Linux 5.9.2
[linux/fpc-iii.git] / mm / swap.c
blobe7bdf094f76a030aac8a318a81d8f049f3aefd8a
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/swap.c
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
8 /*
9 * This file contains the default values for the operation of the
10 * Linux VM subsystem. Fine-tuning documentation can be found in
11 * Documentation/admin-guide/sysctl/vm.rst.
12 * Started 18.12.91
13 * Swap aging added 23.2.95, Stephen Tweedie.
14 * Buffermem limits added 12.3.98, Rik van Riel.
17 #include <linux/mm.h>
18 #include <linux/sched.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/pagevec.h>
24 #include <linux/init.h>
25 #include <linux/export.h>
26 #include <linux/mm_inline.h>
27 #include <linux/percpu_counter.h>
28 #include <linux/memremap.h>
29 #include <linux/percpu.h>
30 #include <linux/cpu.h>
31 #include <linux/notifier.h>
32 #include <linux/backing-dev.h>
33 #include <linux/memcontrol.h>
34 #include <linux/gfp.h>
35 #include <linux/uio.h>
36 #include <linux/hugetlb.h>
37 #include <linux/page_idle.h>
38 #include <linux/local_lock.h>
40 #include "internal.h"
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/pagemap.h>
45 /* How many pages do we try to swap or page in/out together? */
46 int page_cluster;
48 /* Protecting only lru_rotate.pvec which requires disabling interrupts */
49 struct lru_rotate {
50 local_lock_t lock;
51 struct pagevec pvec;
53 static DEFINE_PER_CPU(struct lru_rotate, lru_rotate) = {
54 .lock = INIT_LOCAL_LOCK(lock),
58 * The following struct pagevec are grouped together because they are protected
59 * by disabling preemption (and interrupts remain enabled).
61 struct lru_pvecs {
62 local_lock_t lock;
63 struct pagevec lru_add;
64 struct pagevec lru_deactivate_file;
65 struct pagevec lru_deactivate;
66 struct pagevec lru_lazyfree;
67 #ifdef CONFIG_SMP
68 struct pagevec activate_page;
69 #endif
71 static DEFINE_PER_CPU(struct lru_pvecs, lru_pvecs) = {
72 .lock = INIT_LOCAL_LOCK(lock),
76 * This path almost never happens for VM activity - pages are normally
77 * freed via pagevecs. But it gets used by networking.
79 static void __page_cache_release(struct page *page)
81 if (PageLRU(page)) {
82 pg_data_t *pgdat = page_pgdat(page);
83 struct lruvec *lruvec;
84 unsigned long flags;
86 spin_lock_irqsave(&pgdat->lru_lock, flags);
87 lruvec = mem_cgroup_page_lruvec(page, pgdat);
88 VM_BUG_ON_PAGE(!PageLRU(page), page);
89 __ClearPageLRU(page);
90 del_page_from_lru_list(page, lruvec, page_off_lru(page));
91 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
93 __ClearPageWaiters(page);
96 static void __put_single_page(struct page *page)
98 __page_cache_release(page);
99 mem_cgroup_uncharge(page);
100 free_unref_page(page);
103 static void __put_compound_page(struct page *page)
106 * __page_cache_release() is supposed to be called for thp, not for
107 * hugetlb. This is because hugetlb page does never have PageLRU set
108 * (it's never listed to any LRU lists) and no memcg routines should
109 * be called for hugetlb (it has a separate hugetlb_cgroup.)
111 if (!PageHuge(page))
112 __page_cache_release(page);
113 destroy_compound_page(page);
116 void __put_page(struct page *page)
118 if (is_zone_device_page(page)) {
119 put_dev_pagemap(page->pgmap);
122 * The page belongs to the device that created pgmap. Do
123 * not return it to page allocator.
125 return;
128 if (unlikely(PageCompound(page)))
129 __put_compound_page(page);
130 else
131 __put_single_page(page);
133 EXPORT_SYMBOL(__put_page);
136 * put_pages_list() - release a list of pages
137 * @pages: list of pages threaded on page->lru
139 * Release a list of pages which are strung together on page.lru. Currently
140 * used by read_cache_pages() and related error recovery code.
142 void put_pages_list(struct list_head *pages)
144 while (!list_empty(pages)) {
145 struct page *victim;
147 victim = lru_to_page(pages);
148 list_del(&victim->lru);
149 put_page(victim);
152 EXPORT_SYMBOL(put_pages_list);
155 * get_kernel_pages() - pin kernel pages in memory
156 * @kiov: An array of struct kvec structures
157 * @nr_segs: number of segments to pin
158 * @write: pinning for read/write, currently ignored
159 * @pages: array that receives pointers to the pages pinned.
160 * Should be at least nr_segs long.
162 * Returns number of pages pinned. This may be fewer than the number
163 * requested. If nr_pages is 0 or negative, returns 0. If no pages
164 * were pinned, returns -errno. Each page returned must be released
165 * with a put_page() call when it is finished with.
167 int get_kernel_pages(const struct kvec *kiov, int nr_segs, int write,
168 struct page **pages)
170 int seg;
172 for (seg = 0; seg < nr_segs; seg++) {
173 if (WARN_ON(kiov[seg].iov_len != PAGE_SIZE))
174 return seg;
176 pages[seg] = kmap_to_page(kiov[seg].iov_base);
177 get_page(pages[seg]);
180 return seg;
182 EXPORT_SYMBOL_GPL(get_kernel_pages);
185 * get_kernel_page() - pin a kernel page in memory
186 * @start: starting kernel address
187 * @write: pinning for read/write, currently ignored
188 * @pages: array that receives pointer to the page pinned.
189 * Must be at least nr_segs long.
191 * Returns 1 if page is pinned. If the page was not pinned, returns
192 * -errno. The page returned must be released with a put_page() call
193 * when it is finished with.
195 int get_kernel_page(unsigned long start, int write, struct page **pages)
197 const struct kvec kiov = {
198 .iov_base = (void *)start,
199 .iov_len = PAGE_SIZE
202 return get_kernel_pages(&kiov, 1, write, pages);
204 EXPORT_SYMBOL_GPL(get_kernel_page);
206 static void pagevec_lru_move_fn(struct pagevec *pvec,
207 void (*move_fn)(struct page *page, struct lruvec *lruvec, void *arg),
208 void *arg)
210 int i;
211 struct pglist_data *pgdat = NULL;
212 struct lruvec *lruvec;
213 unsigned long flags = 0;
215 for (i = 0; i < pagevec_count(pvec); i++) {
216 struct page *page = pvec->pages[i];
217 struct pglist_data *pagepgdat = page_pgdat(page);
219 if (pagepgdat != pgdat) {
220 if (pgdat)
221 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
222 pgdat = pagepgdat;
223 spin_lock_irqsave(&pgdat->lru_lock, flags);
226 lruvec = mem_cgroup_page_lruvec(page, pgdat);
227 (*move_fn)(page, lruvec, arg);
229 if (pgdat)
230 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
231 release_pages(pvec->pages, pvec->nr);
232 pagevec_reinit(pvec);
235 static void pagevec_move_tail_fn(struct page *page, struct lruvec *lruvec,
236 void *arg)
238 int *pgmoved = arg;
240 if (PageLRU(page) && !PageUnevictable(page)) {
241 del_page_from_lru_list(page, lruvec, page_lru(page));
242 ClearPageActive(page);
243 add_page_to_lru_list_tail(page, lruvec, page_lru(page));
244 (*pgmoved) += thp_nr_pages(page);
249 * pagevec_move_tail() must be called with IRQ disabled.
250 * Otherwise this may cause nasty races.
252 static void pagevec_move_tail(struct pagevec *pvec)
254 int pgmoved = 0;
256 pagevec_lru_move_fn(pvec, pagevec_move_tail_fn, &pgmoved);
257 __count_vm_events(PGROTATED, pgmoved);
261 * Writeback is about to end against a page which has been marked for immediate
262 * reclaim. If it still appears to be reclaimable, move it to the tail of the
263 * inactive list.
265 void rotate_reclaimable_page(struct page *page)
267 if (!PageLocked(page) && !PageDirty(page) &&
268 !PageUnevictable(page) && PageLRU(page)) {
269 struct pagevec *pvec;
270 unsigned long flags;
272 get_page(page);
273 local_lock_irqsave(&lru_rotate.lock, flags);
274 pvec = this_cpu_ptr(&lru_rotate.pvec);
275 if (!pagevec_add(pvec, page) || PageCompound(page))
276 pagevec_move_tail(pvec);
277 local_unlock_irqrestore(&lru_rotate.lock, flags);
281 void lru_note_cost(struct lruvec *lruvec, bool file, unsigned int nr_pages)
283 do {
284 unsigned long lrusize;
286 /* Record cost event */
287 if (file)
288 lruvec->file_cost += nr_pages;
289 else
290 lruvec->anon_cost += nr_pages;
293 * Decay previous events
295 * Because workloads change over time (and to avoid
296 * overflow) we keep these statistics as a floating
297 * average, which ends up weighing recent refaults
298 * more than old ones.
300 lrusize = lruvec_page_state(lruvec, NR_INACTIVE_ANON) +
301 lruvec_page_state(lruvec, NR_ACTIVE_ANON) +
302 lruvec_page_state(lruvec, NR_INACTIVE_FILE) +
303 lruvec_page_state(lruvec, NR_ACTIVE_FILE);
305 if (lruvec->file_cost + lruvec->anon_cost > lrusize / 4) {
306 lruvec->file_cost /= 2;
307 lruvec->anon_cost /= 2;
309 } while ((lruvec = parent_lruvec(lruvec)));
312 void lru_note_cost_page(struct page *page)
314 lru_note_cost(mem_cgroup_page_lruvec(page, page_pgdat(page)),
315 page_is_file_lru(page), thp_nr_pages(page));
318 static void __activate_page(struct page *page, struct lruvec *lruvec,
319 void *arg)
321 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
322 int lru = page_lru_base_type(page);
323 int nr_pages = thp_nr_pages(page);
325 del_page_from_lru_list(page, lruvec, lru);
326 SetPageActive(page);
327 lru += LRU_ACTIVE;
328 add_page_to_lru_list(page, lruvec, lru);
329 trace_mm_lru_activate(page);
331 __count_vm_events(PGACTIVATE, nr_pages);
332 __count_memcg_events(lruvec_memcg(lruvec), PGACTIVATE,
333 nr_pages);
337 #ifdef CONFIG_SMP
338 static void activate_page_drain(int cpu)
340 struct pagevec *pvec = &per_cpu(lru_pvecs.activate_page, cpu);
342 if (pagevec_count(pvec))
343 pagevec_lru_move_fn(pvec, __activate_page, NULL);
346 static bool need_activate_page_drain(int cpu)
348 return pagevec_count(&per_cpu(lru_pvecs.activate_page, cpu)) != 0;
351 void activate_page(struct page *page)
353 page = compound_head(page);
354 if (PageLRU(page) && !PageActive(page) && !PageUnevictable(page)) {
355 struct pagevec *pvec;
357 local_lock(&lru_pvecs.lock);
358 pvec = this_cpu_ptr(&lru_pvecs.activate_page);
359 get_page(page);
360 if (!pagevec_add(pvec, page) || PageCompound(page))
361 pagevec_lru_move_fn(pvec, __activate_page, NULL);
362 local_unlock(&lru_pvecs.lock);
366 #else
367 static inline void activate_page_drain(int cpu)
371 void activate_page(struct page *page)
373 pg_data_t *pgdat = page_pgdat(page);
375 page = compound_head(page);
376 spin_lock_irq(&pgdat->lru_lock);
377 __activate_page(page, mem_cgroup_page_lruvec(page, pgdat), NULL);
378 spin_unlock_irq(&pgdat->lru_lock);
380 #endif
382 static void __lru_cache_activate_page(struct page *page)
384 struct pagevec *pvec;
385 int i;
387 local_lock(&lru_pvecs.lock);
388 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
391 * Search backwards on the optimistic assumption that the page being
392 * activated has just been added to this pagevec. Note that only
393 * the local pagevec is examined as a !PageLRU page could be in the
394 * process of being released, reclaimed, migrated or on a remote
395 * pagevec that is currently being drained. Furthermore, marking
396 * a remote pagevec's page PageActive potentially hits a race where
397 * a page is marked PageActive just after it is added to the inactive
398 * list causing accounting errors and BUG_ON checks to trigger.
400 for (i = pagevec_count(pvec) - 1; i >= 0; i--) {
401 struct page *pagevec_page = pvec->pages[i];
403 if (pagevec_page == page) {
404 SetPageActive(page);
405 break;
409 local_unlock(&lru_pvecs.lock);
413 * Mark a page as having seen activity.
415 * inactive,unreferenced -> inactive,referenced
416 * inactive,referenced -> active,unreferenced
417 * active,unreferenced -> active,referenced
419 * When a newly allocated page is not yet visible, so safe for non-atomic ops,
420 * __SetPageReferenced(page) may be substituted for mark_page_accessed(page).
422 void mark_page_accessed(struct page *page)
424 page = compound_head(page);
426 if (!PageReferenced(page)) {
427 SetPageReferenced(page);
428 } else if (PageUnevictable(page)) {
430 * Unevictable pages are on the "LRU_UNEVICTABLE" list. But,
431 * this list is never rotated or maintained, so marking an
432 * evictable page accessed has no effect.
434 } else if (!PageActive(page)) {
436 * If the page is on the LRU, queue it for activation via
437 * lru_pvecs.activate_page. Otherwise, assume the page is on a
438 * pagevec, mark it active and it'll be moved to the active
439 * LRU on the next drain.
441 if (PageLRU(page))
442 activate_page(page);
443 else
444 __lru_cache_activate_page(page);
445 ClearPageReferenced(page);
446 workingset_activation(page);
448 if (page_is_idle(page))
449 clear_page_idle(page);
451 EXPORT_SYMBOL(mark_page_accessed);
454 * lru_cache_add - add a page to a page list
455 * @page: the page to be added to the LRU.
457 * Queue the page for addition to the LRU via pagevec. The decision on whether
458 * to add the page to the [in]active [file|anon] list is deferred until the
459 * pagevec is drained. This gives a chance for the caller of lru_cache_add()
460 * have the page added to the active list using mark_page_accessed().
462 void lru_cache_add(struct page *page)
464 struct pagevec *pvec;
466 VM_BUG_ON_PAGE(PageActive(page) && PageUnevictable(page), page);
467 VM_BUG_ON_PAGE(PageLRU(page), page);
469 get_page(page);
470 local_lock(&lru_pvecs.lock);
471 pvec = this_cpu_ptr(&lru_pvecs.lru_add);
472 if (!pagevec_add(pvec, page) || PageCompound(page))
473 __pagevec_lru_add(pvec);
474 local_unlock(&lru_pvecs.lock);
476 EXPORT_SYMBOL(lru_cache_add);
479 * lru_cache_add_inactive_or_unevictable
480 * @page: the page to be added to LRU
481 * @vma: vma in which page is mapped for determining reclaimability
483 * Place @page on the inactive or unevictable LRU list, depending on its
484 * evictability. Note that if the page is not evictable, it goes
485 * directly back onto it's zone's unevictable list, it does NOT use a
486 * per cpu pagevec.
488 void lru_cache_add_inactive_or_unevictable(struct page *page,
489 struct vm_area_struct *vma)
491 bool unevictable;
493 VM_BUG_ON_PAGE(PageLRU(page), page);
495 unevictable = (vma->vm_flags & (VM_LOCKED | VM_SPECIAL)) == VM_LOCKED;
496 if (unlikely(unevictable) && !TestSetPageMlocked(page)) {
497 int nr_pages = thp_nr_pages(page);
499 * We use the irq-unsafe __mod_zone_page_stat because this
500 * counter is not modified from interrupt context, and the pte
501 * lock is held(spinlock), which implies preemption disabled.
503 __mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
504 count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
506 lru_cache_add(page);
510 * If the page can not be invalidated, it is moved to the
511 * inactive list to speed up its reclaim. It is moved to the
512 * head of the list, rather than the tail, to give the flusher
513 * threads some time to write it out, as this is much more
514 * effective than the single-page writeout from reclaim.
516 * If the page isn't page_mapped and dirty/writeback, the page
517 * could reclaim asap using PG_reclaim.
519 * 1. active, mapped page -> none
520 * 2. active, dirty/writeback page -> inactive, head, PG_reclaim
521 * 3. inactive, mapped page -> none
522 * 4. inactive, dirty/writeback page -> inactive, head, PG_reclaim
523 * 5. inactive, clean -> inactive, tail
524 * 6. Others -> none
526 * In 4, why it moves inactive's head, the VM expects the page would
527 * be write it out by flusher threads as this is much more effective
528 * than the single-page writeout from reclaim.
530 static void lru_deactivate_file_fn(struct page *page, struct lruvec *lruvec,
531 void *arg)
533 int lru;
534 bool active;
535 int nr_pages = thp_nr_pages(page);
537 if (!PageLRU(page))
538 return;
540 if (PageUnevictable(page))
541 return;
543 /* Some processes are using the page */
544 if (page_mapped(page))
545 return;
547 active = PageActive(page);
548 lru = page_lru_base_type(page);
550 del_page_from_lru_list(page, lruvec, lru + active);
551 ClearPageActive(page);
552 ClearPageReferenced(page);
554 if (PageWriteback(page) || PageDirty(page)) {
556 * PG_reclaim could be raced with end_page_writeback
557 * It can make readahead confusing. But race window
558 * is _really_ small and it's non-critical problem.
560 add_page_to_lru_list(page, lruvec, lru);
561 SetPageReclaim(page);
562 } else {
564 * The page's writeback ends up during pagevec
565 * We moves tha page into tail of inactive.
567 add_page_to_lru_list_tail(page, lruvec, lru);
568 __count_vm_events(PGROTATED, nr_pages);
571 if (active) {
572 __count_vm_events(PGDEACTIVATE, nr_pages);
573 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
574 nr_pages);
578 static void lru_deactivate_fn(struct page *page, struct lruvec *lruvec,
579 void *arg)
581 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
582 int lru = page_lru_base_type(page);
583 int nr_pages = thp_nr_pages(page);
585 del_page_from_lru_list(page, lruvec, lru + LRU_ACTIVE);
586 ClearPageActive(page);
587 ClearPageReferenced(page);
588 add_page_to_lru_list(page, lruvec, lru);
590 __count_vm_events(PGDEACTIVATE, nr_pages);
591 __count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
592 nr_pages);
596 static void lru_lazyfree_fn(struct page *page, struct lruvec *lruvec,
597 void *arg)
599 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
600 !PageSwapCache(page) && !PageUnevictable(page)) {
601 bool active = PageActive(page);
602 int nr_pages = thp_nr_pages(page);
604 del_page_from_lru_list(page, lruvec,
605 LRU_INACTIVE_ANON + active);
606 ClearPageActive(page);
607 ClearPageReferenced(page);
609 * Lazyfree pages are clean anonymous pages. They have
610 * PG_swapbacked flag cleared, to distinguish them from normal
611 * anonymous pages
613 ClearPageSwapBacked(page);
614 add_page_to_lru_list(page, lruvec, LRU_INACTIVE_FILE);
616 __count_vm_events(PGLAZYFREE, nr_pages);
617 __count_memcg_events(lruvec_memcg(lruvec), PGLAZYFREE,
618 nr_pages);
623 * Drain pages out of the cpu's pagevecs.
624 * Either "cpu" is the current CPU, and preemption has already been
625 * disabled; or "cpu" is being hot-unplugged, and is already dead.
627 void lru_add_drain_cpu(int cpu)
629 struct pagevec *pvec = &per_cpu(lru_pvecs.lru_add, cpu);
631 if (pagevec_count(pvec))
632 __pagevec_lru_add(pvec);
634 pvec = &per_cpu(lru_rotate.pvec, cpu);
635 /* Disabling interrupts below acts as a compiler barrier. */
636 if (data_race(pagevec_count(pvec))) {
637 unsigned long flags;
639 /* No harm done if a racing interrupt already did this */
640 local_lock_irqsave(&lru_rotate.lock, flags);
641 pagevec_move_tail(pvec);
642 local_unlock_irqrestore(&lru_rotate.lock, flags);
645 pvec = &per_cpu(lru_pvecs.lru_deactivate_file, cpu);
646 if (pagevec_count(pvec))
647 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
649 pvec = &per_cpu(lru_pvecs.lru_deactivate, cpu);
650 if (pagevec_count(pvec))
651 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
653 pvec = &per_cpu(lru_pvecs.lru_lazyfree, cpu);
654 if (pagevec_count(pvec))
655 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
657 activate_page_drain(cpu);
661 * deactivate_file_page - forcefully deactivate a file page
662 * @page: page to deactivate
664 * This function hints the VM that @page is a good reclaim candidate,
665 * for example if its invalidation fails due to the page being dirty
666 * or under writeback.
668 void deactivate_file_page(struct page *page)
671 * In a workload with many unevictable page such as mprotect,
672 * unevictable page deactivation for accelerating reclaim is pointless.
674 if (PageUnevictable(page))
675 return;
677 if (likely(get_page_unless_zero(page))) {
678 struct pagevec *pvec;
680 local_lock(&lru_pvecs.lock);
681 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate_file);
683 if (!pagevec_add(pvec, page) || PageCompound(page))
684 pagevec_lru_move_fn(pvec, lru_deactivate_file_fn, NULL);
685 local_unlock(&lru_pvecs.lock);
690 * deactivate_page - deactivate a page
691 * @page: page to deactivate
693 * deactivate_page() moves @page to the inactive list if @page was on the active
694 * list and was not an unevictable page. This is done to accelerate the reclaim
695 * of @page.
697 void deactivate_page(struct page *page)
699 if (PageLRU(page) && PageActive(page) && !PageUnevictable(page)) {
700 struct pagevec *pvec;
702 local_lock(&lru_pvecs.lock);
703 pvec = this_cpu_ptr(&lru_pvecs.lru_deactivate);
704 get_page(page);
705 if (!pagevec_add(pvec, page) || PageCompound(page))
706 pagevec_lru_move_fn(pvec, lru_deactivate_fn, NULL);
707 local_unlock(&lru_pvecs.lock);
712 * mark_page_lazyfree - make an anon page lazyfree
713 * @page: page to deactivate
715 * mark_page_lazyfree() moves @page to the inactive file list.
716 * This is done to accelerate the reclaim of @page.
718 void mark_page_lazyfree(struct page *page)
720 if (PageLRU(page) && PageAnon(page) && PageSwapBacked(page) &&
721 !PageSwapCache(page) && !PageUnevictable(page)) {
722 struct pagevec *pvec;
724 local_lock(&lru_pvecs.lock);
725 pvec = this_cpu_ptr(&lru_pvecs.lru_lazyfree);
726 get_page(page);
727 if (!pagevec_add(pvec, page) || PageCompound(page))
728 pagevec_lru_move_fn(pvec, lru_lazyfree_fn, NULL);
729 local_unlock(&lru_pvecs.lock);
733 void lru_add_drain(void)
735 local_lock(&lru_pvecs.lock);
736 lru_add_drain_cpu(smp_processor_id());
737 local_unlock(&lru_pvecs.lock);
740 void lru_add_drain_cpu_zone(struct zone *zone)
742 local_lock(&lru_pvecs.lock);
743 lru_add_drain_cpu(smp_processor_id());
744 drain_local_pages(zone);
745 local_unlock(&lru_pvecs.lock);
748 #ifdef CONFIG_SMP
750 static DEFINE_PER_CPU(struct work_struct, lru_add_drain_work);
752 static void lru_add_drain_per_cpu(struct work_struct *dummy)
754 lru_add_drain();
758 * Doesn't need any cpu hotplug locking because we do rely on per-cpu
759 * kworkers being shut down before our page_alloc_cpu_dead callback is
760 * executed on the offlined cpu.
761 * Calling this function with cpu hotplug locks held can actually lead
762 * to obscure indirect dependencies via WQ context.
764 void lru_add_drain_all(void)
766 static seqcount_t seqcount = SEQCNT_ZERO(seqcount);
767 static DEFINE_MUTEX(lock);
768 static struct cpumask has_work;
769 int cpu, seq;
772 * Make sure nobody triggers this path before mm_percpu_wq is fully
773 * initialized.
775 if (WARN_ON(!mm_percpu_wq))
776 return;
778 seq = raw_read_seqcount_latch(&seqcount);
780 mutex_lock(&lock);
783 * Piggyback on drain started and finished while we waited for lock:
784 * all pages pended at the time of our enter were drained from vectors.
786 if (__read_seqcount_retry(&seqcount, seq))
787 goto done;
789 raw_write_seqcount_latch(&seqcount);
791 cpumask_clear(&has_work);
793 for_each_online_cpu(cpu) {
794 struct work_struct *work = &per_cpu(lru_add_drain_work, cpu);
796 if (pagevec_count(&per_cpu(lru_pvecs.lru_add, cpu)) ||
797 data_race(pagevec_count(&per_cpu(lru_rotate.pvec, cpu))) ||
798 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate_file, cpu)) ||
799 pagevec_count(&per_cpu(lru_pvecs.lru_deactivate, cpu)) ||
800 pagevec_count(&per_cpu(lru_pvecs.lru_lazyfree, cpu)) ||
801 need_activate_page_drain(cpu)) {
802 INIT_WORK(work, lru_add_drain_per_cpu);
803 queue_work_on(cpu, mm_percpu_wq, work);
804 cpumask_set_cpu(cpu, &has_work);
808 for_each_cpu(cpu, &has_work)
809 flush_work(&per_cpu(lru_add_drain_work, cpu));
811 done:
812 mutex_unlock(&lock);
814 #else
815 void lru_add_drain_all(void)
817 lru_add_drain();
819 #endif
822 * release_pages - batched put_page()
823 * @pages: array of pages to release
824 * @nr: number of pages
826 * Decrement the reference count on all the pages in @pages. If it
827 * fell to zero, remove the page from the LRU and free it.
829 void release_pages(struct page **pages, int nr)
831 int i;
832 LIST_HEAD(pages_to_free);
833 struct pglist_data *locked_pgdat = NULL;
834 struct lruvec *lruvec;
835 unsigned long flags;
836 unsigned int lock_batch;
838 for (i = 0; i < nr; i++) {
839 struct page *page = pages[i];
842 * Make sure the IRQ-safe lock-holding time does not get
843 * excessive with a continuous string of pages from the
844 * same pgdat. The lock is held only if pgdat != NULL.
846 if (locked_pgdat && ++lock_batch == SWAP_CLUSTER_MAX) {
847 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
848 locked_pgdat = NULL;
851 if (is_huge_zero_page(page))
852 continue;
854 if (is_zone_device_page(page)) {
855 if (locked_pgdat) {
856 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
857 flags);
858 locked_pgdat = NULL;
861 * ZONE_DEVICE pages that return 'false' from
862 * put_devmap_managed_page() do not require special
863 * processing, and instead, expect a call to
864 * put_page_testzero().
866 if (page_is_devmap_managed(page)) {
867 put_devmap_managed_page(page);
868 continue;
872 page = compound_head(page);
873 if (!put_page_testzero(page))
874 continue;
876 if (PageCompound(page)) {
877 if (locked_pgdat) {
878 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
879 locked_pgdat = NULL;
881 __put_compound_page(page);
882 continue;
885 if (PageLRU(page)) {
886 struct pglist_data *pgdat = page_pgdat(page);
888 if (pgdat != locked_pgdat) {
889 if (locked_pgdat)
890 spin_unlock_irqrestore(&locked_pgdat->lru_lock,
891 flags);
892 lock_batch = 0;
893 locked_pgdat = pgdat;
894 spin_lock_irqsave(&locked_pgdat->lru_lock, flags);
897 lruvec = mem_cgroup_page_lruvec(page, locked_pgdat);
898 VM_BUG_ON_PAGE(!PageLRU(page), page);
899 __ClearPageLRU(page);
900 del_page_from_lru_list(page, lruvec, page_off_lru(page));
903 /* Clear Active bit in case of parallel mark_page_accessed */
904 __ClearPageActive(page);
905 __ClearPageWaiters(page);
907 list_add(&page->lru, &pages_to_free);
909 if (locked_pgdat)
910 spin_unlock_irqrestore(&locked_pgdat->lru_lock, flags);
912 mem_cgroup_uncharge_list(&pages_to_free);
913 free_unref_page_list(&pages_to_free);
915 EXPORT_SYMBOL(release_pages);
918 * The pages which we're about to release may be in the deferred lru-addition
919 * queues. That would prevent them from really being freed right now. That's
920 * OK from a correctness point of view but is inefficient - those pages may be
921 * cache-warm and we want to give them back to the page allocator ASAP.
923 * So __pagevec_release() will drain those queues here. __pagevec_lru_add()
924 * and __pagevec_lru_add_active() call release_pages() directly to avoid
925 * mutual recursion.
927 void __pagevec_release(struct pagevec *pvec)
929 if (!pvec->percpu_pvec_drained) {
930 lru_add_drain();
931 pvec->percpu_pvec_drained = true;
933 release_pages(pvec->pages, pagevec_count(pvec));
934 pagevec_reinit(pvec);
936 EXPORT_SYMBOL(__pagevec_release);
938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
939 /* used by __split_huge_page_refcount() */
940 void lru_add_page_tail(struct page *page, struct page *page_tail,
941 struct lruvec *lruvec, struct list_head *list)
943 VM_BUG_ON_PAGE(!PageHead(page), page);
944 VM_BUG_ON_PAGE(PageCompound(page_tail), page);
945 VM_BUG_ON_PAGE(PageLRU(page_tail), page);
946 lockdep_assert_held(&lruvec_pgdat(lruvec)->lru_lock);
948 if (!list)
949 SetPageLRU(page_tail);
951 if (likely(PageLRU(page)))
952 list_add_tail(&page_tail->lru, &page->lru);
953 else if (list) {
954 /* page reclaim is reclaiming a huge page */
955 get_page(page_tail);
956 list_add_tail(&page_tail->lru, list);
957 } else {
959 * Head page has not yet been counted, as an hpage,
960 * so we must account for each subpage individually.
962 * Put page_tail on the list at the correct position
963 * so they all end up in order.
965 add_page_to_lru_list_tail(page_tail, lruvec,
966 page_lru(page_tail));
969 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
971 static void __pagevec_lru_add_fn(struct page *page, struct lruvec *lruvec,
972 void *arg)
974 enum lru_list lru;
975 int was_unevictable = TestClearPageUnevictable(page);
976 int nr_pages = thp_nr_pages(page);
978 VM_BUG_ON_PAGE(PageLRU(page), page);
981 * Page becomes evictable in two ways:
982 * 1) Within LRU lock [munlock_vma_page() and __munlock_pagevec()].
983 * 2) Before acquiring LRU lock to put the page to correct LRU and then
984 * a) do PageLRU check with lock [check_move_unevictable_pages]
985 * b) do PageLRU check before lock [clear_page_mlock]
987 * (1) & (2a) are ok as LRU lock will serialize them. For (2b), we need
988 * following strict ordering:
990 * #0: __pagevec_lru_add_fn #1: clear_page_mlock
992 * SetPageLRU() TestClearPageMlocked()
993 * smp_mb() // explicit ordering // above provides strict
994 * // ordering
995 * PageMlocked() PageLRU()
998 * if '#1' does not observe setting of PG_lru by '#0' and fails
999 * isolation, the explicit barrier will make sure that page_evictable
1000 * check will put the page in correct LRU. Without smp_mb(), SetPageLRU
1001 * can be reordered after PageMlocked check and can make '#1' to fail
1002 * the isolation of the page whose Mlocked bit is cleared (#0 is also
1003 * looking at the same page) and the evictable page will be stranded
1004 * in an unevictable LRU.
1006 SetPageLRU(page);
1007 smp_mb__after_atomic();
1009 if (page_evictable(page)) {
1010 lru = page_lru(page);
1011 if (was_unevictable)
1012 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
1013 } else {
1014 lru = LRU_UNEVICTABLE;
1015 ClearPageActive(page);
1016 SetPageUnevictable(page);
1017 if (!was_unevictable)
1018 __count_vm_events(UNEVICTABLE_PGCULLED, nr_pages);
1021 add_page_to_lru_list(page, lruvec, lru);
1022 trace_mm_lru_insertion(page, lru);
1026 * Add the passed pages to the LRU, then drop the caller's refcount
1027 * on them. Reinitialises the caller's pagevec.
1029 void __pagevec_lru_add(struct pagevec *pvec)
1031 pagevec_lru_move_fn(pvec, __pagevec_lru_add_fn, NULL);
1035 * pagevec_lookup_entries - gang pagecache lookup
1036 * @pvec: Where the resulting entries are placed
1037 * @mapping: The address_space to search
1038 * @start: The starting entry index
1039 * @nr_entries: The maximum number of pages
1040 * @indices: The cache indices corresponding to the entries in @pvec
1042 * pagevec_lookup_entries() will search for and return a group of up
1043 * to @nr_pages pages and shadow entries in the mapping. All
1044 * entries are placed in @pvec. pagevec_lookup_entries() takes a
1045 * reference against actual pages in @pvec.
1047 * The search returns a group of mapping-contiguous entries with
1048 * ascending indexes. There may be holes in the indices due to
1049 * not-present entries.
1051 * Only one subpage of a Transparent Huge Page is returned in one call:
1052 * allowing truncate_inode_pages_range() to evict the whole THP without
1053 * cycling through a pagevec of extra references.
1055 * pagevec_lookup_entries() returns the number of entries which were
1056 * found.
1058 unsigned pagevec_lookup_entries(struct pagevec *pvec,
1059 struct address_space *mapping,
1060 pgoff_t start, unsigned nr_entries,
1061 pgoff_t *indices)
1063 pvec->nr = find_get_entries(mapping, start, nr_entries,
1064 pvec->pages, indices);
1065 return pagevec_count(pvec);
1069 * pagevec_remove_exceptionals - pagevec exceptionals pruning
1070 * @pvec: The pagevec to prune
1072 * pagevec_lookup_entries() fills both pages and exceptional radix
1073 * tree entries into the pagevec. This function prunes all
1074 * exceptionals from @pvec without leaving holes, so that it can be
1075 * passed on to page-only pagevec operations.
1077 void pagevec_remove_exceptionals(struct pagevec *pvec)
1079 int i, j;
1081 for (i = 0, j = 0; i < pagevec_count(pvec); i++) {
1082 struct page *page = pvec->pages[i];
1083 if (!xa_is_value(page))
1084 pvec->pages[j++] = page;
1086 pvec->nr = j;
1090 * pagevec_lookup_range - gang pagecache lookup
1091 * @pvec: Where the resulting pages are placed
1092 * @mapping: The address_space to search
1093 * @start: The starting page index
1094 * @end: The final page index
1096 * pagevec_lookup_range() will search for & return a group of up to PAGEVEC_SIZE
1097 * pages in the mapping starting from index @start and upto index @end
1098 * (inclusive). The pages are placed in @pvec. pagevec_lookup() takes a
1099 * reference against the pages in @pvec.
1101 * The search returns a group of mapping-contiguous pages with ascending
1102 * indexes. There may be holes in the indices due to not-present pages. We
1103 * also update @start to index the next page for the traversal.
1105 * pagevec_lookup_range() returns the number of pages which were found. If this
1106 * number is smaller than PAGEVEC_SIZE, the end of specified range has been
1107 * reached.
1109 unsigned pagevec_lookup_range(struct pagevec *pvec,
1110 struct address_space *mapping, pgoff_t *start, pgoff_t end)
1112 pvec->nr = find_get_pages_range(mapping, start, end, PAGEVEC_SIZE,
1113 pvec->pages);
1114 return pagevec_count(pvec);
1116 EXPORT_SYMBOL(pagevec_lookup_range);
1118 unsigned pagevec_lookup_range_tag(struct pagevec *pvec,
1119 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1120 xa_mark_t tag)
1122 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1123 PAGEVEC_SIZE, pvec->pages);
1124 return pagevec_count(pvec);
1126 EXPORT_SYMBOL(pagevec_lookup_range_tag);
1128 unsigned pagevec_lookup_range_nr_tag(struct pagevec *pvec,
1129 struct address_space *mapping, pgoff_t *index, pgoff_t end,
1130 xa_mark_t tag, unsigned max_pages)
1132 pvec->nr = find_get_pages_range_tag(mapping, index, end, tag,
1133 min_t(unsigned int, max_pages, PAGEVEC_SIZE), pvec->pages);
1134 return pagevec_count(pvec);
1136 EXPORT_SYMBOL(pagevec_lookup_range_nr_tag);
1138 * Perform any setup for the swap system
1140 void __init swap_setup(void)
1142 unsigned long megs = totalram_pages() >> (20 - PAGE_SHIFT);
1144 /* Use a smaller cluster for small-memory machines */
1145 if (megs < 16)
1146 page_cluster = 2;
1147 else
1148 page_cluster = 3;
1150 * Right now other parts of the system means that we
1151 * _really_ don't want to cluster much more
1155 #ifdef CONFIG_DEV_PAGEMAP_OPS
1156 void put_devmap_managed_page(struct page *page)
1158 int count;
1160 if (WARN_ON_ONCE(!page_is_devmap_managed(page)))
1161 return;
1163 count = page_ref_dec_return(page);
1166 * devmap page refcounts are 1-based, rather than 0-based: if
1167 * refcount is 1, then the page is free and the refcount is
1168 * stable because nobody holds a reference on the page.
1170 if (count == 1)
1171 free_devmap_managed_page(page);
1172 else if (!count)
1173 __put_page(page);
1175 EXPORT_SYMBOL(put_devmap_managed_page);
1176 #endif