1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
35 #include <asm/pgalloc.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
46 int hugetlb_max_hstate __read_mostly
;
47 unsigned int default_hstate_idx
;
48 struct hstate hstates
[HUGE_MAX_HSTATE
];
51 static struct cma
*hugetlb_cma
[MAX_NUMNODES
];
53 static unsigned long hugetlb_cma_size __initdata
;
56 * Minimum page order among possible hugepage sizes, set to a proper value
59 static unsigned int minimum_order __read_mostly
= UINT_MAX
;
61 __initdata
LIST_HEAD(huge_boot_pages
);
63 /* for command line parsing */
64 static struct hstate
* __initdata parsed_hstate
;
65 static unsigned long __initdata default_hstate_max_huge_pages
;
66 static bool __initdata parsed_valid_hugepagesz
= true;
67 static bool __initdata parsed_default_hugepagesz
;
70 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71 * free_huge_pages, and surplus_huge_pages.
73 DEFINE_SPINLOCK(hugetlb_lock
);
76 * Serializes faults on the same logical page. This is used to
77 * prevent spurious OOMs when the hugepage pool is fully utilized.
79 static int num_fault_mutexes
;
80 struct mutex
*hugetlb_fault_mutex_table ____cacheline_aligned_in_smp
;
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate
*h
, long delta
);
85 static inline void unlock_or_release_subpool(struct hugepage_subpool
*spool
)
87 bool free
= (spool
->count
== 0) && (spool
->used_hpages
== 0);
89 spin_unlock(&spool
->lock
);
91 /* If no pages are used, and no other handles to the subpool
92 * remain, give up any reservations based on minimum size and
95 if (spool
->min_hpages
!= -1)
96 hugetlb_acct_memory(spool
->hstate
,
102 struct hugepage_subpool
*hugepage_new_subpool(struct hstate
*h
, long max_hpages
,
105 struct hugepage_subpool
*spool
;
107 spool
= kzalloc(sizeof(*spool
), GFP_KERNEL
);
111 spin_lock_init(&spool
->lock
);
113 spool
->max_hpages
= max_hpages
;
115 spool
->min_hpages
= min_hpages
;
117 if (min_hpages
!= -1 && hugetlb_acct_memory(h
, min_hpages
)) {
121 spool
->rsv_hpages
= min_hpages
;
126 void hugepage_put_subpool(struct hugepage_subpool
*spool
)
128 spin_lock(&spool
->lock
);
129 BUG_ON(!spool
->count
);
131 unlock_or_release_subpool(spool
);
135 * Subpool accounting for allocating and reserving pages.
136 * Return -ENOMEM if there are not enough resources to satisfy the
137 * request. Otherwise, return the number of pages by which the
138 * global pools must be adjusted (upward). The returned value may
139 * only be different than the passed value (delta) in the case where
140 * a subpool minimum size must be maintained.
142 static long hugepage_subpool_get_pages(struct hugepage_subpool
*spool
,
150 spin_lock(&spool
->lock
);
152 if (spool
->max_hpages
!= -1) { /* maximum size accounting */
153 if ((spool
->used_hpages
+ delta
) <= spool
->max_hpages
)
154 spool
->used_hpages
+= delta
;
161 /* minimum size accounting */
162 if (spool
->min_hpages
!= -1 && spool
->rsv_hpages
) {
163 if (delta
> spool
->rsv_hpages
) {
165 * Asking for more reserves than those already taken on
166 * behalf of subpool. Return difference.
168 ret
= delta
- spool
->rsv_hpages
;
169 spool
->rsv_hpages
= 0;
171 ret
= 0; /* reserves already accounted for */
172 spool
->rsv_hpages
-= delta
;
177 spin_unlock(&spool
->lock
);
182 * Subpool accounting for freeing and unreserving pages.
183 * Return the number of global page reservations that must be dropped.
184 * The return value may only be different than the passed value (delta)
185 * in the case where a subpool minimum size must be maintained.
187 static long hugepage_subpool_put_pages(struct hugepage_subpool
*spool
,
195 spin_lock(&spool
->lock
);
197 if (spool
->max_hpages
!= -1) /* maximum size accounting */
198 spool
->used_hpages
-= delta
;
200 /* minimum size accounting */
201 if (spool
->min_hpages
!= -1 && spool
->used_hpages
< spool
->min_hpages
) {
202 if (spool
->rsv_hpages
+ delta
<= spool
->min_hpages
)
205 ret
= spool
->rsv_hpages
+ delta
- spool
->min_hpages
;
207 spool
->rsv_hpages
+= delta
;
208 if (spool
->rsv_hpages
> spool
->min_hpages
)
209 spool
->rsv_hpages
= spool
->min_hpages
;
213 * If hugetlbfs_put_super couldn't free spool due to an outstanding
214 * quota reference, free it now.
216 unlock_or_release_subpool(spool
);
221 static inline struct hugepage_subpool
*subpool_inode(struct inode
*inode
)
223 return HUGETLBFS_SB(inode
->i_sb
)->spool
;
226 static inline struct hugepage_subpool
*subpool_vma(struct vm_area_struct
*vma
)
228 return subpool_inode(file_inode(vma
->vm_file
));
231 /* Helper that removes a struct file_region from the resv_map cache and returns
234 static struct file_region
*
235 get_file_region_entry_from_cache(struct resv_map
*resv
, long from
, long to
)
237 struct file_region
*nrg
= NULL
;
239 VM_BUG_ON(resv
->region_cache_count
<= 0);
241 resv
->region_cache_count
--;
242 nrg
= list_first_entry(&resv
->region_cache
, struct file_region
, link
);
244 list_del(&nrg
->link
);
252 static void copy_hugetlb_cgroup_uncharge_info(struct file_region
*nrg
,
253 struct file_region
*rg
)
255 #ifdef CONFIG_CGROUP_HUGETLB
256 nrg
->reservation_counter
= rg
->reservation_counter
;
263 /* Helper that records hugetlb_cgroup uncharge info. */
264 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup
*h_cg
,
266 struct resv_map
*resv
,
267 struct file_region
*nrg
)
269 #ifdef CONFIG_CGROUP_HUGETLB
271 nrg
->reservation_counter
=
272 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
273 nrg
->css
= &h_cg
->css
;
274 if (!resv
->pages_per_hpage
)
275 resv
->pages_per_hpage
= pages_per_huge_page(h
);
276 /* pages_per_hpage should be the same for all entries in
279 VM_BUG_ON(resv
->pages_per_hpage
!= pages_per_huge_page(h
));
281 nrg
->reservation_counter
= NULL
;
287 static bool has_same_uncharge_info(struct file_region
*rg
,
288 struct file_region
*org
)
290 #ifdef CONFIG_CGROUP_HUGETLB
292 rg
->reservation_counter
== org
->reservation_counter
&&
300 static void coalesce_file_region(struct resv_map
*resv
, struct file_region
*rg
)
302 struct file_region
*nrg
= NULL
, *prg
= NULL
;
304 prg
= list_prev_entry(rg
, link
);
305 if (&prg
->link
!= &resv
->regions
&& prg
->to
== rg
->from
&&
306 has_same_uncharge_info(prg
, rg
)) {
312 coalesce_file_region(resv
, prg
);
316 nrg
= list_next_entry(rg
, link
);
317 if (&nrg
->link
!= &resv
->regions
&& nrg
->from
== rg
->to
&&
318 has_same_uncharge_info(nrg
, rg
)) {
319 nrg
->from
= rg
->from
;
324 coalesce_file_region(resv
, nrg
);
329 /* Must be called with resv->lock held. Calling this with count_only == true
330 * will count the number of pages to be added but will not modify the linked
331 * list. If regions_needed != NULL and count_only == true, then regions_needed
332 * will indicate the number of file_regions needed in the cache to carry out to
333 * add the regions for this range.
335 static long add_reservation_in_range(struct resv_map
*resv
, long f
, long t
,
336 struct hugetlb_cgroup
*h_cg
,
337 struct hstate
*h
, long *regions_needed
,
341 struct list_head
*head
= &resv
->regions
;
342 long last_accounted_offset
= f
;
343 struct file_region
*rg
= NULL
, *trg
= NULL
, *nrg
= NULL
;
348 /* In this loop, we essentially handle an entry for the range
349 * [last_accounted_offset, rg->from), at every iteration, with some
352 list_for_each_entry_safe(rg
, trg
, head
, link
) {
353 /* Skip irrelevant regions that start before our range. */
355 /* If this region ends after the last accounted offset,
356 * then we need to update last_accounted_offset.
358 if (rg
->to
> last_accounted_offset
)
359 last_accounted_offset
= rg
->to
;
363 /* When we find a region that starts beyond our range, we've
369 /* Add an entry for last_accounted_offset -> rg->from, and
370 * update last_accounted_offset.
372 if (rg
->from
> last_accounted_offset
) {
373 add
+= rg
->from
- last_accounted_offset
;
375 nrg
= get_file_region_entry_from_cache(
376 resv
, last_accounted_offset
, rg
->from
);
377 record_hugetlb_cgroup_uncharge_info(h_cg
, h
,
379 list_add(&nrg
->link
, rg
->link
.prev
);
380 coalesce_file_region(resv
, nrg
);
381 } else if (regions_needed
)
382 *regions_needed
+= 1;
385 last_accounted_offset
= rg
->to
;
388 /* Handle the case where our range extends beyond
389 * last_accounted_offset.
391 if (last_accounted_offset
< t
) {
392 add
+= t
- last_accounted_offset
;
394 nrg
= get_file_region_entry_from_cache(
395 resv
, last_accounted_offset
, t
);
396 record_hugetlb_cgroup_uncharge_info(h_cg
, h
, resv
, nrg
);
397 list_add(&nrg
->link
, rg
->link
.prev
);
398 coalesce_file_region(resv
, nrg
);
399 } else if (regions_needed
)
400 *regions_needed
+= 1;
407 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
409 static int allocate_file_region_entries(struct resv_map
*resv
,
411 __must_hold(&resv
->lock
)
413 struct list_head allocated_regions
;
414 int to_allocate
= 0, i
= 0;
415 struct file_region
*trg
= NULL
, *rg
= NULL
;
417 VM_BUG_ON(regions_needed
< 0);
419 INIT_LIST_HEAD(&allocated_regions
);
422 * Check for sufficient descriptors in the cache to accommodate
423 * the number of in progress add operations plus regions_needed.
425 * This is a while loop because when we drop the lock, some other call
426 * to region_add or region_del may have consumed some region_entries,
427 * so we keep looping here until we finally have enough entries for
428 * (adds_in_progress + regions_needed).
430 while (resv
->region_cache_count
<
431 (resv
->adds_in_progress
+ regions_needed
)) {
432 to_allocate
= resv
->adds_in_progress
+ regions_needed
-
433 resv
->region_cache_count
;
435 /* At this point, we should have enough entries in the cache
436 * for all the existings adds_in_progress. We should only be
437 * needing to allocate for regions_needed.
439 VM_BUG_ON(resv
->region_cache_count
< resv
->adds_in_progress
);
441 spin_unlock(&resv
->lock
);
442 for (i
= 0; i
< to_allocate
; i
++) {
443 trg
= kmalloc(sizeof(*trg
), GFP_KERNEL
);
446 list_add(&trg
->link
, &allocated_regions
);
449 spin_lock(&resv
->lock
);
451 list_for_each_entry_safe(rg
, trg
, &allocated_regions
, link
) {
453 list_add(&rg
->link
, &resv
->region_cache
);
454 resv
->region_cache_count
++;
461 list_for_each_entry_safe(rg
, trg
, &allocated_regions
, link
) {
469 * Add the huge page range represented by [f, t) to the reserve
470 * map. Regions will be taken from the cache to fill in this range.
471 * Sufficient regions should exist in the cache due to the previous
472 * call to region_chg with the same range, but in some cases the cache will not
473 * have sufficient entries due to races with other code doing region_add or
474 * region_del. The extra needed entries will be allocated.
476 * regions_needed is the out value provided by a previous call to region_chg.
478 * Return the number of new huge pages added to the map. This number is greater
479 * than or equal to zero. If file_region entries needed to be allocated for
480 * this operation and we were not able to allocate, it returns -ENOMEM.
481 * region_add of regions of length 1 never allocate file_regions and cannot
482 * fail; region_chg will always allocate at least 1 entry and a region_add for
483 * 1 page will only require at most 1 entry.
485 static long region_add(struct resv_map
*resv
, long f
, long t
,
486 long in_regions_needed
, struct hstate
*h
,
487 struct hugetlb_cgroup
*h_cg
)
489 long add
= 0, actual_regions_needed
= 0;
491 spin_lock(&resv
->lock
);
494 /* Count how many regions are actually needed to execute this add. */
495 add_reservation_in_range(resv
, f
, t
, NULL
, NULL
, &actual_regions_needed
,
499 * Check for sufficient descriptors in the cache to accommodate
500 * this add operation. Note that actual_regions_needed may be greater
501 * than in_regions_needed, as the resv_map may have been modified since
502 * the region_chg call. In this case, we need to make sure that we
503 * allocate extra entries, such that we have enough for all the
504 * existing adds_in_progress, plus the excess needed for this
507 if (actual_regions_needed
> in_regions_needed
&&
508 resv
->region_cache_count
<
509 resv
->adds_in_progress
+
510 (actual_regions_needed
- in_regions_needed
)) {
511 /* region_add operation of range 1 should never need to
512 * allocate file_region entries.
514 VM_BUG_ON(t
- f
<= 1);
516 if (allocate_file_region_entries(
517 resv
, actual_regions_needed
- in_regions_needed
)) {
524 add
= add_reservation_in_range(resv
, f
, t
, h_cg
, h
, NULL
, false);
526 resv
->adds_in_progress
-= in_regions_needed
;
528 spin_unlock(&resv
->lock
);
534 * Examine the existing reserve map and determine how many
535 * huge pages in the specified range [f, t) are NOT currently
536 * represented. This routine is called before a subsequent
537 * call to region_add that will actually modify the reserve
538 * map to add the specified range [f, t). region_chg does
539 * not change the number of huge pages represented by the
540 * map. A number of new file_region structures is added to the cache as a
541 * placeholder, for the subsequent region_add call to use. At least 1
542 * file_region structure is added.
544 * out_regions_needed is the number of regions added to the
545 * resv->adds_in_progress. This value needs to be provided to a follow up call
546 * to region_add or region_abort for proper accounting.
548 * Returns the number of huge pages that need to be added to the existing
549 * reservation map for the range [f, t). This number is greater or equal to
550 * zero. -ENOMEM is returned if a new file_region structure or cache entry
551 * is needed and can not be allocated.
553 static long region_chg(struct resv_map
*resv
, long f
, long t
,
554 long *out_regions_needed
)
558 spin_lock(&resv
->lock
);
560 /* Count how many hugepages in this range are NOT respresented. */
561 chg
= add_reservation_in_range(resv
, f
, t
, NULL
, NULL
,
562 out_regions_needed
, true);
564 if (*out_regions_needed
== 0)
565 *out_regions_needed
= 1;
567 if (allocate_file_region_entries(resv
, *out_regions_needed
))
570 resv
->adds_in_progress
+= *out_regions_needed
;
572 spin_unlock(&resv
->lock
);
577 * Abort the in progress add operation. The adds_in_progress field
578 * of the resv_map keeps track of the operations in progress between
579 * calls to region_chg and region_add. Operations are sometimes
580 * aborted after the call to region_chg. In such cases, region_abort
581 * is called to decrement the adds_in_progress counter. regions_needed
582 * is the value returned by the region_chg call, it is used to decrement
583 * the adds_in_progress counter.
585 * NOTE: The range arguments [f, t) are not needed or used in this
586 * routine. They are kept to make reading the calling code easier as
587 * arguments will match the associated region_chg call.
589 static void region_abort(struct resv_map
*resv
, long f
, long t
,
592 spin_lock(&resv
->lock
);
593 VM_BUG_ON(!resv
->region_cache_count
);
594 resv
->adds_in_progress
-= regions_needed
;
595 spin_unlock(&resv
->lock
);
599 * Delete the specified range [f, t) from the reserve map. If the
600 * t parameter is LONG_MAX, this indicates that ALL regions after f
601 * should be deleted. Locate the regions which intersect [f, t)
602 * and either trim, delete or split the existing regions.
604 * Returns the number of huge pages deleted from the reserve map.
605 * In the normal case, the return value is zero or more. In the
606 * case where a region must be split, a new region descriptor must
607 * be allocated. If the allocation fails, -ENOMEM will be returned.
608 * NOTE: If the parameter t == LONG_MAX, then we will never split
609 * a region and possibly return -ENOMEM. Callers specifying
610 * t == LONG_MAX do not need to check for -ENOMEM error.
612 static long region_del(struct resv_map
*resv
, long f
, long t
)
614 struct list_head
*head
= &resv
->regions
;
615 struct file_region
*rg
, *trg
;
616 struct file_region
*nrg
= NULL
;
620 spin_lock(&resv
->lock
);
621 list_for_each_entry_safe(rg
, trg
, head
, link
) {
623 * Skip regions before the range to be deleted. file_region
624 * ranges are normally of the form [from, to). However, there
625 * may be a "placeholder" entry in the map which is of the form
626 * (from, to) with from == to. Check for placeholder entries
627 * at the beginning of the range to be deleted.
629 if (rg
->to
<= f
&& (rg
->to
!= rg
->from
|| rg
->to
!= f
))
635 if (f
> rg
->from
&& t
< rg
->to
) { /* Must split region */
637 * Check for an entry in the cache before dropping
638 * lock and attempting allocation.
641 resv
->region_cache_count
> resv
->adds_in_progress
) {
642 nrg
= list_first_entry(&resv
->region_cache
,
645 list_del(&nrg
->link
);
646 resv
->region_cache_count
--;
650 spin_unlock(&resv
->lock
);
651 nrg
= kmalloc(sizeof(*nrg
), GFP_KERNEL
);
659 /* New entry for end of split region */
663 copy_hugetlb_cgroup_uncharge_info(nrg
, rg
);
665 INIT_LIST_HEAD(&nrg
->link
);
667 /* Original entry is trimmed */
670 hugetlb_cgroup_uncharge_file_region(
671 resv
, rg
, nrg
->to
- nrg
->from
);
673 list_add(&nrg
->link
, &rg
->link
);
678 if (f
<= rg
->from
&& t
>= rg
->to
) { /* Remove entire region */
679 del
+= rg
->to
- rg
->from
;
680 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
687 if (f
<= rg
->from
) { /* Trim beginning of region */
691 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
693 } else { /* Trim end of region */
697 hugetlb_cgroup_uncharge_file_region(resv
, rg
,
702 spin_unlock(&resv
->lock
);
708 * A rare out of memory error was encountered which prevented removal of
709 * the reserve map region for a page. The huge page itself was free'ed
710 * and removed from the page cache. This routine will adjust the subpool
711 * usage count, and the global reserve count if needed. By incrementing
712 * these counts, the reserve map entry which could not be deleted will
713 * appear as a "reserved" entry instead of simply dangling with incorrect
716 void hugetlb_fix_reserve_counts(struct inode
*inode
)
718 struct hugepage_subpool
*spool
= subpool_inode(inode
);
721 rsv_adjust
= hugepage_subpool_get_pages(spool
, 1);
723 struct hstate
*h
= hstate_inode(inode
);
725 hugetlb_acct_memory(h
, 1);
730 * Count and return the number of huge pages in the reserve map
731 * that intersect with the range [f, t).
733 static long region_count(struct resv_map
*resv
, long f
, long t
)
735 struct list_head
*head
= &resv
->regions
;
736 struct file_region
*rg
;
739 spin_lock(&resv
->lock
);
740 /* Locate each segment we overlap with, and count that overlap. */
741 list_for_each_entry(rg
, head
, link
) {
750 seg_from
= max(rg
->from
, f
);
751 seg_to
= min(rg
->to
, t
);
753 chg
+= seg_to
- seg_from
;
755 spin_unlock(&resv
->lock
);
761 * Convert the address within this vma to the page offset within
762 * the mapping, in pagecache page units; huge pages here.
764 static pgoff_t
vma_hugecache_offset(struct hstate
*h
,
765 struct vm_area_struct
*vma
, unsigned long address
)
767 return ((address
- vma
->vm_start
) >> huge_page_shift(h
)) +
768 (vma
->vm_pgoff
>> huge_page_order(h
));
771 pgoff_t
linear_hugepage_index(struct vm_area_struct
*vma
,
772 unsigned long address
)
774 return vma_hugecache_offset(hstate_vma(vma
), vma
, address
);
776 EXPORT_SYMBOL_GPL(linear_hugepage_index
);
779 * Return the size of the pages allocated when backing a VMA. In the majority
780 * cases this will be same size as used by the page table entries.
782 unsigned long vma_kernel_pagesize(struct vm_area_struct
*vma
)
784 if (vma
->vm_ops
&& vma
->vm_ops
->pagesize
)
785 return vma
->vm_ops
->pagesize(vma
);
788 EXPORT_SYMBOL_GPL(vma_kernel_pagesize
);
791 * Return the page size being used by the MMU to back a VMA. In the majority
792 * of cases, the page size used by the kernel matches the MMU size. On
793 * architectures where it differs, an architecture-specific 'strong'
794 * version of this symbol is required.
796 __weak
unsigned long vma_mmu_pagesize(struct vm_area_struct
*vma
)
798 return vma_kernel_pagesize(vma
);
802 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
803 * bits of the reservation map pointer, which are always clear due to
806 #define HPAGE_RESV_OWNER (1UL << 0)
807 #define HPAGE_RESV_UNMAPPED (1UL << 1)
808 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
811 * These helpers are used to track how many pages are reserved for
812 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
813 * is guaranteed to have their future faults succeed.
815 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
816 * the reserve counters are updated with the hugetlb_lock held. It is safe
817 * to reset the VMA at fork() time as it is not in use yet and there is no
818 * chance of the global counters getting corrupted as a result of the values.
820 * The private mapping reservation is represented in a subtly different
821 * manner to a shared mapping. A shared mapping has a region map associated
822 * with the underlying file, this region map represents the backing file
823 * pages which have ever had a reservation assigned which this persists even
824 * after the page is instantiated. A private mapping has a region map
825 * associated with the original mmap which is attached to all VMAs which
826 * reference it, this region map represents those offsets which have consumed
827 * reservation ie. where pages have been instantiated.
829 static unsigned long get_vma_private_data(struct vm_area_struct
*vma
)
831 return (unsigned long)vma
->vm_private_data
;
834 static void set_vma_private_data(struct vm_area_struct
*vma
,
837 vma
->vm_private_data
= (void *)value
;
841 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map
*resv_map
,
842 struct hugetlb_cgroup
*h_cg
,
845 #ifdef CONFIG_CGROUP_HUGETLB
847 resv_map
->reservation_counter
= NULL
;
848 resv_map
->pages_per_hpage
= 0;
849 resv_map
->css
= NULL
;
851 resv_map
->reservation_counter
=
852 &h_cg
->rsvd_hugepage
[hstate_index(h
)];
853 resv_map
->pages_per_hpage
= pages_per_huge_page(h
);
854 resv_map
->css
= &h_cg
->css
;
859 struct resv_map
*resv_map_alloc(void)
861 struct resv_map
*resv_map
= kmalloc(sizeof(*resv_map
), GFP_KERNEL
);
862 struct file_region
*rg
= kmalloc(sizeof(*rg
), GFP_KERNEL
);
864 if (!resv_map
|| !rg
) {
870 kref_init(&resv_map
->refs
);
871 spin_lock_init(&resv_map
->lock
);
872 INIT_LIST_HEAD(&resv_map
->regions
);
874 resv_map
->adds_in_progress
= 0;
876 * Initialize these to 0. On shared mappings, 0's here indicate these
877 * fields don't do cgroup accounting. On private mappings, these will be
878 * re-initialized to the proper values, to indicate that hugetlb cgroup
879 * reservations are to be un-charged from here.
881 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, NULL
, NULL
);
883 INIT_LIST_HEAD(&resv_map
->region_cache
);
884 list_add(&rg
->link
, &resv_map
->region_cache
);
885 resv_map
->region_cache_count
= 1;
890 void resv_map_release(struct kref
*ref
)
892 struct resv_map
*resv_map
= container_of(ref
, struct resv_map
, refs
);
893 struct list_head
*head
= &resv_map
->region_cache
;
894 struct file_region
*rg
, *trg
;
896 /* Clear out any active regions before we release the map. */
897 region_del(resv_map
, 0, LONG_MAX
);
899 /* ... and any entries left in the cache */
900 list_for_each_entry_safe(rg
, trg
, head
, link
) {
905 VM_BUG_ON(resv_map
->adds_in_progress
);
910 static inline struct resv_map
*inode_resv_map(struct inode
*inode
)
913 * At inode evict time, i_mapping may not point to the original
914 * address space within the inode. This original address space
915 * contains the pointer to the resv_map. So, always use the
916 * address space embedded within the inode.
917 * The VERY common case is inode->mapping == &inode->i_data but,
918 * this may not be true for device special inodes.
920 return (struct resv_map
*)(&inode
->i_data
)->private_data
;
923 static struct resv_map
*vma_resv_map(struct vm_area_struct
*vma
)
925 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
926 if (vma
->vm_flags
& VM_MAYSHARE
) {
927 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
928 struct inode
*inode
= mapping
->host
;
930 return inode_resv_map(inode
);
933 return (struct resv_map
*)(get_vma_private_data(vma
) &
938 static void set_vma_resv_map(struct vm_area_struct
*vma
, struct resv_map
*map
)
940 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
941 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
943 set_vma_private_data(vma
, (get_vma_private_data(vma
) &
944 HPAGE_RESV_MASK
) | (unsigned long)map
);
947 static void set_vma_resv_flags(struct vm_area_struct
*vma
, unsigned long flags
)
949 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
950 VM_BUG_ON_VMA(vma
->vm_flags
& VM_MAYSHARE
, vma
);
952 set_vma_private_data(vma
, get_vma_private_data(vma
) | flags
);
955 static int is_vma_resv_set(struct vm_area_struct
*vma
, unsigned long flag
)
957 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
959 return (get_vma_private_data(vma
) & flag
) != 0;
962 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
963 void reset_vma_resv_huge_pages(struct vm_area_struct
*vma
)
965 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma
), vma
);
966 if (!(vma
->vm_flags
& VM_MAYSHARE
))
967 vma
->vm_private_data
= (void *)0;
970 /* Returns true if the VMA has associated reserve pages */
971 static bool vma_has_reserves(struct vm_area_struct
*vma
, long chg
)
973 if (vma
->vm_flags
& VM_NORESERVE
) {
975 * This address is already reserved by other process(chg == 0),
976 * so, we should decrement reserved count. Without decrementing,
977 * reserve count remains after releasing inode, because this
978 * allocated page will go into page cache and is regarded as
979 * coming from reserved pool in releasing step. Currently, we
980 * don't have any other solution to deal with this situation
981 * properly, so add work-around here.
983 if (vma
->vm_flags
& VM_MAYSHARE
&& chg
== 0)
989 /* Shared mappings always use reserves */
990 if (vma
->vm_flags
& VM_MAYSHARE
) {
992 * We know VM_NORESERVE is not set. Therefore, there SHOULD
993 * be a region map for all pages. The only situation where
994 * there is no region map is if a hole was punched via
995 * fallocate. In this case, there really are no reserves to
996 * use. This situation is indicated if chg != 0.
1005 * Only the process that called mmap() has reserves for
1008 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
)) {
1010 * Like the shared case above, a hole punch or truncate
1011 * could have been performed on the private mapping.
1012 * Examine the value of chg to determine if reserves
1013 * actually exist or were previously consumed.
1014 * Very Subtle - The value of chg comes from a previous
1015 * call to vma_needs_reserves(). The reserve map for
1016 * private mappings has different (opposite) semantics
1017 * than that of shared mappings. vma_needs_reserves()
1018 * has already taken this difference in semantics into
1019 * account. Therefore, the meaning of chg is the same
1020 * as in the shared case above. Code could easily be
1021 * combined, but keeping it separate draws attention to
1022 * subtle differences.
1033 static void enqueue_huge_page(struct hstate
*h
, struct page
*page
)
1035 int nid
= page_to_nid(page
);
1036 list_move(&page
->lru
, &h
->hugepage_freelists
[nid
]);
1037 h
->free_huge_pages
++;
1038 h
->free_huge_pages_node
[nid
]++;
1041 static struct page
*dequeue_huge_page_node_exact(struct hstate
*h
, int nid
)
1044 bool nocma
= !!(current
->flags
& PF_MEMALLOC_NOCMA
);
1046 list_for_each_entry(page
, &h
->hugepage_freelists
[nid
], lru
) {
1047 if (nocma
&& is_migrate_cma_page(page
))
1050 if (!PageHWPoison(page
))
1055 * if 'non-isolated free hugepage' not found on the list,
1056 * the allocation fails.
1058 if (&h
->hugepage_freelists
[nid
] == &page
->lru
)
1060 list_move(&page
->lru
, &h
->hugepage_activelist
);
1061 set_page_refcounted(page
);
1062 h
->free_huge_pages
--;
1063 h
->free_huge_pages_node
[nid
]--;
1067 static struct page
*dequeue_huge_page_nodemask(struct hstate
*h
, gfp_t gfp_mask
, int nid
,
1070 unsigned int cpuset_mems_cookie
;
1071 struct zonelist
*zonelist
;
1074 int node
= NUMA_NO_NODE
;
1076 zonelist
= node_zonelist(nid
, gfp_mask
);
1079 cpuset_mems_cookie
= read_mems_allowed_begin();
1080 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, gfp_zone(gfp_mask
), nmask
) {
1083 if (!cpuset_zone_allowed(zone
, gfp_mask
))
1086 * no need to ask again on the same node. Pool is node rather than
1089 if (zone_to_nid(zone
) == node
)
1091 node
= zone_to_nid(zone
);
1093 page
= dequeue_huge_page_node_exact(h
, node
);
1097 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie
)))
1103 static struct page
*dequeue_huge_page_vma(struct hstate
*h
,
1104 struct vm_area_struct
*vma
,
1105 unsigned long address
, int avoid_reserve
,
1109 struct mempolicy
*mpol
;
1111 nodemask_t
*nodemask
;
1115 * A child process with MAP_PRIVATE mappings created by their parent
1116 * have no page reserves. This check ensures that reservations are
1117 * not "stolen". The child may still get SIGKILLed
1119 if (!vma_has_reserves(vma
, chg
) &&
1120 h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1123 /* If reserves cannot be used, ensure enough pages are in the pool */
1124 if (avoid_reserve
&& h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1127 gfp_mask
= htlb_alloc_mask(h
);
1128 nid
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
1129 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, nid
, nodemask
);
1130 if (page
&& !avoid_reserve
&& vma_has_reserves(vma
, chg
)) {
1131 SetPagePrivate(page
);
1132 h
->resv_huge_pages
--;
1135 mpol_cond_put(mpol
);
1143 * common helper functions for hstate_next_node_to_{alloc|free}.
1144 * We may have allocated or freed a huge page based on a different
1145 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146 * be outside of *nodes_allowed. Ensure that we use an allowed
1147 * node for alloc or free.
1149 static int next_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1151 nid
= next_node_in(nid
, *nodes_allowed
);
1152 VM_BUG_ON(nid
>= MAX_NUMNODES
);
1157 static int get_valid_node_allowed(int nid
, nodemask_t
*nodes_allowed
)
1159 if (!node_isset(nid
, *nodes_allowed
))
1160 nid
= next_node_allowed(nid
, nodes_allowed
);
1165 * returns the previously saved node ["this node"] from which to
1166 * allocate a persistent huge page for the pool and advance the
1167 * next node from which to allocate, handling wrap at end of node
1170 static int hstate_next_node_to_alloc(struct hstate
*h
,
1171 nodemask_t
*nodes_allowed
)
1175 VM_BUG_ON(!nodes_allowed
);
1177 nid
= get_valid_node_allowed(h
->next_nid_to_alloc
, nodes_allowed
);
1178 h
->next_nid_to_alloc
= next_node_allowed(nid
, nodes_allowed
);
1184 * helper for free_pool_huge_page() - return the previously saved
1185 * node ["this node"] from which to free a huge page. Advance the
1186 * next node id whether or not we find a free huge page to free so
1187 * that the next attempt to free addresses the next node.
1189 static int hstate_next_node_to_free(struct hstate
*h
, nodemask_t
*nodes_allowed
)
1193 VM_BUG_ON(!nodes_allowed
);
1195 nid
= get_valid_node_allowed(h
->next_nid_to_free
, nodes_allowed
);
1196 h
->next_nid_to_free
= next_node_allowed(nid
, nodes_allowed
);
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1202 for (nr_nodes = nodes_weight(*mask); \
1204 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1208 for (nr_nodes = nodes_weight(*mask); \
1210 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page
*page
,
1218 int nr_pages
= 1 << order
;
1219 struct page
*p
= page
+ 1;
1221 atomic_set(compound_mapcount_ptr(page
), 0);
1222 if (hpage_pincount_available(page
))
1223 atomic_set(compound_pincount_ptr(page
), 0);
1225 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1226 clear_compound_head(p
);
1227 set_page_refcounted(p
);
1230 set_compound_order(page
, 0);
1231 __ClearPageHead(page
);
1234 static void free_gigantic_page(struct page
*page
, unsigned int order
)
1237 * If the page isn't allocated using the cma allocator,
1238 * cma_release() returns false.
1241 if (cma_release(hugetlb_cma
[page_to_nid(page
)], page
, 1 << order
))
1245 free_contig_range(page_to_pfn(page
), 1 << order
);
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1250 int nid
, nodemask_t
*nodemask
)
1252 unsigned long nr_pages
= 1UL << huge_page_order(h
);
1253 if (nid
== NUMA_NO_NODE
)
1254 nid
= numa_mem_id();
1261 if (hugetlb_cma
[nid
]) {
1262 page
= cma_alloc(hugetlb_cma
[nid
], nr_pages
,
1263 huge_page_order(h
), true);
1268 if (!(gfp_mask
& __GFP_THISNODE
)) {
1269 for_each_node_mask(node
, *nodemask
) {
1270 if (node
== nid
|| !hugetlb_cma
[node
])
1273 page
= cma_alloc(hugetlb_cma
[node
], nr_pages
,
1274 huge_page_order(h
), true);
1282 return alloc_contig_pages(nr_pages
, gfp_mask
, nid
, nodemask
);
1285 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
);
1286 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
);
1287 #else /* !CONFIG_CONTIG_ALLOC */
1288 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1289 int nid
, nodemask_t
*nodemask
)
1293 #endif /* CONFIG_CONTIG_ALLOC */
1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296 static struct page
*alloc_gigantic_page(struct hstate
*h
, gfp_t gfp_mask
,
1297 int nid
, nodemask_t
*nodemask
)
1301 static inline void free_gigantic_page(struct page
*page
, unsigned int order
) { }
1302 static inline void destroy_compound_gigantic_page(struct page
*page
,
1303 unsigned int order
) { }
1306 static void update_and_free_page(struct hstate
*h
, struct page
*page
)
1310 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
1314 h
->nr_huge_pages_node
[page_to_nid(page
)]--;
1315 for (i
= 0; i
< pages_per_huge_page(h
); i
++) {
1316 page
[i
].flags
&= ~(1 << PG_locked
| 1 << PG_error
|
1317 1 << PG_referenced
| 1 << PG_dirty
|
1318 1 << PG_active
| 1 << PG_private
|
1321 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page
), page
);
1322 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page
), page
);
1323 set_compound_page_dtor(page
, NULL_COMPOUND_DTOR
);
1324 set_page_refcounted(page
);
1325 if (hstate_is_gigantic(h
)) {
1327 * Temporarily drop the hugetlb_lock, because
1328 * we might block in free_gigantic_page().
1330 spin_unlock(&hugetlb_lock
);
1331 destroy_compound_gigantic_page(page
, huge_page_order(h
));
1332 free_gigantic_page(page
, huge_page_order(h
));
1333 spin_lock(&hugetlb_lock
);
1335 __free_pages(page
, huge_page_order(h
));
1339 struct hstate
*size_to_hstate(unsigned long size
)
1343 for_each_hstate(h
) {
1344 if (huge_page_size(h
) == size
)
1351 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1352 * to hstate->hugepage_activelist.)
1354 * This function can be called for tail pages, but never returns true for them.
1356 bool page_huge_active(struct page
*page
)
1358 VM_BUG_ON_PAGE(!PageHuge(page
), page
);
1359 return PageHead(page
) && PagePrivate(&page
[1]);
1362 /* never called for tail page */
1363 static void set_page_huge_active(struct page
*page
)
1365 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1366 SetPagePrivate(&page
[1]);
1369 static void clear_page_huge_active(struct page
*page
)
1371 VM_BUG_ON_PAGE(!PageHeadHuge(page
), page
);
1372 ClearPagePrivate(&page
[1]);
1376 * Internal hugetlb specific page flag. Do not use outside of the hugetlb
1379 static inline bool PageHugeTemporary(struct page
*page
)
1381 if (!PageHuge(page
))
1384 return (unsigned long)page
[2].mapping
== -1U;
1387 static inline void SetPageHugeTemporary(struct page
*page
)
1389 page
[2].mapping
= (void *)-1U;
1392 static inline void ClearPageHugeTemporary(struct page
*page
)
1394 page
[2].mapping
= NULL
;
1397 static void __free_huge_page(struct page
*page
)
1400 * Can't pass hstate in here because it is called from the
1401 * compound page destructor.
1403 struct hstate
*h
= page_hstate(page
);
1404 int nid
= page_to_nid(page
);
1405 struct hugepage_subpool
*spool
=
1406 (struct hugepage_subpool
*)page_private(page
);
1407 bool restore_reserve
;
1409 VM_BUG_ON_PAGE(page_count(page
), page
);
1410 VM_BUG_ON_PAGE(page_mapcount(page
), page
);
1412 set_page_private(page
, 0);
1413 page
->mapping
= NULL
;
1414 restore_reserve
= PagePrivate(page
);
1415 ClearPagePrivate(page
);
1418 * If PagePrivate() was set on page, page allocation consumed a
1419 * reservation. If the page was associated with a subpool, there
1420 * would have been a page reserved in the subpool before allocation
1421 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1422 * reservtion, do not call hugepage_subpool_put_pages() as this will
1423 * remove the reserved page from the subpool.
1425 if (!restore_reserve
) {
1427 * A return code of zero implies that the subpool will be
1428 * under its minimum size if the reservation is not restored
1429 * after page is free. Therefore, force restore_reserve
1432 if (hugepage_subpool_put_pages(spool
, 1) == 0)
1433 restore_reserve
= true;
1436 spin_lock(&hugetlb_lock
);
1437 clear_page_huge_active(page
);
1438 hugetlb_cgroup_uncharge_page(hstate_index(h
),
1439 pages_per_huge_page(h
), page
);
1440 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h
),
1441 pages_per_huge_page(h
), page
);
1442 if (restore_reserve
)
1443 h
->resv_huge_pages
++;
1445 if (PageHugeTemporary(page
)) {
1446 list_del(&page
->lru
);
1447 ClearPageHugeTemporary(page
);
1448 update_and_free_page(h
, page
);
1449 } else if (h
->surplus_huge_pages_node
[nid
]) {
1450 /* remove the page from active list */
1451 list_del(&page
->lru
);
1452 update_and_free_page(h
, page
);
1453 h
->surplus_huge_pages
--;
1454 h
->surplus_huge_pages_node
[nid
]--;
1456 arch_clear_hugepage_flags(page
);
1457 enqueue_huge_page(h
, page
);
1459 spin_unlock(&hugetlb_lock
);
1463 * As free_huge_page() can be called from a non-task context, we have
1464 * to defer the actual freeing in a workqueue to prevent potential
1465 * hugetlb_lock deadlock.
1467 * free_hpage_workfn() locklessly retrieves the linked list of pages to
1468 * be freed and frees them one-by-one. As the page->mapping pointer is
1469 * going to be cleared in __free_huge_page() anyway, it is reused as the
1470 * llist_node structure of a lockless linked list of huge pages to be freed.
1472 static LLIST_HEAD(hpage_freelist
);
1474 static void free_hpage_workfn(struct work_struct
*work
)
1476 struct llist_node
*node
;
1479 node
= llist_del_all(&hpage_freelist
);
1482 page
= container_of((struct address_space
**)node
,
1483 struct page
, mapping
);
1485 __free_huge_page(page
);
1488 static DECLARE_WORK(free_hpage_work
, free_hpage_workfn
);
1490 void free_huge_page(struct page
*page
)
1493 * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1497 * Only call schedule_work() if hpage_freelist is previously
1498 * empty. Otherwise, schedule_work() had been called but the
1499 * workfn hasn't retrieved the list yet.
1501 if (llist_add((struct llist_node
*)&page
->mapping
,
1503 schedule_work(&free_hpage_work
);
1507 __free_huge_page(page
);
1510 static void prep_new_huge_page(struct hstate
*h
, struct page
*page
, int nid
)
1512 INIT_LIST_HEAD(&page
->lru
);
1513 set_compound_page_dtor(page
, HUGETLB_PAGE_DTOR
);
1514 spin_lock(&hugetlb_lock
);
1515 set_hugetlb_cgroup(page
, NULL
);
1516 set_hugetlb_cgroup_rsvd(page
, NULL
);
1518 h
->nr_huge_pages_node
[nid
]++;
1519 spin_unlock(&hugetlb_lock
);
1522 static void prep_compound_gigantic_page(struct page
*page
, unsigned int order
)
1525 int nr_pages
= 1 << order
;
1526 struct page
*p
= page
+ 1;
1528 /* we rely on prep_new_huge_page to set the destructor */
1529 set_compound_order(page
, order
);
1530 __ClearPageReserved(page
);
1531 __SetPageHead(page
);
1532 for (i
= 1; i
< nr_pages
; i
++, p
= mem_map_next(p
, page
, i
)) {
1534 * For gigantic hugepages allocated through bootmem at
1535 * boot, it's safer to be consistent with the not-gigantic
1536 * hugepages and clear the PG_reserved bit from all tail pages
1537 * too. Otherwise drivers using get_user_pages() to access tail
1538 * pages may get the reference counting wrong if they see
1539 * PG_reserved set on a tail page (despite the head page not
1540 * having PG_reserved set). Enforcing this consistency between
1541 * head and tail pages allows drivers to optimize away a check
1542 * on the head page when they need know if put_page() is needed
1543 * after get_user_pages().
1545 __ClearPageReserved(p
);
1546 set_page_count(p
, 0);
1547 set_compound_head(p
, page
);
1549 atomic_set(compound_mapcount_ptr(page
), -1);
1551 if (hpage_pincount_available(page
))
1552 atomic_set(compound_pincount_ptr(page
), 0);
1556 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1557 * transparent huge pages. See the PageTransHuge() documentation for more
1560 int PageHuge(struct page
*page
)
1562 if (!PageCompound(page
))
1565 page
= compound_head(page
);
1566 return page
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1568 EXPORT_SYMBOL_GPL(PageHuge
);
1571 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1572 * normal or transparent huge pages.
1574 int PageHeadHuge(struct page
*page_head
)
1576 if (!PageHead(page_head
))
1579 return page_head
[1].compound_dtor
== HUGETLB_PAGE_DTOR
;
1583 * Find address_space associated with hugetlbfs page.
1584 * Upon entry page is locked and page 'was' mapped although mapped state
1585 * could change. If necessary, use anon_vma to find vma and associated
1586 * address space. The returned mapping may be stale, but it can not be
1587 * invalid as page lock (which is held) is required to destroy mapping.
1589 static struct address_space
*_get_hugetlb_page_mapping(struct page
*hpage
)
1591 struct anon_vma
*anon_vma
;
1592 pgoff_t pgoff_start
, pgoff_end
;
1593 struct anon_vma_chain
*avc
;
1594 struct address_space
*mapping
= page_mapping(hpage
);
1596 /* Simple file based mapping */
1601 * Even anonymous hugetlbfs mappings are associated with an
1602 * underlying hugetlbfs file (see hugetlb_file_setup in mmap
1603 * code). Find a vma associated with the anonymous vma, and
1604 * use the file pointer to get address_space.
1606 anon_vma
= page_lock_anon_vma_read(hpage
);
1608 return mapping
; /* NULL */
1610 /* Use first found vma */
1611 pgoff_start
= page_to_pgoff(hpage
);
1612 pgoff_end
= pgoff_start
+ pages_per_huge_page(page_hstate(hpage
)) - 1;
1613 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
,
1614 pgoff_start
, pgoff_end
) {
1615 struct vm_area_struct
*vma
= avc
->vma
;
1617 mapping
= vma
->vm_file
->f_mapping
;
1621 anon_vma_unlock_read(anon_vma
);
1626 * Find and lock address space (mapping) in write mode.
1628 * Upon entry, the page is locked which allows us to find the mapping
1629 * even in the case of an anon page. However, locking order dictates
1630 * the i_mmap_rwsem be acquired BEFORE the page lock. This is hugetlbfs
1631 * specific. So, we first try to lock the sema while still holding the
1632 * page lock. If this works, great! If not, then we need to drop the
1633 * page lock and then acquire i_mmap_rwsem and reacquire page lock. Of
1634 * course, need to revalidate state along the way.
1636 struct address_space
*hugetlb_page_mapping_lock_write(struct page
*hpage
)
1638 struct address_space
*mapping
, *mapping2
;
1640 mapping
= _get_hugetlb_page_mapping(hpage
);
1646 * If no contention, take lock and return
1648 if (i_mmap_trylock_write(mapping
))
1652 * Must drop page lock and wait on mapping sema.
1653 * Note: Once page lock is dropped, mapping could become invalid.
1654 * As a hack, increase map count until we lock page again.
1656 atomic_inc(&hpage
->_mapcount
);
1658 i_mmap_lock_write(mapping
);
1660 atomic_add_negative(-1, &hpage
->_mapcount
);
1662 /* verify page is still mapped */
1663 if (!page_mapped(hpage
)) {
1664 i_mmap_unlock_write(mapping
);
1669 * Get address space again and verify it is the same one
1670 * we locked. If not, drop lock and retry.
1672 mapping2
= _get_hugetlb_page_mapping(hpage
);
1673 if (mapping2
!= mapping
) {
1674 i_mmap_unlock_write(mapping
);
1682 pgoff_t
__basepage_index(struct page
*page
)
1684 struct page
*page_head
= compound_head(page
);
1685 pgoff_t index
= page_index(page_head
);
1686 unsigned long compound_idx
;
1688 if (!PageHuge(page_head
))
1689 return page_index(page
);
1691 if (compound_order(page_head
) >= MAX_ORDER
)
1692 compound_idx
= page_to_pfn(page
) - page_to_pfn(page_head
);
1694 compound_idx
= page
- page_head
;
1696 return (index
<< compound_order(page_head
)) + compound_idx
;
1699 static struct page
*alloc_buddy_huge_page(struct hstate
*h
,
1700 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1701 nodemask_t
*node_alloc_noretry
)
1703 int order
= huge_page_order(h
);
1705 bool alloc_try_hard
= true;
1708 * By default we always try hard to allocate the page with
1709 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1710 * a loop (to adjust global huge page counts) and previous allocation
1711 * failed, do not continue to try hard on the same node. Use the
1712 * node_alloc_noretry bitmap to manage this state information.
1714 if (node_alloc_noretry
&& node_isset(nid
, *node_alloc_noretry
))
1715 alloc_try_hard
= false;
1716 gfp_mask
|= __GFP_COMP
|__GFP_NOWARN
;
1718 gfp_mask
|= __GFP_RETRY_MAYFAIL
;
1719 if (nid
== NUMA_NO_NODE
)
1720 nid
= numa_mem_id();
1721 page
= __alloc_pages_nodemask(gfp_mask
, order
, nid
, nmask
);
1723 __count_vm_event(HTLB_BUDDY_PGALLOC
);
1725 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL
);
1728 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1729 * indicates an overall state change. Clear bit so that we resume
1730 * normal 'try hard' allocations.
1732 if (node_alloc_noretry
&& page
&& !alloc_try_hard
)
1733 node_clear(nid
, *node_alloc_noretry
);
1736 * If we tried hard to get a page but failed, set bit so that
1737 * subsequent attempts will not try as hard until there is an
1738 * overall state change.
1740 if (node_alloc_noretry
&& !page
&& alloc_try_hard
)
1741 node_set(nid
, *node_alloc_noretry
);
1747 * Common helper to allocate a fresh hugetlb page. All specific allocators
1748 * should use this function to get new hugetlb pages
1750 static struct page
*alloc_fresh_huge_page(struct hstate
*h
,
1751 gfp_t gfp_mask
, int nid
, nodemask_t
*nmask
,
1752 nodemask_t
*node_alloc_noretry
)
1756 if (hstate_is_gigantic(h
))
1757 page
= alloc_gigantic_page(h
, gfp_mask
, nid
, nmask
);
1759 page
= alloc_buddy_huge_page(h
, gfp_mask
,
1760 nid
, nmask
, node_alloc_noretry
);
1764 if (hstate_is_gigantic(h
))
1765 prep_compound_gigantic_page(page
, huge_page_order(h
));
1766 prep_new_huge_page(h
, page
, page_to_nid(page
));
1772 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1775 static int alloc_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1776 nodemask_t
*node_alloc_noretry
)
1780 gfp_t gfp_mask
= htlb_alloc_mask(h
) | __GFP_THISNODE
;
1782 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
1783 page
= alloc_fresh_huge_page(h
, gfp_mask
, node
, nodes_allowed
,
1784 node_alloc_noretry
);
1792 put_page(page
); /* free it into the hugepage allocator */
1798 * Free huge page from pool from next node to free.
1799 * Attempt to keep persistent huge pages more or less
1800 * balanced over allowed nodes.
1801 * Called with hugetlb_lock locked.
1803 static int free_pool_huge_page(struct hstate
*h
, nodemask_t
*nodes_allowed
,
1809 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
1811 * If we're returning unused surplus pages, only examine
1812 * nodes with surplus pages.
1814 if ((!acct_surplus
|| h
->surplus_huge_pages_node
[node
]) &&
1815 !list_empty(&h
->hugepage_freelists
[node
])) {
1817 list_entry(h
->hugepage_freelists
[node
].next
,
1819 list_del(&page
->lru
);
1820 h
->free_huge_pages
--;
1821 h
->free_huge_pages_node
[node
]--;
1823 h
->surplus_huge_pages
--;
1824 h
->surplus_huge_pages_node
[node
]--;
1826 update_and_free_page(h
, page
);
1836 * Dissolve a given free hugepage into free buddy pages. This function does
1837 * nothing for in-use hugepages and non-hugepages.
1838 * This function returns values like below:
1840 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1841 * (allocated or reserved.)
1842 * 0: successfully dissolved free hugepages or the page is not a
1843 * hugepage (considered as already dissolved)
1845 int dissolve_free_huge_page(struct page
*page
)
1849 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1850 if (!PageHuge(page
))
1853 spin_lock(&hugetlb_lock
);
1854 if (!PageHuge(page
)) {
1859 if (!page_count(page
)) {
1860 struct page
*head
= compound_head(page
);
1861 struct hstate
*h
= page_hstate(head
);
1862 int nid
= page_to_nid(head
);
1863 if (h
->free_huge_pages
- h
->resv_huge_pages
== 0)
1866 * Move PageHWPoison flag from head page to the raw error page,
1867 * which makes any subpages rather than the error page reusable.
1869 if (PageHWPoison(head
) && page
!= head
) {
1870 SetPageHWPoison(page
);
1871 ClearPageHWPoison(head
);
1873 list_del(&head
->lru
);
1874 h
->free_huge_pages
--;
1875 h
->free_huge_pages_node
[nid
]--;
1876 h
->max_huge_pages
--;
1877 update_and_free_page(h
, head
);
1881 spin_unlock(&hugetlb_lock
);
1886 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1887 * make specified memory blocks removable from the system.
1888 * Note that this will dissolve a free gigantic hugepage completely, if any
1889 * part of it lies within the given range.
1890 * Also note that if dissolve_free_huge_page() returns with an error, all
1891 * free hugepages that were dissolved before that error are lost.
1893 int dissolve_free_huge_pages(unsigned long start_pfn
, unsigned long end_pfn
)
1899 if (!hugepages_supported())
1902 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= 1 << minimum_order
) {
1903 page
= pfn_to_page(pfn
);
1904 rc
= dissolve_free_huge_page(page
);
1913 * Allocates a fresh surplus page from the page allocator.
1915 static struct page
*alloc_surplus_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1916 int nid
, nodemask_t
*nmask
)
1918 struct page
*page
= NULL
;
1920 if (hstate_is_gigantic(h
))
1923 spin_lock(&hugetlb_lock
);
1924 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
)
1926 spin_unlock(&hugetlb_lock
);
1928 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1932 spin_lock(&hugetlb_lock
);
1934 * We could have raced with the pool size change.
1935 * Double check that and simply deallocate the new page
1936 * if we would end up overcommiting the surpluses. Abuse
1937 * temporary page to workaround the nasty free_huge_page
1940 if (h
->surplus_huge_pages
>= h
->nr_overcommit_huge_pages
) {
1941 SetPageHugeTemporary(page
);
1942 spin_unlock(&hugetlb_lock
);
1946 h
->surplus_huge_pages
++;
1947 h
->surplus_huge_pages_node
[page_to_nid(page
)]++;
1951 spin_unlock(&hugetlb_lock
);
1956 static struct page
*alloc_migrate_huge_page(struct hstate
*h
, gfp_t gfp_mask
,
1957 int nid
, nodemask_t
*nmask
)
1961 if (hstate_is_gigantic(h
))
1964 page
= alloc_fresh_huge_page(h
, gfp_mask
, nid
, nmask
, NULL
);
1969 * We do not account these pages as surplus because they are only
1970 * temporary and will be released properly on the last reference
1972 SetPageHugeTemporary(page
);
1978 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1981 struct page
*alloc_buddy_huge_page_with_mpol(struct hstate
*h
,
1982 struct vm_area_struct
*vma
, unsigned long addr
)
1985 struct mempolicy
*mpol
;
1986 gfp_t gfp_mask
= htlb_alloc_mask(h
);
1988 nodemask_t
*nodemask
;
1990 nid
= huge_node(vma
, addr
, gfp_mask
, &mpol
, &nodemask
);
1991 page
= alloc_surplus_huge_page(h
, gfp_mask
, nid
, nodemask
);
1992 mpol_cond_put(mpol
);
1997 /* page migration callback function */
1998 struct page
*alloc_huge_page_nodemask(struct hstate
*h
, int preferred_nid
,
1999 nodemask_t
*nmask
, gfp_t gfp_mask
)
2001 spin_lock(&hugetlb_lock
);
2002 if (h
->free_huge_pages
- h
->resv_huge_pages
> 0) {
2005 page
= dequeue_huge_page_nodemask(h
, gfp_mask
, preferred_nid
, nmask
);
2007 spin_unlock(&hugetlb_lock
);
2011 spin_unlock(&hugetlb_lock
);
2013 return alloc_migrate_huge_page(h
, gfp_mask
, preferred_nid
, nmask
);
2016 /* mempolicy aware migration callback */
2017 struct page
*alloc_huge_page_vma(struct hstate
*h
, struct vm_area_struct
*vma
,
2018 unsigned long address
)
2020 struct mempolicy
*mpol
;
2021 nodemask_t
*nodemask
;
2026 gfp_mask
= htlb_alloc_mask(h
);
2027 node
= huge_node(vma
, address
, gfp_mask
, &mpol
, &nodemask
);
2028 page
= alloc_huge_page_nodemask(h
, node
, nodemask
, gfp_mask
);
2029 mpol_cond_put(mpol
);
2035 * Increase the hugetlb pool such that it can accommodate a reservation
2038 static int gather_surplus_pages(struct hstate
*h
, int delta
)
2039 __must_hold(&hugetlb_lock
)
2041 struct list_head surplus_list
;
2042 struct page
*page
, *tmp
;
2044 int needed
, allocated
;
2045 bool alloc_ok
= true;
2047 needed
= (h
->resv_huge_pages
+ delta
) - h
->free_huge_pages
;
2049 h
->resv_huge_pages
+= delta
;
2054 INIT_LIST_HEAD(&surplus_list
);
2058 spin_unlock(&hugetlb_lock
);
2059 for (i
= 0; i
< needed
; i
++) {
2060 page
= alloc_surplus_huge_page(h
, htlb_alloc_mask(h
),
2061 NUMA_NO_NODE
, NULL
);
2066 list_add(&page
->lru
, &surplus_list
);
2072 * After retaking hugetlb_lock, we need to recalculate 'needed'
2073 * because either resv_huge_pages or free_huge_pages may have changed.
2075 spin_lock(&hugetlb_lock
);
2076 needed
= (h
->resv_huge_pages
+ delta
) -
2077 (h
->free_huge_pages
+ allocated
);
2082 * We were not able to allocate enough pages to
2083 * satisfy the entire reservation so we free what
2084 * we've allocated so far.
2089 * The surplus_list now contains _at_least_ the number of extra pages
2090 * needed to accommodate the reservation. Add the appropriate number
2091 * of pages to the hugetlb pool and free the extras back to the buddy
2092 * allocator. Commit the entire reservation here to prevent another
2093 * process from stealing the pages as they are added to the pool but
2094 * before they are reserved.
2096 needed
+= allocated
;
2097 h
->resv_huge_pages
+= delta
;
2100 /* Free the needed pages to the hugetlb pool */
2101 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
) {
2105 * This page is now managed by the hugetlb allocator and has
2106 * no users -- drop the buddy allocator's reference.
2108 put_page_testzero(page
);
2109 VM_BUG_ON_PAGE(page_count(page
), page
);
2110 enqueue_huge_page(h
, page
);
2113 spin_unlock(&hugetlb_lock
);
2115 /* Free unnecessary surplus pages to the buddy allocator */
2116 list_for_each_entry_safe(page
, tmp
, &surplus_list
, lru
)
2118 spin_lock(&hugetlb_lock
);
2124 * This routine has two main purposes:
2125 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2126 * in unused_resv_pages. This corresponds to the prior adjustments made
2127 * to the associated reservation map.
2128 * 2) Free any unused surplus pages that may have been allocated to satisfy
2129 * the reservation. As many as unused_resv_pages may be freed.
2131 * Called with hugetlb_lock held. However, the lock could be dropped (and
2132 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
2133 * we must make sure nobody else can claim pages we are in the process of
2134 * freeing. Do this by ensuring resv_huge_page always is greater than the
2135 * number of huge pages we plan to free when dropping the lock.
2137 static void return_unused_surplus_pages(struct hstate
*h
,
2138 unsigned long unused_resv_pages
)
2140 unsigned long nr_pages
;
2142 /* Cannot return gigantic pages currently */
2143 if (hstate_is_gigantic(h
))
2147 * Part (or even all) of the reservation could have been backed
2148 * by pre-allocated pages. Only free surplus pages.
2150 nr_pages
= min(unused_resv_pages
, h
->surplus_huge_pages
);
2153 * We want to release as many surplus pages as possible, spread
2154 * evenly across all nodes with memory. Iterate across these nodes
2155 * until we can no longer free unreserved surplus pages. This occurs
2156 * when the nodes with surplus pages have no free pages.
2157 * free_pool_huge_page() will balance the freed pages across the
2158 * on-line nodes with memory and will handle the hstate accounting.
2160 * Note that we decrement resv_huge_pages as we free the pages. If
2161 * we drop the lock, resv_huge_pages will still be sufficiently large
2162 * to cover subsequent pages we may free.
2164 while (nr_pages
--) {
2165 h
->resv_huge_pages
--;
2166 unused_resv_pages
--;
2167 if (!free_pool_huge_page(h
, &node_states
[N_MEMORY
], 1))
2169 cond_resched_lock(&hugetlb_lock
);
2173 /* Fully uncommit the reservation */
2174 h
->resv_huge_pages
-= unused_resv_pages
;
2179 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2180 * are used by the huge page allocation routines to manage reservations.
2182 * vma_needs_reservation is called to determine if the huge page at addr
2183 * within the vma has an associated reservation. If a reservation is
2184 * needed, the value 1 is returned. The caller is then responsible for
2185 * managing the global reservation and subpool usage counts. After
2186 * the huge page has been allocated, vma_commit_reservation is called
2187 * to add the page to the reservation map. If the page allocation fails,
2188 * the reservation must be ended instead of committed. vma_end_reservation
2189 * is called in such cases.
2191 * In the normal case, vma_commit_reservation returns the same value
2192 * as the preceding vma_needs_reservation call. The only time this
2193 * is not the case is if a reserve map was changed between calls. It
2194 * is the responsibility of the caller to notice the difference and
2195 * take appropriate action.
2197 * vma_add_reservation is used in error paths where a reservation must
2198 * be restored when a newly allocated huge page must be freed. It is
2199 * to be called after calling vma_needs_reservation to determine if a
2200 * reservation exists.
2202 enum vma_resv_mode
{
2208 static long __vma_reservation_common(struct hstate
*h
,
2209 struct vm_area_struct
*vma
, unsigned long addr
,
2210 enum vma_resv_mode mode
)
2212 struct resv_map
*resv
;
2215 long dummy_out_regions_needed
;
2217 resv
= vma_resv_map(vma
);
2221 idx
= vma_hugecache_offset(h
, vma
, addr
);
2223 case VMA_NEEDS_RESV
:
2224 ret
= region_chg(resv
, idx
, idx
+ 1, &dummy_out_regions_needed
);
2225 /* We assume that vma_reservation_* routines always operate on
2226 * 1 page, and that adding to resv map a 1 page entry can only
2227 * ever require 1 region.
2229 VM_BUG_ON(dummy_out_regions_needed
!= 1);
2231 case VMA_COMMIT_RESV
:
2232 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2233 /* region_add calls of range 1 should never fail. */
2237 region_abort(resv
, idx
, idx
+ 1, 1);
2241 if (vma
->vm_flags
& VM_MAYSHARE
) {
2242 ret
= region_add(resv
, idx
, idx
+ 1, 1, NULL
, NULL
);
2243 /* region_add calls of range 1 should never fail. */
2246 region_abort(resv
, idx
, idx
+ 1, 1);
2247 ret
= region_del(resv
, idx
, idx
+ 1);
2254 if (vma
->vm_flags
& VM_MAYSHARE
)
2256 else if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) && ret
>= 0) {
2258 * In most cases, reserves always exist for private mappings.
2259 * However, a file associated with mapping could have been
2260 * hole punched or truncated after reserves were consumed.
2261 * As subsequent fault on such a range will not use reserves.
2262 * Subtle - The reserve map for private mappings has the
2263 * opposite meaning than that of shared mappings. If NO
2264 * entry is in the reserve map, it means a reservation exists.
2265 * If an entry exists in the reserve map, it means the
2266 * reservation has already been consumed. As a result, the
2267 * return value of this routine is the opposite of the
2268 * value returned from reserve map manipulation routines above.
2276 return ret
< 0 ? ret
: 0;
2279 static long vma_needs_reservation(struct hstate
*h
,
2280 struct vm_area_struct
*vma
, unsigned long addr
)
2282 return __vma_reservation_common(h
, vma
, addr
, VMA_NEEDS_RESV
);
2285 static long vma_commit_reservation(struct hstate
*h
,
2286 struct vm_area_struct
*vma
, unsigned long addr
)
2288 return __vma_reservation_common(h
, vma
, addr
, VMA_COMMIT_RESV
);
2291 static void vma_end_reservation(struct hstate
*h
,
2292 struct vm_area_struct
*vma
, unsigned long addr
)
2294 (void)__vma_reservation_common(h
, vma
, addr
, VMA_END_RESV
);
2297 static long vma_add_reservation(struct hstate
*h
,
2298 struct vm_area_struct
*vma
, unsigned long addr
)
2300 return __vma_reservation_common(h
, vma
, addr
, VMA_ADD_RESV
);
2304 * This routine is called to restore a reservation on error paths. In the
2305 * specific error paths, a huge page was allocated (via alloc_huge_page)
2306 * and is about to be freed. If a reservation for the page existed,
2307 * alloc_huge_page would have consumed the reservation and set PagePrivate
2308 * in the newly allocated page. When the page is freed via free_huge_page,
2309 * the global reservation count will be incremented if PagePrivate is set.
2310 * However, free_huge_page can not adjust the reserve map. Adjust the
2311 * reserve map here to be consistent with global reserve count adjustments
2312 * to be made by free_huge_page.
2314 static void restore_reserve_on_error(struct hstate
*h
,
2315 struct vm_area_struct
*vma
, unsigned long address
,
2318 if (unlikely(PagePrivate(page
))) {
2319 long rc
= vma_needs_reservation(h
, vma
, address
);
2321 if (unlikely(rc
< 0)) {
2323 * Rare out of memory condition in reserve map
2324 * manipulation. Clear PagePrivate so that
2325 * global reserve count will not be incremented
2326 * by free_huge_page. This will make it appear
2327 * as though the reservation for this page was
2328 * consumed. This may prevent the task from
2329 * faulting in the page at a later time. This
2330 * is better than inconsistent global huge page
2331 * accounting of reserve counts.
2333 ClearPagePrivate(page
);
2335 rc
= vma_add_reservation(h
, vma
, address
);
2336 if (unlikely(rc
< 0))
2338 * See above comment about rare out of
2341 ClearPagePrivate(page
);
2343 vma_end_reservation(h
, vma
, address
);
2347 struct page
*alloc_huge_page(struct vm_area_struct
*vma
,
2348 unsigned long addr
, int avoid_reserve
)
2350 struct hugepage_subpool
*spool
= subpool_vma(vma
);
2351 struct hstate
*h
= hstate_vma(vma
);
2353 long map_chg
, map_commit
;
2356 struct hugetlb_cgroup
*h_cg
;
2357 bool deferred_reserve
;
2359 idx
= hstate_index(h
);
2361 * Examine the region/reserve map to determine if the process
2362 * has a reservation for the page to be allocated. A return
2363 * code of zero indicates a reservation exists (no change).
2365 map_chg
= gbl_chg
= vma_needs_reservation(h
, vma
, addr
);
2367 return ERR_PTR(-ENOMEM
);
2370 * Processes that did not create the mapping will have no
2371 * reserves as indicated by the region/reserve map. Check
2372 * that the allocation will not exceed the subpool limit.
2373 * Allocations for MAP_NORESERVE mappings also need to be
2374 * checked against any subpool limit.
2376 if (map_chg
|| avoid_reserve
) {
2377 gbl_chg
= hugepage_subpool_get_pages(spool
, 1);
2379 vma_end_reservation(h
, vma
, addr
);
2380 return ERR_PTR(-ENOSPC
);
2384 * Even though there was no reservation in the region/reserve
2385 * map, there could be reservations associated with the
2386 * subpool that can be used. This would be indicated if the
2387 * return value of hugepage_subpool_get_pages() is zero.
2388 * However, if avoid_reserve is specified we still avoid even
2389 * the subpool reservations.
2395 /* If this allocation is not consuming a reservation, charge it now.
2397 deferred_reserve
= map_chg
|| avoid_reserve
|| !vma_resv_map(vma
);
2398 if (deferred_reserve
) {
2399 ret
= hugetlb_cgroup_charge_cgroup_rsvd(
2400 idx
, pages_per_huge_page(h
), &h_cg
);
2402 goto out_subpool_put
;
2405 ret
= hugetlb_cgroup_charge_cgroup(idx
, pages_per_huge_page(h
), &h_cg
);
2407 goto out_uncharge_cgroup_reservation
;
2409 spin_lock(&hugetlb_lock
);
2411 * glb_chg is passed to indicate whether or not a page must be taken
2412 * from the global free pool (global change). gbl_chg == 0 indicates
2413 * a reservation exists for the allocation.
2415 page
= dequeue_huge_page_vma(h
, vma
, addr
, avoid_reserve
, gbl_chg
);
2417 spin_unlock(&hugetlb_lock
);
2418 page
= alloc_buddy_huge_page_with_mpol(h
, vma
, addr
);
2420 goto out_uncharge_cgroup
;
2421 if (!avoid_reserve
&& vma_has_reserves(vma
, gbl_chg
)) {
2422 SetPagePrivate(page
);
2423 h
->resv_huge_pages
--;
2425 spin_lock(&hugetlb_lock
);
2426 list_move(&page
->lru
, &h
->hugepage_activelist
);
2429 hugetlb_cgroup_commit_charge(idx
, pages_per_huge_page(h
), h_cg
, page
);
2430 /* If allocation is not consuming a reservation, also store the
2431 * hugetlb_cgroup pointer on the page.
2433 if (deferred_reserve
) {
2434 hugetlb_cgroup_commit_charge_rsvd(idx
, pages_per_huge_page(h
),
2438 spin_unlock(&hugetlb_lock
);
2440 set_page_private(page
, (unsigned long)spool
);
2442 map_commit
= vma_commit_reservation(h
, vma
, addr
);
2443 if (unlikely(map_chg
> map_commit
)) {
2445 * The page was added to the reservation map between
2446 * vma_needs_reservation and vma_commit_reservation.
2447 * This indicates a race with hugetlb_reserve_pages.
2448 * Adjust for the subpool count incremented above AND
2449 * in hugetlb_reserve_pages for the same page. Also,
2450 * the reservation count added in hugetlb_reserve_pages
2451 * no longer applies.
2455 rsv_adjust
= hugepage_subpool_put_pages(spool
, 1);
2456 hugetlb_acct_memory(h
, -rsv_adjust
);
2460 out_uncharge_cgroup
:
2461 hugetlb_cgroup_uncharge_cgroup(idx
, pages_per_huge_page(h
), h_cg
);
2462 out_uncharge_cgroup_reservation
:
2463 if (deferred_reserve
)
2464 hugetlb_cgroup_uncharge_cgroup_rsvd(idx
, pages_per_huge_page(h
),
2467 if (map_chg
|| avoid_reserve
)
2468 hugepage_subpool_put_pages(spool
, 1);
2469 vma_end_reservation(h
, vma
, addr
);
2470 return ERR_PTR(-ENOSPC
);
2473 int alloc_bootmem_huge_page(struct hstate
*h
)
2474 __attribute__ ((weak
, alias("__alloc_bootmem_huge_page")));
2475 int __alloc_bootmem_huge_page(struct hstate
*h
)
2477 struct huge_bootmem_page
*m
;
2480 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, &node_states
[N_MEMORY
]) {
2483 addr
= memblock_alloc_try_nid_raw(
2484 huge_page_size(h
), huge_page_size(h
),
2485 0, MEMBLOCK_ALLOC_ACCESSIBLE
, node
);
2488 * Use the beginning of the huge page to store the
2489 * huge_bootmem_page struct (until gather_bootmem
2490 * puts them into the mem_map).
2499 BUG_ON(!IS_ALIGNED(virt_to_phys(m
), huge_page_size(h
)));
2500 /* Put them into a private list first because mem_map is not up yet */
2501 INIT_LIST_HEAD(&m
->list
);
2502 list_add(&m
->list
, &huge_boot_pages
);
2507 static void __init
prep_compound_huge_page(struct page
*page
,
2510 if (unlikely(order
> (MAX_ORDER
- 1)))
2511 prep_compound_gigantic_page(page
, order
);
2513 prep_compound_page(page
, order
);
2516 /* Put bootmem huge pages into the standard lists after mem_map is up */
2517 static void __init
gather_bootmem_prealloc(void)
2519 struct huge_bootmem_page
*m
;
2521 list_for_each_entry(m
, &huge_boot_pages
, list
) {
2522 struct page
*page
= virt_to_page(m
);
2523 struct hstate
*h
= m
->hstate
;
2525 WARN_ON(page_count(page
) != 1);
2526 prep_compound_huge_page(page
, h
->order
);
2527 WARN_ON(PageReserved(page
));
2528 prep_new_huge_page(h
, page
, page_to_nid(page
));
2529 put_page(page
); /* free it into the hugepage allocator */
2532 * If we had gigantic hugepages allocated at boot time, we need
2533 * to restore the 'stolen' pages to totalram_pages in order to
2534 * fix confusing memory reports from free(1) and another
2535 * side-effects, like CommitLimit going negative.
2537 if (hstate_is_gigantic(h
))
2538 adjust_managed_page_count(page
, 1 << h
->order
);
2543 static void __init
hugetlb_hstate_alloc_pages(struct hstate
*h
)
2546 nodemask_t
*node_alloc_noretry
;
2548 if (!hstate_is_gigantic(h
)) {
2550 * Bit mask controlling how hard we retry per-node allocations.
2551 * Ignore errors as lower level routines can deal with
2552 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2553 * time, we are likely in bigger trouble.
2555 node_alloc_noretry
= kmalloc(sizeof(*node_alloc_noretry
),
2558 /* allocations done at boot time */
2559 node_alloc_noretry
= NULL
;
2562 /* bit mask controlling how hard we retry per-node allocations */
2563 if (node_alloc_noretry
)
2564 nodes_clear(*node_alloc_noretry
);
2566 for (i
= 0; i
< h
->max_huge_pages
; ++i
) {
2567 if (hstate_is_gigantic(h
)) {
2568 if (hugetlb_cma_size
) {
2569 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2572 if (!alloc_bootmem_huge_page(h
))
2574 } else if (!alloc_pool_huge_page(h
,
2575 &node_states
[N_MEMORY
],
2576 node_alloc_noretry
))
2580 if (i
< h
->max_huge_pages
) {
2583 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2584 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2585 h
->max_huge_pages
, buf
, i
);
2586 h
->max_huge_pages
= i
;
2589 kfree(node_alloc_noretry
);
2592 static void __init
hugetlb_init_hstates(void)
2596 for_each_hstate(h
) {
2597 if (minimum_order
> huge_page_order(h
))
2598 minimum_order
= huge_page_order(h
);
2600 /* oversize hugepages were init'ed in early boot */
2601 if (!hstate_is_gigantic(h
))
2602 hugetlb_hstate_alloc_pages(h
);
2604 VM_BUG_ON(minimum_order
== UINT_MAX
);
2607 static void __init
report_hugepages(void)
2611 for_each_hstate(h
) {
2614 string_get_size(huge_page_size(h
), 1, STRING_UNITS_2
, buf
, 32);
2615 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2616 buf
, h
->free_huge_pages
);
2620 #ifdef CONFIG_HIGHMEM
2621 static void try_to_free_low(struct hstate
*h
, unsigned long count
,
2622 nodemask_t
*nodes_allowed
)
2626 if (hstate_is_gigantic(h
))
2629 for_each_node_mask(i
, *nodes_allowed
) {
2630 struct page
*page
, *next
;
2631 struct list_head
*freel
= &h
->hugepage_freelists
[i
];
2632 list_for_each_entry_safe(page
, next
, freel
, lru
) {
2633 if (count
>= h
->nr_huge_pages
)
2635 if (PageHighMem(page
))
2637 list_del(&page
->lru
);
2638 update_and_free_page(h
, page
);
2639 h
->free_huge_pages
--;
2640 h
->free_huge_pages_node
[page_to_nid(page
)]--;
2645 static inline void try_to_free_low(struct hstate
*h
, unsigned long count
,
2646 nodemask_t
*nodes_allowed
)
2652 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2653 * balanced by operating on them in a round-robin fashion.
2654 * Returns 1 if an adjustment was made.
2656 static int adjust_pool_surplus(struct hstate
*h
, nodemask_t
*nodes_allowed
,
2661 VM_BUG_ON(delta
!= -1 && delta
!= 1);
2664 for_each_node_mask_to_alloc(h
, nr_nodes
, node
, nodes_allowed
) {
2665 if (h
->surplus_huge_pages_node
[node
])
2669 for_each_node_mask_to_free(h
, nr_nodes
, node
, nodes_allowed
) {
2670 if (h
->surplus_huge_pages_node
[node
] <
2671 h
->nr_huge_pages_node
[node
])
2678 h
->surplus_huge_pages
+= delta
;
2679 h
->surplus_huge_pages_node
[node
] += delta
;
2683 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2684 static int set_max_huge_pages(struct hstate
*h
, unsigned long count
, int nid
,
2685 nodemask_t
*nodes_allowed
)
2687 unsigned long min_count
, ret
;
2688 NODEMASK_ALLOC(nodemask_t
, node_alloc_noretry
, GFP_KERNEL
);
2691 * Bit mask controlling how hard we retry per-node allocations.
2692 * If we can not allocate the bit mask, do not attempt to allocate
2693 * the requested huge pages.
2695 if (node_alloc_noretry
)
2696 nodes_clear(*node_alloc_noretry
);
2700 spin_lock(&hugetlb_lock
);
2703 * Check for a node specific request.
2704 * Changing node specific huge page count may require a corresponding
2705 * change to the global count. In any case, the passed node mask
2706 * (nodes_allowed) will restrict alloc/free to the specified node.
2708 if (nid
!= NUMA_NO_NODE
) {
2709 unsigned long old_count
= count
;
2711 count
+= h
->nr_huge_pages
- h
->nr_huge_pages_node
[nid
];
2713 * User may have specified a large count value which caused the
2714 * above calculation to overflow. In this case, they wanted
2715 * to allocate as many huge pages as possible. Set count to
2716 * largest possible value to align with their intention.
2718 if (count
< old_count
)
2723 * Gigantic pages runtime allocation depend on the capability for large
2724 * page range allocation.
2725 * If the system does not provide this feature, return an error when
2726 * the user tries to allocate gigantic pages but let the user free the
2727 * boottime allocated gigantic pages.
2729 if (hstate_is_gigantic(h
) && !IS_ENABLED(CONFIG_CONTIG_ALLOC
)) {
2730 if (count
> persistent_huge_pages(h
)) {
2731 spin_unlock(&hugetlb_lock
);
2732 NODEMASK_FREE(node_alloc_noretry
);
2735 /* Fall through to decrease pool */
2739 * Increase the pool size
2740 * First take pages out of surplus state. Then make up the
2741 * remaining difference by allocating fresh huge pages.
2743 * We might race with alloc_surplus_huge_page() here and be unable
2744 * to convert a surplus huge page to a normal huge page. That is
2745 * not critical, though, it just means the overall size of the
2746 * pool might be one hugepage larger than it needs to be, but
2747 * within all the constraints specified by the sysctls.
2749 while (h
->surplus_huge_pages
&& count
> persistent_huge_pages(h
)) {
2750 if (!adjust_pool_surplus(h
, nodes_allowed
, -1))
2754 while (count
> persistent_huge_pages(h
)) {
2756 * If this allocation races such that we no longer need the
2757 * page, free_huge_page will handle it by freeing the page
2758 * and reducing the surplus.
2760 spin_unlock(&hugetlb_lock
);
2762 /* yield cpu to avoid soft lockup */
2765 ret
= alloc_pool_huge_page(h
, nodes_allowed
,
2766 node_alloc_noretry
);
2767 spin_lock(&hugetlb_lock
);
2771 /* Bail for signals. Probably ctrl-c from user */
2772 if (signal_pending(current
))
2777 * Decrease the pool size
2778 * First return free pages to the buddy allocator (being careful
2779 * to keep enough around to satisfy reservations). Then place
2780 * pages into surplus state as needed so the pool will shrink
2781 * to the desired size as pages become free.
2783 * By placing pages into the surplus state independent of the
2784 * overcommit value, we are allowing the surplus pool size to
2785 * exceed overcommit. There are few sane options here. Since
2786 * alloc_surplus_huge_page() is checking the global counter,
2787 * though, we'll note that we're not allowed to exceed surplus
2788 * and won't grow the pool anywhere else. Not until one of the
2789 * sysctls are changed, or the surplus pages go out of use.
2791 min_count
= h
->resv_huge_pages
+ h
->nr_huge_pages
- h
->free_huge_pages
;
2792 min_count
= max(count
, min_count
);
2793 try_to_free_low(h
, min_count
, nodes_allowed
);
2794 while (min_count
< persistent_huge_pages(h
)) {
2795 if (!free_pool_huge_page(h
, nodes_allowed
, 0))
2797 cond_resched_lock(&hugetlb_lock
);
2799 while (count
< persistent_huge_pages(h
)) {
2800 if (!adjust_pool_surplus(h
, nodes_allowed
, 1))
2804 h
->max_huge_pages
= persistent_huge_pages(h
);
2805 spin_unlock(&hugetlb_lock
);
2807 NODEMASK_FREE(node_alloc_noretry
);
2812 #define HSTATE_ATTR_RO(_name) \
2813 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2815 #define HSTATE_ATTR(_name) \
2816 static struct kobj_attribute _name##_attr = \
2817 __ATTR(_name, 0644, _name##_show, _name##_store)
2819 static struct kobject
*hugepages_kobj
;
2820 static struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
2822 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
);
2824 static struct hstate
*kobj_to_hstate(struct kobject
*kobj
, int *nidp
)
2828 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
2829 if (hstate_kobjs
[i
] == kobj
) {
2831 *nidp
= NUMA_NO_NODE
;
2835 return kobj_to_node_hstate(kobj
, nidp
);
2838 static ssize_t
nr_hugepages_show_common(struct kobject
*kobj
,
2839 struct kobj_attribute
*attr
, char *buf
)
2842 unsigned long nr_huge_pages
;
2845 h
= kobj_to_hstate(kobj
, &nid
);
2846 if (nid
== NUMA_NO_NODE
)
2847 nr_huge_pages
= h
->nr_huge_pages
;
2849 nr_huge_pages
= h
->nr_huge_pages_node
[nid
];
2851 return sprintf(buf
, "%lu\n", nr_huge_pages
);
2854 static ssize_t
__nr_hugepages_store_common(bool obey_mempolicy
,
2855 struct hstate
*h
, int nid
,
2856 unsigned long count
, size_t len
)
2859 nodemask_t nodes_allowed
, *n_mask
;
2861 if (hstate_is_gigantic(h
) && !gigantic_page_runtime_supported())
2864 if (nid
== NUMA_NO_NODE
) {
2866 * global hstate attribute
2868 if (!(obey_mempolicy
&&
2869 init_nodemask_of_mempolicy(&nodes_allowed
)))
2870 n_mask
= &node_states
[N_MEMORY
];
2872 n_mask
= &nodes_allowed
;
2875 * Node specific request. count adjustment happens in
2876 * set_max_huge_pages() after acquiring hugetlb_lock.
2878 init_nodemask_of_node(&nodes_allowed
, nid
);
2879 n_mask
= &nodes_allowed
;
2882 err
= set_max_huge_pages(h
, count
, nid
, n_mask
);
2884 return err
? err
: len
;
2887 static ssize_t
nr_hugepages_store_common(bool obey_mempolicy
,
2888 struct kobject
*kobj
, const char *buf
,
2892 unsigned long count
;
2896 err
= kstrtoul(buf
, 10, &count
);
2900 h
= kobj_to_hstate(kobj
, &nid
);
2901 return __nr_hugepages_store_common(obey_mempolicy
, h
, nid
, count
, len
);
2904 static ssize_t
nr_hugepages_show(struct kobject
*kobj
,
2905 struct kobj_attribute
*attr
, char *buf
)
2907 return nr_hugepages_show_common(kobj
, attr
, buf
);
2910 static ssize_t
nr_hugepages_store(struct kobject
*kobj
,
2911 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2913 return nr_hugepages_store_common(false, kobj
, buf
, len
);
2915 HSTATE_ATTR(nr_hugepages
);
2920 * hstate attribute for optionally mempolicy-based constraint on persistent
2921 * huge page alloc/free.
2923 static ssize_t
nr_hugepages_mempolicy_show(struct kobject
*kobj
,
2924 struct kobj_attribute
*attr
, char *buf
)
2926 return nr_hugepages_show_common(kobj
, attr
, buf
);
2929 static ssize_t
nr_hugepages_mempolicy_store(struct kobject
*kobj
,
2930 struct kobj_attribute
*attr
, const char *buf
, size_t len
)
2932 return nr_hugepages_store_common(true, kobj
, buf
, len
);
2934 HSTATE_ATTR(nr_hugepages_mempolicy
);
2938 static ssize_t
nr_overcommit_hugepages_show(struct kobject
*kobj
,
2939 struct kobj_attribute
*attr
, char *buf
)
2941 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2942 return sprintf(buf
, "%lu\n", h
->nr_overcommit_huge_pages
);
2945 static ssize_t
nr_overcommit_hugepages_store(struct kobject
*kobj
,
2946 struct kobj_attribute
*attr
, const char *buf
, size_t count
)
2949 unsigned long input
;
2950 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2952 if (hstate_is_gigantic(h
))
2955 err
= kstrtoul(buf
, 10, &input
);
2959 spin_lock(&hugetlb_lock
);
2960 h
->nr_overcommit_huge_pages
= input
;
2961 spin_unlock(&hugetlb_lock
);
2965 HSTATE_ATTR(nr_overcommit_hugepages
);
2967 static ssize_t
free_hugepages_show(struct kobject
*kobj
,
2968 struct kobj_attribute
*attr
, char *buf
)
2971 unsigned long free_huge_pages
;
2974 h
= kobj_to_hstate(kobj
, &nid
);
2975 if (nid
== NUMA_NO_NODE
)
2976 free_huge_pages
= h
->free_huge_pages
;
2978 free_huge_pages
= h
->free_huge_pages_node
[nid
];
2980 return sprintf(buf
, "%lu\n", free_huge_pages
);
2982 HSTATE_ATTR_RO(free_hugepages
);
2984 static ssize_t
resv_hugepages_show(struct kobject
*kobj
,
2985 struct kobj_attribute
*attr
, char *buf
)
2987 struct hstate
*h
= kobj_to_hstate(kobj
, NULL
);
2988 return sprintf(buf
, "%lu\n", h
->resv_huge_pages
);
2990 HSTATE_ATTR_RO(resv_hugepages
);
2992 static ssize_t
surplus_hugepages_show(struct kobject
*kobj
,
2993 struct kobj_attribute
*attr
, char *buf
)
2996 unsigned long surplus_huge_pages
;
2999 h
= kobj_to_hstate(kobj
, &nid
);
3000 if (nid
== NUMA_NO_NODE
)
3001 surplus_huge_pages
= h
->surplus_huge_pages
;
3003 surplus_huge_pages
= h
->surplus_huge_pages_node
[nid
];
3005 return sprintf(buf
, "%lu\n", surplus_huge_pages
);
3007 HSTATE_ATTR_RO(surplus_hugepages
);
3009 static struct attribute
*hstate_attrs
[] = {
3010 &nr_hugepages_attr
.attr
,
3011 &nr_overcommit_hugepages_attr
.attr
,
3012 &free_hugepages_attr
.attr
,
3013 &resv_hugepages_attr
.attr
,
3014 &surplus_hugepages_attr
.attr
,
3016 &nr_hugepages_mempolicy_attr
.attr
,
3021 static const struct attribute_group hstate_attr_group
= {
3022 .attrs
= hstate_attrs
,
3025 static int hugetlb_sysfs_add_hstate(struct hstate
*h
, struct kobject
*parent
,
3026 struct kobject
**hstate_kobjs
,
3027 const struct attribute_group
*hstate_attr_group
)
3030 int hi
= hstate_index(h
);
3032 hstate_kobjs
[hi
] = kobject_create_and_add(h
->name
, parent
);
3033 if (!hstate_kobjs
[hi
])
3036 retval
= sysfs_create_group(hstate_kobjs
[hi
], hstate_attr_group
);
3038 kobject_put(hstate_kobjs
[hi
]);
3043 static void __init
hugetlb_sysfs_init(void)
3048 hugepages_kobj
= kobject_create_and_add("hugepages", mm_kobj
);
3049 if (!hugepages_kobj
)
3052 for_each_hstate(h
) {
3053 err
= hugetlb_sysfs_add_hstate(h
, hugepages_kobj
,
3054 hstate_kobjs
, &hstate_attr_group
);
3056 pr_err("HugeTLB: Unable to add hstate %s", h
->name
);
3063 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3064 * with node devices in node_devices[] using a parallel array. The array
3065 * index of a node device or _hstate == node id.
3066 * This is here to avoid any static dependency of the node device driver, in
3067 * the base kernel, on the hugetlb module.
3069 struct node_hstate
{
3070 struct kobject
*hugepages_kobj
;
3071 struct kobject
*hstate_kobjs
[HUGE_MAX_HSTATE
];
3073 static struct node_hstate node_hstates
[MAX_NUMNODES
];
3076 * A subset of global hstate attributes for node devices
3078 static struct attribute
*per_node_hstate_attrs
[] = {
3079 &nr_hugepages_attr
.attr
,
3080 &free_hugepages_attr
.attr
,
3081 &surplus_hugepages_attr
.attr
,
3085 static const struct attribute_group per_node_hstate_attr_group
= {
3086 .attrs
= per_node_hstate_attrs
,
3090 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3091 * Returns node id via non-NULL nidp.
3093 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
3097 for (nid
= 0; nid
< nr_node_ids
; nid
++) {
3098 struct node_hstate
*nhs
= &node_hstates
[nid
];
3100 for (i
= 0; i
< HUGE_MAX_HSTATE
; i
++)
3101 if (nhs
->hstate_kobjs
[i
] == kobj
) {
3113 * Unregister hstate attributes from a single node device.
3114 * No-op if no hstate attributes attached.
3116 static void hugetlb_unregister_node(struct node
*node
)
3119 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
3121 if (!nhs
->hugepages_kobj
)
3122 return; /* no hstate attributes */
3124 for_each_hstate(h
) {
3125 int idx
= hstate_index(h
);
3126 if (nhs
->hstate_kobjs
[idx
]) {
3127 kobject_put(nhs
->hstate_kobjs
[idx
]);
3128 nhs
->hstate_kobjs
[idx
] = NULL
;
3132 kobject_put(nhs
->hugepages_kobj
);
3133 nhs
->hugepages_kobj
= NULL
;
3138 * Register hstate attributes for a single node device.
3139 * No-op if attributes already registered.
3141 static void hugetlb_register_node(struct node
*node
)
3144 struct node_hstate
*nhs
= &node_hstates
[node
->dev
.id
];
3147 if (nhs
->hugepages_kobj
)
3148 return; /* already allocated */
3150 nhs
->hugepages_kobj
= kobject_create_and_add("hugepages",
3152 if (!nhs
->hugepages_kobj
)
3155 for_each_hstate(h
) {
3156 err
= hugetlb_sysfs_add_hstate(h
, nhs
->hugepages_kobj
,
3158 &per_node_hstate_attr_group
);
3160 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3161 h
->name
, node
->dev
.id
);
3162 hugetlb_unregister_node(node
);
3169 * hugetlb init time: register hstate attributes for all registered node
3170 * devices of nodes that have memory. All on-line nodes should have
3171 * registered their associated device by this time.
3173 static void __init
hugetlb_register_all_nodes(void)
3177 for_each_node_state(nid
, N_MEMORY
) {
3178 struct node
*node
= node_devices
[nid
];
3179 if (node
->dev
.id
== nid
)
3180 hugetlb_register_node(node
);
3184 * Let the node device driver know we're here so it can
3185 * [un]register hstate attributes on node hotplug.
3187 register_hugetlbfs_with_node(hugetlb_register_node
,
3188 hugetlb_unregister_node
);
3190 #else /* !CONFIG_NUMA */
3192 static struct hstate
*kobj_to_node_hstate(struct kobject
*kobj
, int *nidp
)
3200 static void hugetlb_register_all_nodes(void) { }
3204 static int __init
hugetlb_init(void)
3208 if (!hugepages_supported()) {
3209 if (hugetlb_max_hstate
|| default_hstate_max_huge_pages
)
3210 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3215 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3216 * architectures depend on setup being done here.
3218 hugetlb_add_hstate(HUGETLB_PAGE_ORDER
);
3219 if (!parsed_default_hugepagesz
) {
3221 * If we did not parse a default huge page size, set
3222 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3223 * number of huge pages for this default size was implicitly
3224 * specified, set that here as well.
3225 * Note that the implicit setting will overwrite an explicit
3226 * setting. A warning will be printed in this case.
3228 default_hstate_idx
= hstate_index(size_to_hstate(HPAGE_SIZE
));
3229 if (default_hstate_max_huge_pages
) {
3230 if (default_hstate
.max_huge_pages
) {
3233 string_get_size(huge_page_size(&default_hstate
),
3234 1, STRING_UNITS_2
, buf
, 32);
3235 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3236 default_hstate
.max_huge_pages
, buf
);
3237 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3238 default_hstate_max_huge_pages
);
3240 default_hstate
.max_huge_pages
=
3241 default_hstate_max_huge_pages
;
3245 hugetlb_cma_check();
3246 hugetlb_init_hstates();
3247 gather_bootmem_prealloc();
3250 hugetlb_sysfs_init();
3251 hugetlb_register_all_nodes();
3252 hugetlb_cgroup_file_init();
3255 num_fault_mutexes
= roundup_pow_of_two(8 * num_possible_cpus());
3257 num_fault_mutexes
= 1;
3259 hugetlb_fault_mutex_table
=
3260 kmalloc_array(num_fault_mutexes
, sizeof(struct mutex
),
3262 BUG_ON(!hugetlb_fault_mutex_table
);
3264 for (i
= 0; i
< num_fault_mutexes
; i
++)
3265 mutex_init(&hugetlb_fault_mutex_table
[i
]);
3268 subsys_initcall(hugetlb_init
);
3270 /* Overwritten by architectures with more huge page sizes */
3271 bool __init
__attribute((weak
)) arch_hugetlb_valid_size(unsigned long size
)
3273 return size
== HPAGE_SIZE
;
3276 void __init
hugetlb_add_hstate(unsigned int order
)
3281 if (size_to_hstate(PAGE_SIZE
<< order
)) {
3284 BUG_ON(hugetlb_max_hstate
>= HUGE_MAX_HSTATE
);
3286 h
= &hstates
[hugetlb_max_hstate
++];
3288 h
->mask
= ~((1ULL << (order
+ PAGE_SHIFT
)) - 1);
3289 h
->nr_huge_pages
= 0;
3290 h
->free_huge_pages
= 0;
3291 for (i
= 0; i
< MAX_NUMNODES
; ++i
)
3292 INIT_LIST_HEAD(&h
->hugepage_freelists
[i
]);
3293 INIT_LIST_HEAD(&h
->hugepage_activelist
);
3294 h
->next_nid_to_alloc
= first_memory_node
;
3295 h
->next_nid_to_free
= first_memory_node
;
3296 snprintf(h
->name
, HSTATE_NAME_LEN
, "hugepages-%lukB",
3297 huge_page_size(h
)/1024);
3303 * hugepages command line processing
3304 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3305 * specification. If not, ignore the hugepages value. hugepages can also
3306 * be the first huge page command line option in which case it implicitly
3307 * specifies the number of huge pages for the default size.
3309 static int __init
hugepages_setup(char *s
)
3312 static unsigned long *last_mhp
;
3314 if (!parsed_valid_hugepagesz
) {
3315 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s
);
3316 parsed_valid_hugepagesz
= true;
3321 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3322 * yet, so this hugepages= parameter goes to the "default hstate".
3323 * Otherwise, it goes with the previously parsed hugepagesz or
3324 * default_hugepagesz.
3326 else if (!hugetlb_max_hstate
)
3327 mhp
= &default_hstate_max_huge_pages
;
3329 mhp
= &parsed_hstate
->max_huge_pages
;
3331 if (mhp
== last_mhp
) {
3332 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s
);
3336 if (sscanf(s
, "%lu", mhp
) <= 0)
3340 * Global state is always initialized later in hugetlb_init.
3341 * But we need to allocate >= MAX_ORDER hstates here early to still
3342 * use the bootmem allocator.
3344 if (hugetlb_max_hstate
&& parsed_hstate
->order
>= MAX_ORDER
)
3345 hugetlb_hstate_alloc_pages(parsed_hstate
);
3351 __setup("hugepages=", hugepages_setup
);
3354 * hugepagesz command line processing
3355 * A specific huge page size can only be specified once with hugepagesz.
3356 * hugepagesz is followed by hugepages on the command line. The global
3357 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3358 * hugepagesz argument was valid.
3360 static int __init
hugepagesz_setup(char *s
)
3365 parsed_valid_hugepagesz
= false;
3366 size
= (unsigned long)memparse(s
, NULL
);
3368 if (!arch_hugetlb_valid_size(size
)) {
3369 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s
);
3373 h
= size_to_hstate(size
);
3376 * hstate for this size already exists. This is normally
3377 * an error, but is allowed if the existing hstate is the
3378 * default hstate. More specifically, it is only allowed if
3379 * the number of huge pages for the default hstate was not
3380 * previously specified.
3382 if (!parsed_default_hugepagesz
|| h
!= &default_hstate
||
3383 default_hstate
.max_huge_pages
) {
3384 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s
);
3389 * No need to call hugetlb_add_hstate() as hstate already
3390 * exists. But, do set parsed_hstate so that a following
3391 * hugepages= parameter will be applied to this hstate.
3394 parsed_valid_hugepagesz
= true;
3398 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
3399 parsed_valid_hugepagesz
= true;
3402 __setup("hugepagesz=", hugepagesz_setup
);
3405 * default_hugepagesz command line input
3406 * Only one instance of default_hugepagesz allowed on command line.
3408 static int __init
default_hugepagesz_setup(char *s
)
3412 parsed_valid_hugepagesz
= false;
3413 if (parsed_default_hugepagesz
) {
3414 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s
);
3418 size
= (unsigned long)memparse(s
, NULL
);
3420 if (!arch_hugetlb_valid_size(size
)) {
3421 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s
);
3425 hugetlb_add_hstate(ilog2(size
) - PAGE_SHIFT
);
3426 parsed_valid_hugepagesz
= true;
3427 parsed_default_hugepagesz
= true;
3428 default_hstate_idx
= hstate_index(size_to_hstate(size
));
3431 * The number of default huge pages (for this size) could have been
3432 * specified as the first hugetlb parameter: hugepages=X. If so,
3433 * then default_hstate_max_huge_pages is set. If the default huge
3434 * page size is gigantic (>= MAX_ORDER), then the pages must be
3435 * allocated here from bootmem allocator.
3437 if (default_hstate_max_huge_pages
) {
3438 default_hstate
.max_huge_pages
= default_hstate_max_huge_pages
;
3439 if (hstate_is_gigantic(&default_hstate
))
3440 hugetlb_hstate_alloc_pages(&default_hstate
);
3441 default_hstate_max_huge_pages
= 0;
3446 __setup("default_hugepagesz=", default_hugepagesz_setup
);
3448 static unsigned int allowed_mems_nr(struct hstate
*h
)
3451 unsigned int nr
= 0;
3452 nodemask_t
*mpol_allowed
;
3453 unsigned int *array
= h
->free_huge_pages_node
;
3454 gfp_t gfp_mask
= htlb_alloc_mask(h
);
3456 mpol_allowed
= policy_nodemask_current(gfp_mask
);
3458 for_each_node_mask(node
, cpuset_current_mems_allowed
) {
3459 if (!mpol_allowed
||
3460 (mpol_allowed
&& node_isset(node
, *mpol_allowed
)))
3467 #ifdef CONFIG_SYSCTL
3468 static int proc_hugetlb_doulongvec_minmax(struct ctl_table
*table
, int write
,
3469 void *buffer
, size_t *length
,
3470 loff_t
*ppos
, unsigned long *out
)
3472 struct ctl_table dup_table
;
3475 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3476 * can duplicate the @table and alter the duplicate of it.
3479 dup_table
.data
= out
;
3481 return proc_doulongvec_minmax(&dup_table
, write
, buffer
, length
, ppos
);
3484 static int hugetlb_sysctl_handler_common(bool obey_mempolicy
,
3485 struct ctl_table
*table
, int write
,
3486 void *buffer
, size_t *length
, loff_t
*ppos
)
3488 struct hstate
*h
= &default_hstate
;
3489 unsigned long tmp
= h
->max_huge_pages
;
3492 if (!hugepages_supported())
3495 ret
= proc_hugetlb_doulongvec_minmax(table
, write
, buffer
, length
, ppos
,
3501 ret
= __nr_hugepages_store_common(obey_mempolicy
, h
,
3502 NUMA_NO_NODE
, tmp
, *length
);
3507 int hugetlb_sysctl_handler(struct ctl_table
*table
, int write
,
3508 void *buffer
, size_t *length
, loff_t
*ppos
)
3511 return hugetlb_sysctl_handler_common(false, table
, write
,
3512 buffer
, length
, ppos
);
3516 int hugetlb_mempolicy_sysctl_handler(struct ctl_table
*table
, int write
,
3517 void *buffer
, size_t *length
, loff_t
*ppos
)
3519 return hugetlb_sysctl_handler_common(true, table
, write
,
3520 buffer
, length
, ppos
);
3522 #endif /* CONFIG_NUMA */
3524 int hugetlb_overcommit_handler(struct ctl_table
*table
, int write
,
3525 void *buffer
, size_t *length
, loff_t
*ppos
)
3527 struct hstate
*h
= &default_hstate
;
3531 if (!hugepages_supported())
3534 tmp
= h
->nr_overcommit_huge_pages
;
3536 if (write
&& hstate_is_gigantic(h
))
3539 ret
= proc_hugetlb_doulongvec_minmax(table
, write
, buffer
, length
, ppos
,
3545 spin_lock(&hugetlb_lock
);
3546 h
->nr_overcommit_huge_pages
= tmp
;
3547 spin_unlock(&hugetlb_lock
);
3553 #endif /* CONFIG_SYSCTL */
3555 void hugetlb_report_meminfo(struct seq_file
*m
)
3558 unsigned long total
= 0;
3560 if (!hugepages_supported())
3563 for_each_hstate(h
) {
3564 unsigned long count
= h
->nr_huge_pages
;
3566 total
+= (PAGE_SIZE
<< huge_page_order(h
)) * count
;
3568 if (h
== &default_hstate
)
3570 "HugePages_Total: %5lu\n"
3571 "HugePages_Free: %5lu\n"
3572 "HugePages_Rsvd: %5lu\n"
3573 "HugePages_Surp: %5lu\n"
3574 "Hugepagesize: %8lu kB\n",
3578 h
->surplus_huge_pages
,
3579 (PAGE_SIZE
<< huge_page_order(h
)) / 1024);
3582 seq_printf(m
, "Hugetlb: %8lu kB\n", total
/ 1024);
3585 int hugetlb_report_node_meminfo(int nid
, char *buf
)
3587 struct hstate
*h
= &default_hstate
;
3588 if (!hugepages_supported())
3591 "Node %d HugePages_Total: %5u\n"
3592 "Node %d HugePages_Free: %5u\n"
3593 "Node %d HugePages_Surp: %5u\n",
3594 nid
, h
->nr_huge_pages_node
[nid
],
3595 nid
, h
->free_huge_pages_node
[nid
],
3596 nid
, h
->surplus_huge_pages_node
[nid
]);
3599 void hugetlb_show_meminfo(void)
3604 if (!hugepages_supported())
3607 for_each_node_state(nid
, N_MEMORY
)
3609 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3611 h
->nr_huge_pages_node
[nid
],
3612 h
->free_huge_pages_node
[nid
],
3613 h
->surplus_huge_pages_node
[nid
],
3614 1UL << (huge_page_order(h
) + PAGE_SHIFT
- 10));
3617 void hugetlb_report_usage(struct seq_file
*m
, struct mm_struct
*mm
)
3619 seq_printf(m
, "HugetlbPages:\t%8lu kB\n",
3620 atomic_long_read(&mm
->hugetlb_usage
) << (PAGE_SHIFT
- 10));
3623 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3624 unsigned long hugetlb_total_pages(void)
3627 unsigned long nr_total_pages
= 0;
3630 nr_total_pages
+= h
->nr_huge_pages
* pages_per_huge_page(h
);
3631 return nr_total_pages
;
3634 static int hugetlb_acct_memory(struct hstate
*h
, long delta
)
3638 spin_lock(&hugetlb_lock
);
3640 * When cpuset is configured, it breaks the strict hugetlb page
3641 * reservation as the accounting is done on a global variable. Such
3642 * reservation is completely rubbish in the presence of cpuset because
3643 * the reservation is not checked against page availability for the
3644 * current cpuset. Application can still potentially OOM'ed by kernel
3645 * with lack of free htlb page in cpuset that the task is in.
3646 * Attempt to enforce strict accounting with cpuset is almost
3647 * impossible (or too ugly) because cpuset is too fluid that
3648 * task or memory node can be dynamically moved between cpusets.
3650 * The change of semantics for shared hugetlb mapping with cpuset is
3651 * undesirable. However, in order to preserve some of the semantics,
3652 * we fall back to check against current free page availability as
3653 * a best attempt and hopefully to minimize the impact of changing
3654 * semantics that cpuset has.
3656 * Apart from cpuset, we also have memory policy mechanism that
3657 * also determines from which node the kernel will allocate memory
3658 * in a NUMA system. So similar to cpuset, we also should consider
3659 * the memory policy of the current task. Similar to the description
3663 if (gather_surplus_pages(h
, delta
) < 0)
3666 if (delta
> allowed_mems_nr(h
)) {
3667 return_unused_surplus_pages(h
, delta
);
3674 return_unused_surplus_pages(h
, (unsigned long) -delta
);
3677 spin_unlock(&hugetlb_lock
);
3681 static void hugetlb_vm_op_open(struct vm_area_struct
*vma
)
3683 struct resv_map
*resv
= vma_resv_map(vma
);
3686 * This new VMA should share its siblings reservation map if present.
3687 * The VMA will only ever have a valid reservation map pointer where
3688 * it is being copied for another still existing VMA. As that VMA
3689 * has a reference to the reservation map it cannot disappear until
3690 * after this open call completes. It is therefore safe to take a
3691 * new reference here without additional locking.
3693 if (resv
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3694 kref_get(&resv
->refs
);
3697 static void hugetlb_vm_op_close(struct vm_area_struct
*vma
)
3699 struct hstate
*h
= hstate_vma(vma
);
3700 struct resv_map
*resv
= vma_resv_map(vma
);
3701 struct hugepage_subpool
*spool
= subpool_vma(vma
);
3702 unsigned long reserve
, start
, end
;
3705 if (!resv
|| !is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
3708 start
= vma_hugecache_offset(h
, vma
, vma
->vm_start
);
3709 end
= vma_hugecache_offset(h
, vma
, vma
->vm_end
);
3711 reserve
= (end
- start
) - region_count(resv
, start
, end
);
3712 hugetlb_cgroup_uncharge_counter(resv
, start
, end
);
3715 * Decrement reserve counts. The global reserve count may be
3716 * adjusted if the subpool has a minimum size.
3718 gbl_reserve
= hugepage_subpool_put_pages(spool
, reserve
);
3719 hugetlb_acct_memory(h
, -gbl_reserve
);
3722 kref_put(&resv
->refs
, resv_map_release
);
3725 static int hugetlb_vm_op_split(struct vm_area_struct
*vma
, unsigned long addr
)
3727 if (addr
& ~(huge_page_mask(hstate_vma(vma
))))
3732 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct
*vma
)
3734 struct hstate
*hstate
= hstate_vma(vma
);
3736 return 1UL << huge_page_shift(hstate
);
3740 * We cannot handle pagefaults against hugetlb pages at all. They cause
3741 * handle_mm_fault() to try to instantiate regular-sized pages in the
3742 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3745 static vm_fault_t
hugetlb_vm_op_fault(struct vm_fault
*vmf
)
3752 * When a new function is introduced to vm_operations_struct and added
3753 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3754 * This is because under System V memory model, mappings created via
3755 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3756 * their original vm_ops are overwritten with shm_vm_ops.
3758 const struct vm_operations_struct hugetlb_vm_ops
= {
3759 .fault
= hugetlb_vm_op_fault
,
3760 .open
= hugetlb_vm_op_open
,
3761 .close
= hugetlb_vm_op_close
,
3762 .split
= hugetlb_vm_op_split
,
3763 .pagesize
= hugetlb_vm_op_pagesize
,
3766 static pte_t
make_huge_pte(struct vm_area_struct
*vma
, struct page
*page
,
3772 entry
= huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page
,
3773 vma
->vm_page_prot
)));
3775 entry
= huge_pte_wrprotect(mk_huge_pte(page
,
3776 vma
->vm_page_prot
));
3778 entry
= pte_mkyoung(entry
);
3779 entry
= pte_mkhuge(entry
);
3780 entry
= arch_make_huge_pte(entry
, vma
, page
, writable
);
3785 static void set_huge_ptep_writable(struct vm_area_struct
*vma
,
3786 unsigned long address
, pte_t
*ptep
)
3790 entry
= huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep
)));
3791 if (huge_ptep_set_access_flags(vma
, address
, ptep
, entry
, 1))
3792 update_mmu_cache(vma
, address
, ptep
);
3795 bool is_hugetlb_entry_migration(pte_t pte
)
3799 if (huge_pte_none(pte
) || pte_present(pte
))
3801 swp
= pte_to_swp_entry(pte
);
3802 if (non_swap_entry(swp
) && is_migration_entry(swp
))
3808 static int is_hugetlb_entry_hwpoisoned(pte_t pte
)
3812 if (huge_pte_none(pte
) || pte_present(pte
))
3814 swp
= pte_to_swp_entry(pte
);
3815 if (non_swap_entry(swp
) && is_hwpoison_entry(swp
))
3821 int copy_hugetlb_page_range(struct mm_struct
*dst
, struct mm_struct
*src
,
3822 struct vm_area_struct
*vma
)
3824 pte_t
*src_pte
, *dst_pte
, entry
, dst_entry
;
3825 struct page
*ptepage
;
3828 struct hstate
*h
= hstate_vma(vma
);
3829 unsigned long sz
= huge_page_size(h
);
3830 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
3831 struct mmu_notifier_range range
;
3834 cow
= (vma
->vm_flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
3837 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, src
,
3840 mmu_notifier_invalidate_range_start(&range
);
3843 * For shared mappings i_mmap_rwsem must be held to call
3844 * huge_pte_alloc, otherwise the returned ptep could go
3845 * away if part of a shared pmd and another thread calls
3848 i_mmap_lock_read(mapping
);
3851 for (addr
= vma
->vm_start
; addr
< vma
->vm_end
; addr
+= sz
) {
3852 spinlock_t
*src_ptl
, *dst_ptl
;
3853 src_pte
= huge_pte_offset(src
, addr
, sz
);
3856 dst_pte
= huge_pte_alloc(dst
, addr
, sz
);
3863 * If the pagetables are shared don't copy or take references.
3864 * dst_pte == src_pte is the common case of src/dest sharing.
3866 * However, src could have 'unshared' and dst shares with
3867 * another vma. If dst_pte !none, this implies sharing.
3868 * Check here before taking page table lock, and once again
3869 * after taking the lock below.
3871 dst_entry
= huge_ptep_get(dst_pte
);
3872 if ((dst_pte
== src_pte
) || !huge_pte_none(dst_entry
))
3875 dst_ptl
= huge_pte_lock(h
, dst
, dst_pte
);
3876 src_ptl
= huge_pte_lockptr(h
, src
, src_pte
);
3877 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
3878 entry
= huge_ptep_get(src_pte
);
3879 dst_entry
= huge_ptep_get(dst_pte
);
3880 if (huge_pte_none(entry
) || !huge_pte_none(dst_entry
)) {
3882 * Skip if src entry none. Also, skip in the
3883 * unlikely case dst entry !none as this implies
3884 * sharing with another vma.
3887 } else if (unlikely(is_hugetlb_entry_migration(entry
) ||
3888 is_hugetlb_entry_hwpoisoned(entry
))) {
3889 swp_entry_t swp_entry
= pte_to_swp_entry(entry
);
3891 if (is_write_migration_entry(swp_entry
) && cow
) {
3893 * COW mappings require pages in both
3894 * parent and child to be set to read.
3896 make_migration_entry_read(&swp_entry
);
3897 entry
= swp_entry_to_pte(swp_entry
);
3898 set_huge_swap_pte_at(src
, addr
, src_pte
,
3901 set_huge_swap_pte_at(dst
, addr
, dst_pte
, entry
, sz
);
3905 * No need to notify as we are downgrading page
3906 * table protection not changing it to point
3909 * See Documentation/vm/mmu_notifier.rst
3911 huge_ptep_set_wrprotect(src
, addr
, src_pte
);
3913 entry
= huge_ptep_get(src_pte
);
3914 ptepage
= pte_page(entry
);
3916 page_dup_rmap(ptepage
, true);
3917 set_huge_pte_at(dst
, addr
, dst_pte
, entry
);
3918 hugetlb_count_add(pages_per_huge_page(h
), dst
);
3920 spin_unlock(src_ptl
);
3921 spin_unlock(dst_ptl
);
3925 mmu_notifier_invalidate_range_end(&range
);
3927 i_mmap_unlock_read(mapping
);
3932 void __unmap_hugepage_range(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
3933 unsigned long start
, unsigned long end
,
3934 struct page
*ref_page
)
3936 struct mm_struct
*mm
= vma
->vm_mm
;
3937 unsigned long address
;
3942 struct hstate
*h
= hstate_vma(vma
);
3943 unsigned long sz
= huge_page_size(h
);
3944 struct mmu_notifier_range range
;
3946 WARN_ON(!is_vm_hugetlb_page(vma
));
3947 BUG_ON(start
& ~huge_page_mask(h
));
3948 BUG_ON(end
& ~huge_page_mask(h
));
3951 * This is a hugetlb vma, all the pte entries should point
3954 tlb_change_page_size(tlb
, sz
);
3955 tlb_start_vma(tlb
, vma
);
3958 * If sharing possible, alert mmu notifiers of worst case.
3960 mmu_notifier_range_init(&range
, MMU_NOTIFY_UNMAP
, 0, vma
, mm
, start
,
3962 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
3963 mmu_notifier_invalidate_range_start(&range
);
3965 for (; address
< end
; address
+= sz
) {
3966 ptep
= huge_pte_offset(mm
, address
, sz
);
3970 ptl
= huge_pte_lock(h
, mm
, ptep
);
3971 if (huge_pmd_unshare(mm
, vma
, &address
, ptep
)) {
3974 * We just unmapped a page of PMDs by clearing a PUD.
3975 * The caller's TLB flush range should cover this area.
3980 pte
= huge_ptep_get(ptep
);
3981 if (huge_pte_none(pte
)) {
3987 * Migrating hugepage or HWPoisoned hugepage is already
3988 * unmapped and its refcount is dropped, so just clear pte here.
3990 if (unlikely(!pte_present(pte
))) {
3991 huge_pte_clear(mm
, address
, ptep
, sz
);
3996 page
= pte_page(pte
);
3998 * If a reference page is supplied, it is because a specific
3999 * page is being unmapped, not a range. Ensure the page we
4000 * are about to unmap is the actual page of interest.
4003 if (page
!= ref_page
) {
4008 * Mark the VMA as having unmapped its page so that
4009 * future faults in this VMA will fail rather than
4010 * looking like data was lost
4012 set_vma_resv_flags(vma
, HPAGE_RESV_UNMAPPED
);
4015 pte
= huge_ptep_get_and_clear(mm
, address
, ptep
);
4016 tlb_remove_huge_tlb_entry(h
, tlb
, ptep
, address
);
4017 if (huge_pte_dirty(pte
))
4018 set_page_dirty(page
);
4020 hugetlb_count_sub(pages_per_huge_page(h
), mm
);
4021 page_remove_rmap(page
, true);
4024 tlb_remove_page_size(tlb
, page
, huge_page_size(h
));
4026 * Bail out after unmapping reference page if supplied
4031 mmu_notifier_invalidate_range_end(&range
);
4032 tlb_end_vma(tlb
, vma
);
4035 void __unmap_hugepage_range_final(struct mmu_gather
*tlb
,
4036 struct vm_area_struct
*vma
, unsigned long start
,
4037 unsigned long end
, struct page
*ref_page
)
4039 __unmap_hugepage_range(tlb
, vma
, start
, end
, ref_page
);
4042 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4043 * test will fail on a vma being torn down, and not grab a page table
4044 * on its way out. We're lucky that the flag has such an appropriate
4045 * name, and can in fact be safely cleared here. We could clear it
4046 * before the __unmap_hugepage_range above, but all that's necessary
4047 * is to clear it before releasing the i_mmap_rwsem. This works
4048 * because in the context this is called, the VMA is about to be
4049 * destroyed and the i_mmap_rwsem is held.
4051 vma
->vm_flags
&= ~VM_MAYSHARE
;
4054 void unmap_hugepage_range(struct vm_area_struct
*vma
, unsigned long start
,
4055 unsigned long end
, struct page
*ref_page
)
4057 struct mm_struct
*mm
;
4058 struct mmu_gather tlb
;
4059 unsigned long tlb_start
= start
;
4060 unsigned long tlb_end
= end
;
4063 * If shared PMDs were possibly used within this vma range, adjust
4064 * start/end for worst case tlb flushing.
4065 * Note that we can not be sure if PMDs are shared until we try to
4066 * unmap pages. However, we want to make sure TLB flushing covers
4067 * the largest possible range.
4069 adjust_range_if_pmd_sharing_possible(vma
, &tlb_start
, &tlb_end
);
4073 tlb_gather_mmu(&tlb
, mm
, tlb_start
, tlb_end
);
4074 __unmap_hugepage_range(&tlb
, vma
, start
, end
, ref_page
);
4075 tlb_finish_mmu(&tlb
, tlb_start
, tlb_end
);
4079 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4080 * mappping it owns the reserve page for. The intention is to unmap the page
4081 * from other VMAs and let the children be SIGKILLed if they are faulting the
4084 static void unmap_ref_private(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4085 struct page
*page
, unsigned long address
)
4087 struct hstate
*h
= hstate_vma(vma
);
4088 struct vm_area_struct
*iter_vma
;
4089 struct address_space
*mapping
;
4093 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4094 * from page cache lookup which is in HPAGE_SIZE units.
4096 address
= address
& huge_page_mask(h
);
4097 pgoff
= ((address
- vma
->vm_start
) >> PAGE_SHIFT
) +
4099 mapping
= vma
->vm_file
->f_mapping
;
4102 * Take the mapping lock for the duration of the table walk. As
4103 * this mapping should be shared between all the VMAs,
4104 * __unmap_hugepage_range() is called as the lock is already held
4106 i_mmap_lock_write(mapping
);
4107 vma_interval_tree_foreach(iter_vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
4108 /* Do not unmap the current VMA */
4109 if (iter_vma
== vma
)
4113 * Shared VMAs have their own reserves and do not affect
4114 * MAP_PRIVATE accounting but it is possible that a shared
4115 * VMA is using the same page so check and skip such VMAs.
4117 if (iter_vma
->vm_flags
& VM_MAYSHARE
)
4121 * Unmap the page from other VMAs without their own reserves.
4122 * They get marked to be SIGKILLed if they fault in these
4123 * areas. This is because a future no-page fault on this VMA
4124 * could insert a zeroed page instead of the data existing
4125 * from the time of fork. This would look like data corruption
4127 if (!is_vma_resv_set(iter_vma
, HPAGE_RESV_OWNER
))
4128 unmap_hugepage_range(iter_vma
, address
,
4129 address
+ huge_page_size(h
), page
);
4131 i_mmap_unlock_write(mapping
);
4135 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4136 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4137 * cannot race with other handlers or page migration.
4138 * Keep the pte_same checks anyway to make transition from the mutex easier.
4140 static vm_fault_t
hugetlb_cow(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4141 unsigned long address
, pte_t
*ptep
,
4142 struct page
*pagecache_page
, spinlock_t
*ptl
)
4145 struct hstate
*h
= hstate_vma(vma
);
4146 struct page
*old_page
, *new_page
;
4147 int outside_reserve
= 0;
4149 unsigned long haddr
= address
& huge_page_mask(h
);
4150 struct mmu_notifier_range range
;
4152 pte
= huge_ptep_get(ptep
);
4153 old_page
= pte_page(pte
);
4156 /* If no-one else is actually using this page, avoid the copy
4157 * and just make the page writable */
4158 if (page_mapcount(old_page
) == 1 && PageAnon(old_page
)) {
4159 page_move_anon_rmap(old_page
, vma
);
4160 set_huge_ptep_writable(vma
, haddr
, ptep
);
4165 * If the process that created a MAP_PRIVATE mapping is about to
4166 * perform a COW due to a shared page count, attempt to satisfy
4167 * the allocation without using the existing reserves. The pagecache
4168 * page is used to determine if the reserve at this address was
4169 * consumed or not. If reserves were used, a partial faulted mapping
4170 * at the time of fork() could consume its reserves on COW instead
4171 * of the full address range.
4173 if (is_vma_resv_set(vma
, HPAGE_RESV_OWNER
) &&
4174 old_page
!= pagecache_page
)
4175 outside_reserve
= 1;
4180 * Drop page table lock as buddy allocator may be called. It will
4181 * be acquired again before returning to the caller, as expected.
4184 new_page
= alloc_huge_page(vma
, haddr
, outside_reserve
);
4186 if (IS_ERR(new_page
)) {
4188 * If a process owning a MAP_PRIVATE mapping fails to COW,
4189 * it is due to references held by a child and an insufficient
4190 * huge page pool. To guarantee the original mappers
4191 * reliability, unmap the page from child processes. The child
4192 * may get SIGKILLed if it later faults.
4194 if (outside_reserve
) {
4196 BUG_ON(huge_pte_none(pte
));
4197 unmap_ref_private(mm
, vma
, old_page
, haddr
);
4198 BUG_ON(huge_pte_none(pte
));
4200 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4202 pte_same(huge_ptep_get(ptep
), pte
)))
4203 goto retry_avoidcopy
;
4205 * race occurs while re-acquiring page table
4206 * lock, and our job is done.
4211 ret
= vmf_error(PTR_ERR(new_page
));
4212 goto out_release_old
;
4216 * When the original hugepage is shared one, it does not have
4217 * anon_vma prepared.
4219 if (unlikely(anon_vma_prepare(vma
))) {
4221 goto out_release_all
;
4224 copy_user_huge_page(new_page
, old_page
, address
, vma
,
4225 pages_per_huge_page(h
));
4226 __SetPageUptodate(new_page
);
4228 mmu_notifier_range_init(&range
, MMU_NOTIFY_CLEAR
, 0, vma
, mm
, haddr
,
4229 haddr
+ huge_page_size(h
));
4230 mmu_notifier_invalidate_range_start(&range
);
4233 * Retake the page table lock to check for racing updates
4234 * before the page tables are altered
4237 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4238 if (likely(ptep
&& pte_same(huge_ptep_get(ptep
), pte
))) {
4239 ClearPagePrivate(new_page
);
4242 huge_ptep_clear_flush(vma
, haddr
, ptep
);
4243 mmu_notifier_invalidate_range(mm
, range
.start
, range
.end
);
4244 set_huge_pte_at(mm
, haddr
, ptep
,
4245 make_huge_pte(vma
, new_page
, 1));
4246 page_remove_rmap(old_page
, true);
4247 hugepage_add_new_anon_rmap(new_page
, vma
, haddr
);
4248 set_page_huge_active(new_page
);
4249 /* Make the old page be freed below */
4250 new_page
= old_page
;
4253 mmu_notifier_invalidate_range_end(&range
);
4255 restore_reserve_on_error(h
, vma
, haddr
, new_page
);
4260 spin_lock(ptl
); /* Caller expects lock to be held */
4264 /* Return the pagecache page at a given address within a VMA */
4265 static struct page
*hugetlbfs_pagecache_page(struct hstate
*h
,
4266 struct vm_area_struct
*vma
, unsigned long address
)
4268 struct address_space
*mapping
;
4271 mapping
= vma
->vm_file
->f_mapping
;
4272 idx
= vma_hugecache_offset(h
, vma
, address
);
4274 return find_lock_page(mapping
, idx
);
4278 * Return whether there is a pagecache page to back given address within VMA.
4279 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4281 static bool hugetlbfs_pagecache_present(struct hstate
*h
,
4282 struct vm_area_struct
*vma
, unsigned long address
)
4284 struct address_space
*mapping
;
4288 mapping
= vma
->vm_file
->f_mapping
;
4289 idx
= vma_hugecache_offset(h
, vma
, address
);
4291 page
= find_get_page(mapping
, idx
);
4294 return page
!= NULL
;
4297 int huge_add_to_page_cache(struct page
*page
, struct address_space
*mapping
,
4300 struct inode
*inode
= mapping
->host
;
4301 struct hstate
*h
= hstate_inode(inode
);
4302 int err
= add_to_page_cache(page
, mapping
, idx
, GFP_KERNEL
);
4306 ClearPagePrivate(page
);
4309 * set page dirty so that it will not be removed from cache/file
4310 * by non-hugetlbfs specific code paths.
4312 set_page_dirty(page
);
4314 spin_lock(&inode
->i_lock
);
4315 inode
->i_blocks
+= blocks_per_huge_page(h
);
4316 spin_unlock(&inode
->i_lock
);
4320 static vm_fault_t
hugetlb_no_page(struct mm_struct
*mm
,
4321 struct vm_area_struct
*vma
,
4322 struct address_space
*mapping
, pgoff_t idx
,
4323 unsigned long address
, pte_t
*ptep
, unsigned int flags
)
4325 struct hstate
*h
= hstate_vma(vma
);
4326 vm_fault_t ret
= VM_FAULT_SIGBUS
;
4332 unsigned long haddr
= address
& huge_page_mask(h
);
4333 bool new_page
= false;
4336 * Currently, we are forced to kill the process in the event the
4337 * original mapper has unmapped pages from the child due to a failed
4338 * COW. Warn that such a situation has occurred as it may not be obvious
4340 if (is_vma_resv_set(vma
, HPAGE_RESV_UNMAPPED
)) {
4341 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4347 * We can not race with truncation due to holding i_mmap_rwsem.
4348 * i_size is modified when holding i_mmap_rwsem, so check here
4349 * once for faults beyond end of file.
4351 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4356 page
= find_lock_page(mapping
, idx
);
4359 * Check for page in userfault range
4361 if (userfaultfd_missing(vma
)) {
4363 struct vm_fault vmf
= {
4368 * Hard to debug if it ends up being
4369 * used by a callee that assumes
4370 * something about the other
4371 * uninitialized fields... same as in
4377 * hugetlb_fault_mutex and i_mmap_rwsem must be
4378 * dropped before handling userfault. Reacquire
4379 * after handling fault to make calling code simpler.
4381 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
4382 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4383 i_mmap_unlock_read(mapping
);
4384 ret
= handle_userfault(&vmf
, VM_UFFD_MISSING
);
4385 i_mmap_lock_read(mapping
);
4386 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4390 page
= alloc_huge_page(vma
, haddr
, 0);
4393 * Returning error will result in faulting task being
4394 * sent SIGBUS. The hugetlb fault mutex prevents two
4395 * tasks from racing to fault in the same page which
4396 * could result in false unable to allocate errors.
4397 * Page migration does not take the fault mutex, but
4398 * does a clear then write of pte's under page table
4399 * lock. Page fault code could race with migration,
4400 * notice the clear pte and try to allocate a page
4401 * here. Before returning error, get ptl and make
4402 * sure there really is no pte entry.
4404 ptl
= huge_pte_lock(h
, mm
, ptep
);
4405 if (!huge_pte_none(huge_ptep_get(ptep
))) {
4411 ret
= vmf_error(PTR_ERR(page
));
4414 clear_huge_page(page
, address
, pages_per_huge_page(h
));
4415 __SetPageUptodate(page
);
4418 if (vma
->vm_flags
& VM_MAYSHARE
) {
4419 int err
= huge_add_to_page_cache(page
, mapping
, idx
);
4428 if (unlikely(anon_vma_prepare(vma
))) {
4430 goto backout_unlocked
;
4436 * If memory error occurs between mmap() and fault, some process
4437 * don't have hwpoisoned swap entry for errored virtual address.
4438 * So we need to block hugepage fault by PG_hwpoison bit check.
4440 if (unlikely(PageHWPoison(page
))) {
4441 ret
= VM_FAULT_HWPOISON
|
4442 VM_FAULT_SET_HINDEX(hstate_index(h
));
4443 goto backout_unlocked
;
4448 * If we are going to COW a private mapping later, we examine the
4449 * pending reservations for this page now. This will ensure that
4450 * any allocations necessary to record that reservation occur outside
4453 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4454 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4456 goto backout_unlocked
;
4458 /* Just decrements count, does not deallocate */
4459 vma_end_reservation(h
, vma
, haddr
);
4462 ptl
= huge_pte_lock(h
, mm
, ptep
);
4464 if (!huge_pte_none(huge_ptep_get(ptep
)))
4468 ClearPagePrivate(page
);
4469 hugepage_add_new_anon_rmap(page
, vma
, haddr
);
4471 page_dup_rmap(page
, true);
4472 new_pte
= make_huge_pte(vma
, page
, ((vma
->vm_flags
& VM_WRITE
)
4473 && (vma
->vm_flags
& VM_SHARED
)));
4474 set_huge_pte_at(mm
, haddr
, ptep
, new_pte
);
4476 hugetlb_count_add(pages_per_huge_page(h
), mm
);
4477 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
4478 /* Optimization, do the COW without a second fault */
4479 ret
= hugetlb_cow(mm
, vma
, address
, ptep
, page
, ptl
);
4485 * Only make newly allocated pages active. Existing pages found
4486 * in the pagecache could be !page_huge_active() if they have been
4487 * isolated for migration.
4490 set_page_huge_active(page
);
4500 restore_reserve_on_error(h
, vma
, haddr
, page
);
4506 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
4508 unsigned long key
[2];
4511 key
[0] = (unsigned long) mapping
;
4514 hash
= jhash2((u32
*)&key
, sizeof(key
)/(sizeof(u32
)), 0);
4516 return hash
& (num_fault_mutexes
- 1);
4520 * For uniprocesor systems we always use a single mutex, so just
4521 * return 0 and avoid the hashing overhead.
4523 u32
hugetlb_fault_mutex_hash(struct address_space
*mapping
, pgoff_t idx
)
4529 vm_fault_t
hugetlb_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4530 unsigned long address
, unsigned int flags
)
4537 struct page
*page
= NULL
;
4538 struct page
*pagecache_page
= NULL
;
4539 struct hstate
*h
= hstate_vma(vma
);
4540 struct address_space
*mapping
;
4541 int need_wait_lock
= 0;
4542 unsigned long haddr
= address
& huge_page_mask(h
);
4544 ptep
= huge_pte_offset(mm
, haddr
, huge_page_size(h
));
4547 * Since we hold no locks, ptep could be stale. That is
4548 * OK as we are only making decisions based on content and
4549 * not actually modifying content here.
4551 entry
= huge_ptep_get(ptep
);
4552 if (unlikely(is_hugetlb_entry_migration(entry
))) {
4553 migration_entry_wait_huge(vma
, mm
, ptep
);
4555 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry
)))
4556 return VM_FAULT_HWPOISON_LARGE
|
4557 VM_FAULT_SET_HINDEX(hstate_index(h
));
4561 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4562 * until finished with ptep. This serves two purposes:
4563 * 1) It prevents huge_pmd_unshare from being called elsewhere
4564 * and making the ptep no longer valid.
4565 * 2) It synchronizes us with i_size modifications during truncation.
4567 * ptep could have already be assigned via huge_pte_offset. That
4568 * is OK, as huge_pte_alloc will return the same value unless
4569 * something has changed.
4571 mapping
= vma
->vm_file
->f_mapping
;
4572 i_mmap_lock_read(mapping
);
4573 ptep
= huge_pte_alloc(mm
, haddr
, huge_page_size(h
));
4575 i_mmap_unlock_read(mapping
);
4576 return VM_FAULT_OOM
;
4580 * Serialize hugepage allocation and instantiation, so that we don't
4581 * get spurious allocation failures if two CPUs race to instantiate
4582 * the same page in the page cache.
4584 idx
= vma_hugecache_offset(h
, vma
, haddr
);
4585 hash
= hugetlb_fault_mutex_hash(mapping
, idx
);
4586 mutex_lock(&hugetlb_fault_mutex_table
[hash
]);
4588 entry
= huge_ptep_get(ptep
);
4589 if (huge_pte_none(entry
)) {
4590 ret
= hugetlb_no_page(mm
, vma
, mapping
, idx
, address
, ptep
, flags
);
4597 * entry could be a migration/hwpoison entry at this point, so this
4598 * check prevents the kernel from going below assuming that we have
4599 * an active hugepage in pagecache. This goto expects the 2nd page
4600 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4601 * properly handle it.
4603 if (!pte_present(entry
))
4607 * If we are going to COW the mapping later, we examine the pending
4608 * reservations for this page now. This will ensure that any
4609 * allocations necessary to record that reservation occur outside the
4610 * spinlock. For private mappings, we also lookup the pagecache
4611 * page now as it is used to determine if a reservation has been
4614 if ((flags
& FAULT_FLAG_WRITE
) && !huge_pte_write(entry
)) {
4615 if (vma_needs_reservation(h
, vma
, haddr
) < 0) {
4619 /* Just decrements count, does not deallocate */
4620 vma_end_reservation(h
, vma
, haddr
);
4622 if (!(vma
->vm_flags
& VM_MAYSHARE
))
4623 pagecache_page
= hugetlbfs_pagecache_page(h
,
4627 ptl
= huge_pte_lock(h
, mm
, ptep
);
4629 /* Check for a racing update before calling hugetlb_cow */
4630 if (unlikely(!pte_same(entry
, huge_ptep_get(ptep
))))
4634 * hugetlb_cow() requires page locks of pte_page(entry) and
4635 * pagecache_page, so here we need take the former one
4636 * when page != pagecache_page or !pagecache_page.
4638 page
= pte_page(entry
);
4639 if (page
!= pagecache_page
)
4640 if (!trylock_page(page
)) {
4647 if (flags
& FAULT_FLAG_WRITE
) {
4648 if (!huge_pte_write(entry
)) {
4649 ret
= hugetlb_cow(mm
, vma
, address
, ptep
,
4650 pagecache_page
, ptl
);
4653 entry
= huge_pte_mkdirty(entry
);
4655 entry
= pte_mkyoung(entry
);
4656 if (huge_ptep_set_access_flags(vma
, haddr
, ptep
, entry
,
4657 flags
& FAULT_FLAG_WRITE
))
4658 update_mmu_cache(vma
, haddr
, ptep
);
4660 if (page
!= pagecache_page
)
4666 if (pagecache_page
) {
4667 unlock_page(pagecache_page
);
4668 put_page(pagecache_page
);
4671 mutex_unlock(&hugetlb_fault_mutex_table
[hash
]);
4672 i_mmap_unlock_read(mapping
);
4674 * Generally it's safe to hold refcount during waiting page lock. But
4675 * here we just wait to defer the next page fault to avoid busy loop and
4676 * the page is not used after unlocked before returning from the current
4677 * page fault. So we are safe from accessing freed page, even if we wait
4678 * here without taking refcount.
4681 wait_on_page_locked(page
);
4686 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
4687 * modifications for huge pages.
4689 int hugetlb_mcopy_atomic_pte(struct mm_struct
*dst_mm
,
4691 struct vm_area_struct
*dst_vma
,
4692 unsigned long dst_addr
,
4693 unsigned long src_addr
,
4694 struct page
**pagep
)
4696 struct address_space
*mapping
;
4699 int vm_shared
= dst_vma
->vm_flags
& VM_SHARED
;
4700 struct hstate
*h
= hstate_vma(dst_vma
);
4708 page
= alloc_huge_page(dst_vma
, dst_addr
, 0);
4712 ret
= copy_huge_page_from_user(page
,
4713 (const void __user
*) src_addr
,
4714 pages_per_huge_page(h
), false);
4716 /* fallback to copy_from_user outside mmap_lock */
4717 if (unlikely(ret
)) {
4720 /* don't free the page */
4729 * The memory barrier inside __SetPageUptodate makes sure that
4730 * preceding stores to the page contents become visible before
4731 * the set_pte_at() write.
4733 __SetPageUptodate(page
);
4735 mapping
= dst_vma
->vm_file
->f_mapping
;
4736 idx
= vma_hugecache_offset(h
, dst_vma
, dst_addr
);
4739 * If shared, add to page cache
4742 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4745 goto out_release_nounlock
;
4748 * Serialization between remove_inode_hugepages() and
4749 * huge_add_to_page_cache() below happens through the
4750 * hugetlb_fault_mutex_table that here must be hold by
4753 ret
= huge_add_to_page_cache(page
, mapping
, idx
);
4755 goto out_release_nounlock
;
4758 ptl
= huge_pte_lockptr(h
, dst_mm
, dst_pte
);
4762 * Recheck the i_size after holding PT lock to make sure not
4763 * to leave any page mapped (as page_mapped()) beyond the end
4764 * of the i_size (remove_inode_hugepages() is strict about
4765 * enforcing that). If we bail out here, we'll also leave a
4766 * page in the radix tree in the vm_shared case beyond the end
4767 * of the i_size, but remove_inode_hugepages() will take care
4768 * of it as soon as we drop the hugetlb_fault_mutex_table.
4770 size
= i_size_read(mapping
->host
) >> huge_page_shift(h
);
4773 goto out_release_unlock
;
4776 if (!huge_pte_none(huge_ptep_get(dst_pte
)))
4777 goto out_release_unlock
;
4780 page_dup_rmap(page
, true);
4782 ClearPagePrivate(page
);
4783 hugepage_add_new_anon_rmap(page
, dst_vma
, dst_addr
);
4786 _dst_pte
= make_huge_pte(dst_vma
, page
, dst_vma
->vm_flags
& VM_WRITE
);
4787 if (dst_vma
->vm_flags
& VM_WRITE
)
4788 _dst_pte
= huge_pte_mkdirty(_dst_pte
);
4789 _dst_pte
= pte_mkyoung(_dst_pte
);
4791 set_huge_pte_at(dst_mm
, dst_addr
, dst_pte
, _dst_pte
);
4793 (void)huge_ptep_set_access_flags(dst_vma
, dst_addr
, dst_pte
, _dst_pte
,
4794 dst_vma
->vm_flags
& VM_WRITE
);
4795 hugetlb_count_add(pages_per_huge_page(h
), dst_mm
);
4797 /* No need to invalidate - it was non-present before */
4798 update_mmu_cache(dst_vma
, dst_addr
, dst_pte
);
4801 set_page_huge_active(page
);
4811 out_release_nounlock
:
4816 long follow_hugetlb_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
4817 struct page
**pages
, struct vm_area_struct
**vmas
,
4818 unsigned long *position
, unsigned long *nr_pages
,
4819 long i
, unsigned int flags
, int *locked
)
4821 unsigned long pfn_offset
;
4822 unsigned long vaddr
= *position
;
4823 unsigned long remainder
= *nr_pages
;
4824 struct hstate
*h
= hstate_vma(vma
);
4827 while (vaddr
< vma
->vm_end
&& remainder
) {
4829 spinlock_t
*ptl
= NULL
;
4834 * If we have a pending SIGKILL, don't keep faulting pages and
4835 * potentially allocating memory.
4837 if (fatal_signal_pending(current
)) {
4843 * Some archs (sparc64, sh*) have multiple pte_ts to
4844 * each hugepage. We have to make sure we get the
4845 * first, for the page indexing below to work.
4847 * Note that page table lock is not held when pte is null.
4849 pte
= huge_pte_offset(mm
, vaddr
& huge_page_mask(h
),
4852 ptl
= huge_pte_lock(h
, mm
, pte
);
4853 absent
= !pte
|| huge_pte_none(huge_ptep_get(pte
));
4856 * When coredumping, it suits get_dump_page if we just return
4857 * an error where there's an empty slot with no huge pagecache
4858 * to back it. This way, we avoid allocating a hugepage, and
4859 * the sparse dumpfile avoids allocating disk blocks, but its
4860 * huge holes still show up with zeroes where they need to be.
4862 if (absent
&& (flags
& FOLL_DUMP
) &&
4863 !hugetlbfs_pagecache_present(h
, vma
, vaddr
)) {
4871 * We need call hugetlb_fault for both hugepages under migration
4872 * (in which case hugetlb_fault waits for the migration,) and
4873 * hwpoisoned hugepages (in which case we need to prevent the
4874 * caller from accessing to them.) In order to do this, we use
4875 * here is_swap_pte instead of is_hugetlb_entry_migration and
4876 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4877 * both cases, and because we can't follow correct pages
4878 * directly from any kind of swap entries.
4880 if (absent
|| is_swap_pte(huge_ptep_get(pte
)) ||
4881 ((flags
& FOLL_WRITE
) &&
4882 !huge_pte_write(huge_ptep_get(pte
)))) {
4884 unsigned int fault_flags
= 0;
4888 if (flags
& FOLL_WRITE
)
4889 fault_flags
|= FAULT_FLAG_WRITE
;
4891 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4892 FAULT_FLAG_KILLABLE
;
4893 if (flags
& FOLL_NOWAIT
)
4894 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
|
4895 FAULT_FLAG_RETRY_NOWAIT
;
4896 if (flags
& FOLL_TRIED
) {
4898 * Note: FAULT_FLAG_ALLOW_RETRY and
4899 * FAULT_FLAG_TRIED can co-exist
4901 fault_flags
|= FAULT_FLAG_TRIED
;
4903 ret
= hugetlb_fault(mm
, vma
, vaddr
, fault_flags
);
4904 if (ret
& VM_FAULT_ERROR
) {
4905 err
= vm_fault_to_errno(ret
, flags
);
4909 if (ret
& VM_FAULT_RETRY
) {
4911 !(fault_flags
& FAULT_FLAG_RETRY_NOWAIT
))
4915 * VM_FAULT_RETRY must not return an
4916 * error, it will return zero
4919 * No need to update "position" as the
4920 * caller will not check it after
4921 * *nr_pages is set to 0.
4928 pfn_offset
= (vaddr
& ~huge_page_mask(h
)) >> PAGE_SHIFT
;
4929 page
= pte_page(huge_ptep_get(pte
));
4932 * If subpage information not requested, update counters
4933 * and skip the same_page loop below.
4935 if (!pages
&& !vmas
&& !pfn_offset
&&
4936 (vaddr
+ huge_page_size(h
) < vma
->vm_end
) &&
4937 (remainder
>= pages_per_huge_page(h
))) {
4938 vaddr
+= huge_page_size(h
);
4939 remainder
-= pages_per_huge_page(h
);
4940 i
+= pages_per_huge_page(h
);
4947 pages
[i
] = mem_map_offset(page
, pfn_offset
);
4949 * try_grab_page() should always succeed here, because:
4950 * a) we hold the ptl lock, and b) we've just checked
4951 * that the huge page is present in the page tables. If
4952 * the huge page is present, then the tail pages must
4953 * also be present. The ptl prevents the head page and
4954 * tail pages from being rearranged in any way. So this
4955 * page must be available at this point, unless the page
4956 * refcount overflowed:
4958 if (WARN_ON_ONCE(!try_grab_page(pages
[i
], flags
))) {
4973 if (vaddr
< vma
->vm_end
&& remainder
&&
4974 pfn_offset
< pages_per_huge_page(h
)) {
4976 * We use pfn_offset to avoid touching the pageframes
4977 * of this compound page.
4983 *nr_pages
= remainder
;
4985 * setting position is actually required only if remainder is
4986 * not zero but it's faster not to add a "if (remainder)"
4994 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4996 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4999 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
5002 unsigned long hugetlb_change_protection(struct vm_area_struct
*vma
,
5003 unsigned long address
, unsigned long end
, pgprot_t newprot
)
5005 struct mm_struct
*mm
= vma
->vm_mm
;
5006 unsigned long start
= address
;
5009 struct hstate
*h
= hstate_vma(vma
);
5010 unsigned long pages
= 0;
5011 bool shared_pmd
= false;
5012 struct mmu_notifier_range range
;
5015 * In the case of shared PMDs, the area to flush could be beyond
5016 * start/end. Set range.start/range.end to cover the maximum possible
5017 * range if PMD sharing is possible.
5019 mmu_notifier_range_init(&range
, MMU_NOTIFY_PROTECTION_VMA
,
5020 0, vma
, mm
, start
, end
);
5021 adjust_range_if_pmd_sharing_possible(vma
, &range
.start
, &range
.end
);
5023 BUG_ON(address
>= end
);
5024 flush_cache_range(vma
, range
.start
, range
.end
);
5026 mmu_notifier_invalidate_range_start(&range
);
5027 i_mmap_lock_write(vma
->vm_file
->f_mapping
);
5028 for (; address
< end
; address
+= huge_page_size(h
)) {
5030 ptep
= huge_pte_offset(mm
, address
, huge_page_size(h
));
5033 ptl
= huge_pte_lock(h
, mm
, ptep
);
5034 if (huge_pmd_unshare(mm
, vma
, &address
, ptep
)) {
5040 pte
= huge_ptep_get(ptep
);
5041 if (unlikely(is_hugetlb_entry_hwpoisoned(pte
))) {
5045 if (unlikely(is_hugetlb_entry_migration(pte
))) {
5046 swp_entry_t entry
= pte_to_swp_entry(pte
);
5048 if (is_write_migration_entry(entry
)) {
5051 make_migration_entry_read(&entry
);
5052 newpte
= swp_entry_to_pte(entry
);
5053 set_huge_swap_pte_at(mm
, address
, ptep
,
5054 newpte
, huge_page_size(h
));
5060 if (!huge_pte_none(pte
)) {
5063 old_pte
= huge_ptep_modify_prot_start(vma
, address
, ptep
);
5064 pte
= pte_mkhuge(huge_pte_modify(old_pte
, newprot
));
5065 pte
= arch_make_huge_pte(pte
, vma
, NULL
, 0);
5066 huge_ptep_modify_prot_commit(vma
, address
, ptep
, old_pte
, pte
);
5072 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5073 * may have cleared our pud entry and done put_page on the page table:
5074 * once we release i_mmap_rwsem, another task can do the final put_page
5075 * and that page table be reused and filled with junk. If we actually
5076 * did unshare a page of pmds, flush the range corresponding to the pud.
5079 flush_hugetlb_tlb_range(vma
, range
.start
, range
.end
);
5081 flush_hugetlb_tlb_range(vma
, start
, end
);
5083 * No need to call mmu_notifier_invalidate_range() we are downgrading
5084 * page table protection not changing it to point to a new page.
5086 * See Documentation/vm/mmu_notifier.rst
5088 i_mmap_unlock_write(vma
->vm_file
->f_mapping
);
5089 mmu_notifier_invalidate_range_end(&range
);
5091 return pages
<< h
->order
;
5094 int hugetlb_reserve_pages(struct inode
*inode
,
5096 struct vm_area_struct
*vma
,
5097 vm_flags_t vm_flags
)
5099 long ret
, chg
, add
= -1;
5100 struct hstate
*h
= hstate_inode(inode
);
5101 struct hugepage_subpool
*spool
= subpool_inode(inode
);
5102 struct resv_map
*resv_map
;
5103 struct hugetlb_cgroup
*h_cg
= NULL
;
5104 long gbl_reserve
, regions_needed
= 0;
5106 /* This should never happen */
5108 VM_WARN(1, "%s called with a negative range\n", __func__
);
5113 * Only apply hugepage reservation if asked. At fault time, an
5114 * attempt will be made for VM_NORESERVE to allocate a page
5115 * without using reserves
5117 if (vm_flags
& VM_NORESERVE
)
5121 * Shared mappings base their reservation on the number of pages that
5122 * are already allocated on behalf of the file. Private mappings need
5123 * to reserve the full area even if read-only as mprotect() may be
5124 * called to make the mapping read-write. Assume !vma is a shm mapping
5126 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
5128 * resv_map can not be NULL as hugetlb_reserve_pages is only
5129 * called for inodes for which resv_maps were created (see
5130 * hugetlbfs_get_inode).
5132 resv_map
= inode_resv_map(inode
);
5134 chg
= region_chg(resv_map
, from
, to
, ®ions_needed
);
5137 /* Private mapping. */
5138 resv_map
= resv_map_alloc();
5144 set_vma_resv_map(vma
, resv_map
);
5145 set_vma_resv_flags(vma
, HPAGE_RESV_OWNER
);
5153 ret
= hugetlb_cgroup_charge_cgroup_rsvd(
5154 hstate_index(h
), chg
* pages_per_huge_page(h
), &h_cg
);
5161 if (vma
&& !(vma
->vm_flags
& VM_MAYSHARE
) && h_cg
) {
5162 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5165 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map
, h_cg
, h
);
5169 * There must be enough pages in the subpool for the mapping. If
5170 * the subpool has a minimum size, there may be some global
5171 * reservations already in place (gbl_reserve).
5173 gbl_reserve
= hugepage_subpool_get_pages(spool
, chg
);
5174 if (gbl_reserve
< 0) {
5176 goto out_uncharge_cgroup
;
5180 * Check enough hugepages are available for the reservation.
5181 * Hand the pages back to the subpool if there are not
5183 ret
= hugetlb_acct_memory(h
, gbl_reserve
);
5189 * Account for the reservations made. Shared mappings record regions
5190 * that have reservations as they are shared by multiple VMAs.
5191 * When the last VMA disappears, the region map says how much
5192 * the reservation was and the page cache tells how much of
5193 * the reservation was consumed. Private mappings are per-VMA and
5194 * only the consumed reservations are tracked. When the VMA
5195 * disappears, the original reservation is the VMA size and the
5196 * consumed reservations are stored in the map. Hence, nothing
5197 * else has to be done for private mappings here
5199 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
) {
5200 add
= region_add(resv_map
, from
, to
, regions_needed
, h
, h_cg
);
5202 if (unlikely(add
< 0)) {
5203 hugetlb_acct_memory(h
, -gbl_reserve
);
5205 } else if (unlikely(chg
> add
)) {
5207 * pages in this range were added to the reserve
5208 * map between region_chg and region_add. This
5209 * indicates a race with alloc_huge_page. Adjust
5210 * the subpool and reserve counts modified above
5211 * based on the difference.
5215 hugetlb_cgroup_uncharge_cgroup_rsvd(
5217 (chg
- add
) * pages_per_huge_page(h
), h_cg
);
5219 rsv_adjust
= hugepage_subpool_put_pages(spool
,
5221 hugetlb_acct_memory(h
, -rsv_adjust
);
5226 /* put back original number of pages, chg */
5227 (void)hugepage_subpool_put_pages(spool
, chg
);
5228 out_uncharge_cgroup
:
5229 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h
),
5230 chg
* pages_per_huge_page(h
), h_cg
);
5232 if (!vma
|| vma
->vm_flags
& VM_MAYSHARE
)
5233 /* Only call region_abort if the region_chg succeeded but the
5234 * region_add failed or didn't run.
5236 if (chg
>= 0 && add
< 0)
5237 region_abort(resv_map
, from
, to
, regions_needed
);
5238 if (vma
&& is_vma_resv_set(vma
, HPAGE_RESV_OWNER
))
5239 kref_put(&resv_map
->refs
, resv_map_release
);
5243 long hugetlb_unreserve_pages(struct inode
*inode
, long start
, long end
,
5246 struct hstate
*h
= hstate_inode(inode
);
5247 struct resv_map
*resv_map
= inode_resv_map(inode
);
5249 struct hugepage_subpool
*spool
= subpool_inode(inode
);
5253 * Since this routine can be called in the evict inode path for all
5254 * hugetlbfs inodes, resv_map could be NULL.
5257 chg
= region_del(resv_map
, start
, end
);
5259 * region_del() can fail in the rare case where a region
5260 * must be split and another region descriptor can not be
5261 * allocated. If end == LONG_MAX, it will not fail.
5267 spin_lock(&inode
->i_lock
);
5268 inode
->i_blocks
-= (blocks_per_huge_page(h
) * freed
);
5269 spin_unlock(&inode
->i_lock
);
5272 * If the subpool has a minimum size, the number of global
5273 * reservations to be released may be adjusted.
5275 gbl_reserve
= hugepage_subpool_put_pages(spool
, (chg
- freed
));
5276 hugetlb_acct_memory(h
, -gbl_reserve
);
5281 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5282 static unsigned long page_table_shareable(struct vm_area_struct
*svma
,
5283 struct vm_area_struct
*vma
,
5284 unsigned long addr
, pgoff_t idx
)
5286 unsigned long saddr
= ((idx
- svma
->vm_pgoff
) << PAGE_SHIFT
) +
5288 unsigned long sbase
= saddr
& PUD_MASK
;
5289 unsigned long s_end
= sbase
+ PUD_SIZE
;
5291 /* Allow segments to share if only one is marked locked */
5292 unsigned long vm_flags
= vma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
5293 unsigned long svm_flags
= svma
->vm_flags
& VM_LOCKED_CLEAR_MASK
;
5296 * match the virtual addresses, permission and the alignment of the
5299 if (pmd_index(addr
) != pmd_index(saddr
) ||
5300 vm_flags
!= svm_flags
||
5301 sbase
< svma
->vm_start
|| svma
->vm_end
< s_end
)
5307 static bool vma_shareable(struct vm_area_struct
*vma
, unsigned long addr
)
5309 unsigned long base
= addr
& PUD_MASK
;
5310 unsigned long end
= base
+ PUD_SIZE
;
5313 * check on proper vm_flags and page table alignment
5315 if (vma
->vm_flags
& VM_MAYSHARE
&& range_in_vma(vma
, base
, end
))
5321 * Determine if start,end range within vma could be mapped by shared pmd.
5322 * If yes, adjust start and end to cover range associated with possible
5323 * shared pmd mappings.
5325 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
5326 unsigned long *start
, unsigned long *end
)
5328 unsigned long a_start
, a_end
;
5330 if (!(vma
->vm_flags
& VM_MAYSHARE
))
5333 /* Extend the range to be PUD aligned for a worst case scenario */
5334 a_start
= ALIGN_DOWN(*start
, PUD_SIZE
);
5335 a_end
= ALIGN(*end
, PUD_SIZE
);
5338 * Intersect the range with the vma range, since pmd sharing won't be
5339 * across vma after all
5341 *start
= max(vma
->vm_start
, a_start
);
5342 *end
= min(vma
->vm_end
, a_end
);
5346 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5347 * and returns the corresponding pte. While this is not necessary for the
5348 * !shared pmd case because we can allocate the pmd later as well, it makes the
5349 * code much cleaner.
5351 * This routine must be called with i_mmap_rwsem held in at least read mode.
5352 * For hugetlbfs, this prevents removal of any page table entries associated
5353 * with the address space. This is important as we are setting up sharing
5354 * based on existing page table entries (mappings).
5356 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
5358 struct vm_area_struct
*vma
= find_vma(mm
, addr
);
5359 struct address_space
*mapping
= vma
->vm_file
->f_mapping
;
5360 pgoff_t idx
= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
) +
5362 struct vm_area_struct
*svma
;
5363 unsigned long saddr
;
5368 if (!vma_shareable(vma
, addr
))
5369 return (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5371 vma_interval_tree_foreach(svma
, &mapping
->i_mmap
, idx
, idx
) {
5375 saddr
= page_table_shareable(svma
, vma
, addr
, idx
);
5377 spte
= huge_pte_offset(svma
->vm_mm
, saddr
,
5378 vma_mmu_pagesize(svma
));
5380 get_page(virt_to_page(spte
));
5389 ptl
= huge_pte_lock(hstate_vma(vma
), mm
, spte
);
5390 if (pud_none(*pud
)) {
5391 pud_populate(mm
, pud
,
5392 (pmd_t
*)((unsigned long)spte
& PAGE_MASK
));
5395 put_page(virt_to_page(spte
));
5399 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5404 * unmap huge page backed by shared pte.
5406 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
5407 * indicated by page_count > 1, unmap is achieved by clearing pud and
5408 * decrementing the ref count. If count == 1, the pte page is not shared.
5410 * Called with page table lock held and i_mmap_rwsem held in write mode.
5412 * returns: 1 successfully unmapped a shared pte page
5413 * 0 the underlying pte page is not shared, or it is the last user
5415 int huge_pmd_unshare(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
5416 unsigned long *addr
, pte_t
*ptep
)
5418 pgd_t
*pgd
= pgd_offset(mm
, *addr
);
5419 p4d_t
*p4d
= p4d_offset(pgd
, *addr
);
5420 pud_t
*pud
= pud_offset(p4d
, *addr
);
5422 i_mmap_assert_write_locked(vma
->vm_file
->f_mapping
);
5423 BUG_ON(page_count(virt_to_page(ptep
)) == 0);
5424 if (page_count(virt_to_page(ptep
)) == 1)
5428 put_page(virt_to_page(ptep
));
5430 *addr
= ALIGN(*addr
, HPAGE_SIZE
* PTRS_PER_PTE
) - HPAGE_SIZE
;
5433 #define want_pmd_share() (1)
5434 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5435 pte_t
*huge_pmd_share(struct mm_struct
*mm
, unsigned long addr
, pud_t
*pud
)
5440 int huge_pmd_unshare(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
5441 unsigned long *addr
, pte_t
*ptep
)
5446 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct
*vma
,
5447 unsigned long *start
, unsigned long *end
)
5450 #define want_pmd_share() (0)
5451 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5453 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5454 pte_t
*huge_pte_alloc(struct mm_struct
*mm
,
5455 unsigned long addr
, unsigned long sz
)
5462 pgd
= pgd_offset(mm
, addr
);
5463 p4d
= p4d_alloc(mm
, pgd
, addr
);
5466 pud
= pud_alloc(mm
, p4d
, addr
);
5468 if (sz
== PUD_SIZE
) {
5471 BUG_ON(sz
!= PMD_SIZE
);
5472 if (want_pmd_share() && pud_none(*pud
))
5473 pte
= huge_pmd_share(mm
, addr
, pud
);
5475 pte
= (pte_t
*)pmd_alloc(mm
, pud
, addr
);
5478 BUG_ON(pte
&& pte_present(*pte
) && !pte_huge(*pte
));
5484 * huge_pte_offset() - Walk the page table to resolve the hugepage
5485 * entry at address @addr
5487 * Return: Pointer to page table entry (PUD or PMD) for
5488 * address @addr, or NULL if a !p*d_present() entry is encountered and the
5489 * size @sz doesn't match the hugepage size at this level of the page
5492 pte_t
*huge_pte_offset(struct mm_struct
*mm
,
5493 unsigned long addr
, unsigned long sz
)
5500 pgd
= pgd_offset(mm
, addr
);
5501 if (!pgd_present(*pgd
))
5503 p4d
= p4d_offset(pgd
, addr
);
5504 if (!p4d_present(*p4d
))
5507 pud
= pud_offset(p4d
, addr
);
5509 /* must be pud huge, non-present or none */
5510 return (pte_t
*)pud
;
5511 if (!pud_present(*pud
))
5513 /* must have a valid entry and size to go further */
5515 pmd
= pmd_offset(pud
, addr
);
5516 /* must be pmd huge, non-present or none */
5517 return (pte_t
*)pmd
;
5520 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5523 * These functions are overwritable if your architecture needs its own
5526 struct page
* __weak
5527 follow_huge_addr(struct mm_struct
*mm
, unsigned long address
,
5530 return ERR_PTR(-EINVAL
);
5533 struct page
* __weak
5534 follow_huge_pd(struct vm_area_struct
*vma
,
5535 unsigned long address
, hugepd_t hpd
, int flags
, int pdshift
)
5537 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5541 struct page
* __weak
5542 follow_huge_pmd(struct mm_struct
*mm
, unsigned long address
,
5543 pmd_t
*pmd
, int flags
)
5545 struct page
*page
= NULL
;
5549 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5550 if (WARN_ON_ONCE((flags
& (FOLL_PIN
| FOLL_GET
)) ==
5551 (FOLL_PIN
| FOLL_GET
)))
5555 ptl
= pmd_lockptr(mm
, pmd
);
5558 * make sure that the address range covered by this pmd is not
5559 * unmapped from other threads.
5561 if (!pmd_huge(*pmd
))
5563 pte
= huge_ptep_get((pte_t
*)pmd
);
5564 if (pte_present(pte
)) {
5565 page
= pmd_page(*pmd
) + ((address
& ~PMD_MASK
) >> PAGE_SHIFT
);
5567 * try_grab_page() should always succeed here, because: a) we
5568 * hold the pmd (ptl) lock, and b) we've just checked that the
5569 * huge pmd (head) page is present in the page tables. The ptl
5570 * prevents the head page and tail pages from being rearranged
5571 * in any way. So this page must be available at this point,
5572 * unless the page refcount overflowed:
5574 if (WARN_ON_ONCE(!try_grab_page(page
, flags
))) {
5579 if (is_hugetlb_entry_migration(pte
)) {
5581 __migration_entry_wait(mm
, (pte_t
*)pmd
, ptl
);
5585 * hwpoisoned entry is treated as no_page_table in
5586 * follow_page_mask().
5594 struct page
* __weak
5595 follow_huge_pud(struct mm_struct
*mm
, unsigned long address
,
5596 pud_t
*pud
, int flags
)
5598 if (flags
& (FOLL_GET
| FOLL_PIN
))
5601 return pte_page(*(pte_t
*)pud
) + ((address
& ~PUD_MASK
) >> PAGE_SHIFT
);
5604 struct page
* __weak
5605 follow_huge_pgd(struct mm_struct
*mm
, unsigned long address
, pgd_t
*pgd
, int flags
)
5607 if (flags
& (FOLL_GET
| FOLL_PIN
))
5610 return pte_page(*(pte_t
*)pgd
) + ((address
& ~PGDIR_MASK
) >> PAGE_SHIFT
);
5613 bool isolate_huge_page(struct page
*page
, struct list_head
*list
)
5617 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5618 spin_lock(&hugetlb_lock
);
5619 if (!page_huge_active(page
) || !get_page_unless_zero(page
)) {
5623 clear_page_huge_active(page
);
5624 list_move_tail(&page
->lru
, list
);
5626 spin_unlock(&hugetlb_lock
);
5630 void putback_active_hugepage(struct page
*page
)
5632 VM_BUG_ON_PAGE(!PageHead(page
), page
);
5633 spin_lock(&hugetlb_lock
);
5634 set_page_huge_active(page
);
5635 list_move_tail(&page
->lru
, &(page_hstate(page
))->hugepage_activelist
);
5636 spin_unlock(&hugetlb_lock
);
5640 void move_hugetlb_state(struct page
*oldpage
, struct page
*newpage
, int reason
)
5642 struct hstate
*h
= page_hstate(oldpage
);
5644 hugetlb_cgroup_migrate(oldpage
, newpage
);
5645 set_page_owner_migrate_reason(newpage
, reason
);
5648 * transfer temporary state of the new huge page. This is
5649 * reverse to other transitions because the newpage is going to
5650 * be final while the old one will be freed so it takes over
5651 * the temporary status.
5653 * Also note that we have to transfer the per-node surplus state
5654 * here as well otherwise the global surplus count will not match
5657 if (PageHugeTemporary(newpage
)) {
5658 int old_nid
= page_to_nid(oldpage
);
5659 int new_nid
= page_to_nid(newpage
);
5661 SetPageHugeTemporary(oldpage
);
5662 ClearPageHugeTemporary(newpage
);
5664 spin_lock(&hugetlb_lock
);
5665 if (h
->surplus_huge_pages_node
[old_nid
]) {
5666 h
->surplus_huge_pages_node
[old_nid
]--;
5667 h
->surplus_huge_pages_node
[new_nid
]++;
5669 spin_unlock(&hugetlb_lock
);
5674 static bool cma_reserve_called __initdata
;
5676 static int __init
cmdline_parse_hugetlb_cma(char *p
)
5678 hugetlb_cma_size
= memparse(p
, &p
);
5682 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma
);
5684 void __init
hugetlb_cma_reserve(int order
)
5686 unsigned long size
, reserved
, per_node
;
5689 cma_reserve_called
= true;
5691 if (!hugetlb_cma_size
)
5694 if (hugetlb_cma_size
< (PAGE_SIZE
<< order
)) {
5695 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5696 (PAGE_SIZE
<< order
) / SZ_1M
);
5701 * If 3 GB area is requested on a machine with 4 numa nodes,
5702 * let's allocate 1 GB on first three nodes and ignore the last one.
5704 per_node
= DIV_ROUND_UP(hugetlb_cma_size
, nr_online_nodes
);
5705 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5706 hugetlb_cma_size
/ SZ_1M
, per_node
/ SZ_1M
);
5709 for_each_node_state(nid
, N_ONLINE
) {
5713 size
= min(per_node
, hugetlb_cma_size
- reserved
);
5714 size
= round_up(size
, PAGE_SIZE
<< order
);
5716 snprintf(name
, 20, "hugetlb%d", nid
);
5717 res
= cma_declare_contiguous_nid(0, size
, 0, PAGE_SIZE
<< order
,
5719 &hugetlb_cma
[nid
], nid
);
5721 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5727 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5730 if (reserved
>= hugetlb_cma_size
)
5735 void __init
hugetlb_cma_check(void)
5737 if (!hugetlb_cma_size
|| cma_reserve_called
)
5740 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5743 #endif /* CONFIG_CMA */