attached to all VMAs which
826 * reference it, this region map represents those offsets which have consumed
827 * reservation ie. where pages have been instantiated.
829 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
831 return (unsigned long)vma->vm_private_data;
834 static void set_vma_private_data(struct vm_area_struct *vma,
835 unsigned long value)
837 vma->vm_private_data = (void *)value;
840 static void
841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
842 struct hugetlb_cgroup *h_cg,
843 struct hstate *h)
845 #ifdef CONFIG_CGROUP_HUGETLB
846 if (!h_cg || !h) {
847 resv_map->reservation_counter = NULL;
848 resv_map->pages_per_hpage = 0;
849 resv_map->css = NULL;
850 } else {
851 resv_map->reservation_counter =
852 &h_cg->rsvd_hugepage[hstate_index(h)];
853 resv_map->pages_per_hpage = pages_per_huge_page(h);
854 resv_map->css = &h_cg->css;
856 #endif
859 struct resv_map *resv_map_alloc(void)
861 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
862 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
864 if (!resv_map || !rg) {
865 kfree(resv_map);
866 kfree(rg);
867 return NULL;
870 kref_init(&resv_map->refs);
871 spin_lock_init(&resv_map->lock);
872 INIT_LIST_HEAD(&resv_map->regions);
874 resv_map->adds_in_progress = 0;
876 * Initialize these to 0. On shared mappings, 0's here indicate these
877 * fields don't do cgroup accounting. On private mappings, these will be
878 * re-initialized to the proper values, to indicate that hugetlb cgroup
879 * reservations are to be un-charged from here.
881 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
883 INIT_LIST_HEAD(&resv_map->region_cache);
884 list_add(&rg->link, &resv_map->region_cache);
885 resv_map->region_cache_count = 1;
887 return resv_map;
890 void resv_map_release(struct kref *ref)
892 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
893 struct list_head *head = &resv_map->region_cache;
894 struct file_region *rg, *trg;
896 /* Clear out any active regions before we release the map. */
897 region_del(resv_map, 0, LONG_MAX);
899 /* ... and any entries left in the cache */
900 list_for_each_entry_safe(rg, trg, head, link) {
901 list_del(&rg->link);
902 kfree(rg);
905 VM_BUG_ON(resv_map->adds_in_progress);
907 kfree(resv_map);
910 static inline struct resv_map *inode_resv_map(struct inode *inode)
913 * At inode evict time, i_mapping may not point to the original
914 * address space within the inode. This original address space
915 * contains the pointer to the resv_map. So, always use the
916 * address space embedded within the inode.
917 * The VERY common case is inode->mapping == &inode->i_data but,
918 * this may not be true for device special inodes.
920 return (struct resv_map *)(&inode->i_data)->private_data;
923 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
925 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
926 if (vma->vm_flags & VM_MAYSHARE) {
927 struct address_space *mapping = vma->vm_file->f_mapping;
928 struct inode *inode = mapping->host;
930 return inode_resv_map(inode);
932 } else {
933 return (struct resv_map *)(get_vma_private_data(vma) &
934 ~HPAGE_RESV_MASK);
938 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
940 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
941 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
943 set_vma_private_data(vma, (get_vma_private_data(vma) &
944 HPAGE_RESV_MASK) | (unsigned long)map);
947 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
950 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
952 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
955 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
959 return (get_vma_private_data(vma) & flag) != 0;
962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
966 if (!(vma->vm_flags & VM_MAYSHARE))
967 vma->vm_private_data = (void *)0;
970 /* Returns true if the VMA has associated reserve pages */
971 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
973 if (vma->vm_flags & VM_NORESERVE) {
975 * This address is already reserved by other process(chg == 0),
976 * so, we should decrement reserved count. Without decrementing,
977 * reserve count remains after releasing inode, because this
978 * allocated page will go into page cache and is regarded as
979 * coming from reserved pool in releasing step. Currently, we
980 * don't have any other solution to deal with this situation
981 * properly, so add work-around here.
983 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
984 return true;
985 else
986 return false;
989 /* Shared mappings always use reserves */
990 if (vma->vm_flags & VM_MAYSHARE) {
992 * We know VM_NORESERVE is not set. Therefore, there SHOULD
993 * be a region map for all pages. The only situation where
994 * there is no region map is if a hole was punched via
995 * fallocate. In this case, there really are no reserves to
996 * use. This situation is indicated if chg != 0.
998 if (chg)
999 return false;
1000 else
1001 return true;
1005 * Only the process that called mmap() has reserves for
1006 * private mappings.
1008 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1010 * Like the shared case above, a hole punch or truncate
1011 * could have been performed on the private mapping.
1012 * Examine the value of chg to determine if reserves
1013 * actually exist or were previously consumed.
1014 * Very Subtle - The value of chg comes from a previous
1015 * call to vma_needs_reserves(). The reserve map for
1016 * private mappings has different (opposite) semantics
1017 * than that of shared mappings. vma_needs_reserves()
1018 * has already taken this difference in semantics into
1019 * account. Therefore, the meaning of chg is the same
1020 * as in the shared case above. Code could easily be
1021 * combined, but keeping it separate draws attention to
1022 * subtle differences.
1024 if (chg)
1025 return false;
1026 else
1027 return true;
1030 return false;
1033 static void enqueue_huge_page(struct hstate *h, struct page *page)
1035 int nid = page_to_nid(page);
1036 list_move(&page->lru, &h->hugepage_freelists[nid]);
1037 h->free_huge_pages++;
1038 h->free_huge_pages_node[nid]++;
1041 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1043 struct page *page;
1044 bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1046 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1047 if (nocma && is_migrate_cma_page(page))
1048 continue;
1050 if (!PageHWPoison(page))
1051 break;
1055 * if 'non-isolated free hugepage' not found on the list,
1056 * the allocation fails.
1058 if (&h->hugepage_freelists[nid] == &page->lru)
1059 return NULL;
1060 list_move(&page->lru, &h->hugepage_activelist);
1061 set_page_refcounted(page);
1062 h->free_huge_pages--;
1063 h->free_huge_pages_node[nid]--;
1064 return page;
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068 nodemask_t *nmask)
1070 unsigned int cpuset_mems_cookie;
1071 struct zonelist *zonelist;
1072 struct zone *zone;
1073 struct zoneref *z;
1074 int node = NUMA_NO_NODE;
1076 zonelist = node_zonelist(nid, gfp_mask);
1078 retry_cpuset:
1079 cpuset_mems_cookie = read_mems_allowed_begin();
1080 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081 struct page *page;
1083 if (!cpuset_zone_allowed(zone, gfp_mask))
1084 continue;
1086 * no need to ask again on the same node. Pool is node rather than
1087 * zone aware
1089 if (zone_to_nid(zone) == node)
1090 continue;
1091 node = zone_to_nid(zone);
1093 page = dequeue_huge_page_node_exact(h, node);
1094 if (page)
1095 return page;
1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098 goto retry_cpuset;
1100 return NULL;
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104 struct vm_area_struct *vma,
1105 unsigned long address, int avoid_reserve,
1106 long chg)
1108 struct page *page;
1109 struct mempolicy *mpol;
1110 gfp_t gfp_mask;
1111 nodemask_t *nodemask;
1112 int nid;
1115 * A child process with MAP_PRIVATE mappings created by their parent
1116 * have no page reserves. This check ensures that reservations are
1117 * not "stolen". The child may still get SIGKILLed
1119 if (!vma_has_reserves(vma, chg) &&
1120 h->free_huge_pages - h->resv_huge_pages == 0)
1121 goto err;
1123 /* If reserves cannot be used, ensure enough pages are in the pool */
1124 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125 goto err;
1127 gfp_mask = htlb_alloc_mask(h);
1128 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131 SetPagePrivate(page);
1132 h->resv_huge_pages--;
1135 mpol_cond_put(mpol);
1136 return page;
1138 err:
1139 return NULL;
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed. Ensure that we use an allowed
1147 * node for alloc or free.
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1151 nid = next_node_in(nid, *nodes_allowed);
1152 VM_BUG_ON(nid >= MAX_NUMNODES);
1154 return nid;
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1159 if (!node_isset(nid, *nodes_allowed))
1160 nid = next_node_allowed(nid, nodes_allowed);
1161 return nid;
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1168 * mask.
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171 nodemask_t *nodes_allowed)
1173 int nid;
1175 VM_BUG_ON(!nodes_allowed);
1177 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1180 return nid;
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page. Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1191 int nid;
1193 VM_BUG_ON(!nodes_allowed);
1195 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1198 return nid;
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1202 for (nr_nodes = nodes_weight(*mask); \
1203 nr_nodes > 0 && \
1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1205 nr_nodes--)
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1208 for (nr_nodes = nodes_weight(*mask); \
1209 nr_nodes > 0 && \
1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1211 nr_nodes--)
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215 unsigned int order)
1217 int i;
1218 int nr_pages = 1 << order;
1219 struct page *p = page + 1;
1221 atomic_set(compound_mapcount_ptr(page), 0);
1222 if (hpage_pincount_available(page))
1223 atomic_set(compound_pincount_ptr(page), 0);
1225 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1226 clear_compound_head(p);
1227 set_page_refcounted(p);
1230 set_compound_order(page, 0);
1231 __ClearPageHead(page);
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1237 * If the page isn't allocated using the cma allocator,
1238 * cma_release() returns false.
1240 #ifdef CONFIG_CMA
1241 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242 return;
1243 #endif
1245 free_contig_range(page_to_pfn(page), 1 << order);
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250 int nid, nodemask_t *nodemask)
1252 unsigned long nr_pages = 1UL << huge_page_order(h);
1253 if (nid == NUMA_NO_NODE)
1254 nid = numa_mem_id();
1256 #ifdef CONFIG_CMA
1258 struct page *page;
1259 int node;
1261 if (hugetlb_cma[nid]) {
1262 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263 huge_page_order(h), true);
1264 if (page)
1265 return page;
1268 if (!(gfp_mask & __GFP_THISNODE)) {
1269 for_each_node_mask(node, *nodemask) {
1270 if (node == nid || !hugetlb_cma[node])
1271 continue;
1273 page = cma_alloc(hugetlb_cma[node], nr_pages,
1274 huge_page_order(h), true);
1275 if (page)
1276 return page;
1280 #endif
1282 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287 #else /* !CONFIG_CONTIG_ALLOC */
1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289 int nid, nodemask_t *nodemask)
1291 return NULL;
1293 #endif /* CONFIG_CONTIG_ALLOC */
1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297 int nid, nodemask_t *nodemask)
1299 return NULL;
1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302 static inline void destroy_compound_gigantic_page(struct page *page,
1303 unsigned int order) { }
1304 #endif
1306 static void update_and_free_page(struct hstate *h, struct page *page)
1308 int i;
1310 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1311 return;
1313 h->nr_huge_pages--;
1314 h->nr_huge_pages_node[page_to_nid(page)]--;
1315 for (i = 0; i < pages_per_huge_page(h); i++) {
1316 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1317 1 << PG_referenced | 1 << PG_dirty |
1318 1 << PG_active | 1 << PG_private |
1319 1 << PG_writeback);
1321 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1322 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1323 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1324 set_page_refcounted(page);
1325 if (hstate_is_gigantic(h)) {
1327 * Temporarily drop the hugetlb_lock, because
1328 * we might block in free_gigantic_page().
1330 spin_unlock(&hugetlb_lock);
1331 destroy_compound_gigantic_page(page, huge_page_order(h));
1332 free_gigantic_page(page, huge_page_order(h));
1333 spin_lock(&hugetlb_lock);
1334 } else {
1335 __free_pages(page, huge_page_order(h));
1339 struct hstate *size_to_hstate(unsigned long size)
1341 struct hstate *h;
1343 for_each_hstate(h) {
1344 if (huge_page_size(h) == size)
1345 return h;
1347 return NULL;
1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352 * to hstate->hugepage_activelist.)
1354 * This function can be called for tail pages, but never returns true for them.
1356 bool page_huge_active(struct page *page)
1358 VM_BUG_ON_PAGE(!PageHuge(page), page);
1359 return PageHead(page) && PagePrivate(&page[1]);
1362 /* never called for tail page */
1363 static void set_page_huge_active(struct page *page)
1365 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1366 SetPagePrivate(&page[1]);
1369 static void clear_page_huge_active(struct page *page)
1371 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1372 ClearPagePrivate(&page[1]);
1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1377 * code
1379 static inline bool PageHugeTemporary(struct page *page)
1381 if (!PageHuge(page))
1382 return false;
1384 return (unsigned long)page[2].mapping == -1U;
1387 static inline void SetPageHugeTemporary(struct page *page)
1389 page[2].mapping = (void *)-1U;
1392 static inline void ClearPageHugeTemporary(struct page *page)
1394 page[2].mapping = NULL;
1397 static void __free_huge_page(struct page *page)
1400 * Can't pass hstate in here because it is called from the
1401 * compound page destructor.
1403 struct hstate *h = page_hstate(page);
1404 int nid = page_to_nid(page);
1405 struct hugepage_subpool *spool =
1406 (struct hugepage_subpool *)page_private(page);
1407 bool restore_reserve;
1409 VM_BUG_ON_PAGE(page_count(page), page);
1410 VM_BUG_ON_PAGE(page_mapcount(page), page);
1412 set_page_private(page, 0);
1413 page->mapping = NULL;
1414 restore_reserve = PagePrivate(page);
1415 ClearPagePrivate(page);
1418 * If PagePrivate() was set on page, page allocation consumed a
1419 * reservation. If the page was associated with a subpool, there
1420 * would have been a page reserved in the subpool before allocation
1421 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1422 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423 * remove the reserved page from the subpool.
1425 if (!restore_reserve) {
1427 * A return code of zero implies that the subpool will be
1428 * under its minimum size if the reservation is not restored
1429 * after page is free. Therefore, force restore_reserve
1430 * operation.
1432 if (hugepage_subpool_put_pages(spool, 1) == 0)
1433 restore_reserve = true;
1436 spin_lock(&hugetlb_lock);
1437 clear_page_huge_active(page);
1438 hugetlb_cgroup_uncharge_page(hstate_index(h),
1439 pages_per_huge_page(h), page);
1440 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1441 pages_per_huge_page(h), page);
1442 if (restore_reserve)
1443 h->resv_huge_pages++;
1445 if (PageHugeTemporary(page)) {
1446 list_del(&page->lru);
1447 ClearPageHugeTemporary(page);
1448 update_and_free_page(h, page);
1449 } else if (h->surplus_huge_pages_node[nid]) {
1450 /* remove the page from active list */
1451 list_del(&page->lru);
1452 update_and_free_page(h, page);
1453 h->surplus_huge_pages--;
1454 h->surplus_huge_pages_node[nid]--;
1455 } else {
1456 arch_clear_hugepage_flags(page);
1457 enqueue_huge_page(h, page);
1459 spin_unlock(&hugetlb_lock);
1463 * As free_huge_page() can be called from a non-task context, we have
1464 * to defer the actual freeing in a workqueue to prevent potential
1465 * hugetlb_lock deadlock.
1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468 * be freed and frees them one-by-one. As the page->mapping pointer is
1469 * going to be cleared in __free_huge_page() anyway, it is reused as the
1470 * llist_node structure of a lockless linked list of huge pages to be freed.
1472 static LLIST_HEAD(hpage_freelist);
1474 static void free_hpage_workfn(struct work_struct *work)
1476 struct llist_node *node;
1477 struct page *page;
1479 node = llist_del_all(&hpage_freelist);
1481 while (node) {
1482 page = container_of((struct address_space **)node,
1483 struct page, mapping);
1484 node = node->next;
1485 __free_huge_page(page);
1488 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1490 void free_huge_page(struct page *page)
1493 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1495 if (!in_task()) {
1497 * Only call schedule_work() if hpage_freelist is previously
1498 * empty. Otherwise, schedule_work() had been called but the
1499 * workfn hasn't retrieved the list yet.
1501 if (llist_add((struct llist_node *)&page->mapping,
1502 &hpage_freelist))
1503 schedule_work(&free_hpage_work);
1504 return;
1507 __free_huge_page(page);
1510 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1512 INIT_LIST_HEAD(&page->lru);
1513 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1514 spin_lock(&hugetlb_lock);
1515 set_hugetlb_cgroup(page, NULL);
1516 set_hugetlb_cgroup_rsvd(page, NULL);
1517 h->nr_huge_pages++;
1518 h->nr_huge_pages_node[nid]++;
1519 spin_unlock(&hugetlb_lock);
1522 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1524 int i;
1525 int nr_pages = 1 << order;
1526 struct page *p = page + 1;
1528 /* we rely on prep_new_huge_page to set the destructor */
1529 set_compound_order(page, order);
1530 __ClearPageReserved(page);
1531 __SetPageHead(page);
1532 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1534 * For gigantic hugepages allocated through bootmem at
1535 * boot, it's safer to be consistent with the not-gigantic
1536 * hugepages and clear the PG_reserved bit from all tail pages
1537 * too. Otherwise drivers using get_user_pages() to access tail
1538 * pages may get the reference counting wrong if they see
1539 * PG_reserved set on a tail page (despite the head page not
1540 * having PG_reserved set). Enforcing this consistency between
1541 * head and tail pages allows drivers to optimize away a check
1542 * on the head page when they need know if put_page() is needed
1543 * after get_user_pages().
1545 __ClearPageReserved(p);
1546 set_page_count(p, 0);
1547 set_compound_head(p, page);
1549 atomic_set(compound_mapcount_ptr(page), -1);
1551 if (hpage_pincount_available(page))
1552 atomic_set(compound_pincount_ptr(page), 0);
1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557 * transparent huge pages. See the PageTransHuge() documentation for more
1558 * details.
1560 int PageHuge(struct page *page)
1562 if (!PageCompound(page))
1563 return 0;
1565 page = compound_head(page);
1566 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1568 EXPORT_SYMBOL_GPL(PageHuge);
1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572 * normal or transparent huge pages.
1574 int PageHeadHuge(struct page *page_head)
1576 if (!PageHead(page_head))
1577 return 0;
1579 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1583 * Find address_space associated with hugetlbfs page.
1584 * Upon entry page is locked and page 'was' mapped although mapped state
1585 * could change. If necessary, use anon_vma to find vma and associated
1586 * address space. The returned mapping may be stale, but it can not be
1587 * invalid as page lock (which is held) is required to destroy mapping.
1589 static struct address_space *_get_hugetlb_page_mapping(struct page *hpage)
1591 struct anon_vma *anon_vma;
1592 pgoff_t pgoff_start, pgoff_end;
1593 struct anon_vma_chain *avc;
1594 struct address_space *mapping = page_mapping(hpage);
1596 /* Simple file based mapping */
1597 if (mapping)
1598 return mapping;
1601 * Even anonymous hugetlbfs mappings are associated with an
1602 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603 * code). Find a vma associated with the anonymous vma, and
1604 * use the file pointer to get address_space.
1606 anon_vma = page_lock_anon_vma_read(hpage);
1607 if (!anon_vma)
1608 return mapping; /* NULL */
1610 /* Use first found vma */
1611 pgoff_start = page_to_pgoff(hpage);
1612 pgoff_end = pgoff_start + pages_per_huge_page(page_hstate(hpage)) - 1;
1613 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1614 pgoff_start, pgoff_end) {
1615 struct vm_area_struct *vma = avc->vma;
1617 mapping = vma->vm_file->f_mapping;
1618 break;
1621 anon_vma_unlock_read(anon_vma);
1622 return mapping;
1626 * Find and lock address space (mapping) in write mode.
1628 * Upon entry, the page is locked which allows us to find the mapping
1629 * even in the case of an anon page. However, locking order dictates
1630 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1631 * specific. So, we first try to lock the sema while still holding the
1632 * page lock. If this works, great! If not, then we need to drop the
1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1634 * course, need to revalidate state along the way.
1636 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1638 struct address_space *mapping, *mapping2;
1640 mapping = _get_hugetlb_page_mapping(hpage);
1641 retry:
1642 if (!mapping)
1643 return mapping;
1646 * If no contention, take lock and return
1648 if (i_mmap_trylock_write(mapping))
1649 return mapping;
1652 * Must drop page lock and wait on mapping sema.
1653 * Note: Once page lock is dropped, mapping could become invalid.
1654 * As a hack, increase map count until we lock page again.
1656 atomic_inc(&hpage->_mapcount);
1657 unlock_page(hpage);
1658 i_mmap_lock_write(mapping);
1659 lock_page(hpage);
1660 atomic_add_negative(-1, &hpage->_mapcount);
1662 /* verify page is still mapped */
1663 if (!page_mapped(hpage)) {
1664 i_mmap_unlock_write(mapping);
1665 return NULL;
1669 * Get address space again and verify it is the same one
1670 * we locked. If not, drop lock and retry.
1672 mapping2 = _get_hugetlb_page_mapping(hpage);
1673 if (mapping2 != mapping) {
1674 i_mmap_unlock_write(mapping);
1675 mapping = mapping2;
1676 goto retry;
1679 return mapping;
1682 pgoff_t __basepage_index(struct page *page)
1684 struct page *page_head = compound_head(page);
1685 pgoff_t index = page_index(page_head);
1686 unsigned long compound_idx;
1688 if (!PageHuge(page_head))
1689 return page_index(page);
1691 if (compound_order(page_head) >= MAX_ORDER)
1692 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1693 else
1694 compound_idx = page - page_head;
1696 return (index << compound_order(page_head)) + compound_idx;
1699 static struct page *alloc_buddy_huge_page(struct hstate *h,
1700 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1701 nodemask_t *node_alloc_noretry)
1703 int order = huge_page_order(h);
1704 struct page *page;
1705 bool alloc_try_hard = true;
1708 * By default we always try hard to allocate the page with
1709 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1710 * a loop (to adjust global huge page counts) and previous allocation
1711 * failed, do not continue to try hard on the same node. Use the
1712 * node_alloc_noretry bitmap to manage this state information.
1714 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1715 alloc_try_hard = false;
1716 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1717 if (alloc_try_hard)
1718 gfp_mask |= __GFP_RETRY_MAYFAIL;
1719 if (nid == NUMA_NO_NODE)
1720 nid = numa_mem_id();
1721 page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1722 if (page)
1723 __count_vm_event(HTLB_BUDDY_PGALLOC);
1724 else
1725 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1728 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729 * indicates an overall state change. Clear bit so that we resume
1730 * normal 'try hard' allocations.
1732 if (node_alloc_noretry && page && !alloc_try_hard)
1733 node_clear(nid, *node_alloc_noretry);
1736 * If we tried hard to get a page but failed, set bit so that
1737 * subsequent attempts will not try as hard until there is an
1738 * overall state change.
1740 if (node_alloc_noretry && !page && alloc_try_hard)
1741 node_set(nid, *node_alloc_noretry);
1743 return page;
1747 * Common helper to allocate a fresh hugetlb page. All specific allocators
1748 * should use this function to get new hugetlb pages
1750 static struct page *alloc_fresh_huge_page(struct hstate *h,
1751 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1752 nodemask_t *node_alloc_noretry)
1754 struct page *page;
1756 if (hstate_is_gigantic(h))
1757 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1758 else
1759 page = alloc_buddy_huge_page(h, gfp_mask,
1760 nid, nmask, node_alloc_noretry);
1761 if (!page)
1762 return NULL;
1764 if (hstate_is_gigantic(h))
1765 prep_compound_gigantic_page(page, huge_page_order(h));
1766 prep_new_huge_page(h, page, page_to_nid(page));
1768 return page;
1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1773 * manner.
1775 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1776 nodemask_t *node_alloc_noretry)
1778 struct page *page;
1779 int nr_nodes, node;
1780 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1782 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1783 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1784 node_alloc_noretry);
1785 if (page)
1786 break;
1789 if (!page)
1790 return 0;
1792 put_page(page); /* free it into the hugepage allocator */
1794 return 1;
1798 * Free huge page from pool from next node to free.
1799 * Attempt to keep persistent huge pages more or less
1800 * balanced over allowed nodes.
1801 * Called with hugetlb_lock locked.
1803 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1804 bool acct_surplus)
1806 int nr_nodes, node;
1807 int ret = 0;
1809 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1811 * If we're returning unused surplus pages, only examine
1812 * nodes with surplus pages.
1814 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1815 !list_empty(&h->hugepage_freelists[node])) {
1816 struct page *page =
1817 list_entry(h->hugepage_freelists[node].next,
1818 struct page, lru);
1819 list_del(&page->lru);
1820 h->free_huge_pages--;
1821 h->free_huge_pages_node[node]--;
1822 if (acct_surplus) {
1823 h->surplus_huge_pages--;
1824 h->surplus_huge_pages_node[node]--;
1826 update_and_free_page(h, page);
1827 ret = 1;
1828 break;
1832 return ret;
1836 * Dissolve a given free hugepage into free buddy pages. This function does
1837 * nothing for in-use hugepages and non-hugepages.
1838 * This function returns values like below:
1840 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841 * (allocated or reserved.)
1842 * 0: successfully dissolved free hugepages or the page is not a
1843 * hugepage (considered as already dissolved)
1845 int dissolve_free_huge_page(struct page *page)
1847 int rc = -EBUSY;
1849 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1850 if (!PageHuge(page))
1851 return 0;
1853 spin_lock(&hugetlb_lock);
1854 if (!PageHuge(page)) {
1855 rc = 0;
1856 goto out;
1859 if (!page_count(page)) {
1860 struct page *head = compound_head(page);
1861 struct hstate *h = page_hstate(head);
1862 int nid = page_to_nid(head);
1863 if (h->free_huge_pages - h->resv_huge_pages == 0)
1864 goto out;
1866 * Move PageHWPoison flag from head page to the raw error page,
1867 * which makes any subpages rather than the error page reusable.
1869 if (PageHWPoison(head) && page != head) {
1870 SetPageHWPoison(page);
1871 ClearPageHWPoison(head);
1873 list_del(&head->lru);
1874 h->free_huge_pages--;
1875 h->free_huge_pages_node[nid]--;
1876 h->max_huge_pages--;
1877 update_and_free_page(h, head);
1878 rc = 0;
1880 out:
1881 spin_unlock(&hugetlb_lock);
1882 return rc;
1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887 * make specified memory blocks removable from the system.
1888 * Note that this will dissolve a free gigantic hugepage completely, if any
1889 * part of it lies within the given range.
1890 * Also note that if dissolve_free_huge_page() returns with an error, all
1891 * free hugepages that were dissolved before that error are lost.
1893 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1895 unsigned long pfn;
1896 struct page *page;
1897 int rc = 0;
1899 if (!hugepages_supported())
1900 return rc;
1902 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1903 page = pfn_to_page(pfn);
1904 rc = dissolve_free_huge_page(page);
1905 if (rc)
1906 break;
1909 return rc;
1913 * Allocates a fresh surplus page from the page allocator.
1915 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1916 int nid, nodemask_t *nmask)
1918 struct page *page = NULL;
1920 if (hstate_is_gigantic(h))
1921 return NULL;
1923 spin_lock(&hugetlb_lock);
1924 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1925 goto out_unlock;
1926 spin_unlock(&hugetlb_lock);
1928 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1929 if (!page)
1930 return NULL;
1932 spin_lock(&hugetlb_lock);
1934 * We could have raced with the pool size change.
1935 * Double check that and simply deallocate the new page
1936 * if we would end up overcommiting the surpluses. Abuse
1937 * temporary page to workaround the nasty free_huge_page
1938 * codeflow
1940 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1941 SetPageHugeTemporary(page);
1942 spin_unlock(&hugetlb_lock);
1943 put_page(page);
1944 return NULL;
1945 } else {
1946 h->surplus_huge_pages++;
1947 h->surplus_huge_pages_node[page_to_nid(page)]++;
1950 out_unlock:
1951 spin_unlock(&hugetlb_lock);
1953 return page;
1956 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1957 int nid, nodemask_t *nmask)
1959 struct page *page;
1961 if (hstate_is_gigantic(h))
1962 return NULL;
1964 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1965 if (!page)
1966 return NULL;
1969 * We do not account these pages as surplus because they are only
1970 * temporary and will be released properly on the last reference
1972 SetPageHugeTemporary(page);
1974 return page;
1978 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1980 static
1981 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1982 struct vm_area_struct *vma, unsigned long addr)
1984 struct page *page;
1985 struct mempolicy *mpol;
1986 gfp_t gfp_mask = htlb_alloc_mask(h);
1987 int nid;
1988 nodemask_t *nodemask;
1990 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1991 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1992 mpol_cond_put(mpol);
1994 return page;
1997 /* page migration callback function */
1998 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1999 nodemask_t *nmask, gfp_t gfp_mask)
2001 spin_lock(&hugetlb_lock);
2002 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2003 struct page *page;
2005 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2006 if (page) {
2007 spin_unlock(&hugetlb_lock);
2008 return page;
2011 spin_unlock(&hugetlb_lock);
2013 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2016 /* mempolicy aware migration callback */
2017 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2018 unsigned long address)
2020 struct mempolicy *mpol;
2021 nodemask_t *nodemask;
2022 struct page *page;
2023 gfp_t gfp_mask;
2024 int node;
2026 gfp_mask = htlb_alloc_mask(h);
2027 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2028 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2029 mpol_cond_put(mpol);
2031 return page;
2035 * Increase the hugetlb pool such that it can accommodate a reservation
2036 * of size 'delta'.
2038 static int gather_surplus_pages(struct hstate *h, int delta)
2039 __must_hold(&hugetlb_lock)
2041 struct list_head surplus_list;
2042 struct page *page, *tmp;
2043 int ret, i;
2044 int needed, allocated;
2045 bool alloc_ok = true;
2047 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2048 if (needed <= 0) {
2049 h->resv_huge_pages += delta;
2050 return 0;
2053 allocated = 0;
2054 INIT_LIST_HEAD(&surplus_list);
2056 ret = -ENOMEM;
2057 retry:
2058 spin_unlock(&hugetlb_lock);
2059 for (i = 0; i < needed; i++) {
2060 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2061 NUMA_NO_NODE, NULL);
2062 if (!page) {
2063 alloc_ok = false;
2064 break;
2066 list_add(&page->lru, &surplus_list);
2067 cond_resched();
2069 allocated += i;
2072 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073 * because either resv_huge_pages or free_huge_pages may have changed.
2075 spin_lock(&hugetlb_lock);
2076 needed = (h->resv_huge_pages + delta) -
2077 (h->free_huge_pages + allocated);
2078 if (needed > 0) {
2079 if (alloc_ok)
2080 goto retry;
2082 * We were not able to allocate enough pages to
2083 * satisfy the entire reservation so we free what
2084 * we've allocated so far.
2086 goto free;
2089 * The surplus_list now contains _at_least_ the number of extra pages
2090 * needed to accommodate the reservation. Add the appropriate number
2091 * of pages to the hugetlb pool and free the extras back to the buddy
2092 * allocator. Commit the entire reservation here to prevent another
2093 * process from stealing the pages as they are added to the pool but
2094 * before they are reserved.
2096 needed += allocated;
2097 h->resv_huge_pages += delta;
2098 ret = 0;
2100 /* Free the needed pages to the hugetlb pool */
2101 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2102 if ((--needed) < 0)
2103 break;
2105 * This page is now managed by the hugetlb allocator and has
2106 * no users -- drop the buddy allocator's reference.
2108 put_page_testzero(page);
2109 VM_BUG_ON_PAGE(page_count(page), page);
2110 enqueue_huge_page(h, page);
2112 free:
2113 spin_unlock(&hugetlb_lock);
2115 /* Free unnecessary surplus pages to the buddy allocator */
2116 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2117 put_page(page);
2118 spin_lock(&hugetlb_lock);
2120 return ret;
2124 * This routine has two main purposes:
2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126 * in unused_resv_pages. This corresponds to the prior adjustments made
2127 * to the associated reservation map.
2128 * 2) Free any unused surplus pages that may have been allocated to satisfy
2129 * the reservation. As many as unused_resv_pages may be freed.
2131 * Called with hugetlb_lock held. However, the lock could be dropped (and
2132 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2133 * we must make sure nobody else can claim pages we are in the process of
2134 * freeing. Do this by ensuring resv_huge_page always is greater than the
2135 * number of huge pages we plan to free when dropping the lock.
2137 static void return_unused_surplus_pages(struct hstate *h,
2138 unsigned long unused_resv_pages)
2140 unsigned long nr_pages;
2142 /* Cannot return gigantic pages currently */
2143 if (hstate_is_gigantic(h))
2144 goto out;
2147 * Part (or even all) of the reservation could have been backed
2148 * by pre-allocated pages. Only free surplus pages.
2150 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2153 * We want to release as many surplus pages as possible, spread
2154 * evenly across all nodes with memory. Iterate across these nodes
2155 * until we can no longer free unreserved surplus pages. This occurs
2156 * when the nodes with surplus pages have no free pages.
2157 * free_pool_huge_page() will balance the freed pages across the
2158 * on-line nodes with memory and will handle the hstate accounting.
2160 * Note that we decrement resv_huge_pages as we free the pages. If
2161 * we drop the lock, resv_huge_pages will still be sufficiently large
2162 * to cover subsequent pages we may free.
2164 while (nr_pages--) {
2165 h->resv_huge_pages--;
2166 unused_resv_pages--;
2167 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2168 goto out;
2169 cond_resched_lock(&hugetlb_lock);
2172 out:
2173 /* Fully uncommit the reservation */
2174 h->resv_huge_pages -= unused_resv_pages;
2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180 * are used by the huge page allocation routines to manage reservations.
2182 * vma_needs_reservation is called to determine if the huge page at addr
2183 * within the vma has an associated reservation. If a reservation is
2184 * needed, the value 1 is returned. The caller is then responsible for
2185 * managing the global reservation and subpool usage counts. After
2186 * the huge page has been allocated, vma_commit_reservation is called
2187 * to add the page to the reservation map. If the page allocation fails,
2188 * the reservation must be ended instead of committed. vma_end_reservation
2189 * is called in such cases.
2191 * In the normal case, vma_commit_reservation returns the same value
2192 * as the preceding vma_needs_reservation call. The only time this
2193 * is not the case is if a reserve map was changed between calls. It
2194 * is the responsibility of the caller to notice the difference and
2195 * take appropriate action.
2197 * vma_add_reservation is used in error paths where a reservation must
2198 * be restored when a newly allocated huge page must be freed. It is
2199 * to be called after calling vma_needs_reservation to determine if a
2200 * reservation exists.
2202 enum vma_resv_mode {
2203 VMA_NEEDS_RESV,
2204 VMA_COMMIT_RESV,
2205 VMA_END_RESV,
2206 VMA_ADD_RESV,
2208 static long __vma_reservation_common(struct hstate *h,
2209 struct vm_area_struct *vma, unsigned long addr,
2210 enum vma_resv_mode mode)
2212 struct resv_map *resv;
2213 pgoff_t idx;
2214 long ret;
2215 long dummy_out_regions_needed;
2217 resv = vma_resv_map(vma);
2218 if (!resv)
2219 return 1;
2221 idx = vma_hugecache_offset(h, vma, addr);
2222 switch (mode) {
2223 case VMA_NEEDS_RESV:
2224 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2225 /* We assume that vma_reservation_* routines always operate on
2226 * 1 page, and that adding to resv map a 1 page entry can only
2227 * ever require 1 region.
2229 VM_BUG_ON(dummy_out_regions_needed != 1);
2230 break;
2231 case VMA_COMMIT_RESV:
2232 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2233 /* region_add calls of range 1 should never fail. */
2234 VM_BUG_ON(ret < 0);
2235 break;
2236 case VMA_END_RESV:
2237 region_abort(resv, idx, idx + 1, 1);
2238 ret = 0;
2239 break;
2240 case VMA_ADD_RESV:
2241 if (vma->vm_flags & VM_MAYSHARE) {
2242 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2243 /* region_add calls of range 1 should never fail. */
2244 VM_BUG_ON(ret < 0);
2245 } else {
2246 region_abort(resv, idx, idx + 1, 1);
2247 ret = region_del(resv, idx, idx + 1);
2249 break;
2250 default:
2251 BUG();
2254 if (vma->vm_flags & VM_MAYSHARE)
2255 return ret;
2256 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2258 * In most cases, reserves always exist for private mappings.
2259 * However, a file associated with mapping could have been
2260 * hole punched or truncated after reserves were consumed.
2261 * As subsequent fault on such a range will not use reserves.
2262 * Subtle - The reserve map for private mappings has the
2263 * opposite meaning than that of shared mappings. If NO
2264 * entry is in the reserve map, it means a reservation exists.
2265 * If an entry exists in the reserve map, it means the
2266 * reservation has already been consumed. As a result, the
2267 * return value of this routine is the opposite of the
2268 * value returned from reserve map manipulation routines above.
2270 if (ret)
2271 return 0;
2272 else
2273 return 1;
2275 else
2276 return ret < 0 ? ret : 0;
2279 static long vma_needs_reservation(struct hstate *h,
2280 struct vm_area_struct *vma, unsigned long addr)
2282 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2285 static long vma_commit_reservation(struct hstate *h,
2286 struct vm_area_struct *vma, unsigned long addr)
2288 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2291 static void vma_end_reservation(struct hstate *h,
2292 struct vm_area_struct *vma, unsigned long addr)
2294 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2297 static long vma_add_reservation(struct hstate *h,
2298 struct vm_area_struct *vma, unsigned long addr)
2300 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2304 * This routine is called to restore a reservation on error paths. In the
2305 * specific error paths, a huge page was allocated (via alloc_huge_page)
2306 * and is about to be freed. If a reservation for the page existed,
2307 * alloc_huge_page would have consumed the reservation and set PagePrivate
2308 * in the newly allocated page. When the page is freed via free_huge_page,
2309 * the global reservation count will be incremented if PagePrivate is set.
2310 * However, free_huge_page can not adjust the reserve map. Adjust the
2311 * reserve map here to be consistent with global reserve count adjustments
2312 * to be made by free_huge_page.
2314 static void restore_reserve_on_error(struct hstate *h,
2315 struct vm_area_struct *vma, unsigned long address,
2316 struct page *page)
2318 if (unlikely(PagePrivate(page))) {
2319 long rc = vma_needs_reservation(h, vma, address);
2321 if (unlikely(rc < 0)) {
2323 * Rare out of memory condition in reserve map
2324 * manipulation. Clear PagePrivate so that
2325 * global reserve count will not be incremented
2326 * by free_huge_page. This will make it appear
2327 * as though the reservation for this page was
2328 * consumed. This may prevent the task from
2329 * faulting in the page at a later time. This
2330 * is better than inconsistent global huge page
2331 * accounting of reserve counts.
2333 ClearPagePrivate(page);
2334 } else if (rc) {
2335 rc = vma_add_reservation(h, vma, address);
2336 if (unlikely(rc < 0))
2338 * See above comment about rare out of
2339 * memory condition.
2341 ClearPagePrivate(page);
2342 } else
2343 vma_end_reservation(h, vma, address);
2347 struct page *alloc_huge_page(struct vm_area_struct *vma,
2348 unsigned long addr, int avoid_reserve)
2350 struct hugepage_subpool *spool = subpool_vma(vma);
2351 struct hstate *h = hstate_vma(vma);
2352 struct page *page;
2353 long map_chg, map_commit;
2354 long gbl_chg;
2355 int ret, idx;
2356 struct hugetlb_cgroup *h_cg;
2357 bool deferred_reserve;
2359 idx = hstate_index(h);
2361 * Examine the region/reserve map to determine if the process
2362 * has a reservation for the page to be allocated. A return
2363 * code of zero indicates a reservation exists (no change).
2365 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2366 if (map_chg < 0)
2367 return ERR_PTR(-ENOMEM);
2370 * Processes that did not create the mapping will have no
2371 * reserves as indicated by the region/reserve map. Check
2372 * that the allocation will not exceed the subpool limit.
2373 * Allocations for MAP_NORESERVE mappings also need to be
2374 * checked against any subpool limit.
2376 if (map_chg || avoid_reserve) {
2377 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2378 if (gbl_chg < 0) {
2379 vma_end_reservation(h, vma, addr);
2380 return ERR_PTR(-ENOSPC);
2384 * Even though there was no reservation in the region/reserve
2385 * map, there could be reservations associated with the
2386 * subpool that can be used. This would be indicated if the
2387 * return value of hugepage_subpool_get_pages() is zero.
2388 * However, if avoid_reserve is specified we still avoid even
2389 * the subpool reservations.
2391 if (avoid_reserve)
2392 gbl_chg = 1;
2395 /* If this allocation is not consuming a reservation, charge it now.
2397 deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2398 if (deferred_reserve) {
2399 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2400 idx, pages_per_huge_page(h), &h_cg);
2401 if (ret)
2402 goto out_subpool_put;
2405 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2406 if (ret)
2407 goto out_uncharge_cgroup_reservation;
2409 spin_lock(&hugetlb_lock);
2411 * glb_chg is passed to indicate whether or not a page must be taken
2412 * from the global free pool (global change). gbl_chg == 0 indicates
2413 * a reservation exists for the allocation.
2415 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2416 if (!page) {
2417 spin_unlock(&hugetlb_lock);
2418 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2419 if (!page)
2420 goto out_uncharge_cgroup;
2421 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2422 SetPagePrivate(page);
2423 h->resv_huge_pages--;
2425 spin_lock(&hugetlb_lock);
2426 list_move(&page->lru, &h->hugepage_activelist);
2427 /* Fall through */
2429 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2430 /* If allocation is not consuming a reservation, also store the
2431 * hugetlb_cgroup pointer on the page.
2433 if (deferred_reserve) {
2434 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2435 h_cg, page);
2438 spin_unlock(&hugetlb_lock);
2440 set_page_private(page, (unsigned long)spool);
2442 map_commit = vma_commit_reservation(h, vma, addr);
2443 if (unlikely(map_chg > map_commit)) {
2445 * The page was added to the reservation map between
2446 * vma_needs_reservation and vma_commit_reservation.
2447 * This indicates a race with hugetlb_reserve_pages.
2448 * Adjust for the subpool count incremented above AND
2449 * in hugetlb_reserve_pages for the same page. Also,
2450 * the reservation count added in hugetlb_reserve_pages
2451 * no longer applies.
2453 long rsv_adjust;
2455 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2456 hugetlb_acct_memory(h, -rsv_adjust);
2458 return page;
2460 out_uncharge_cgroup:
2461 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2462 out_uncharge_cgroup_reservation:
2463 if (deferred_reserve)
2464 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2465 h_cg);
2466 out_subpool_put:
2467 if (map_chg || avoid_reserve)
2468 hugepage_subpool_put_pages(spool, 1);
2469 vma_end_reservation(h, vma, addr);
2470 return ERR_PTR(-ENOSPC);
2473 int alloc_bootmem_huge_page(struct hstate *h)
2474 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2475 int __alloc_bootmem_huge_page(struct hstate *h)
2477 struct huge_bootmem_page *m;
2478 int nr_nodes, node;
2480 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2481 void *addr;
2483 addr = memblock_alloc_try_nid_raw(
2484 huge_page_size(h), huge_page_size(h),
2485 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2486 if (addr) {
2488 * Use the beginning of the huge page to store the
2489 * huge_bootmem_page struct (until gather_bootmem
2490 * puts them into the mem_map).
2492 m = addr;
2493 goto found;
2496 return 0;
2498 found:
2499 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2500 /* Put them into a private list first because mem_map is not up yet */
2501 INIT_LIST_HEAD(&m->list);
2502 list_add(&m->list, &huge_boot_pages);
2503 m->hstate = h;
2504 return 1;
2507 static void __init prep_compound_huge_page(struct page *page,
2508 unsigned int order)
2510 if (unlikely(order > (MAX_ORDER - 1)))
2511 prep_compound_gigantic_page(page, order);
2512 else
2513 prep_compound_page(page, order);
2516 /* Put bootmem huge pages into the standard lists after mem_map is up */
2517 static void __init gather_bootmem_prealloc(void)
2519 struct huge_bootmem_page *m;
2521 list_for_each_entry(m, &huge_boot_pages, list) {
2522 struct page *page = virt_to_page(m);
2523 struct hstate *h = m->hstate;
2525 WARN_ON(page_count(page) != 1);
2526 prep_compound_huge_page(page, h->order);
2527 WARN_ON(PageReserved(page));
2528 prep_new_huge_page(h, page, page_to_nid(page));
2529 put_page(page); /* free it into the hugepage allocator */
2532 * If we had gigantic hugepages allocated at boot time, we need
2533 * to restore the 'stolen' pages to totalram_pages in order to
2534 * fix confusing memory reports from free(1) and another
2535 * side-effects, like CommitLimit going negative.
2537 if (hstate_is_gigantic(h))
2538 adjust_managed_page_count(page, 1 << h->order);
2539 cond_resched();
2543 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2545 unsigned long i;
2546 nodemask_t *node_alloc_noretry;
2548 if (!hstate_is_gigantic(h)) {
2550 * Bit mask controlling how hard we retry per-node allocations.
2551 * Ignore errors as lower level routines can deal with
2552 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2553 * time, we are likely in bigger trouble.
2555 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2556 GFP_KERNEL);
2557 } else {
2558 /* allocations done at boot time */
2559 node_alloc_noretry = NULL;
2562 /* bit mask controlling how hard we retry per-node allocations */
2563 if (node_alloc_noretry)
2564 nodes_clear(*node_alloc_noretry);
2566 for (i = 0; i < h->max_huge_pages; ++i) {
2567 if (hstate_is_gigantic(h)) {
2568 if (hugetlb_cma_size) {
2569 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2570 break;
2572 if (!alloc_bootmem_huge_page(h))
2573 break;
2574 } else if (!alloc_pool_huge_page(h,
2575 &node_states[N_MEMORY],
2576 node_alloc_noretry))
2577 break;
2578 cond_resched();
2580 if (i < h->max_huge_pages) {
2581 char buf[32];
2583 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2584 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2585 h->max_huge_pages, buf, i);
2586 h->max_huge_pages = i;
2589 kfree(node_alloc_noretry);
2592 static void __init hugetlb_init_hstates(void)
2594 struct hstate *h;
2596 for_each_hstate(h) {
2597 if (minimum_order > huge_page_order(h))
2598 minimum_order = huge_page_order(h);
2600 /* oversize hugepages were init'ed in early boot */
2601 if (!hstate_is_gigantic(h))
2602 hugetlb_hstate_alloc_pages(h);
2604 VM_BUG_ON(minimum_order == UINT_MAX);
2607 static void __init report_hugepages(void)
2609 struct hstate *h;
2611 for_each_hstate(h) {
2612 char buf[32];
2614 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2615 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616 buf, h->free_huge_pages);
2620 #ifdef CONFIG_HIGHMEM
2621 static void try_to_free_low(struct hstate *h, unsigned long count,
2622 nodemask_t *nodes_allowed)
2624 int i;
2626 if (hstate_is_gigantic(h))
2627 return;
2629 for_each_node_mask(i, *nodes_allowed) {
2630 struct page *page, *next;
2631 struct list_head *freel = &h->hugepage_freelists[i];
2632 list_for_each_entry_safe(page, next, freel, lru) {
2633 if (count >= h->nr_huge_pages)
2634 return;
2635 if (PageHighMem(page))
2636 continue;
2637 list_del(&page->lru);
2638 update_and_free_page(h, page);
2639 h->free_huge_pages--;
2640 h->free_huge_pages_node[page_to_nid(page)]--;
2644 #else
2645 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2646 nodemask_t *nodes_allowed)
2649 #endif
2652 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2653 * balanced by operating on them in a round-robin fashion.
2654 * Returns 1 if an adjustment was made.
2656 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2657 int delta)
2659 int nr_nodes, node;
2661 VM_BUG_ON(delta != -1 && delta != 1);
2663 if (delta < 0) {
2664 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2665 if (h->surplus_huge_pages_node[node])
2666 goto found;
2668 } else {
2669 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2670 if (h->surplus_huge_pages_node[node] <
2671 h->nr_huge_pages_node[node])
2672 goto found;
2675 return 0;
2677 found:
2678 h->surplus_huge_pages += delta;
2679 h->surplus_huge_pages_node[node] += delta;
2680 return 1;
2683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2685 nodemask_t *nodes_allowed)
2687 unsigned long min_count, ret;
2688 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2691 * Bit mask controlling how hard we retry per-node allocations.
2692 * If we can not allocate the bit mask, do not attempt to allocate
2693 * the requested huge pages.
2695 if (node_alloc_noretry)
2696 nodes_clear(*node_alloc_noretry);
2697 else
2698 return -ENOMEM;
2700 spin_lock(&hugetlb_lock);
2703 * Check for a node specific request.
2704 * Changing node specific huge page count may require a corresponding
2705 * change to the global count. In any case, the passed node mask
2706 * (nodes_allowed) will restrict alloc/free to the specified node.
2708 if (nid != NUMA_NO_NODE) {
2709 unsigned long old_count = count;
2711 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2713 * User may have specified a large count value which caused the
2714 * above calculation to overflow. In this case, they wanted
2715 * to allocate as many huge pages as possible. Set count to
2716 * largest possible value to align with their intention.
2718 if (count < old_count)
2719 count = ULONG_MAX;
2723 * Gigantic pages runtime allocation depend on the capability for large
2724 * page range allocation.
2725 * If the system does not provide this feature, return an error when
2726 * the user tries to allocate gigantic pages but let the user free the
2727 * boottime allocated gigantic pages.
2729 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2730 if (count > persistent_huge_pages(h)) {
2731 spin_unlock(&hugetlb_lock);
2732 NODEMASK_FREE(node_alloc_noretry);
2733 return -EINVAL;
2735 /* Fall through to decrease pool */
2739 * Increase the pool size
2740 * First take pages out of surplus state. Then make up the
2741 * remaining difference by allocating fresh huge pages.
2743 * We might race with alloc_surplus_huge_page() here and be unable
2744 * to convert a surplus huge page to a normal huge page. That is
2745 * not critical, though, it just means the overall size of the
2746 * pool might be one hugepage larger than it needs to be, but
2747 * within all the constraints specified by the sysctls.
2749 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2750 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2751 break;
2754 while (count > persistent_huge_pages(h)) {
2756 * If this allocation races such that we no longer need the
2757 * page, free_huge_page will handle it by freeing the page
2758 * and reducing the surplus.
2760 spin_unlock(&hugetlb_lock);
2762 /* yield cpu to avoid soft lockup */
2763 cond_resched();
2765 ret = alloc_pool_huge_page(h, nodes_allowed,
2766 node_alloc_noretry);
2767 spin_lock(&hugetlb_lock);
2768 if (!ret)
2769 goto out;
2771 /* Bail for signals. Probably ctrl-c from user */
2772 if (signal_pending(current))
2773 goto out;
2777 * Decrease the pool size
2778 * First return free pages to the buddy allocator (being careful
2779 * to keep enough around to satisfy reservations). Then place
2780 * pages into surplus state as needed so the pool will shrink
2781 * to the desired size as pages become free.
2783 * By placing pages into the surplus state independent of the
2784 * overcommit value, we are allowing the surplus pool size to
2785 * exceed overcommit. There are few sane options here. Since
2786 * alloc_surplus_huge_page() is checking the global counter,
2787 * though, we'll note that we're not allowed to exceed surplus
2788 * and won't grow the pool anywhere else. Not until one of the
2789 * sysctls are changed, or the surplus pages go out of use.
2791 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2792 min_count = max(count, min_count);
2793 try_to_free_low(h, min_count, nodes_allowed);
2794 while (min_count < persistent_huge_pages(h)) {
2795 if (!free_pool_huge_page(h, nodes_allowed, 0))
2796 break;
2797 cond_resched_lock(&hugetlb_lock);
2799 while (count < persistent_huge_pages(h)) {
2800 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2801 break;
2803 out:
2804 h->max_huge_pages = persistent_huge_pages(h);
2805 spin_unlock(&hugetlb_lock);
2807 NODEMASK_FREE(node_alloc_noretry);
2809 return 0;
2812 #define HSTATE_ATTR_RO(_name) \
2813 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2815 #define HSTATE_ATTR(_name) \
2816 static struct kobj_attribute _name##_attr = \
2817 __ATTR(_name, 0644, _name##_show, _name##_store)
2819 static struct kobject *hugepages_kobj;
2820 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2822 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2824 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2826 int i;
2828 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2829 if (hstate_kobjs[i] == kobj) {
2830 if (nidp)
2831 *nidp = NUMA_NO_NODE;
2832 return &hstates[i];
2835 return kobj_to_node_hstate(kobj, nidp);
2838 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2839 struct kobj_attribute *attr, char *buf)
2841 struct hstate *h;
2842 unsigned long nr_huge_pages;
2843 int nid;
2845 h = kobj_to_hstate(kobj, &nid);
2846 if (nid == NUMA_NO_NODE)
2847 nr_huge_pages = h->nr_huge_pages;
2848 else
2849 nr_huge_pages = h->nr_huge_pages_node[nid];
2851 return sprintf(buf, "%lu\n", nr_huge_pages);
2854 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2855 struct hstate *h, int nid,
2856 unsigned long count, size_t len)
2858 int err;
2859 nodemask_t nodes_allowed, *n_mask;
2861 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2862 return -EINVAL;
2864 if (nid == NUMA_NO_NODE) {
2866 * global hstate attribute
2868 if (!(obey_mempolicy &&
2869 init_nodemask_of_mempolicy(&nodes_allowed)))
2870 n_mask = &node_states[N_MEMORY];
2871 else
2872 n_mask = &nodes_allowed;
2873 } else {
2875 * Node specific request. count adjustment happens in
2876 * set_max_huge_pages() after acquiring hugetlb_lock.
2878 init_nodemask_of_node(&nodes_allowed, nid);
2879 n_mask = &nodes_allowed;
2882 err = set_max_huge_pages(h, count, nid, n_mask);
2884 return err ? err : len;
2887 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2888 struct kobject *kobj, const char *buf,
2889 size_t len)
2891 struct hstate *h;
2892 unsigned long count;
2893 int nid;
2894 int err;
2896 err = kstrtoul(buf, 10, &count);
2897 if (err)
2898 return err;
2900 h = kobj_to_hstate(kobj, &nid);
2901 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2904 static ssize_t nr_hugepages_show(struct kobject *kobj,
2905 struct kobj_attribute *attr, char *buf)
2907 return nr_hugepages_show_common(kobj, attr, buf);
2910 static ssize_t nr_hugepages_store(struct kobject *kobj,
2911 struct kobj_attribute *attr, const char *buf, size_t len)
2913 return nr_hugepages_store_common(false, kobj, buf, len);
2915 HSTATE_ATTR(nr_hugepages);
2917 #ifdef CONFIG_NUMA
2920 * hstate attribute for optionally mempolicy-based constraint on persistent
2921 * huge page alloc/free.
2923 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2924 struct kobj_attribute *attr, char *buf)
2926 return nr_hugepages_show_common(kobj, attr, buf);
2929 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2930 struct kobj_attribute *attr, const char *buf, size_t len)
2932 return nr_hugepages_store_common(true, kobj, buf, len);
2934 HSTATE_ATTR(nr_hugepages_mempolicy);
2935 #endif
2938 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2939 struct kobj_attribute *attr, char *buf)
2941 struct hstate *h = kobj_to_hstate(kobj, NULL);
2942 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2945 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2946 struct kobj_attribute *attr, const char *buf, size_t count)
2948 int err;
2949 unsigned long input;
2950 struct hstate *h = kobj_to_hstate(kobj, NULL);
2952 if (hstate_is_gigantic(h))
2953 return -EINVAL;
2955 err = kstrtoul(buf, 10, &input);
2956 if (err)
2957 return err;
2959 spin_lock(&hugetlb_lock);
2960 h->nr_overcommit_huge_pages = input;
2961 spin_unlock(&hugetlb_lock);
2963 return count;
2965 HSTATE_ATTR(nr_overcommit_hugepages);
2967 static ssize_t free_hugepages_show(struct kobject *kobj,
2968 struct kobj_attribute *attr, char *buf)
2970 struct hstate *h;
2971 unsigned long free_huge_pages;
2972 int nid;
2974 h = kobj_to_hstate(kobj, &nid);
2975 if (nid == NUMA_NO_NODE)
2976 free_huge_pages = h->free_huge_pages;
2977 else
2978 free_huge_pages = h->free_huge_pages_node[nid];
2980 return sprintf(buf, "%lu\n", free_huge_pages);
2982 HSTATE_ATTR_RO(free_hugepages);
2984 static ssize_t resv_hugepages_show(struct kobject *kobj,
2985 struct kobj_attribute *attr, char *buf)
2987 struct hstate *h = kobj_to_hstate(kobj, NULL);
2988 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2990 HSTATE_ATTR_RO(resv_hugepages);
2992 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2993 struct kobj_attribute *attr, char *buf)
2995 struct hstate *h;
2996 unsigned long surplus_huge_pages;
2997 int nid;
2999 h = kobj_to_hstate(kobj, &nid);
3000 if (nid == NUMA_NO_NODE)
3001 surplus_huge_pages = h->surplus_huge_pages;
3002 else
3003 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3005 return sprintf(buf, "%lu\n", surplus_huge_pages);
3007 HSTATE_ATTR_RO(surplus_hugepages);
3009 static struct attribute *hstate_attrs[] = {
3010 &nr_hugepages_attr.attr,
3011 &nr_overcommit_hugepages_attr.attr,
3012 &free_hugepages_attr.attr,
3013 &resv_hugepages_attr.attr,
3014 &surplus_hugepages_attr.attr,
3015 #ifdef CONFIG_NUMA
3016 &nr_hugepages_mempolicy_attr.attr,
3017 #endif
3018 NULL,
3021 static const struct attribute_group hstate_attr_group = {
3022 .attrs = hstate_attrs,
3025 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3026 struct kobject **hstate_kobjs,
3027 const struct attribute_group *hstate_attr_group)
3029 int retval;
3030 int hi = hstate_index(h);
3032 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3033 if (!hstate_kobjs[hi])
3034 return -ENOMEM;
3036 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3037 if (retval)
3038 kobject_put(hstate_kobjs[hi]);
3040 return retval;
3043 static void __init hugetlb_sysfs_init(void)
3045 struct hstate *h;
3046 int err;
3048 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3049 if (!hugepages_kobj)
3050 return;
3052 for_each_hstate(h) {
3053 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3054 hstate_kobjs, &hstate_attr_group);
3055 if (err)
3056 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3060 #ifdef CONFIG_NUMA
3063 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064 * with node devices in node_devices[] using a parallel array. The array
3065 * index of a node device or _hstate == node id.
3066 * This is here to avoid any static dependency of the node device driver, in
3067 * the base kernel, on the hugetlb module.
3069 struct node_hstate {
3070 struct kobject *hugepages_kobj;
3071 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3073 static struct node_hstate node_hstates[MAX_NUMNODES];
3076 * A subset of global hstate attributes for node devices
3078 static struct attribute *per_node_hstate_attrs[] = {
3079 &nr_hugepages_attr.attr,
3080 &free_hugepages_attr.attr,
3081 &surplus_hugepages_attr.attr,
3082 NULL,
3085 static const struct attribute_group per_node_hstate_attr_group = {
3086 .attrs = per_node_hstate_attrs,
3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091 * Returns node id via non-NULL nidp.
3093 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3095 int nid;
3097 for (nid = 0; nid < nr_node_ids; nid++) {
3098 struct node_hstate *nhs = &node_hstates[nid];
3099 int i;
3100 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3101 if (nhs->hstate_kobjs[i] == kobj) {
3102 if (nidp)
3103 *nidp = nid;
3104 return &hstates[i];
3108 BUG();
3109 return NULL;
3113 * Unregister hstate attributes from a single node device.
3114 * No-op if no hstate attributes attached.
3116 static void hugetlb_unregister_node(struct node *node)
3118 struct hstate *h;
3119 struct node_hstate *nhs = &node_hstates[node->dev.id];
3121 if (!nhs->hugepages_kobj)
3122 return; /* no hstate attributes */
3124 for_each_hstate(h) {
3125 int idx = hstate_index(h);
3126 if (nhs->hstate_kobjs[idx]) {
3127 kobject_put(nhs->hstate_kobjs[idx]);
3128 nhs->hstate_kobjs[idx] = NULL;
3132 kobject_put(nhs->hugepages_kobj);
3133 nhs->hugepages_kobj = NULL;
3138 * Register hstate attributes for a single node device.
3139 * No-op if attributes already registered.
3141 static void hugetlb_register_node(struct node *node)
3143 struct hstate *h;
3144 struct node_hstate *nhs = &node_hstates[node->dev.id];
3145 int err;
3147 if (nhs->hugepages_kobj)
3148 return; /* already allocated */
3150 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3151 &node->dev.kobj);
3152 if (!nhs->hugepages_kobj)
3153 return;
3155 for_each_hstate(h) {
3156 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3157 nhs->hstate_kobjs,
3158 &per_node_hstate_attr_group);
3159 if (err) {
3160 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161 h->name, node->dev.id);
3162 hugetlb_unregister_node(node);
3163 break;
3169 * hugetlb init time: register hstate attributes for all registered node
3170 * devices of nodes that have memory. All on-line nodes should have
3171 * registered their associated device by this time.
3173 static void __init hugetlb_register_all_nodes(void)
3175 int nid;
3177 for_each_node_state(nid, N_MEMORY) {
3178 struct node *node = node_devices[nid];
3179 if (node->dev.id == nid)
3180 hugetlb_register_node(node);
3184 * Let the node device driver know we're here so it can
3185 * [un]register hstate attributes on node hotplug.
3187 register_hugetlbfs_with_node(hugetlb_register_node,
3188 hugetlb_unregister_node);
3190 #else /* !CONFIG_NUMA */
3192 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3194 BUG();
3195 if (nidp)
3196 *nidp = -1;
3197 return NULL;
3200 static void hugetlb_register_all_nodes(void) { }
3202 #endif
3204 static int __init hugetlb_init(void)
3206 int i;
3208 if (!hugepages_supported()) {
3209 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3210 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3211 return 0;
3215 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3216 * architectures depend on setup being done here.
3218 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3219 if (!parsed_default_hugepagesz) {
3221 * If we did not parse a default huge page size, set
3222 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223 * number of huge pages for this default size was implicitly
3224 * specified, set that here as well.
3225 * Note that the implicit setting will overwrite an explicit
3226 * setting. A warning will be printed in this case.
3228 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3229 if (default_hstate_max_huge_pages) {
3230 if (default_hstate.max_huge_pages) {
3231 char buf[32];
3233 string_get_size(huge_page_size(&default_hstate),
3234 1, STRING_UNITS_2, buf, 32);
3235 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236 default_hstate.max_huge_pages, buf);
3237 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238 default_hstate_max_huge_pages);
3240 default_hstate.max_huge_pages =
3241 default_hstate_max_huge_pages;
3245 hugetlb_cma_check();
3246 hugetlb_init_hstates();
3247 gather_bootmem_prealloc();
3248 report_hugepages();
3250 hugetlb_sysfs_init();
3251 hugetlb_register_all_nodes();
3252 hugetlb_cgroup_file_init();
3254 #ifdef CONFIG_SMP
3255 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3256 #else
3257 num_fault_mutexes = 1;
3258 #endif
3259 hugetlb_fault_mutex_table =
3260 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3261 GFP_KERNEL);
3262 BUG_ON(!hugetlb_fault_mutex_table);
3264 for (i = 0; i < num_fault_mutexes; i++)
3265 mutex_init(&hugetlb_fault_mutex_table[i]);
3266 return 0;
3268 subsys_initcall(hugetlb_init);
3270 /* Overwritten by architectures with more huge page sizes */
3271 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3273 return size == HPAGE_SIZE;
3276 void __init hugetlb_add_hstate(unsigned int order)
3278 struct hstate *h;
3279 unsigned long i;
3281 if (size_to_hstate(PAGE_SIZE << order)) {
3282 return;
3284 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3285 BUG_ON(order == 0);
3286 h = &hstates[hugetlb_max_hstate++];
3287 h->order = order;
3288 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
3289 h->nr_huge_pages = 0;
3290 h->free_huge_pages = 0;
3291 for (i = 0; i < MAX_NUMNODES; ++i)
3292 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3293 INIT_LIST_HEAD(&h->hugepage_activelist);
3294 h->next_nid_to_alloc = first_memory_node;
3295 h->next_nid_to_free = first_memory_node;
3296 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3297 huge_page_size(h)/1024);
3299 parsed_hstate = h;
3303 * hugepages command line processing
3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305 * specification. If not, ignore the hugepages value. hugepages can also
3306 * be the first huge page command line option in which case it implicitly
3307 * specifies the number of huge pages for the default size.
3309 static int __init hugepages_setup(char *s)
3311 unsigned long *mhp;
3312 static unsigned long *last_mhp;
3314 if (!parsed_valid_hugepagesz) {
3315 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3316 parsed_valid_hugepagesz = true;
3317 return 0;
3321 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322 * yet, so this hugepages= parameter goes to the "default hstate".
3323 * Otherwise, it goes with the previously parsed hugepagesz or
3324 * default_hugepagesz.
3326 else if (!hugetlb_max_hstate)
3327 mhp = &default_hstate_max_huge_pages;
3328 else
3329 mhp = &parsed_hstate->max_huge_pages;
3331 if (mhp == last_mhp) {
3332 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3333 return 0;
3336 if (sscanf(s, "%lu", mhp) <= 0)
3337 *mhp = 0;
3340 * Global state is always initialized later in hugetlb_init.
3341 * But we need to allocate >= MAX_ORDER hstates here early to still
3342 * use the bootmem allocator.
3344 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3345 hugetlb_hstate_alloc_pages(parsed_hstate);
3347 last_mhp = mhp;
3349 return 1;
3351 __setup("hugepages=", hugepages_setup);
3354 * hugepagesz command line processing
3355 * A specific huge page size can only be specified once with hugepagesz.
3356 * hugepagesz is followed by hugepages on the command line. The global
3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358 * hugepagesz argument was valid.
3360 static int __init hugepagesz_setup(char *s)
3362 unsigned long size;
3363 struct hstate *h;
3365 parsed_valid_hugepagesz = false;
3366 size = (unsigned long)memparse(s, NULL);
3368 if (!arch_hugetlb_valid_size(size)) {
3369 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3370 return 0;
3373 h = size_to_hstate(size);
3374 if (h) {
3376 * hstate for this size already exists. This is normally
3377 * an error, but is allowed if the existing hstate is the
3378 * default hstate. More specifically, it is only allowed if
3379 * the number of huge pages for the default hstate was not
3380 * previously specified.
3382 if (!parsed_default_hugepagesz || h != &default_hstate ||
3383 default_hstate.max_huge_pages) {
3384 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3385 return 0;
3389 * No need to call hugetlb_add_hstate() as hstate already
3390 * exists. But, do set parsed_hstate so that a following
3391 * hugepages= parameter will be applied to this hstate.
3393 parsed_hstate = h;
3394 parsed_valid_hugepagesz = true;
3395 return 1;
3398 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3399 parsed_valid_hugepagesz = true;
3400 return 1;
3402 __setup("hugepagesz=", hugepagesz_setup);
3405 * default_hugepagesz command line input
3406 * Only one instance of default_hugepagesz allowed on command line.
3408 static int __init default_hugepagesz_setup(char *s)
3410 unsigned long size;
3412 parsed_valid_hugepagesz = false;
3413 if (parsed_default_hugepagesz) {
3414 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3415 return 0;
3418 size = (unsigned long)memparse(s, NULL);
3420 if (!arch_hugetlb_valid_size(size)) {
3421 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3422 return 0;
3425 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3426 parsed_valid_hugepagesz = true;
3427 parsed_default_hugepagesz = true;
3428 default_hstate_idx = hstate_index(size_to_hstate(size));
3431 * The number of default huge pages (for this size) could have been
3432 * specified as the first hugetlb parameter: hugepages=X. If so,
3433 * then default_hstate_max_huge_pages is set. If the default huge
3434 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435 * allocated here from bootmem allocator.
3437 if (default_hstate_max_huge_pages) {
3438 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3439 if (hstate_is_gigantic(&default_hstate))
3440 hugetlb_hstate_alloc_pages(&default_hstate);
3441 default_hstate_max_huge_pages = 0;
3444 return 1;
3446 __setup("default_hugepagesz=", default_hugepagesz_setup);
3448 static unsigned int allowed_mems_nr(struct hstate *h)
3450 int node;
3451 unsigned int nr = 0;
3452 nodemask_t *mpol_allowed;
3453 unsigned int *array = h->free_huge_pages_node;
3454 gfp_t gfp_mask = htlb_alloc_mask(h);
3456 mpol_allowed = policy_nodemask_current(gfp_mask);
3458 for_each_node_mask(node, cpuset_current_mems_allowed) {
3459 if (!mpol_allowed ||
3460 (mpol_allowed && node_isset(node, *mpol_allowed)))
3461 nr += array[node];
3464 return nr;
3467 #ifdef CONFIG_SYSCTL
3468 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3469 void *buffer, size_t *length,
3470 loff_t *ppos, unsigned long *out)
3472 struct ctl_table dup_table;
3475 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476 * can duplicate the @table and alter the duplicate of it.
3478 dup_table = *table;
3479 dup_table.data = out;
3481 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3484 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3485 struct ctl_table *table, int write,
3486 void *buffer, size_t *length, loff_t *ppos)
3488 struct hstate *h = &default_hstate;
3489 unsigned long tmp = h->max_huge_pages;
3490 int ret;
3492 if (!hugepages_supported())
3493 return -EOPNOTSUPP;
3495 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3496 &tmp);
3497 if (ret)
3498 goto out;
3500 if (write)
3501 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3502 NUMA_NO_NODE, tmp, *length);
3503 out:
3504 return ret;
3507 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3508 void *buffer, size_t *length, loff_t *ppos)
3511 return hugetlb_sysctl_handler_common(false, table, write,
3512 buffer, length, ppos);
3515 #ifdef CONFIG_NUMA
3516 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3517 void *buffer, size_t *length, loff_t *ppos)
3519 return hugetlb_sysctl_handler_common(true, table, write,
3520 buffer, length, ppos);
3522 #endif /* CONFIG_NUMA */
3524 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3525 void *buffer, size_t *length, loff_t *ppos)
3527 struct hstate *h = &default_hstate;
3528 unsigned long tmp;
3529 int ret;
3531 if (!hugepages_supported())
3532 return -EOPNOTSUPP;
3534 tmp = h->nr_overcommit_huge_pages;
3536 if (write && hstate_is_gigantic(h))
3537 return -EINVAL;
3539 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3540 &tmp);
3541 if (ret)
3542 goto out;
3544 if (write) {
3545 spin_lock(&hugetlb_lock);
3546 h->nr_overcommit_huge_pages = tmp;
3547 spin_unlock(&hugetlb_lock);
3549 out:
3550 return ret;
3553 #endif /* CONFIG_SYSCTL */
3555 void hugetlb_report_meminfo(struct seq_file *m)
3557 struct hstate *h;
3558 unsigned long total = 0;
3560 if (!hugepages_supported())
3561 return;
3563 for_each_hstate(h) {
3564 unsigned long count = h->nr_huge_pages;
3566 total += (PAGE_SIZE << huge_page_order(h)) * count;
3568 if (h == &default_hstate)
3569 seq_printf(m,
3570 "HugePages_Total: %5lu\n"
3571 "HugePages_Free: %5lu\n"
3572 "HugePages_Rsvd: %5lu\n"
3573 "HugePages_Surp: %5lu\n"
3574 "Hugepagesize: %8lu kB\n",
3575 count,
3576 h->free_huge_pages,
3577 h->resv_huge_pages,
3578 h->surplus_huge_pages,
3579 (PAGE_SIZE << huge_page_order(h)) / 1024);
3582 seq_printf(m, "Hugetlb: %8lu kB\n", total / 1024);
3585 int hugetlb_report_node_meminfo(int nid, char *buf)
3587 struct hstate *h = &default_hstate;
3588 if (!hugepages_supported())
3589 return 0;
3590 return sprintf(buf,
3591 "Node %d HugePages_Total: %5u\n"
3592 "Node %d HugePages_Free: %5u\n"
3593 "Node %d HugePages_Surp: %5u\n",
3594 nid, h->nr_huge_pages_node[nid],
3595 nid, h->free_huge_pages_node[nid],
3596 nid, h->surplus_huge_pages_node[nid]);
3599 void hugetlb_show_meminfo(void)
3601 struct hstate *h;
3602 int nid;
3604 if (!hugepages_supported())
3605 return;
3607 for_each_node_state(nid, N_MEMORY)
3608 for_each_hstate(h)
3609 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3610 nid,
3611 h->nr_huge_pages_node[nid],
3612 h->free_huge_pages_node[nid],
3613 h->surplus_huge_pages_node[nid],
3614 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3617 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3619 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3620 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3623 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624 unsigned long hugetlb_total_pages(void)
3626 struct hstate *h;
3627 unsigned long nr_total_pages = 0;
3629 for_each_hstate(h)
3630 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3631 return nr_total_pages;
3634 static int hugetlb_acct_memory(struct hstate *h, long delta)
3636 int ret = -ENOMEM;
3638 spin_lock(&hugetlb_lock);
3640 * When cpuset is configured, it breaks the strict hugetlb page
3641 * reservation as the accounting is done on a global variable. Such
3642 * reservation is completely rubbish in the presence of cpuset because
3643 * the reservation is not checked against page availability for the
3644 * current cpuset. Application can still potentially OOM'ed by kernel
3645 * with lack of free htlb page in cpuset that the task is in.
3646 * Attempt to enforce strict accounting with cpuset is almost
3647 * impossible (or too ugly) because cpuset is too fluid that
3648 * task or memory node can be dynamically moved between cpusets.
3650 * The change of semantics for shared hugetlb mapping with cpuset is
3651 * undesirable. However, in order to preserve some of the semantics,
3652 * we fall back to check against current free page availability as
3653 * a best attempt and hopefully to minimize the impact of changing
3654 * semantics that cpuset has.
3656 * Apart from cpuset, we also have memory policy mechanism that
3657 * also determines from which node the kernel will allocate memory
3658 * in a NUMA system. So similar to cpuset, we also should consider
3659 * the memory policy of the current task. Similar to the description
3660 * above.
3662 if (delta > 0) {
3663 if (gather_surplus_pages(h, delta) < 0)
3664 goto out;
3666 if (delta > allowed_mems_nr(h)) {
3667 return_unused_surplus_pages(h, delta);
3668 goto out;
3672 ret = 0;
3673 if (delta < 0)
3674 return_unused_surplus_pages(h, (unsigned long) -delta);
3676 out:
3677 spin_unlock(&hugetlb_lock);
3678 return ret;
3681 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3683 struct resv_map *resv = vma_resv_map(vma);
3686 * This new VMA should share its siblings reservation map if present.
3687 * The VMA will only ever have a valid reservation map pointer where
3688 * it is being copied for another still existing VMA. As that VMA
3689 * has a reference to the reservation map it cannot disappear until
3690 * after this open call completes. It is therefore safe to take a
3691 * new reference here without additional locking.
3693 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3694 kref_get(&resv->refs);
3697 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3699 struct hstate *h = hstate_vma(vma);
3700 struct resv_map *resv = vma_resv_map(vma);
3701 struct hugepage_subpool *spool = subpool_vma(vma);
3702 unsigned long reserve, start, end;
3703 long gbl_reserve;
3705 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3706 return;
3708 start = vma_hugecache_offset(h, vma, vma->vm_start);
3709 end = vma_hugecache_offset(h, vma, vma->vm_end);
3711 reserve = (end - start) - region_count(resv, start, end);
3712 hugetlb_cgroup_uncharge_counter(resv, start, end);
3713 if (reserve) {
3715 * Decrement reserve counts. The global reserve count may be
3716 * adjusted if the subpool has a minimum size.
3718 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3719 hugetlb_acct_memory(h, -gbl_reserve);
3722 kref_put(&resv->refs, resv_map_release);
3725 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3727 if (addr & ~(huge_page_mask(hstate_vma(vma))))
3728 return -EINVAL;
3729 return 0;
3732 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3734 struct hstate *hstate = hstate_vma(vma);
3736 return 1UL << huge_page_shift(hstate);
3740 * We cannot handle pagefaults against hugetlb pages at all. They cause
3741 * handle_mm_fault() to try to instantiate regular-sized pages in the
3742 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3743 * this far.
3745 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3747 BUG();
3748 return 0;
3752 * When a new function is introduced to vm_operations_struct and added
3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754 * This is because under System V memory model, mappings created via
3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756 * their original vm_ops are overwritten with shm_vm_ops.
3758 const struct vm_operations_struct hugetlb_vm_ops = {
3759 .fault = hugetlb_vm_op_fault,
3760 .open = hugetlb_vm_op_open,
3761 .close = hugetlb_vm_op_close,
3762 .split = hugetlb_vm_op_split,
3763 .pagesize = hugetlb_vm_op_pagesize,
3766 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3767 int writable)
3769 pte_t entry;
3771 if (writable) {
3772 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3773 vma->vm_page_prot)));
3774 } else {
3775 entry = huge_pte_wrprotect(mk_huge_pte(page,
3776 vma->vm_page_prot));
3778 entry = pte_mkyoung(entry);
3779 entry = pte_mkhuge(entry);
3780 entry = arch_make_huge_pte(entry, vma, page, writable);
3782 return entry;
3785 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3786 unsigned long address, pte_t *ptep)
3788 pte_t entry;
3790 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3791 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3792 update_mmu_cache(vma, address, ptep);
3795 bool is_hugetlb_entry_migration(pte_t pte)
3797 swp_entry_t swp;
3799 if (huge_pte_none(pte) || pte_present(pte))
3800 return false;
3801 swp = pte_to_swp_entry(pte);
3802 if (non_swap_entry(swp) && is_migration_entry(swp))
3803 return true;
3804 else
3805 return false;
3808 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3810 swp_entry_t swp;
3812 if (huge_pte_none(pte) || pte_present(pte))
3813 return 0;
3814 swp = pte_to_swp_entry(pte);
3815 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3816 return 1;
3817 else
3818 return 0;
3821 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3822 struct vm_area_struct *vma)
3824 pte_t *src_pte, *dst_pte, entry, dst_entry;
3825 struct page *ptepage;
3826 unsigned long addr;
3827 int cow;
3828 struct hstate *h = hstate_vma(vma);
3829 unsigned long sz = huge_page_size(h);
3830 struct address_space *mapping = vma->vm_file->f_mapping;
3831 struct mmu_notifier_range range;
3832 int ret = 0;
3834 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3836 if (cow) {
3837 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3838 vma->vm_start,
3839 vma->vm_end);
3840 mmu_notifier_invalidate_range_start(&range);
3841 } else {
3843 * For shared mappings i_mmap_rwsem must be held to call
3844 * huge_pte_alloc, otherwise the returned ptep could go
3845 * away if part of a shared pmd and another thread calls
3846 * huge_pmd_unshare.
3848 i_mmap_lock_read(mapping);
3851 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3852 spinlock_t *src_ptl, *dst_ptl;
3853 src_pte = huge_pte_offset(src, addr, sz);
3854 if (!src_pte)
3855 continue;
3856 dst_pte = huge_pte_alloc(dst, addr, sz);
3857 if (!dst_pte) {
3858 ret = -ENOMEM;
3859 break;
3863 * If the pagetables are shared don't copy or take references.
3864 * dst_pte == src_pte is the common case of src/dest sharing.
3866 * However, src could have 'unshared' and dst shares with
3867 * another vma. If dst_pte !none, this implies sharing.
3868 * Check here before taking page table lock, and once again
3869 * after taking the lock below.
3871 dst_entry = huge_ptep_get(dst_pte);
3872 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3873 continue;
3875 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3876 src_ptl = huge_pte_lockptr(h, src, src_pte);
3877 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3878 entry = huge_ptep_get(src_pte);
3879 dst_entry = huge_ptep_get(dst_pte);
3880 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3882 * Skip if src entry none. Also, skip in the
3883 * unlikely case dst entry !none as this implies
3884 * sharing with another vma.
3887 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3888 is_hugetlb_entry_hwpoisoned(entry))) {
3889 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3891 if (is_write_migration_entry(swp_entry) && cow) {
3893 * COW mappings require pages in both
3894 * parent and child to be set to read.
3896 make_migration_entry_read(&swp_entry);
3897 entry = swp_entry_to_pte(swp_entry);
3898 set_huge_swap_pte_at(src, addr, src_pte,
3899 entry, sz);
3901 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3902 } else {
3903 if (cow) {
3905 * No need to notify as we are downgrading page
3906 * table protection not changing it to point
3907 * to a new page.
3909 * See Documentation/vm/mmu_notifier.rst
3911 huge_ptep_set_wrprotect(src, addr, src_pte);
3913 entry = huge_ptep_get(src_pte);
3914 ptepage = pte_page(entry);
3915 get_page(ptepage);
3916 page_dup_rmap(ptepage, true);
3917 set_huge_pte_at(dst, addr, dst_pte, entry);
3918 hugetlb_count_add(pages_per_huge_page(h), dst);
3920 spin_unlock(src_ptl);
3921 spin_unlock(dst_ptl);
3924 if (cow)
3925 mmu_notifier_invalidate_range_end(&range);
3926 else
3927 i_mmap_unlock_read(mapping);
3929 return ret;
3932 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3933 unsigned long start, unsigned long end,
3934 struct page *ref_page)
3936 struct mm_struct *mm = vma->vm_mm;
3937 unsigned long address;
3938 pte_t *ptep;
3939 pte_t pte;
3940 spinlock_t *ptl;
3941 struct page *page;
3942 struct hstate *h = hstate_vma(vma);
3943 unsigned long sz = huge_page_size(h);
3944 struct mmu_notifier_range range;
3946 WARN_ON(!is_vm_hugetlb_page(vma));
3947 BUG_ON(start & ~huge_page_mask(h));
3948 BUG_ON(end & ~huge_page_mask(h));
3951 * This is a hugetlb vma, all the pte entries should point
3952 * to huge page.
3954 tlb_change_page_size(tlb, sz);
3955 tlb_start_vma(tlb, vma);
3958 * If sharing possible, alert mmu notifiers of worst case.
3960 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3961 end);
3962 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3963 mmu_notifier_invalidate_range_start(&range);
3964 address = start;
3965 for (; address < end; address += sz) {
3966 ptep = huge_pte_offset(mm, address, sz);
3967 if (!ptep)
3968 continue;
3970 ptl = huge_pte_lock(h, mm, ptep);
3971 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3972 spin_unlock(ptl);
3974 * We just unmapped a page of PMDs by clearing a PUD.
3975 * The caller's TLB flush range should cover this area.
3977 continue;
3980 pte = huge_ptep_get(ptep);
3981 if (huge_pte_none(pte)) {
3982 spin_unlock(ptl);
3983 continue;
3987 * Migrating hugepage or HWPoisoned hugepage is already
3988 * unmapped and its refcount is dropped, so just clear pte here.
3990 if (unlikely(!pte_present(pte))) {
3991 huge_pte_clear(mm, address, ptep, sz);
3992 spin_unlock(ptl);
3993 continue;
3996 page = pte_page(pte);
3998 * If a reference page is supplied, it is because a specific
3999 * page is being unmapped, not a range. Ensure the page we
4000 * are about to unmap is the actual page of interest.
4002 if (ref_page) {
4003 if (page != ref_page) {
4004 spin_unlock(ptl);
4005 continue;
4008 * Mark the VMA as having unmapped its page so that
4009 * future faults in this VMA will fail rather than
4010 * looking like data was lost
4012 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4015 pte = huge_ptep_get_and_clear(mm, address, ptep);
4016 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4017 if (huge_pte_dirty(pte))
4018 set_page_dirty(page);
4020 hugetlb_count_sub(pages_per_huge_page(h), mm);
4021 page_remove_rmap(page, true);
4023 spin_unlock(ptl);
4024 tlb_remove_page_size(tlb, page, huge_page_size(h));
4026 * Bail out after unmapping reference page if supplied
4028 if (ref_page)
4029 break;
4031 mmu_notifier_invalidate_range_end(&range);
4032 tlb_end_vma(tlb, vma);
4035 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4036 struct vm_area_struct *vma, unsigned long start,
4037 unsigned long end, struct page *ref_page)
4039 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4042 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043 * test will fail on a vma being torn down, and not grab a page table
4044 * on its way out. We're lucky that the flag has such an appropriate
4045 * name, and can in fact be safely cleared here. We could clear it
4046 * before the __unmap_hugepage_range above, but all that's necessary
4047 * is to clear it before releasing the i_mmap_rwsem. This works
4048 * because in the context this is called, the VMA is about to be
4049 * destroyed and the i_mmap_rwsem is held.
4051 vma->vm_flags &= ~VM_MAYSHARE;
4054 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4055 unsigned long end, struct page *ref_page)
4057 struct mm_struct *mm;
4058 struct mmu_gather tlb;
4059 unsigned long tlb_start = start;
4060 unsigned long tlb_end = end;
4063 * If shared PMDs were possibly used within this vma range, adjust
4064 * start/end for worst case tlb flushing.
4065 * Note that we can not be sure if PMDs are shared until we try to
4066 * unmap pages. However, we want to make sure TLB flushing covers
4067 * the largest possible range.
4069 adjust_range_if_pmd_sharing_possible(vma, &tlb_start, &tlb_end);
4071 mm = vma->vm_mm;
4073 tlb_gather_mmu(&tlb, mm, tlb_start, tlb_end);
4074 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4075 tlb_finish_mmu(&tlb, tlb_start, tlb_end);
4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080 * mappping it owns the reserve page for. The intention is to unmap the page
4081 * from other VMAs and let the children be SIGKILLed if they are faulting the
4082 * same region.
4084 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4085 struct page *page, unsigned long address)
4087 struct hstate *h = hstate_vma(vma);
4088 struct vm_area_struct *iter_vma;
4089 struct address_space *mapping;
4090 pgoff_t pgoff;
4093 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094 * from page cache lookup which is in HPAGE_SIZE units.
4096 address = address & huge_page_mask(h);
4097 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4098 vma->vm_pgoff;
4099 mapping = vma->vm_file->f_mapping;
4102 * Take the mapping lock for the duration of the table walk. As
4103 * this mapping should be shared between all the VMAs,
4104 * __unmap_hugepage_range() is called as the lock is already held
4106 i_mmap_lock_write(mapping);
4107 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4108 /* Do not unmap the current VMA */
4109 if (iter_vma == vma)
4110 continue;
4113 * Shared VMAs have their own reserves and do not affect
4114 * MAP_PRIVATE accounting but it is possible that a shared
4115 * VMA is using the same page so check and skip such VMAs.
4117 if (iter_vma->vm_flags & VM_MAYSHARE)
4118 continue;
4121 * Unmap the page from other VMAs without their own reserves.
4122 * They get marked to be SIGKILLed if they fault in these
4123 * areas. This is because a future no-page fault on this VMA
4124 * could insert a zeroed page instead of the data existing
4125 * from the time of fork. This would look like data corruption
4127 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4128 unmap_hugepage_range(iter_vma, address,
4129 address + huge_page_size(h), page);
4131 i_mmap_unlock_write(mapping);
4135 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137 * cannot race with other handlers or page migration.
4138 * Keep the pte_same checks anyway to make transition from the mutex easier.
4140 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4141 unsigned long address, pte_t *ptep,
4142 struct page *pagecache_page, spinlock_t *ptl)
4144 pte_t pte;
4145 struct hstate *h = hstate_vma(vma);
4146 struct page *old_page, *new_page;
4147 int outside_reserve = 0;
4148 vm_fault_t ret = 0;
4149 unsigned long haddr = address & huge_page_mask(h);
4150 struct mmu_notifier_range range;
4152 pte = huge_ptep_get(ptep);
4153 old_page = pte_page(pte);
4155 retry_avoidcopy:
4156 /* If no-one else is actually using this page, avoid the copy
4157 * and just make the page writable */
4158 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4159 page_move_anon_rmap(old_page, vma);
4160 set_huge_ptep_writable(vma, haddr, ptep);
4161 return 0;
4165 * If the process that created a MAP_PRIVATE mapping is about to
4166 * perform a COW due to a shared page count, attempt to satisfy
4167 * the allocation without using the existing reserves. The pagecache
4168 * page is used to determine if the reserve at this address was
4169 * consumed or not. If reserves were used, a partial faulted mapping
4170 * at the time of fork() could consume its reserves on COW instead
4171 * of the full address range.
4173 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4174 old_page != pagecache_page)
4175 outside_reserve = 1;
4177 get_page(old_page);
4180 * Drop page table lock as buddy allocator may be called. It will
4181 * be acquired again before returning to the caller, as expected.
4183 spin_unlock(ptl);
4184 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4186 if (IS_ERR(new_page)) {
4188 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189 * it is due to references held by a child and an insufficient
4190 * huge page pool. To guarantee the original mappers
4191 * reliability, unmap the page from child processes. The child
4192 * may get SIGKILLed if it later faults.
4194 if (outside_reserve) {
4195 put_page(old_page);
4196 BUG_ON(huge_pte_none(pte));
4197 unmap_ref_private(mm, vma, old_page, haddr);
4198 BUG_ON(huge_pte_none(pte));
4199 spin_lock(ptl);
4200 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4201 if (likely(ptep &&
4202 pte_same(huge_ptep_get(ptep), pte)))
4203 goto retry_avoidcopy;
4205 * race occurs while re-acquiring page table
4206 * lock, and our job is done.
4208 return 0;
4211 ret = vmf_error(PTR_ERR(new_page));
4212 goto out_release_old;
4216 * When the original hugepage is shared one, it does not have
4217 * anon_vma prepared.
4219 if (unlikely(anon_vma_prepare(vma))) {
4220 ret = VM_FAULT_OOM;
4221 goto out_release_all;
4224 copy_user_huge_page(new_page, old_page, address, vma,
4225 pages_per_huge_page(h));
4226 __SetPageUptodate(new_page);
4228 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4229 haddr + huge_page_size(h));
4230 mmu_notifier_invalidate_range_start(&range);
4233 * Retake the page table lock to check for racing updates
4234 * before the page tables are altered
4236 spin_lock(ptl);
4237 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4238 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4239 ClearPagePrivate(new_page);
4241 /* Break COW */
4242 huge_ptep_clear_flush(vma, haddr, ptep);
4243 mmu_notifier_invalidate_range(mm, range.start, range.end);
4244 set_huge_pte_at(mm, haddr, ptep,
4245 make_huge_pte(vma, new_page, 1));
4246 page_remove_rmap(old_page, true);
4247 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4248 set_page_huge_active(new_page);
4249 /* Make the old page be freed below */
4250 new_page = old_page;
4252 spin_unlock(ptl);
4253 mmu_notifier_invalidate_range_end(&range);
4254 out_release_all:
4255 restore_reserve_on_error(h, vma, haddr, new_page);
4256 put_page(new_page);
4257 out_release_old:
4258 put_page(old_page);
4260 spin_lock(ptl); /* Caller expects lock to be held */
4261 return ret;
4264 /* Return the pagecache page at a given address within a VMA */
4265 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4266 struct vm_area_struct *vma, unsigned long address)
4268 struct address_space *mapping;
4269 pgoff_t idx;
4271 mapping = vma->vm_file->f_mapping;
4272 idx = vma_hugecache_offset(h, vma, address);
4274 return find_lock_page(mapping, idx);
4278 * Return whether there is a pagecache page to back given address within VMA.
4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4281 static bool hugetlbfs_pagecache_present(struct hstate *h,
4282 struct vm_area_struct *vma, unsigned long address)
4284 struct address_space *mapping;
4285 pgoff_t idx;
4286 struct page *page;
4288 mapping = vma->vm_file->f_mapping;
4289 idx = vma_hugecache_offset(h, vma, address);
4291 page = find_get_page(mapping, idx);
4292 if (page)
4293 put_page(page);
4294 return page != NULL;
4297 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4298 pgoff_t idx)
4300 struct inode *inode = mapping->host;
4301 struct hstate *h = hstate_inode(inode);
4302 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4304 if (err)
4305 return err;
4306 ClearPagePrivate(page);
4309 * set page dirty so that it will not be removed from cache/file
4310 * by non-hugetlbfs specific code paths.
4312 set_page_dirty(page);
4314 spin_lock(&inode->i_lock);
4315 inode->i_blocks += blocks_per_huge_page(h);
4316 spin_unlock(&inode->i_lock);
4317 return 0;
4320 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4321 struct vm_area_struct *vma,
4322 struct address_space *mapping, pgoff_t idx,
4323 unsigned long address, pte_t *ptep, unsigned int flags)
4325 struct hstate *h = hstate_vma(vma);
4326 vm_fault_t ret = VM_FAULT_SIGBUS;
4327 int anon_rmap = 0;
4328 unsigned long size;
4329 struct page *page;
4330 pte_t new_pte;
4331 spinlock_t *ptl;
4332 unsigned long haddr = address & huge_page_mask(h);
4333 bool new_page = false;
4336 * Currently, we are forced to kill the process in the event the
4337 * original mapper has unmapped pages from the child due to a failed
4338 * COW. Warn that such a situation has occurred as it may not be obvious
4340 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4341 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4342 current->pid);
4343 return ret;
4347 * We can not race with truncation due to holding i_mmap_rwsem.
4348 * i_size is modified when holding i_mmap_rwsem, so check here
4349 * once for faults beyond end of file.
4351 size = i_size_read(mapping->host) >> huge_page_shift(h);
4352 if (idx >= size)
4353 goto out;
4355 retry:
4356 page = find_lock_page(mapping, idx);
4357 if (!page) {
4359 * Check for page in userfault range
4361 if (userfaultfd_missing(vma)) {
4362 u32 hash;
4363 struct vm_fault vmf = {
4364 .vma = vma,
4365 .address = haddr,
4366 .flags = flags,
4368 * Hard to debug if it ends up being
4369 * used by a callee that assumes
4370 * something about the other
4371 * uninitialized fields... same as in
4372 * memory.c
4377 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378 * dropped before handling userfault. Reacquire
4379 * after handling fault to make calling code simpler.
4381 hash = hugetlb_fault_mutex_hash(mapping, idx);
4382 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4383 i_mmap_unlock_read(mapping);
4384 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4385 i_mmap_lock_read(mapping);
4386 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4387 goto out;
4390 page = alloc_huge_page(vma, haddr, 0);
4391 if (IS_ERR(page)) {
4393 * Returning error will result in faulting task being
4394 * sent SIGBUS. The hugetlb fault mutex prevents two
4395 * tasks from racing to fault in the same page which
4396 * could result in false unable to allocate errors.
4397 * Page migration does not take the fault mutex, but
4398 * does a clear then write of pte's under page table
4399 * lock. Page fault code could race with migration,
4400 * notice the clear pte and try to allocate a page
4401 * here. Before returning error, get ptl and make
4402 * sure there really is no pte entry.
4404 ptl = huge_pte_lock(h, mm, ptep);
4405 if (!huge_pte_none(huge_ptep_get(ptep))) {
4406 ret = 0;
4407 spin_unlock(ptl);
4408 goto out;
4410 spin_unlock(ptl);
4411 ret = vmf_error(PTR_ERR(page));
4412 goto out;
4414 clear_huge_page(page, address, pages_per_huge_page(h));
4415 __SetPageUptodate(page);
4416 new_page = true;
4418 if (vma->vm_flags & VM_MAYSHARE) {
4419 int err = huge_add_to_page_cache(page, mapping, idx);
4420 if (err) {
4421 put_page(page);
4422 if (err == -EEXIST)
4423 goto retry;
4424 goto out;
4426 } else {
4427 lock_page(page);
4428 if (unlikely(anon_vma_prepare(vma))) {
4429 ret = VM_FAULT_OOM;
4430 goto backout_unlocked;
4432 anon_rmap = 1;
4434 } else {
4436 * If memory error occurs between mmap() and fault, some process
4437 * don't have hwpoisoned swap entry for errored virtual address.
4438 * So we need to block hugepage fault by PG_hwpoison bit check.
4440 if (unlikely(PageHWPoison(page))) {
4441 ret = VM_FAULT_HWPOISON |
4442 VM_FAULT_SET_HINDEX(hstate_index(h));
4443 goto backout_unlocked;
4448 * If we are going to COW a private mapping later, we examine the
4449 * pending reservations for this page now. This will ensure that
4450 * any allocations necessary to record that reservation occur outside
4451 * the spinlock.
4453 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4454 if (vma_needs_reservation(h, vma, haddr) < 0) {
4455 ret = VM_FAULT_OOM;
4456 goto backout_unlocked;
4458 /* Just decrements count, does not deallocate */
4459 vma_end_reservation(h, vma, haddr);
4462 ptl = huge_pte_lock(h, mm, ptep);
4463 ret = 0;
4464 if (!huge_pte_none(huge_ptep_get(ptep)))
4465 goto backout;
4467 if (anon_rmap) {
4468 ClearPagePrivate(page);
4469 hugepage_add_new_anon_rmap(page, vma, haddr);
4470 } else
4471 page_dup_rmap(page, true);
4472 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4473 && (vma->vm_flags & VM_SHARED)));
4474 set_huge_pte_at(mm, haddr, ptep, new_pte);
4476 hugetlb_count_add(pages_per_huge_page(h), mm);
4477 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4478 /* Optimization, do the COW without a second fault */
4479 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4482 spin_unlock(ptl);
4485 * Only make newly allocated pages active. Existing pages found
4486 * in the pagecache could be !page_huge_active() if they have been
4487 * isolated for migration.
4489 if (new_page)
4490 set_page_huge_active(page);
4492 unlock_page(page);
4493 out:
4494 return ret;
4496 backout:
4497 spin_unlock(ptl);
4498 backout_unlocked:
4499 unlock_page(page);
4500 restore_reserve_on_error(h, vma, haddr, page);
4501 put_page(page);
4502 goto out;
4505 #ifdef CONFIG_SMP
4506 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4508 unsigned long key[2];
4509 u32 hash;
4511 key[0] = (unsigned long) mapping;
4512 key[1] = idx;
4514 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4516 return hash & (num_fault_mutexes - 1);
4518 #else
4520 * For uniprocesor systems we always use a single mutex, so just
4521 * return 0 and avoid the hashing overhead.
4523 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4525 return 0;
4527 #endif
4529 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4530 unsigned long address, unsigned int flags)
4532 pte_t *ptep, entry;
4533 spinlock_t *ptl;
4534 vm_fault_t ret;
4535 u32 hash;
4536 pgoff_t idx;
4537 struct page *page = NULL;
4538 struct page *pagecache_page = NULL;
4539 struct hstate *h = hstate_vma(vma);
4540 struct address_space *mapping;
4541 int need_wait_lock = 0;
4542 unsigned long haddr = address & huge_page_mask(h);
4544 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4545 if (ptep) {
4547 * Since we hold no locks, ptep could be stale. That is
4548 * OK as we are only making decisions based on content and
4549 * not actually modifying content here.
4551 entry = huge_ptep_get(ptep);
4552 if (unlikely(is_hugetlb_entry_migration(entry))) {
4553 migration_entry_wait_huge(vma, mm, ptep);
4554 return 0;
4555 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4556 return VM_FAULT_HWPOISON_LARGE |
4557 VM_FAULT_SET_HINDEX(hstate_index(h));
4561 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562 * until finished with ptep. This serves two purposes:
4563 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564 * and making the ptep no longer valid.
4565 * 2) It synchronizes us with i_size modifications during truncation.
4567 * ptep could have already be assigned via huge_pte_offset. That
4568 * is OK, as huge_pte_alloc will return the same value unless
4569 * something has changed.
4571 mapping = vma->vm_file->f_mapping;
4572 i_mmap_lock_read(mapping);
4573 ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4574 if (!ptep) {
4575 i_mmap_unlock_read(mapping);
4576 return VM_FAULT_OOM;
4580 * Serialize hugepage allocation and instantiation, so that we don't
4581 * get spurious allocation failures if two CPUs race to instantiate
4582 * the same page in the page cache.
4584 idx = vma_hugecache_offset(h, vma, haddr);
4585 hash = hugetlb_fault_mutex_hash(mapping, idx);
4586 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4588 entry = huge_ptep_get(ptep);
4589 if (huge_pte_none(entry)) {
4590 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4591 goto out_mutex;
4594 ret = 0;
4597 * entry could be a migration/hwpoison entry at this point, so this
4598 * check prevents the kernel from going below assuming that we have
4599 * an active hugepage in pagecache. This goto expects the 2nd page
4600 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601 * properly handle it.
4603 if (!pte_present(entry))
4604 goto out_mutex;
4607 * If we are going to COW the mapping later, we examine the pending
4608 * reservations for this page now. This will ensure that any
4609 * allocations necessary to record that reservation occur outside the
4610 * spinlock. For private mappings, we also lookup the pagecache
4611 * page now as it is used to determine if a reservation has been
4612 * consumed.
4614 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4615 if (vma_needs_reservation(h, vma, haddr) < 0) {
4616 ret = VM_FAULT_OOM;
4617 goto out_mutex;
4619 /* Just decrements count, does not deallocate */
4620 vma_end_reservation(h, vma, haddr);
4622 if (!(vma->vm_flags & VM_MAYSHARE))
4623 pagecache_page = hugetlbfs_pagecache_page(h,
4624 vma, haddr);
4627 ptl = huge_pte_lock(h, mm, ptep);
4629 /* Check for a racing update before calling hugetlb_cow */
4630 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4631 goto out_ptl;
4634 * hugetlb_cow() requires page locks of pte_page(entry) and
4635 * pagecache_page, so here we need take the former one
4636 * when page != pagecache_page or !pagecache_page.
4638 page = pte_page(entry);
4639 if (page != pagecache_page)
4640 if (!trylock_page(page)) {
4641 need_wait_lock = 1;
4642 goto out_ptl;
4645 get_page(page);
4647 if (flags & FAULT_FLAG_WRITE) {
4648 if (!huge_pte_write(entry)) {
4649 ret = hugetlb_cow(mm, vma, address, ptep,
4650 pagecache_page, ptl);
4651 goto out_put_page;
4653 entry = huge_pte_mkdirty(entry);
4655 entry = pte_mkyoung(entry);
4656 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4657 flags & FAULT_FLAG_WRITE))
4658 update_mmu_cache(vma, haddr, ptep);
4659 out_put_page:
4660 if (page != pagecache_page)
4661 unlock_page(page);
4662 put_page(page);
4663 out_ptl:
4664 spin_unlock(ptl);
4666 if (pagecache_page) {
4667 unlock_page(pagecache_page);
4668 put_page(pagecache_page);
4670 out_mutex:
4671 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4672 i_mmap_unlock_read(mapping);
4674 * Generally it's safe to hold refcount during waiting page lock. But
4675 * here we just wait to defer the next page fault to avoid busy loop and
4676 * the page is not used after unlocked before returning from the current
4677 * page fault. So we are safe from accessing freed page, even if we wait
4678 * here without taking refcount.
4680 if (need_wait_lock)
4681 wait_on_page_locked(page);
4682 return ret;
4686 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4687 * modifications for huge pages.
4689 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4690 pte_t *dst_pte,
4691 struct vm_area_struct *dst_vma,
4692 unsigned long dst_addr,
4693 unsigned long src_addr,
4694 struct page **pagep)
4696 struct address_space *mapping;
4697 pgoff_t idx;
4698 unsigned long size;
4699 int vm_shared = dst_vma->vm_flags & VM_SHARED;
4700 struct hstate *h = hstate_vma(dst_vma);
4701 pte_t _dst_pte;
4702 spinlock_t *ptl;
4703 int ret;
4704 struct page *page;
4706 if (!*pagep) {
4707 ret = -ENOMEM;
4708 page = alloc_huge_page(dst_vma, dst_addr, 0);
4709 if (IS_ERR(page))
4710 goto out;
4712 ret = copy_huge_page_from_user(page,
4713 (const void __user *) src_addr,
4714 pages_per_huge_page(h), false);
4716 /* fallback to copy_from_user outside mmap_lock */
4717 if (unlikely(ret)) {
4718 ret = -ENOENT;
4719 *pagep = page;
4720 /* don't free the page */
4721 goto out;
4723 } else {
4724 page = *pagep;
4725 *pagep = NULL;
4729 * The memory barrier inside __SetPageUptodate makes sure that
4730 * preceding stores to the page contents become visible before
4731 * the set_pte_at() write.
4733 __SetPageUptodate(page);
4735 mapping = dst_vma->vm_file->f_mapping;
4736 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4739 * If shared, add to page cache
4741 if (vm_shared) {
4742 size = i_size_read(mapping->host) >> huge_page_shift(h);
4743 ret = -EFAULT;
4744 if (idx >= size)
4745 goto out_release_nounlock;
4748 * Serialization between remove_inode_hugepages() and
4749 * huge_add_to_page_cache() below happens through the
4750 * hugetlb_fault_mutex_table that here must be hold by
4751 * the caller.
4753 ret = huge_add_to_page_cache(page, mapping, idx);
4754 if (ret)
4755 goto out_release_nounlock;
4758 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4759 spin_lock(ptl);
4762 * Recheck the i_size after holding PT lock to make sure not
4763 * to leave any page mapped (as page_mapped()) beyond the end
4764 * of the i_size (remove_inode_hugepages() is strict about
4765 * enforcing that). If we bail out here, we'll also leave a
4766 * page in the radix tree in the vm_shared case beyond the end
4767 * of the i_size, but remove_inode_hugepages() will take care
4768 * of it as soon as we drop the hugetlb_fault_mutex_table.
4770 size = i_size_read(mapping->host) >> huge_page_shift(h);
4771 ret = -EFAULT;
4772 if (idx >= size)
4773 goto out_release_unlock;
4775 ret = -EEXIST;
4776 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4777 goto out_release_unlock;
4779 if (vm_shared) {
4780 page_dup_rmap(page, true);
4781 } else {
4782 ClearPagePrivate(page);
4783 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4786 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4787 if (dst_vma->vm_flags & VM_WRITE)
4788 _dst_pte = huge_pte_mkdirty(_dst_pte);
4789 _dst_pte = pte_mkyoung(_dst_pte);
4791 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4793 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4794 dst_vma->vm_flags & VM_WRITE);
4795 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4797 /* No need to invalidate - it was non-present before */
4798 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4800 spin_unlock(ptl);
4801 set_page_huge_active(page);
4802 if (vm_shared)
4803 unlock_page(page);
4804 ret = 0;
4805 out:
4806 return ret;
4807 out_release_unlock:
4808 spin_unlock(ptl);
4809 if (vm_shared)
4810 unlock_page(page);
4811 out_release_nounlock:
4812 put_page(page);
4813 goto out;
4816 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4817 struct page **pages, struct vm_area_struct **vmas,
4818 unsigned long *position, unsigned long *nr_pages,
4819 long i, unsigned int flags, int *locked)
4821 unsigned long pfn_offset;
4822 unsigned long vaddr = *position;
4823 unsigned long remainder = *nr_pages;
4824 struct hstate *h = hstate_vma(vma);
4825 int err = -EFAULT;
4827 while (vaddr < vma->vm_end && remainder) {
4828 pte_t *pte;
4829 spinlock_t *ptl = NULL;
4830 int absent;
4831 struct page *page;
4834 * If we have a pending SIGKILL, don't keep faulting pages and
4835 * potentially allocating memory.
4837 if (fatal_signal_pending(current)) {
4838 remainder = 0;
4839 break;
4843 * Some archs (sparc64, sh*) have multiple pte_ts to
4844 * each hugepage. We have to make sure we get the
4845 * first, for the page indexing below to work.
4847 * Note that page table lock is not held when pte is null.
4849 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4850 huge_page_size(h));
4851 if (pte)
4852 ptl = huge_pte_lock(h, mm, pte);
4853 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4856 * When coredumping, it suits get_dump_page if we just return
4857 * an error where there's an empty slot with no huge pagecache
4858 * to back it. This way, we avoid allocating a hugepage, and
4859 * the sparse dumpfile avoids allocating disk blocks, but its
4860 * huge holes still show up with zeroes where they need to be.
4862 if (absent && (flags & FOLL_DUMP) &&
4863 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4864 if (pte)
4865 spin_unlock(ptl);
4866 remainder = 0;
4867 break;
4871 * We need call hugetlb_fault for both hugepages under migration
4872 * (in which case hugetlb_fault waits for the migration,) and
4873 * hwpoisoned hugepages (in which case we need to prevent the
4874 * caller from accessing to them.) In order to do this, we use
4875 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877 * both cases, and because we can't follow correct pages
4878 * directly from any kind of swap entries.
4880 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4881 ((flags & FOLL_WRITE) &&
4882 !huge_pte_write(huge_ptep_get(pte)))) {
4883 vm_fault_t ret;
4884 unsigned int fault_flags = 0;
4886 if (pte)
4887 spin_unlock(ptl);
4888 if (flags & FOLL_WRITE)
4889 fault_flags |= FAULT_FLAG_WRITE;
4890 if (locked)
4891 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4892 FAULT_FLAG_KILLABLE;
4893 if (flags & FOLL_NOWAIT)
4894 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4895 FAULT_FLAG_RETRY_NOWAIT;
4896 if (flags & FOLL_TRIED) {
4898 * Note: FAULT_FLAG_ALLOW_RETRY and
4899 * FAULT_FLAG_TRIED can co-exist
4901 fault_flags |= FAULT_FLAG_TRIED;
4903 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4904 if (ret & VM_FAULT_ERROR) {
4905 err = vm_fault_to_errno(ret, flags);
4906 remainder = 0;
4907 break;
4909 if (ret & VM_FAULT_RETRY) {
4910 if (locked &&
4911 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4912 *locked = 0;
4913 *nr_pages = 0;
4915 * VM_FAULT_RETRY must not return an
4916 * error, it will return zero
4917 * instead.
4919 * No need to update "position" as the
4920 * caller will not check it after
4921 * *nr_pages is set to 0.
4923 return i;
4925 continue;
4928 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4929 page = pte_page(huge_ptep_get(pte));
4932 * If subpage information not requested, update counters
4933 * and skip the same_page loop below.
4935 if (!pages && !vmas && !pfn_offset &&
4936 (vaddr + huge_page_size(h) < vma->vm_end) &&
4937 (remainder >= pages_per_huge_page(h))) {
4938 vaddr += huge_page_size(h);
4939 remainder -= pages_per_huge_page(h);
4940 i += pages_per_huge_page(h);
4941 spin_unlock(ptl);
4942 continue;
4945 same_page:
4946 if (pages) {
4947 pages[i] = mem_map_offset(page, pfn_offset);
4949 * try_grab_page() should always succeed here, because:
4950 * a) we hold the ptl lock, and b) we've just checked
4951 * that the huge page is present in the page tables. If
4952 * the huge page is present, then the tail pages must
4953 * also be present. The ptl prevents the head page and
4954 * tail pages from being rearranged in any way. So this
4955 * page must be available at this point, unless the page
4956 * refcount overflowed:
4958 if (WARN_ON_ONCE(!try_grab_page(pages[i], flags))) {
4959 spin_unlock(ptl);
4960 remainder = 0;
4961 err = -ENOMEM;
4962 break;
4966 if (vmas)
4967 vmas[i] = vma;
4969 vaddr += PAGE_SIZE;
4970 ++pfn_offset;
4971 --remainder;
4972 ++i;
4973 if (vaddr < vma->vm_end && remainder &&
4974 pfn_offset < pages_per_huge_page(h)) {
4976 * We use pfn_offset to avoid touching the pageframes
4977 * of this compound page.
4979 goto same_page;
4981 spin_unlock(ptl);
4983 *nr_pages = remainder;
4985 * setting position is actually required only if remainder is
4986 * not zero but it's faster not to add a "if (remainder)"
4987 * branch.
4989 *position = vaddr;
4991 return i ? i : err;
4994 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4997 * implement this.
4999 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5000 #endif
5002 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5003 unsigned long address, unsigned long end, pgprot_t newprot)
5005 struct mm_struct *mm = vma->vm_mm;
5006 unsigned long start = address;
5007 pte_t *ptep;
5008 pte_t pte;
5009 struct hstate *h = hstate_vma(vma);
5010 unsigned long pages = 0;
5011 bool shared_pmd = false;
5012 struct mmu_notifier_range range;
5015 * In the case of shared PMDs, the area to flush could be beyond
5016 * start/end. Set range.start/range.end to cover the maximum possible
5017 * range if PMD sharing is possible.
5019 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5020 0, vma, mm, start, end);
5021 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5023 BUG_ON(address >= end);
5024 flush_cache_range(vma, range.start, range.end);
5026 mmu_notifier_invalidate_range_start(&range);
5027 i_mmap_lock_write(vma->vm_file->f_mapping);
5028 for (; address < end; address += huge_page_size(h)) {
5029 spinlock_t *ptl;
5030 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5031 if (!ptep)
5032 continue;
5033 ptl = huge_pte_lock(h, mm, ptep);
5034 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5035 pages++;
5036 spin_unlock(ptl);
5037 shared_pmd = true;
5038 continue;
5040 pte = huge_ptep_get(ptep);
5041 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5042 spin_unlock(ptl);
5043 continue;
5045 if (unlikely(is_hugetlb_entry_migration(pte))) {
5046 swp_entry_t entry = pte_to_swp_entry(pte);
5048 if (is_write_migration_entry(entry)) {
5049 pte_t newpte;
5051 make_migration_entry_read(&entry);
5052 newpte = swp_entry_to_pte(entry);
5053 set_huge_swap_pte_at(mm, address, ptep,
5054 newpte, huge_page_size(h));
5055 pages++;
5057 spin_unlock(ptl);
5058 continue;
5060 if (!huge_pte_none(pte)) {
5061 pte_t old_pte;
5063 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5064 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5065 pte = arch_make_huge_pte(pte, vma, NULL, 0);
5066 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5067 pages++;
5069 spin_unlock(ptl);
5072 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073 * may have cleared our pud entry and done put_page on the page table:
5074 * once we release i_mmap_rwsem, another task can do the final put_page
5075 * and that page table be reused and filled with junk. If we actually
5076 * did unshare a page of pmds, flush the range corresponding to the pud.
5078 if (shared_pmd)
5079 flush_hugetlb_tlb_range(vma, range.start, range.end);
5080 else
5081 flush_hugetlb_tlb_range(vma, start, end);
5083 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084 * page table protection not changing it to point to a new page.
5086 * See Documentation/vm/mmu_notifier.rst
5088 i_mmap_unlock_write(vma->vm_file->f_mapping);
5089 mmu_notifier_invalidate_range_end(&range);
5091 return pages << h->order;
5094 int hugetlb_reserve_pages(struct inode *inode,
5095 long from, long to,
5096 struct vm_area_struct *vma,
5097 vm_flags_t vm_flags)
5099 long ret, chg, add = -1;
5100 struct hstate *h = hstate_inode(inode);
5101 struct hugepage_subpool *spool = subpool_inode(inode);
5102 struct resv_map *resv_map;
5103 struct hugetlb_cgroup *h_cg = NULL;
5104 long gbl_reserve, regions_needed = 0;
5106 /* This should never happen */
5107 if (from > to) {
5108 VM_WARN(1, "%s called with a negative range\n", __func__);
5109 return -EINVAL;
5113 * Only apply hugepage reservation if asked. At fault time, an
5114 * attempt will be made for VM_NORESERVE to allocate a page
5115 * without using reserves
5117 if (vm_flags & VM_NORESERVE)
5118 return 0;
5121 * Shared mappings base their reservation on the number of pages that
5122 * are already allocated on behalf of the file. Private mappings need
5123 * to reserve the full area even if read-only as mprotect() may be
5124 * called to make the mapping read-write. Assume !vma is a shm mapping
5126 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5128 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129 * called for inodes for which resv_maps were created (see
5130 * hugetlbfs_get_inode).
5132 resv_map = inode_resv_map(inode);
5134 chg = region_chg(resv_map, from, to, &regions_needed);
5136 } else {
5137 /* Private mapping. */
5138 resv_map = resv_map_alloc();
5139 if (!resv_map)
5140 return -ENOMEM;
5142 chg = to - from;
5144 set_vma_resv_map(vma, resv_map);
5145 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5148 if (chg < 0) {
5149 ret = chg;
5150 goto out_err;
5153 ret = hugetlb_cgroup_charge_cgroup_rsvd(
5154 hstate_index(h), chg * pages_per_huge_page(h), &h_cg);
5156 if (ret < 0) {
5157 ret = -ENOMEM;
5158 goto out_err;
5161 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5162 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5163 * of the resv_map.
5165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5169 * There must be enough pages in the subpool for the mapping. If
5170 * the subpool has a minimum size, there may be some global
5171 * reservations already in place (gbl_reserve).
5173 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5174 if (gbl_reserve < 0) {
5175 ret = -ENOSPC;
5176 goto out_uncharge_cgroup;
5180 * Check enough hugepages are available for the reservation.
5181 * Hand the pages back to the subpool if there are not
5183 ret = hugetlb_acct_memory(h, gbl_reserve);
5184 if (ret < 0) {
5185 goto out_put_pages;
5189 * Account for the reservations made. Shared mappings record regions
5190 * that have reservations as they are shared by multiple VMAs.
5191 * When the last VMA disappears, the region map says how much
5192 * the reservation was and the page cache tells how much of
5193 * the reservation was consumed. Private mappings are per-VMA and
5194 * only the consumed reservations are tracked. When the VMA
5195 * disappears, the original reservation is the VMA size and the
5196 * consumed reservations are stored in the map. Hence, nothing
5197 * else has to be done for private mappings here
5199 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5200 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5202 if (unlikely(add < 0)) {
5203 hugetlb_acct_memory(h, -gbl_reserve);
5204 goto out_put_pages;
5205 } else if (unlikely(chg > add)) {
5207 * pages in this range were added to the reserve
5208 * map between region_chg and region_add. This
5209 * indicates a race with alloc_huge_page. Adjust
5210 * the subpool and reserve counts modified above
5211 * based on the difference.
5213 long rsv_adjust;
5215 hugetlb_cgroup_uncharge_cgroup_rsvd(
5216 hstate_index(h),
5217 (chg - add) * pages_per_huge_page(h), h_cg);
5219 rsv_adjust = hugepage_subpool_put_pages(spool,
5220 chg - add);
5221 hugetlb_acct_memory(h, -rsv_adjust);
5224 return 0;
5225 out_put_pages:
5226 /* put back original number of pages, chg */
5227 (void)hugepage_subpool_put_pages(spool, chg);
5228 out_uncharge_cgroup:
5229 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5230 chg * pages_per_huge_page(h), h_cg);
5231 out_err:
5232 if (!vma || vma->vm_flags & VM_MAYSHARE)
5233 /* Only call region_abort if the region_chg succeeded but the
5234 * region_add failed or didn't run.
5236 if (chg >= 0 && add < 0)
5237 region_abort(resv_map, from, to, regions_needed);
5238 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5239 kref_put(&resv_map->refs, resv_map_release);
5240 return ret;
5243 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5244 long freed)
5246 struct hstate *h = hstate_inode(inode);
5247 struct resv_map *resv_map = inode_resv_map(inode);
5248 long chg = 0;
5249 struct hugepage_subpool *spool = subpool_inode(inode);
5250 long gbl_reserve;
5253 * Since this routine can be called in the evict inode path for all
5254 * hugetlbfs inodes, resv_map could be NULL.
5256 if (resv_map) {
5257 chg = region_del(resv_map, start, end);
5259 * region_del() can fail in the rare case where a region
5260 * must be split and another region descriptor can not be
5261 * allocated. If end == LONG_MAX, it will not fail.
5263 if (chg < 0)
5264 return chg;
5267 spin_lock(&inode->i_lock);
5268 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5269 spin_unlock(&inode->i_lock);
5272 * If the subpool has a minimum size, the number of global
5273 * reservations to be released may be adjusted.
5275 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5276 hugetlb_acct_memory(h, -gbl_reserve);
5278 return 0;
5281 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5283 struct vm_area_struct *vma,
5284 unsigned long addr, pgoff_t idx)
5286 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5287 svma->vm_start;
5288 unsigned long sbase = saddr & PUD_MASK;
5289 unsigned long s_end = sbase + PUD_SIZE;
5291 /* Allow segments to share if only one is marked locked */
5292 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5293 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5296 * match the virtual addresses, permission and the alignment of the
5297 * page table page.
5299 if (pmd_index(addr) != pmd_index(saddr) ||
5300 vm_flags != svm_flags ||
5301 sbase < svma->vm_start || svma->vm_end < s_end)
5302 return 0;
5304 return saddr;
5307 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5309 unsigned long base = addr & PUD_MASK;
5310 unsigned long end = base + PUD_SIZE;
5313 * check on proper vm_flags and page table alignment
5315 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5316 return true;
5317 return false;
5321 * Determine if start,end range within vma could be mapped by shared pmd.
5322 * If yes, adjust start and end to cover range associated with possible
5323 * shared pmd mappings.
5325 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5326 unsigned long *start, unsigned long *end)
5328 unsigned long a_start, a_end;
5330 if (!(vma->vm_flags & VM_MAYSHARE))
5331 return;
5333 /* Extend the range to be PUD aligned for a worst case scenario */
5334 a_start = ALIGN_DOWN(*start, PUD_SIZE);
5335 a_end = ALIGN(*end, PUD_SIZE);
5338 * Intersect the range with the vma range, since pmd sharing won't be
5339 * across vma after all
5341 *start = max(vma->vm_start, a_start);
5342 *end = min(vma->vm_end, a_end);
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
5349 * code much cleaner.
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space. This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
5356 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5358 struct vm_area_struct *vma = find_vma(mm, addr);
5359 struct address_space *mapping = vma->vm_file->f_mapping;
5360 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5361 vma->vm_pgoff;
5362 struct vm_area_struct *svma;
5363 unsigned long saddr;
5364 pte_t *spte = NULL;
5365 pte_t *pte;
5366 spinlock_t *ptl;
5368 if (!vma_shareable(vma, addr))
5369 return (pte_t *)pmd_alloc(mm, pud, addr);
5371 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5372 if (svma == vma)
5373 continue;
5375 saddr = page_table_shareable(svma, vma, addr, idx);
5376 if (saddr) {
5377 spte = huge_pte_offset(svma->vm_mm, saddr,
5378 vma_mmu_pagesize(svma));
5379 if (spte) {
5380 get_page(virt_to_page(spte));
5381 break;
5386 if (!spte)
5387 goto out;
5389 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5390 if (pud_none(*pud)) {
5391 pud_populate(mm, pud,
5392 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5393 mm_inc_nr_pmds(mm);
5394 } else {
5395 put_page(virt_to_page(spte));
5397 spin_unlock(ptl);
5398 out:
5399 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5400 return pte;
5404 * unmap huge page backed by shared pte.
5406 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
5412 * returns: 1 successfully unmapped a shared pte page
5413 * 0 the underlying pte page is not shared, or it is the last user
5415 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5416 unsigned long *addr, pte_t *ptep)
5418 pgd_t *pgd = pgd_offset(mm, *addr);
5419 p4d_t *p4d = p4d_offset(pgd, *addr);
5420 pud_t *pud = pud_offset(p4d, *addr);
5422 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5423 BUG_ON(page_count(virt_to_page(ptep)) == 0);
5424 if (page_count(virt_to_page(ptep)) == 1)
5425 return 0;
5427 pud_clear(pud);
5428 put_page(virt_to_page(ptep));
5429 mm_dec_nr_pmds(mm);
5430 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5431 return 1;
5433 #define want_pmd_share() (1)
5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5437 return NULL;
5440 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5441 unsigned long *addr, pte_t *ptep)
5443 return 0;
5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5447 unsigned long *start, unsigned long *end)
5450 #define want_pmd_share() (0)
5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454 pte_t *huge_pte_alloc(struct mm_struct *mm,
5455 unsigned long addr, unsigned long sz)
5457 pgd_t *pgd;
5458 p4d_t *p4d;
5459 pud_t *pud;
5460 pte_t *pte = NULL;
5462 pgd = pgd_offset(mm, addr);
5463 p4d = p4d_alloc(mm, pgd, addr);
5464 if (!p4d)
5465 return NULL;
5466 pud = pud_alloc(mm, p4d, addr);
5467 if (pud) {
5468 if (sz == PUD_SIZE) {
5469 pte = (pte_t *)pud;
5470 } else {
5471 BUG_ON(sz != PMD_SIZE);
5472 if (want_pmd_share() && pud_none(*pud))
5473 pte = huge_pmd_share(mm, addr, pud);
5474 else
5475 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5478 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5480 return pte;
5484 * huge_pte_offset() - Walk the page table to resolve the hugepage
5485 * entry at address @addr
5487 * Return: Pointer to page table entry (PUD or PMD) for
5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489 * size @sz doesn't match the hugepage size at this level of the page
5490 * table.
5492 pte_t *huge_pte_offset(struct mm_struct *mm,
5493 unsigned long addr, unsigned long sz)
5495 pgd_t *pgd;
5496 p4d_t *p4d;
5497 pud_t *pud;
5498 pmd_t *pmd;
5500 pgd = pgd_offset(mm, addr);
5501 if (!pgd_present(*pgd))
5502 return NULL;
5503 p4d = p4d_offset(pgd, addr);
5504 if (!p4d_present(*p4d))
5505 return NULL;
5507 pud = pud_offset(p4d, addr);
5508 if (sz == PUD_SIZE)
5509 /* must be pud huge, non-present or none */
5510 return (pte_t *)pud;
5511 if (!pud_present(*pud))
5512 return NULL;
5513 /* must have a valid entry and size to go further */
5515 pmd = pmd_offset(pud, addr);
5516 /* must be pmd huge, non-present or none */
5517 return (pte_t *)pmd;
5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5523 * These functions are overwritable if your architecture needs its own
5524 * behavior.
5526 struct page * __weak
5527 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5528 int write)
5530 return ERR_PTR(-EINVAL);
5533 struct page * __weak
5534 follow_huge_pd(struct vm_area_struct *vma,
5535 unsigned long address, hugepd_t hpd, int flags, int pdshift)
5537 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5538 return NULL;
5541 struct page * __weak
5542 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5543 pmd_t *pmd, int flags)
5545 struct page *page = NULL;
5546 spinlock_t *ptl;
5547 pte_t pte;
5549 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5551 (FOLL_PIN | FOLL_GET)))
5552 return NULL;
5554 retry:
5555 ptl = pmd_lockptr(mm, pmd);
5556 spin_lock(ptl);
5558 * make sure that the address range covered by this pmd is not
5559 * unmapped from other threads.
5561 if (!pmd_huge(*pmd))
5562 goto out;
5563 pte = huge_ptep_get((pte_t *)pmd);
5564 if (pte_present(pte)) {
5565 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5567 * try_grab_page() should always succeed here, because: a) we
5568 * hold the pmd (ptl) lock, and b) we've just checked that the
5569 * huge pmd (head) page is present in the page tables. The ptl
5570 * prevents the head page and tail pages from being rearranged
5571 * in any way. So this page must be available at this point,
5572 * unless the page refcount overflowed:
5574 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5575 page = NULL;
5576 goto out;
5578 } else {
5579 if (is_hugetlb_entry_migration(pte)) {
5580 spin_unlock(ptl);
5581 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5582 goto retry;
5585 * hwpoisoned entry is treated as no_page_table in
5586 * follow_page_mask().
5589 out:
5590 spin_unlock(ptl);
5591 return page;
5594 struct page * __weak
5595 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5596 pud_t *pud, int flags)
5598 if (flags & (FOLL_GET | FOLL_PIN))
5599 return NULL;
5601 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5604 struct page * __weak
5605 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5607 if (flags & (FOLL_GET | FOLL_PIN))
5608 return NULL;
5610 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5613 bool isolate_huge_page(struct page *page, struct list_head *list)
5615 bool ret = true;
5617 VM_BUG_ON_PAGE(!PageHead(page), page);
5618 spin_lock(&hugetlb_lock);
5619 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
5620 ret = false;
5621 goto unlock;
5623 clear_page_huge_active(page);
5624 list_move_tail(&page->lru, list);
5625 unlock:
5626 spin_unlock(&hugetlb_lock);
5627 return ret;
5630 void putback_active_hugepage(struct page *page)
5632 VM_BUG_ON_PAGE(!PageHead(page), page);
5633 spin_lock(&hugetlb_lock);
5634 set_page_huge_active(page);
5635 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5636 spin_unlock(&hugetlb_lock);
5637 put_page(page);
5640 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5642 struct hstate *h = page_hstate(oldpage);
5644 hugetlb_cgroup_migrate(oldpage, newpage);
5645 set_page_owner_migrate_reason(newpage, reason);
5648 * transfer temporary state of the new huge page. This is
5649 * reverse to other transitions because the newpage is going to
5650 * be final while the old one will be freed so it takes over
5651 * the temporary status.
5653 * Also note that we have to transfer the per-node surplus state
5654 * here as well otherwise the global surplus count will not match
5655 * the per-node's.
5657 if (PageHugeTemporary(newpage)) {
5658 int old_nid = page_to_nid(oldpage);
5659 int new_nid = page_to_nid(newpage);
5661 SetPageHugeTemporary(oldpage);
5662 ClearPageHugeTemporary(newpage);
5664 spin_lock(&hugetlb_lock);
5665 if (h->surplus_huge_pages_node[old_nid]) {
5666 h->surplus_huge_pages_node[old_nid]--;
5667 h->surplus_huge_pages_node[new_nid]++;
5669 spin_unlock(&hugetlb_lock);
5673 #ifdef CONFIG_CMA
5674 static bool cma_reserve_called __initdata;
5676 static int __init cmdline_parse_hugetlb_cma(char *p)
5678 hugetlb_cma_size = memparse(p, &p);
5679 return 0;
5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5684 void __init hugetlb_cma_reserve(int order)
5686 unsigned long size, reserved, per_node;
5687 int nid;
5689 cma_reserve_called = true;
5691 if (!hugetlb_cma_size)
5692 return;
5694 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5695 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696 (PAGE_SIZE << order) / SZ_1M);
5697 return;
5701 * If 3 GB area is requested on a machine with 4 numa nodes,
5702 * let's allocate 1 GB on first three nodes and ignore the last one.
5704 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5705 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5708 reserved = 0;
5709 for_each_node_state(nid, N_ONLINE) {
5710 int res;
5711 char name[20];
5713 size = min(per_node, hugetlb_cma_size - reserved);
5714 size = round_up(size, PAGE_SIZE << order);
5716 snprintf(name, 20, "hugetlb%d", nid);
5717 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5718 0, false, name,
5719 &hugetlb_cma[nid], nid);
5720 if (res) {
5721 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5722 res, nid);
5723 continue;
5726 reserved += size;
5727 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5728 size / SZ_1M, nid);
5730 if (reserved >= hugetlb_cma_size)
5731 break;
5735 void __init hugetlb_cma_check(void)
5737 if (!hugetlb_cma_size || cma_reserve_called)
5738 return;
5740 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5743 #endif /* CONFIG_CMA */