ipmi: allow shared interrupts
[linux/fpc-iii.git] / mm / filemap.c
blob3e49fe13d6ac1f4dbef076f820170a62ef3b6341
1 /*
2 * linux/mm/filemap.c
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
37 * FIXME: remove all knowledge of the buffer layer from the core VM
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 #include <asm/mman.h>
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
51 * Shared mappings now work. 15.8.1995 Bruno.
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 * Lock ordering:
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 * ->i_mutex
82 * ->i_alloc_sem (various)
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 void __remove_from_page_cache(struct page *page)
117 struct address_space *mapping = page->mapping;
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
125 void remove_from_page_cache(struct page *page)
127 struct address_space *mapping = page->mapping;
129 BUG_ON(!PageLocked(page));
131 write_lock_irq(&mapping->tree_lock);
132 __remove_from_page_cache(page);
133 write_unlock_irq(&mapping->tree_lock);
136 static int sync_page(void *word)
138 struct address_space *mapping;
139 struct page *page;
141 page = container_of((unsigned long *)word, struct page, flags);
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
162 * -- wli
164 smp_mb();
165 mapping = page_mapping(page);
166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 mapping->a_ops->sync_page(page);
168 io_schedule();
169 return 0;
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 loff_t end, int sync_mode)
190 int ret;
191 struct writeback_control wbc = {
192 .sync_mode = sync_mode,
193 .nr_to_write = mapping->nrpages * 2,
194 .range_start = start,
195 .range_end = end,
198 if (!mapping_cap_writeback_dirty(mapping))
199 return 0;
201 ret = do_writepages(mapping, &wbc);
202 return ret;
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 int sync_mode)
208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
211 int filemap_fdatawrite(struct address_space *mapping)
213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 EXPORT_SYMBOL(filemap_fdatawrite);
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end)
220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
230 int filemap_flush(struct address_space *mapping)
232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 EXPORT_SYMBOL(filemap_flush);
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 pgoff_t start, pgoff_t end)
248 struct pagevec pvec;
249 int nr_pages;
250 int ret = 0;
251 pgoff_t index;
253 if (end < start)
254 return 0;
256 pagevec_init(&pvec, 0);
257 index = start;
258 while ((index <= end) &&
259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 PAGECACHE_TAG_WRITEBACK,
261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 unsigned i;
264 for (i = 0; i < nr_pages; i++) {
265 struct page *page = pvec.pages[i];
267 /* until radix tree lookup accepts end_index */
268 if (page->index > end)
269 continue;
271 wait_on_page_writeback(page);
272 if (PageError(page))
273 ret = -EIO;
275 pagevec_release(&pvec);
276 cond_resched();
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 ret = -ENOSPC;
282 if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 ret = -EIO;
285 return ret;
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 loff_t pos, loff_t count)
305 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 int ret;
309 if (!mapping_cap_writeback_dirty(mapping) || !count)
310 return 0;
311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 if (ret == 0) {
313 mutex_lock(&inode->i_mutex);
314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 mutex_unlock(&inode->i_mutex);
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
321 EXPORT_SYMBOL(sync_page_range);
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 loff_t pos, loff_t count)
337 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 int ret;
341 if (!mapping_cap_writeback_dirty(mapping) || !count)
342 return 0;
343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 if (ret == 0)
345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 if (ret == 0)
347 ret = wait_on_page_writeback_range(mapping, start, end);
348 return ret;
350 EXPORT_SYMBOL(sync_page_range_nolock);
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
359 int filemap_fdatawait(struct address_space *mapping)
361 loff_t i_size = i_size_read(mapping->host);
363 if (i_size == 0)
364 return 0;
366 return wait_on_page_writeback_range(mapping, 0,
367 (i_size - 1) >> PAGE_CACHE_SHIFT);
369 EXPORT_SYMBOL(filemap_fdatawait);
371 int filemap_write_and_wait(struct address_space *mapping)
373 int err = 0;
375 if (mapping->nrpages) {
376 err = filemap_fdatawrite(mapping);
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
383 if (err != -EIO) {
384 int err2 = filemap_fdatawait(mapping);
385 if (!err)
386 err = err2;
389 return err;
391 EXPORT_SYMBOL(filemap_write_and_wait);
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
399 * Write out and wait upon file offsets lstart->lend, inclusive.
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 loff_t lstart, loff_t lend)
407 int err = 0;
409 if (mapping->nrpages) {
410 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 WB_SYNC_ALL);
412 /* See comment of filemap_write_and_wait() */
413 if (err != -EIO) {
414 int err2 = wait_on_page_writeback_range(mapping,
415 lstart >> PAGE_CACHE_SHIFT,
416 lend >> PAGE_CACHE_SHIFT);
417 if (!err)
418 err = err2;
421 return err;
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page: page to add
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
435 * This function does not add the page to the LRU. The caller must do that.
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442 if (error == 0) {
443 write_lock_irq(&mapping->tree_lock);
444 error = radix_tree_insert(&mapping->page_tree, offset, page);
445 if (!error) {
446 page_cache_get(page);
447 SetPageLocked(page);
448 page->mapping = mapping;
449 page->index = offset;
450 mapping->nrpages++;
451 __inc_zone_page_state(page, NR_FILE_PAGES);
453 write_unlock_irq(&mapping->tree_lock);
454 radix_tree_preload_end();
456 return error;
458 EXPORT_SYMBOL(add_to_page_cache);
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 pgoff_t offset, gfp_t gfp_mask)
463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0)
465 lru_cache_add(page);
466 return ret;
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
472 if (cpuset_do_page_mem_spread()) {
473 int n = cpuset_mem_spread_node();
474 return alloc_pages_node(n, gfp, 0);
476 return alloc_pages(gfp, 0);
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
481 static int __sleep_on_page_lock(void *word)
483 io_schedule();
484 return 0;
488 * In order to wait for pages to become available there must be
489 * waitqueues associated with pages. By using a hash table of
490 * waitqueues where the bucket discipline is to maintain all
491 * waiters on the same queue and wake all when any of the pages
492 * become available, and for the woken contexts to check to be
493 * sure the appropriate page became available, this saves space
494 * at a cost of "thundering herd" phenomena during rare hash
495 * collisions.
497 static wait_queue_head_t *page_waitqueue(struct page *page)
499 const struct zone *zone = page_zone(page);
501 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
504 static inline void wake_up_page(struct page *page, int bit)
506 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513 if (test_bit(bit_nr, &page->flags))
514 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 TASK_UNINTERRUPTIBLE);
517 EXPORT_SYMBOL(wait_on_page_bit);
520 * unlock_page - unlock a locked page
521 * @page: the page
523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525 * mechananism between PageLocked pages and PageWriteback pages is shared.
526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 * The first mb is necessary to safely close the critical section opened by the
529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531 * parallel wait_on_page_locked()).
533 void fastcall unlock_page(struct page *page)
535 smp_mb__before_clear_bit();
536 if (!TestClearPageLocked(page))
537 BUG();
538 smp_mb__after_clear_bit();
539 wake_up_page(page, PG_locked);
541 EXPORT_SYMBOL(unlock_page);
544 * end_page_writeback - end writeback against a page
545 * @page: the page
547 void end_page_writeback(struct page *page)
549 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 if (!test_clear_page_writeback(page))
551 BUG();
553 smp_mb__after_clear_bit();
554 wake_up_page(page, PG_writeback);
556 EXPORT_SYMBOL(end_page_writeback);
559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
560 * @page: the page to lock
562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
563 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
564 * chances are that on the second loop, the block layer's plug list is empty,
565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 void fastcall __lock_page(struct page *page)
569 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 TASK_UNINTERRUPTIBLE);
574 EXPORT_SYMBOL(__lock_page);
577 * Variant of lock_page that does not require the caller to hold a reference
578 * on the page's mapping.
580 void fastcall __lock_page_nosync(struct page *page)
582 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 TASK_UNINTERRUPTIBLE);
588 * find_get_page - find and get a page reference
589 * @mapping: the address_space to search
590 * @offset: the page index
592 * Is there a pagecache struct page at the given (mapping, offset) tuple?
593 * If yes, increment its refcount and return it; if no, return NULL.
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
597 struct page *page;
599 read_lock_irq(&mapping->tree_lock);
600 page = radix_tree_lookup(&mapping->page_tree, offset);
601 if (page)
602 page_cache_get(page);
603 read_unlock_irq(&mapping->tree_lock);
604 return page;
606 EXPORT_SYMBOL(find_get_page);
609 * find_lock_page - locate, pin and lock a pagecache page
610 * @mapping: the address_space to search
611 * @offset: the page index
613 * Locates the desired pagecache page, locks it, increments its reference
614 * count and returns its address.
616 * Returns zero if the page was not present. find_lock_page() may sleep.
618 struct page *find_lock_page(struct address_space *mapping,
619 unsigned long offset)
621 struct page *page;
623 read_lock_irq(&mapping->tree_lock);
624 repeat:
625 page = radix_tree_lookup(&mapping->page_tree, offset);
626 if (page) {
627 page_cache_get(page);
628 if (TestSetPageLocked(page)) {
629 read_unlock_irq(&mapping->tree_lock);
630 __lock_page(page);
631 read_lock_irq(&mapping->tree_lock);
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping ||
635 page->index != offset)) {
636 unlock_page(page);
637 page_cache_release(page);
638 goto repeat;
642 read_unlock_irq(&mapping->tree_lock);
643 return page;
645 EXPORT_SYMBOL(find_lock_page);
648 * find_or_create_page - locate or add a pagecache page
649 * @mapping: the page's address_space
650 * @index: the page's index into the mapping
651 * @gfp_mask: page allocation mode
653 * Locates a page in the pagecache. If the page is not present, a new page
654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655 * LRU list. The returned page is locked and has its reference count
656 * incremented.
658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659 * allocation!
661 * find_or_create_page() returns the desired page's address, or zero on
662 * memory exhaustion.
664 struct page *find_or_create_page(struct address_space *mapping,
665 unsigned long index, gfp_t gfp_mask)
667 struct page *page, *cached_page = NULL;
668 int err;
669 repeat:
670 page = find_lock_page(mapping, index);
671 if (!page) {
672 if (!cached_page) {
673 cached_page = alloc_page(gfp_mask);
674 if (!cached_page)
675 return NULL;
677 err = add_to_page_cache_lru(cached_page, mapping,
678 index, gfp_mask);
679 if (!err) {
680 page = cached_page;
681 cached_page = NULL;
682 } else if (err == -EEXIST)
683 goto repeat;
685 if (cached_page)
686 page_cache_release(cached_page);
687 return page;
689 EXPORT_SYMBOL(find_or_create_page);
692 * find_get_pages - gang pagecache lookup
693 * @mapping: The address_space to search
694 * @start: The starting page index
695 * @nr_pages: The maximum number of pages
696 * @pages: Where the resulting pages are placed
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping. The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes. There may be holes in the indices due to not-present pages.
705 * find_get_pages() returns the number of pages which were found.
707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708 unsigned int nr_pages, struct page **pages)
710 unsigned int i;
711 unsigned int ret;
713 read_lock_irq(&mapping->tree_lock);
714 ret = radix_tree_gang_lookup(&mapping->page_tree,
715 (void **)pages, start, nr_pages);
716 for (i = 0; i < ret; i++)
717 page_cache_get(pages[i]);
718 read_unlock_irq(&mapping->tree_lock);
719 return ret;
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping: The address_space to search
725 * @index: The starting page index
726 * @nr_pages: The maximum number of pages
727 * @pages: Where the resulting pages are placed
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
732 * find_get_pages_contig() returns the number of pages which were found.
734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735 unsigned int nr_pages, struct page **pages)
737 unsigned int i;
738 unsigned int ret;
740 read_lock_irq(&mapping->tree_lock);
741 ret = radix_tree_gang_lookup(&mapping->page_tree,
742 (void **)pages, index, nr_pages);
743 for (i = 0; i < ret; i++) {
744 if (pages[i]->mapping == NULL || pages[i]->index != index)
745 break;
747 page_cache_get(pages[i]);
748 index++;
750 read_unlock_irq(&mapping->tree_lock);
751 return i;
755 * find_get_pages_tag - find and return pages that match @tag
756 * @mapping: the address_space to search
757 * @index: the starting page index
758 * @tag: the tag index
759 * @nr_pages: the maximum number of pages
760 * @pages: where the resulting pages are placed
762 * Like find_get_pages, except we only return pages which are tagged with
763 * @tag. We update @index to index the next page for the traversal.
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766 int tag, unsigned int nr_pages, struct page **pages)
768 unsigned int i;
769 unsigned int ret;
771 read_lock_irq(&mapping->tree_lock);
772 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773 (void **)pages, *index, nr_pages, tag);
774 for (i = 0; i < ret; i++)
775 page_cache_get(pages[i]);
776 if (ret)
777 *index = pages[ret - 1]->index + 1;
778 read_unlock_irq(&mapping->tree_lock);
779 return ret;
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed. This routine should
790 * be safe to call while holding the lock for another page.
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
795 struct page *
796 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
798 struct page *page = find_get_page(mapping, index);
800 if (page) {
801 if (!TestSetPageLocked(page))
802 return page;
803 page_cache_release(page);
804 return NULL;
806 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808 page_cache_release(page);
809 page = NULL;
811 return page;
813 EXPORT_SYMBOL(grab_cache_page_nowait);
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
819 * ---R__________________________________________B__________
820 * ^ reading here ^ bad block(assume 4k)
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
828 * It is going insane. Fix it by quickly scaling down the readahead size.
830 static void shrink_readahead_size_eio(struct file *filp,
831 struct file_ra_state *ra)
833 if (!ra->ra_pages)
834 return;
836 ra->ra_pages /= 4;
840 * do_generic_mapping_read - generic file read routine
841 * @mapping: address_space to be read
842 * @_ra: file's readahead state
843 * @filp: the file to read
844 * @ppos: current file position
845 * @desc: read_descriptor
846 * @actor: read method
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
854 * Note the struct file* is only passed for the use of readpage.
855 * It may be NULL.
857 void do_generic_mapping_read(struct address_space *mapping,
858 struct file_ra_state *_ra,
859 struct file *filp,
860 loff_t *ppos,
861 read_descriptor_t *desc,
862 read_actor_t actor)
864 struct inode *inode = mapping->host;
865 unsigned long index;
866 unsigned long end_index;
867 unsigned long offset;
868 unsigned long last_index;
869 unsigned long next_index;
870 unsigned long prev_index;
871 unsigned int prev_offset;
872 loff_t isize;
873 struct page *cached_page;
874 int error;
875 struct file_ra_state ra = *_ra;
877 cached_page = NULL;
878 index = *ppos >> PAGE_CACHE_SHIFT;
879 next_index = index;
880 prev_index = ra.prev_index;
881 prev_offset = ra.prev_offset;
882 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
883 offset = *ppos & ~PAGE_CACHE_MASK;
885 isize = i_size_read(inode);
886 if (!isize)
887 goto out;
889 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
890 for (;;) {
891 struct page *page;
892 unsigned long nr, ret;
894 /* nr is the maximum number of bytes to copy from this page */
895 nr = PAGE_CACHE_SIZE;
896 if (index >= end_index) {
897 if (index > end_index)
898 goto out;
899 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
900 if (nr <= offset) {
901 goto out;
904 nr = nr - offset;
906 cond_resched();
907 if (index == next_index)
908 next_index = page_cache_readahead(mapping, &ra, filp,
909 index, last_index - index);
911 find_page:
912 page = find_get_page(mapping, index);
913 if (unlikely(page == NULL)) {
914 handle_ra_miss(mapping, &ra, index);
915 goto no_cached_page;
917 if (!PageUptodate(page))
918 goto page_not_up_to_date;
919 page_ok:
921 /* If users can be writing to this page using arbitrary
922 * virtual addresses, take care about potential aliasing
923 * before reading the page on the kernel side.
925 if (mapping_writably_mapped(mapping))
926 flush_dcache_page(page);
929 * When a sequential read accesses a page several times,
930 * only mark it as accessed the first time.
932 if (prev_index != index || offset != prev_offset)
933 mark_page_accessed(page);
934 prev_index = index;
937 * Ok, we have the page, and it's up-to-date, so
938 * now we can copy it to user space...
940 * The actor routine returns how many bytes were actually used..
941 * NOTE! This may not be the same as how much of a user buffer
942 * we filled up (we may be padding etc), so we can only update
943 * "pos" here (the actor routine has to update the user buffer
944 * pointers and the remaining count).
946 ret = actor(desc, page, offset, nr);
947 offset += ret;
948 index += offset >> PAGE_CACHE_SHIFT;
949 offset &= ~PAGE_CACHE_MASK;
950 prev_offset = offset;
951 ra.prev_offset = offset;
953 page_cache_release(page);
954 if (ret == nr && desc->count)
955 continue;
956 goto out;
958 page_not_up_to_date:
959 /* Get exclusive access to the page ... */
960 lock_page(page);
962 /* Did it get truncated before we got the lock? */
963 if (!page->mapping) {
964 unlock_page(page);
965 page_cache_release(page);
966 continue;
969 /* Did somebody else fill it already? */
970 if (PageUptodate(page)) {
971 unlock_page(page);
972 goto page_ok;
975 readpage:
976 /* Start the actual read. The read will unlock the page. */
977 error = mapping->a_ops->readpage(filp, page);
979 if (unlikely(error)) {
980 if (error == AOP_TRUNCATED_PAGE) {
981 page_cache_release(page);
982 goto find_page;
984 goto readpage_error;
987 if (!PageUptodate(page)) {
988 lock_page(page);
989 if (!PageUptodate(page)) {
990 if (page->mapping == NULL) {
992 * invalidate_inode_pages got it
994 unlock_page(page);
995 page_cache_release(page);
996 goto find_page;
998 unlock_page(page);
999 error = -EIO;
1000 shrink_readahead_size_eio(filp, &ra);
1001 goto readpage_error;
1003 unlock_page(page);
1007 * i_size must be checked after we have done ->readpage.
1009 * Checking i_size after the readpage allows us to calculate
1010 * the correct value for "nr", which means the zero-filled
1011 * part of the page is not copied back to userspace (unless
1012 * another truncate extends the file - this is desired though).
1014 isize = i_size_read(inode);
1015 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1016 if (unlikely(!isize || index > end_index)) {
1017 page_cache_release(page);
1018 goto out;
1021 /* nr is the maximum number of bytes to copy from this page */
1022 nr = PAGE_CACHE_SIZE;
1023 if (index == end_index) {
1024 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1025 if (nr <= offset) {
1026 page_cache_release(page);
1027 goto out;
1030 nr = nr - offset;
1031 goto page_ok;
1033 readpage_error:
1034 /* UHHUH! A synchronous read error occurred. Report it */
1035 desc->error = error;
1036 page_cache_release(page);
1037 goto out;
1039 no_cached_page:
1041 * Ok, it wasn't cached, so we need to create a new
1042 * page..
1044 if (!cached_page) {
1045 cached_page = page_cache_alloc_cold(mapping);
1046 if (!cached_page) {
1047 desc->error = -ENOMEM;
1048 goto out;
1051 error = add_to_page_cache_lru(cached_page, mapping,
1052 index, GFP_KERNEL);
1053 if (error) {
1054 if (error == -EEXIST)
1055 goto find_page;
1056 desc->error = error;
1057 goto out;
1059 page = cached_page;
1060 cached_page = NULL;
1061 goto readpage;
1064 out:
1065 *_ra = ra;
1067 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1068 if (cached_page)
1069 page_cache_release(cached_page);
1070 if (filp)
1071 file_accessed(filp);
1073 EXPORT_SYMBOL(do_generic_mapping_read);
1075 int file_read_actor(read_descriptor_t *desc, struct page *page,
1076 unsigned long offset, unsigned long size)
1078 char *kaddr;
1079 unsigned long left, count = desc->count;
1081 if (size > count)
1082 size = count;
1085 * Faults on the destination of a read are common, so do it before
1086 * taking the kmap.
1088 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1089 kaddr = kmap_atomic(page, KM_USER0);
1090 left = __copy_to_user_inatomic(desc->arg.buf,
1091 kaddr + offset, size);
1092 kunmap_atomic(kaddr, KM_USER0);
1093 if (left == 0)
1094 goto success;
1097 /* Do it the slow way */
1098 kaddr = kmap(page);
1099 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1100 kunmap(page);
1102 if (left) {
1103 size -= left;
1104 desc->error = -EFAULT;
1106 success:
1107 desc->count = count - size;
1108 desc->written += size;
1109 desc->arg.buf += size;
1110 return size;
1114 * Performs necessary checks before doing a write
1115 * @iov: io vector request
1116 * @nr_segs: number of segments in the iovec
1117 * @count: number of bytes to write
1118 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1120 * Adjust number of segments and amount of bytes to write (nr_segs should be
1121 * properly initialized first). Returns appropriate error code that caller
1122 * should return or zero in case that write should be allowed.
1124 int generic_segment_checks(const struct iovec *iov,
1125 unsigned long *nr_segs, size_t *count, int access_flags)
1127 unsigned long seg;
1128 size_t cnt = 0;
1129 for (seg = 0; seg < *nr_segs; seg++) {
1130 const struct iovec *iv = &iov[seg];
1133 * If any segment has a negative length, or the cumulative
1134 * length ever wraps negative then return -EINVAL.
1136 cnt += iv->iov_len;
1137 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1138 return -EINVAL;
1139 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1140 continue;
1141 if (seg == 0)
1142 return -EFAULT;
1143 *nr_segs = seg;
1144 cnt -= iv->iov_len; /* This segment is no good */
1145 break;
1147 *count = cnt;
1148 return 0;
1150 EXPORT_SYMBOL(generic_segment_checks);
1153 * generic_file_aio_read - generic filesystem read routine
1154 * @iocb: kernel I/O control block
1155 * @iov: io vector request
1156 * @nr_segs: number of segments in the iovec
1157 * @pos: current file position
1159 * This is the "read()" routine for all filesystems
1160 * that can use the page cache directly.
1162 ssize_t
1163 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1164 unsigned long nr_segs, loff_t pos)
1166 struct file *filp = iocb->ki_filp;
1167 ssize_t retval;
1168 unsigned long seg;
1169 size_t count;
1170 loff_t *ppos = &iocb->ki_pos;
1172 count = 0;
1173 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1174 if (retval)
1175 return retval;
1177 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1178 if (filp->f_flags & O_DIRECT) {
1179 loff_t size;
1180 struct address_space *mapping;
1181 struct inode *inode;
1183 mapping = filp->f_mapping;
1184 inode = mapping->host;
1185 retval = 0;
1186 if (!count)
1187 goto out; /* skip atime */
1188 size = i_size_read(inode);
1189 if (pos < size) {
1190 retval = generic_file_direct_IO(READ, iocb,
1191 iov, pos, nr_segs);
1192 if (retval > 0)
1193 *ppos = pos + retval;
1195 if (likely(retval != 0)) {
1196 file_accessed(filp);
1197 goto out;
1201 retval = 0;
1202 if (count) {
1203 for (seg = 0; seg < nr_segs; seg++) {
1204 read_descriptor_t desc;
1206 desc.written = 0;
1207 desc.arg.buf = iov[seg].iov_base;
1208 desc.count = iov[seg].iov_len;
1209 if (desc.count == 0)
1210 continue;
1211 desc.error = 0;
1212 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1213 retval += desc.written;
1214 if (desc.error) {
1215 retval = retval ?: desc.error;
1216 break;
1220 out:
1221 return retval;
1223 EXPORT_SYMBOL(generic_file_aio_read);
1225 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1227 ssize_t written;
1228 unsigned long count = desc->count;
1229 struct file *file = desc->arg.data;
1231 if (size > count)
1232 size = count;
1234 written = file->f_op->sendpage(file, page, offset,
1235 size, &file->f_pos, size<count);
1236 if (written < 0) {
1237 desc->error = written;
1238 written = 0;
1240 desc->count = count - written;
1241 desc->written += written;
1242 return written;
1245 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1246 size_t count, read_actor_t actor, void *target)
1248 read_descriptor_t desc;
1250 if (!count)
1251 return 0;
1253 desc.written = 0;
1254 desc.count = count;
1255 desc.arg.data = target;
1256 desc.error = 0;
1258 do_generic_file_read(in_file, ppos, &desc, actor);
1259 if (desc.written)
1260 return desc.written;
1261 return desc.error;
1263 EXPORT_SYMBOL(generic_file_sendfile);
1265 static ssize_t
1266 do_readahead(struct address_space *mapping, struct file *filp,
1267 unsigned long index, unsigned long nr)
1269 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1270 return -EINVAL;
1272 force_page_cache_readahead(mapping, filp, index,
1273 max_sane_readahead(nr));
1274 return 0;
1277 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1279 ssize_t ret;
1280 struct file *file;
1282 ret = -EBADF;
1283 file = fget(fd);
1284 if (file) {
1285 if (file->f_mode & FMODE_READ) {
1286 struct address_space *mapping = file->f_mapping;
1287 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1288 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1289 unsigned long len = end - start + 1;
1290 ret = do_readahead(mapping, file, start, len);
1292 fput(file);
1294 return ret;
1297 #ifdef CONFIG_MMU
1298 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1300 * page_cache_read - adds requested page to the page cache if not already there
1301 * @file: file to read
1302 * @offset: page index
1304 * This adds the requested page to the page cache if it isn't already there,
1305 * and schedules an I/O to read in its contents from disk.
1307 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1309 struct address_space *mapping = file->f_mapping;
1310 struct page *page;
1311 int ret;
1313 do {
1314 page = page_cache_alloc_cold(mapping);
1315 if (!page)
1316 return -ENOMEM;
1318 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1319 if (ret == 0)
1320 ret = mapping->a_ops->readpage(file, page);
1321 else if (ret == -EEXIST)
1322 ret = 0; /* losing race to add is OK */
1324 page_cache_release(page);
1326 } while (ret == AOP_TRUNCATED_PAGE);
1328 return ret;
1331 #define MMAP_LOTSAMISS (100)
1334 * filemap_nopage - read in file data for page fault handling
1335 * @area: the applicable vm_area
1336 * @address: target address to read in
1337 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1339 * filemap_nopage() is invoked via the vma operations vector for a
1340 * mapped memory region to read in file data during a page fault.
1342 * The goto's are kind of ugly, but this streamlines the normal case of having
1343 * it in the page cache, and handles the special cases reasonably without
1344 * having a lot of duplicated code.
1346 struct page *filemap_nopage(struct vm_area_struct *area,
1347 unsigned long address, int *type)
1349 int error;
1350 struct file *file = area->vm_file;
1351 struct address_space *mapping = file->f_mapping;
1352 struct file_ra_state *ra = &file->f_ra;
1353 struct inode *inode = mapping->host;
1354 struct page *page;
1355 unsigned long size, pgoff;
1356 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1358 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1360 retry_all:
1361 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362 if (pgoff >= size)
1363 goto outside_data_content;
1365 /* If we don't want any read-ahead, don't bother */
1366 if (VM_RandomReadHint(area))
1367 goto no_cached_page;
1370 * The readahead code wants to be told about each and every page
1371 * so it can build and shrink its windows appropriately
1373 * For sequential accesses, we use the generic readahead logic.
1375 if (VM_SequentialReadHint(area))
1376 page_cache_readahead(mapping, ra, file, pgoff, 1);
1379 * Do we have something in the page cache already?
1381 retry_find:
1382 page = find_get_page(mapping, pgoff);
1383 if (!page) {
1384 unsigned long ra_pages;
1386 if (VM_SequentialReadHint(area)) {
1387 handle_ra_miss(mapping, ra, pgoff);
1388 goto no_cached_page;
1390 ra->mmap_miss++;
1393 * Do we miss much more than hit in this file? If so,
1394 * stop bothering with read-ahead. It will only hurt.
1396 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1397 goto no_cached_page;
1400 * To keep the pgmajfault counter straight, we need to
1401 * check did_readaround, as this is an inner loop.
1403 if (!did_readaround) {
1404 majmin = VM_FAULT_MAJOR;
1405 count_vm_event(PGMAJFAULT);
1407 did_readaround = 1;
1408 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1409 if (ra_pages) {
1410 pgoff_t start = 0;
1412 if (pgoff > ra_pages / 2)
1413 start = pgoff - ra_pages / 2;
1414 do_page_cache_readahead(mapping, file, start, ra_pages);
1416 page = find_get_page(mapping, pgoff);
1417 if (!page)
1418 goto no_cached_page;
1421 if (!did_readaround)
1422 ra->mmap_hit++;
1425 * Ok, found a page in the page cache, now we need to check
1426 * that it's up-to-date.
1428 if (!PageUptodate(page))
1429 goto page_not_uptodate;
1431 success:
1433 * Found the page and have a reference on it.
1435 mark_page_accessed(page);
1436 if (type)
1437 *type = majmin;
1438 return page;
1440 outside_data_content:
1442 * An external ptracer can access pages that normally aren't
1443 * accessible..
1445 if (area->vm_mm == current->mm)
1446 return NOPAGE_SIGBUS;
1447 /* Fall through to the non-read-ahead case */
1448 no_cached_page:
1450 * We're only likely to ever get here if MADV_RANDOM is in
1451 * effect.
1453 error = page_cache_read(file, pgoff);
1456 * The page we want has now been added to the page cache.
1457 * In the unlikely event that someone removed it in the
1458 * meantime, we'll just come back here and read it again.
1460 if (error >= 0)
1461 goto retry_find;
1464 * An error return from page_cache_read can result if the
1465 * system is low on memory, or a problem occurs while trying
1466 * to schedule I/O.
1468 if (error == -ENOMEM)
1469 return NOPAGE_OOM;
1470 return NOPAGE_SIGBUS;
1472 page_not_uptodate:
1473 if (!did_readaround) {
1474 majmin = VM_FAULT_MAJOR;
1475 count_vm_event(PGMAJFAULT);
1479 * Umm, take care of errors if the page isn't up-to-date.
1480 * Try to re-read it _once_. We do this synchronously,
1481 * because there really aren't any performance issues here
1482 * and we need to check for errors.
1484 lock_page(page);
1486 /* Somebody truncated the page on us? */
1487 if (!page->mapping) {
1488 unlock_page(page);
1489 page_cache_release(page);
1490 goto retry_all;
1493 /* Somebody else successfully read it in? */
1494 if (PageUptodate(page)) {
1495 unlock_page(page);
1496 goto success;
1498 ClearPageError(page);
1499 error = mapping->a_ops->readpage(file, page);
1500 if (!error) {
1501 wait_on_page_locked(page);
1502 if (PageUptodate(page))
1503 goto success;
1504 } else if (error == AOP_TRUNCATED_PAGE) {
1505 page_cache_release(page);
1506 goto retry_find;
1510 * Things didn't work out. Return zero to tell the
1511 * mm layer so, possibly freeing the page cache page first.
1513 shrink_readahead_size_eio(file, ra);
1514 page_cache_release(page);
1515 return NOPAGE_SIGBUS;
1517 EXPORT_SYMBOL(filemap_nopage);
1519 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1520 int nonblock)
1522 struct address_space *mapping = file->f_mapping;
1523 struct page *page;
1524 int error;
1527 * Do we have something in the page cache already?
1529 retry_find:
1530 page = find_get_page(mapping, pgoff);
1531 if (!page) {
1532 if (nonblock)
1533 return NULL;
1534 goto no_cached_page;
1538 * Ok, found a page in the page cache, now we need to check
1539 * that it's up-to-date.
1541 if (!PageUptodate(page)) {
1542 if (nonblock) {
1543 page_cache_release(page);
1544 return NULL;
1546 goto page_not_uptodate;
1549 success:
1551 * Found the page and have a reference on it.
1553 mark_page_accessed(page);
1554 return page;
1556 no_cached_page:
1557 error = page_cache_read(file, pgoff);
1560 * The page we want has now been added to the page cache.
1561 * In the unlikely event that someone removed it in the
1562 * meantime, we'll just come back here and read it again.
1564 if (error >= 0)
1565 goto retry_find;
1568 * An error return from page_cache_read can result if the
1569 * system is low on memory, or a problem occurs while trying
1570 * to schedule I/O.
1572 return NULL;
1574 page_not_uptodate:
1575 lock_page(page);
1577 /* Did it get truncated while we waited for it? */
1578 if (!page->mapping) {
1579 unlock_page(page);
1580 goto err;
1583 /* Did somebody else get it up-to-date? */
1584 if (PageUptodate(page)) {
1585 unlock_page(page);
1586 goto success;
1589 error = mapping->a_ops->readpage(file, page);
1590 if (!error) {
1591 wait_on_page_locked(page);
1592 if (PageUptodate(page))
1593 goto success;
1594 } else if (error == AOP_TRUNCATED_PAGE) {
1595 page_cache_release(page);
1596 goto retry_find;
1600 * Umm, take care of errors if the page isn't up-to-date.
1601 * Try to re-read it _once_. We do this synchronously,
1602 * because there really aren't any performance issues here
1603 * and we need to check for errors.
1605 lock_page(page);
1607 /* Somebody truncated the page on us? */
1608 if (!page->mapping) {
1609 unlock_page(page);
1610 goto err;
1612 /* Somebody else successfully read it in? */
1613 if (PageUptodate(page)) {
1614 unlock_page(page);
1615 goto success;
1618 ClearPageError(page);
1619 error = mapping->a_ops->readpage(file, page);
1620 if (!error) {
1621 wait_on_page_locked(page);
1622 if (PageUptodate(page))
1623 goto success;
1624 } else if (error == AOP_TRUNCATED_PAGE) {
1625 page_cache_release(page);
1626 goto retry_find;
1630 * Things didn't work out. Return zero to tell the
1631 * mm layer so, possibly freeing the page cache page first.
1633 err:
1634 page_cache_release(page);
1636 return NULL;
1639 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1640 unsigned long len, pgprot_t prot, unsigned long pgoff,
1641 int nonblock)
1643 struct file *file = vma->vm_file;
1644 struct address_space *mapping = file->f_mapping;
1645 struct inode *inode = mapping->host;
1646 unsigned long size;
1647 struct mm_struct *mm = vma->vm_mm;
1648 struct page *page;
1649 int err;
1651 if (!nonblock)
1652 force_page_cache_readahead(mapping, vma->vm_file,
1653 pgoff, len >> PAGE_CACHE_SHIFT);
1655 repeat:
1656 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1657 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1658 return -EINVAL;
1660 page = filemap_getpage(file, pgoff, nonblock);
1662 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1663 * done in shmem_populate calling shmem_getpage */
1664 if (!page && !nonblock)
1665 return -ENOMEM;
1667 if (page) {
1668 err = install_page(mm, vma, addr, page, prot);
1669 if (err) {
1670 page_cache_release(page);
1671 return err;
1673 } else if (vma->vm_flags & VM_NONLINEAR) {
1674 /* No page was found just because we can't read it in now (being
1675 * here implies nonblock != 0), but the page may exist, so set
1676 * the PTE to fault it in later. */
1677 err = install_file_pte(mm, vma, addr, pgoff, prot);
1678 if (err)
1679 return err;
1682 len -= PAGE_SIZE;
1683 addr += PAGE_SIZE;
1684 pgoff++;
1685 if (len)
1686 goto repeat;
1688 return 0;
1690 EXPORT_SYMBOL(filemap_populate);
1692 struct vm_operations_struct generic_file_vm_ops = {
1693 .nopage = filemap_nopage,
1694 .populate = filemap_populate,
1697 /* This is used for a general mmap of a disk file */
1699 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1701 struct address_space *mapping = file->f_mapping;
1703 if (!mapping->a_ops->readpage)
1704 return -ENOEXEC;
1705 file_accessed(file);
1706 vma->vm_ops = &generic_file_vm_ops;
1707 return 0;
1711 * This is for filesystems which do not implement ->writepage.
1713 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1715 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1716 return -EINVAL;
1717 return generic_file_mmap(file, vma);
1719 #else
1720 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1722 return -ENOSYS;
1724 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1726 return -ENOSYS;
1728 #endif /* CONFIG_MMU */
1730 EXPORT_SYMBOL(generic_file_mmap);
1731 EXPORT_SYMBOL(generic_file_readonly_mmap);
1733 static struct page *__read_cache_page(struct address_space *mapping,
1734 unsigned long index,
1735 int (*filler)(void *,struct page*),
1736 void *data)
1738 struct page *page, *cached_page = NULL;
1739 int err;
1740 repeat:
1741 page = find_get_page(mapping, index);
1742 if (!page) {
1743 if (!cached_page) {
1744 cached_page = page_cache_alloc_cold(mapping);
1745 if (!cached_page)
1746 return ERR_PTR(-ENOMEM);
1748 err = add_to_page_cache_lru(cached_page, mapping,
1749 index, GFP_KERNEL);
1750 if (err == -EEXIST)
1751 goto repeat;
1752 if (err < 0) {
1753 /* Presumably ENOMEM for radix tree node */
1754 page_cache_release(cached_page);
1755 return ERR_PTR(err);
1757 page = cached_page;
1758 cached_page = NULL;
1759 err = filler(data, page);
1760 if (err < 0) {
1761 page_cache_release(page);
1762 page = ERR_PTR(err);
1765 if (cached_page)
1766 page_cache_release(cached_page);
1767 return page;
1771 * Same as read_cache_page, but don't wait for page to become unlocked
1772 * after submitting it to the filler.
1774 struct page *read_cache_page_async(struct address_space *mapping,
1775 unsigned long index,
1776 int (*filler)(void *,struct page*),
1777 void *data)
1779 struct page *page;
1780 int err;
1782 retry:
1783 page = __read_cache_page(mapping, index, filler, data);
1784 if (IS_ERR(page))
1785 goto out;
1786 mark_page_accessed(page);
1787 if (PageUptodate(page))
1788 goto out;
1790 lock_page(page);
1791 if (!page->mapping) {
1792 unlock_page(page);
1793 page_cache_release(page);
1794 goto retry;
1796 if (PageUptodate(page)) {
1797 unlock_page(page);
1798 goto out;
1800 err = filler(data, page);
1801 if (err < 0) {
1802 page_cache_release(page);
1803 page = ERR_PTR(err);
1805 out:
1806 mark_page_accessed(page);
1807 return page;
1809 EXPORT_SYMBOL(read_cache_page_async);
1812 * read_cache_page - read into page cache, fill it if needed
1813 * @mapping: the page's address_space
1814 * @index: the page index
1815 * @filler: function to perform the read
1816 * @data: destination for read data
1818 * Read into the page cache. If a page already exists, and PageUptodate() is
1819 * not set, try to fill the page then wait for it to become unlocked.
1821 * If the page does not get brought uptodate, return -EIO.
1823 struct page *read_cache_page(struct address_space *mapping,
1824 unsigned long index,
1825 int (*filler)(void *,struct page*),
1826 void *data)
1828 struct page *page;
1830 page = read_cache_page_async(mapping, index, filler, data);
1831 if (IS_ERR(page))
1832 goto out;
1833 wait_on_page_locked(page);
1834 if (!PageUptodate(page)) {
1835 page_cache_release(page);
1836 page = ERR_PTR(-EIO);
1838 out:
1839 return page;
1841 EXPORT_SYMBOL(read_cache_page);
1844 * If the page was newly created, increment its refcount and add it to the
1845 * caller's lru-buffering pagevec. This function is specifically for
1846 * generic_file_write().
1848 static inline struct page *
1849 __grab_cache_page(struct address_space *mapping, unsigned long index,
1850 struct page **cached_page, struct pagevec *lru_pvec)
1852 int err;
1853 struct page *page;
1854 repeat:
1855 page = find_lock_page(mapping, index);
1856 if (!page) {
1857 if (!*cached_page) {
1858 *cached_page = page_cache_alloc(mapping);
1859 if (!*cached_page)
1860 return NULL;
1862 err = add_to_page_cache(*cached_page, mapping,
1863 index, GFP_KERNEL);
1864 if (err == -EEXIST)
1865 goto repeat;
1866 if (err == 0) {
1867 page = *cached_page;
1868 page_cache_get(page);
1869 if (!pagevec_add(lru_pvec, page))
1870 __pagevec_lru_add(lru_pvec);
1871 *cached_page = NULL;
1874 return page;
1878 * The logic we want is
1880 * if suid or (sgid and xgrp)
1881 * remove privs
1883 int should_remove_suid(struct dentry *dentry)
1885 mode_t mode = dentry->d_inode->i_mode;
1886 int kill = 0;
1888 /* suid always must be killed */
1889 if (unlikely(mode & S_ISUID))
1890 kill = ATTR_KILL_SUID;
1893 * sgid without any exec bits is just a mandatory locking mark; leave
1894 * it alone. If some exec bits are set, it's a real sgid; kill it.
1896 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1897 kill |= ATTR_KILL_SGID;
1899 if (unlikely(kill && !capable(CAP_FSETID)))
1900 return kill;
1902 return 0;
1904 EXPORT_SYMBOL(should_remove_suid);
1906 int __remove_suid(struct dentry *dentry, int kill)
1908 struct iattr newattrs;
1910 newattrs.ia_valid = ATTR_FORCE | kill;
1911 return notify_change(dentry, &newattrs);
1914 int remove_suid(struct dentry *dentry)
1916 int kill = should_remove_suid(dentry);
1918 if (unlikely(kill))
1919 return __remove_suid(dentry, kill);
1921 return 0;
1923 EXPORT_SYMBOL(remove_suid);
1925 size_t
1926 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1927 const struct iovec *iov, size_t base, size_t bytes)
1929 size_t copied = 0, left = 0;
1931 while (bytes) {
1932 char __user *buf = iov->iov_base + base;
1933 int copy = min(bytes, iov->iov_len - base);
1935 base = 0;
1936 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1937 copied += copy;
1938 bytes -= copy;
1939 vaddr += copy;
1940 iov++;
1942 if (unlikely(left))
1943 break;
1945 return copied - left;
1949 * Performs necessary checks before doing a write
1951 * Can adjust writing position or amount of bytes to write.
1952 * Returns appropriate error code that caller should return or
1953 * zero in case that write should be allowed.
1955 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1957 struct inode *inode = file->f_mapping->host;
1958 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1960 if (unlikely(*pos < 0))
1961 return -EINVAL;
1963 if (!isblk) {
1964 /* FIXME: this is for backwards compatibility with 2.4 */
1965 if (file->f_flags & O_APPEND)
1966 *pos = i_size_read(inode);
1968 if (limit != RLIM_INFINITY) {
1969 if (*pos >= limit) {
1970 send_sig(SIGXFSZ, current, 0);
1971 return -EFBIG;
1973 if (*count > limit - (typeof(limit))*pos) {
1974 *count = limit - (typeof(limit))*pos;
1980 * LFS rule
1982 if (unlikely(*pos + *count > MAX_NON_LFS &&
1983 !(file->f_flags & O_LARGEFILE))) {
1984 if (*pos >= MAX_NON_LFS) {
1985 send_sig(SIGXFSZ, current, 0);
1986 return -EFBIG;
1988 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1989 *count = MAX_NON_LFS - (unsigned long)*pos;
1994 * Are we about to exceed the fs block limit ?
1996 * If we have written data it becomes a short write. If we have
1997 * exceeded without writing data we send a signal and return EFBIG.
1998 * Linus frestrict idea will clean these up nicely..
2000 if (likely(!isblk)) {
2001 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2002 if (*count || *pos > inode->i_sb->s_maxbytes) {
2003 send_sig(SIGXFSZ, current, 0);
2004 return -EFBIG;
2006 /* zero-length writes at ->s_maxbytes are OK */
2009 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2010 *count = inode->i_sb->s_maxbytes - *pos;
2011 } else {
2012 #ifdef CONFIG_BLOCK
2013 loff_t isize;
2014 if (bdev_read_only(I_BDEV(inode)))
2015 return -EPERM;
2016 isize = i_size_read(inode);
2017 if (*pos >= isize) {
2018 if (*count || *pos > isize)
2019 return -ENOSPC;
2022 if (*pos + *count > isize)
2023 *count = isize - *pos;
2024 #else
2025 return -EPERM;
2026 #endif
2028 return 0;
2030 EXPORT_SYMBOL(generic_write_checks);
2032 ssize_t
2033 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2034 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2035 size_t count, size_t ocount)
2037 struct file *file = iocb->ki_filp;
2038 struct address_space *mapping = file->f_mapping;
2039 struct inode *inode = mapping->host;
2040 ssize_t written;
2042 if (count != ocount)
2043 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2045 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2046 if (written > 0) {
2047 loff_t end = pos + written;
2048 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2049 i_size_write(inode, end);
2050 mark_inode_dirty(inode);
2052 *ppos = end;
2056 * Sync the fs metadata but not the minor inode changes and
2057 * of course not the data as we did direct DMA for the IO.
2058 * i_mutex is held, which protects generic_osync_inode() from
2059 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2061 if ((written >= 0 || written == -EIOCBQUEUED) &&
2062 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2063 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2064 if (err < 0)
2065 written = err;
2067 return written;
2069 EXPORT_SYMBOL(generic_file_direct_write);
2071 ssize_t
2072 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2073 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2074 size_t count, ssize_t written)
2076 struct file *file = iocb->ki_filp;
2077 struct address_space * mapping = file->f_mapping;
2078 const struct address_space_operations *a_ops = mapping->a_ops;
2079 struct inode *inode = mapping->host;
2080 long status = 0;
2081 struct page *page;
2082 struct page *cached_page = NULL;
2083 size_t bytes;
2084 struct pagevec lru_pvec;
2085 const struct iovec *cur_iov = iov; /* current iovec */
2086 size_t iov_base = 0; /* offset in the current iovec */
2087 char __user *buf;
2089 pagevec_init(&lru_pvec, 0);
2092 * handle partial DIO write. Adjust cur_iov if needed.
2094 if (likely(nr_segs == 1))
2095 buf = iov->iov_base + written;
2096 else {
2097 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2098 buf = cur_iov->iov_base + iov_base;
2101 do {
2102 unsigned long index;
2103 unsigned long offset;
2104 size_t copied;
2106 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2107 index = pos >> PAGE_CACHE_SHIFT;
2108 bytes = PAGE_CACHE_SIZE - offset;
2110 /* Limit the size of the copy to the caller's write size */
2111 bytes = min(bytes, count);
2113 /* We only need to worry about prefaulting when writes are from
2114 * user-space. NFSd uses vfs_writev with several non-aligned
2115 * segments in the vector, and limiting to one segment a time is
2116 * a noticeable performance for re-write
2118 if (!segment_eq(get_fs(), KERNEL_DS)) {
2120 * Limit the size of the copy to that of the current
2121 * segment, because fault_in_pages_readable() doesn't
2122 * know how to walk segments.
2124 bytes = min(bytes, cur_iov->iov_len - iov_base);
2127 * Bring in the user page that we will copy from
2128 * _first_. Otherwise there's a nasty deadlock on
2129 * copying from the same page as we're writing to,
2130 * without it being marked up-to-date.
2132 fault_in_pages_readable(buf, bytes);
2134 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2135 if (!page) {
2136 status = -ENOMEM;
2137 break;
2140 if (unlikely(bytes == 0)) {
2141 status = 0;
2142 copied = 0;
2143 goto zero_length_segment;
2146 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2147 if (unlikely(status)) {
2148 loff_t isize = i_size_read(inode);
2150 if (status != AOP_TRUNCATED_PAGE)
2151 unlock_page(page);
2152 page_cache_release(page);
2153 if (status == AOP_TRUNCATED_PAGE)
2154 continue;
2156 * prepare_write() may have instantiated a few blocks
2157 * outside i_size. Trim these off again.
2159 if (pos + bytes > isize)
2160 vmtruncate(inode, isize);
2161 break;
2163 if (likely(nr_segs == 1))
2164 copied = filemap_copy_from_user(page, offset,
2165 buf, bytes);
2166 else
2167 copied = filemap_copy_from_user_iovec(page, offset,
2168 cur_iov, iov_base, bytes);
2169 flush_dcache_page(page);
2170 status = a_ops->commit_write(file, page, offset, offset+bytes);
2171 if (status == AOP_TRUNCATED_PAGE) {
2172 page_cache_release(page);
2173 continue;
2175 zero_length_segment:
2176 if (likely(copied >= 0)) {
2177 if (!status)
2178 status = copied;
2180 if (status >= 0) {
2181 written += status;
2182 count -= status;
2183 pos += status;
2184 buf += status;
2185 if (unlikely(nr_segs > 1)) {
2186 filemap_set_next_iovec(&cur_iov,
2187 &iov_base, status);
2188 if (count)
2189 buf = cur_iov->iov_base +
2190 iov_base;
2191 } else {
2192 iov_base += status;
2196 if (unlikely(copied != bytes))
2197 if (status >= 0)
2198 status = -EFAULT;
2199 unlock_page(page);
2200 mark_page_accessed(page);
2201 page_cache_release(page);
2202 if (status < 0)
2203 break;
2204 balance_dirty_pages_ratelimited(mapping);
2205 cond_resched();
2206 } while (count);
2207 *ppos = pos;
2209 if (cached_page)
2210 page_cache_release(cached_page);
2213 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2215 if (likely(status >= 0)) {
2216 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2217 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2218 status = generic_osync_inode(inode, mapping,
2219 OSYNC_METADATA|OSYNC_DATA);
2224 * If we get here for O_DIRECT writes then we must have fallen through
2225 * to buffered writes (block instantiation inside i_size). So we sync
2226 * the file data here, to try to honour O_DIRECT expectations.
2228 if (unlikely(file->f_flags & O_DIRECT) && written)
2229 status = filemap_write_and_wait(mapping);
2231 pagevec_lru_add(&lru_pvec);
2232 return written ? written : status;
2234 EXPORT_SYMBOL(generic_file_buffered_write);
2236 static ssize_t
2237 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2238 unsigned long nr_segs, loff_t *ppos)
2240 struct file *file = iocb->ki_filp;
2241 struct address_space * mapping = file->f_mapping;
2242 size_t ocount; /* original count */
2243 size_t count; /* after file limit checks */
2244 struct inode *inode = mapping->host;
2245 loff_t pos;
2246 ssize_t written;
2247 ssize_t err;
2249 ocount = 0;
2250 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2251 if (err)
2252 return err;
2254 count = ocount;
2255 pos = *ppos;
2257 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2259 /* We can write back this queue in page reclaim */
2260 current->backing_dev_info = mapping->backing_dev_info;
2261 written = 0;
2263 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2264 if (err)
2265 goto out;
2267 if (count == 0)
2268 goto out;
2270 err = remove_suid(file->f_path.dentry);
2271 if (err)
2272 goto out;
2274 file_update_time(file);
2276 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2277 if (unlikely(file->f_flags & O_DIRECT)) {
2278 loff_t endbyte;
2279 ssize_t written_buffered;
2281 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2282 ppos, count, ocount);
2283 if (written < 0 || written == count)
2284 goto out;
2286 * direct-io write to a hole: fall through to buffered I/O
2287 * for completing the rest of the request.
2289 pos += written;
2290 count -= written;
2291 written_buffered = generic_file_buffered_write(iocb, iov,
2292 nr_segs, pos, ppos, count,
2293 written);
2295 * If generic_file_buffered_write() retuned a synchronous error
2296 * then we want to return the number of bytes which were
2297 * direct-written, or the error code if that was zero. Note
2298 * that this differs from normal direct-io semantics, which
2299 * will return -EFOO even if some bytes were written.
2301 if (written_buffered < 0) {
2302 err = written_buffered;
2303 goto out;
2307 * We need to ensure that the page cache pages are written to
2308 * disk and invalidated to preserve the expected O_DIRECT
2309 * semantics.
2311 endbyte = pos + written_buffered - written - 1;
2312 err = do_sync_file_range(file, pos, endbyte,
2313 SYNC_FILE_RANGE_WAIT_BEFORE|
2314 SYNC_FILE_RANGE_WRITE|
2315 SYNC_FILE_RANGE_WAIT_AFTER);
2316 if (err == 0) {
2317 written = written_buffered;
2318 invalidate_mapping_pages(mapping,
2319 pos >> PAGE_CACHE_SHIFT,
2320 endbyte >> PAGE_CACHE_SHIFT);
2321 } else {
2323 * We don't know how much we wrote, so just return
2324 * the number of bytes which were direct-written
2327 } else {
2328 written = generic_file_buffered_write(iocb, iov, nr_segs,
2329 pos, ppos, count, written);
2331 out:
2332 current->backing_dev_info = NULL;
2333 return written ? written : err;
2336 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2337 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2339 struct file *file = iocb->ki_filp;
2340 struct address_space *mapping = file->f_mapping;
2341 struct inode *inode = mapping->host;
2342 ssize_t ret;
2344 BUG_ON(iocb->ki_pos != pos);
2346 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2347 &iocb->ki_pos);
2349 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2350 ssize_t err;
2352 err = sync_page_range_nolock(inode, mapping, pos, ret);
2353 if (err < 0)
2354 ret = err;
2356 return ret;
2358 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2360 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2361 unsigned long nr_segs, loff_t pos)
2363 struct file *file = iocb->ki_filp;
2364 struct address_space *mapping = file->f_mapping;
2365 struct inode *inode = mapping->host;
2366 ssize_t ret;
2368 BUG_ON(iocb->ki_pos != pos);
2370 mutex_lock(&inode->i_mutex);
2371 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2372 &iocb->ki_pos);
2373 mutex_unlock(&inode->i_mutex);
2375 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2376 ssize_t err;
2378 err = sync_page_range(inode, mapping, pos, ret);
2379 if (err < 0)
2380 ret = err;
2382 return ret;
2384 EXPORT_SYMBOL(generic_file_aio_write);
2387 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2388 * went wrong during pagecache shootdown.
2390 static ssize_t
2391 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2392 loff_t offset, unsigned long nr_segs)
2394 struct file *file = iocb->ki_filp;
2395 struct address_space *mapping = file->f_mapping;
2396 ssize_t retval;
2397 size_t write_len;
2398 pgoff_t end = 0; /* silence gcc */
2401 * If it's a write, unmap all mmappings of the file up-front. This
2402 * will cause any pte dirty bits to be propagated into the pageframes
2403 * for the subsequent filemap_write_and_wait().
2405 if (rw == WRITE) {
2406 write_len = iov_length(iov, nr_segs);
2407 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2408 if (mapping_mapped(mapping))
2409 unmap_mapping_range(mapping, offset, write_len, 0);
2412 retval = filemap_write_and_wait(mapping);
2413 if (retval)
2414 goto out;
2417 * After a write we want buffered reads to be sure to go to disk to get
2418 * the new data. We invalidate clean cached page from the region we're
2419 * about to write. We do this *before* the write so that we can return
2420 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2422 if (rw == WRITE && mapping->nrpages) {
2423 retval = invalidate_inode_pages2_range(mapping,
2424 offset >> PAGE_CACHE_SHIFT, end);
2425 if (retval)
2426 goto out;
2429 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2430 if (retval)
2431 goto out;
2434 * Finally, try again to invalidate clean pages which might have been
2435 * faulted in by get_user_pages() if the source of the write was an
2436 * mmap()ed region of the file we're writing. That's a pretty crazy
2437 * thing to do, so we don't support it 100%. If this invalidation
2438 * fails and we have -EIOCBQUEUED we ignore the failure.
2440 if (rw == WRITE && mapping->nrpages) {
2441 int err = invalidate_inode_pages2_range(mapping,
2442 offset >> PAGE_CACHE_SHIFT, end);
2443 if (err && retval >= 0)
2444 retval = err;
2446 out:
2447 return retval;
2451 * try_to_release_page() - release old fs-specific metadata on a page
2453 * @page: the page which the kernel is trying to free
2454 * @gfp_mask: memory allocation flags (and I/O mode)
2456 * The address_space is to try to release any data against the page
2457 * (presumably at page->private). If the release was successful, return `1'.
2458 * Otherwise return zero.
2460 * The @gfp_mask argument specifies whether I/O may be performed to release
2461 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2463 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2465 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2467 struct address_space * const mapping = page->mapping;
2469 BUG_ON(!PageLocked(page));
2470 if (PageWriteback(page))
2471 return 0;
2473 if (mapping && mapping->a_ops->releasepage)
2474 return mapping->a_ops->releasepage(page, gfp_mask);
2475 return try_to_free_buffers(page);
2478 EXPORT_SYMBOL(try_to_release_page);