1 // SPDX-License-Identifier: GPL-2.0
3 * Interface for controlling IO bandwidth on a request queue
5 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
8 #include <linux/module.h>
9 #include <linux/slab.h>
10 #include <linux/blkdev.h>
11 #include <linux/bio.h>
12 #include <linux/blktrace_api.h>
13 #include <linux/blk-cgroup.h>
16 /* Max dispatch from a group in 1 round */
17 static int throtl_grp_quantum
= 8;
19 /* Total max dispatch from all groups in one round */
20 static int throtl_quantum
= 32;
22 /* Throttling is performed over a slice and after that slice is renewed */
23 #define DFL_THROTL_SLICE_HD (HZ / 10)
24 #define DFL_THROTL_SLICE_SSD (HZ / 50)
25 #define MAX_THROTL_SLICE (HZ)
26 #define MAX_IDLE_TIME (5L * 1000 * 1000) /* 5 s */
27 #define MIN_THROTL_BPS (320 * 1024)
28 #define MIN_THROTL_IOPS (10)
29 #define DFL_LATENCY_TARGET (-1L)
30 #define DFL_IDLE_THRESHOLD (0)
31 #define DFL_HD_BASELINE_LATENCY (4000L) /* 4ms */
32 #define LATENCY_FILTERED_SSD (0)
34 * For HD, very small latency comes from sequential IO. Such IO is helpless to
35 * help determine if its IO is impacted by others, hence we ignore the IO
37 #define LATENCY_FILTERED_HD (1000L) /* 1ms */
39 static struct blkcg_policy blkcg_policy_throtl
;
41 /* A workqueue to queue throttle related work */
42 static struct workqueue_struct
*kthrotld_workqueue
;
45 * To implement hierarchical throttling, throtl_grps form a tree and bios
46 * are dispatched upwards level by level until they reach the top and get
47 * issued. When dispatching bios from the children and local group at each
48 * level, if the bios are dispatched into a single bio_list, there's a risk
49 * of a local or child group which can queue many bios at once filling up
50 * the list starving others.
52 * To avoid such starvation, dispatched bios are queued separately
53 * according to where they came from. When they are again dispatched to
54 * the parent, they're popped in round-robin order so that no single source
55 * hogs the dispatch window.
57 * throtl_qnode is used to keep the queued bios separated by their sources.
58 * Bios are queued to throtl_qnode which in turn is queued to
59 * throtl_service_queue and then dispatched in round-robin order.
61 * It's also used to track the reference counts on blkg's. A qnode always
62 * belongs to a throtl_grp and gets queued on itself or the parent, so
63 * incrementing the reference of the associated throtl_grp when a qnode is
64 * queued and decrementing when dequeued is enough to keep the whole blkg
65 * tree pinned while bios are in flight.
68 struct list_head node
; /* service_queue->queued[] */
69 struct bio_list bios
; /* queued bios */
70 struct throtl_grp
*tg
; /* tg this qnode belongs to */
73 struct throtl_service_queue
{
74 struct throtl_service_queue
*parent_sq
; /* the parent service_queue */
77 * Bios queued directly to this service_queue or dispatched from
78 * children throtl_grp's.
80 struct list_head queued
[2]; /* throtl_qnode [READ/WRITE] */
81 unsigned int nr_queued
[2]; /* number of queued bios */
84 * RB tree of active children throtl_grp's, which are sorted by
87 struct rb_root_cached pending_tree
; /* RB tree of active tgs */
88 unsigned int nr_pending
; /* # queued in the tree */
89 unsigned long first_pending_disptime
; /* disptime of the first tg */
90 struct timer_list pending_timer
; /* fires on first_pending_disptime */
94 THROTL_TG_PENDING
= 1 << 0, /* on parent's pending tree */
95 THROTL_TG_WAS_EMPTY
= 1 << 1, /* bio_lists[] became non-empty */
98 #define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
107 /* must be the first member */
108 struct blkg_policy_data pd
;
110 /* active throtl group service_queue member */
111 struct rb_node rb_node
;
113 /* throtl_data this group belongs to */
114 struct throtl_data
*td
;
116 /* this group's service queue */
117 struct throtl_service_queue service_queue
;
120 * qnode_on_self is used when bios are directly queued to this
121 * throtl_grp so that local bios compete fairly with bios
122 * dispatched from children. qnode_on_parent is used when bios are
123 * dispatched from this throtl_grp into its parent and will compete
124 * with the sibling qnode_on_parents and the parent's
127 struct throtl_qnode qnode_on_self
[2];
128 struct throtl_qnode qnode_on_parent
[2];
131 * Dispatch time in jiffies. This is the estimated time when group
132 * will unthrottle and is ready to dispatch more bio. It is used as
133 * key to sort active groups in service tree.
135 unsigned long disptime
;
139 /* are there any throtl rules between this group and td? */
142 /* internally used bytes per second rate limits */
143 uint64_t bps
[2][LIMIT_CNT
];
144 /* user configured bps limits */
145 uint64_t bps_conf
[2][LIMIT_CNT
];
147 /* internally used IOPS limits */
148 unsigned int iops
[2][LIMIT_CNT
];
149 /* user configured IOPS limits */
150 unsigned int iops_conf
[2][LIMIT_CNT
];
152 /* Number of bytes disptached in current slice */
153 uint64_t bytes_disp
[2];
154 /* Number of bio's dispatched in current slice */
155 unsigned int io_disp
[2];
157 unsigned long last_low_overflow_time
[2];
159 uint64_t last_bytes_disp
[2];
160 unsigned int last_io_disp
[2];
162 unsigned long last_check_time
;
164 unsigned long latency_target
; /* us */
165 unsigned long latency_target_conf
; /* us */
166 /* When did we start a new slice */
167 unsigned long slice_start
[2];
168 unsigned long slice_end
[2];
170 unsigned long last_finish_time
; /* ns / 1024 */
171 unsigned long checked_last_finish_time
; /* ns / 1024 */
172 unsigned long avg_idletime
; /* ns / 1024 */
173 unsigned long idletime_threshold
; /* us */
174 unsigned long idletime_threshold_conf
; /* us */
176 unsigned int bio_cnt
; /* total bios */
177 unsigned int bad_bio_cnt
; /* bios exceeding latency threshold */
178 unsigned long bio_cnt_reset_time
;
181 /* We measure latency for request size from <= 4k to >= 1M */
182 #define LATENCY_BUCKET_SIZE 9
184 struct latency_bucket
{
185 unsigned long total_latency
; /* ns / 1024 */
189 struct avg_latency_bucket
{
190 unsigned long latency
; /* ns / 1024 */
196 /* service tree for active throtl groups */
197 struct throtl_service_queue service_queue
;
199 struct request_queue
*queue
;
201 /* Total Number of queued bios on READ and WRITE lists */
202 unsigned int nr_queued
[2];
204 unsigned int throtl_slice
;
206 /* Work for dispatching throttled bios */
207 struct work_struct dispatch_work
;
208 unsigned int limit_index
;
209 bool limit_valid
[LIMIT_CNT
];
211 unsigned long low_upgrade_time
;
212 unsigned long low_downgrade_time
;
216 struct latency_bucket tmp_buckets
[2][LATENCY_BUCKET_SIZE
];
217 struct avg_latency_bucket avg_buckets
[2][LATENCY_BUCKET_SIZE
];
218 struct latency_bucket __percpu
*latency_buckets
[2];
219 unsigned long last_calculate_time
;
220 unsigned long filtered_latency
;
222 bool track_bio_latency
;
225 static void throtl_pending_timer_fn(struct timer_list
*t
);
227 static inline struct throtl_grp
*pd_to_tg(struct blkg_policy_data
*pd
)
229 return pd
? container_of(pd
, struct throtl_grp
, pd
) : NULL
;
232 static inline struct throtl_grp
*blkg_to_tg(struct blkcg_gq
*blkg
)
234 return pd_to_tg(blkg_to_pd(blkg
, &blkcg_policy_throtl
));
237 static inline struct blkcg_gq
*tg_to_blkg(struct throtl_grp
*tg
)
239 return pd_to_blkg(&tg
->pd
);
243 * sq_to_tg - return the throl_grp the specified service queue belongs to
244 * @sq: the throtl_service_queue of interest
246 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
247 * embedded in throtl_data, %NULL is returned.
249 static struct throtl_grp
*sq_to_tg(struct throtl_service_queue
*sq
)
251 if (sq
&& sq
->parent_sq
)
252 return container_of(sq
, struct throtl_grp
, service_queue
);
258 * sq_to_td - return throtl_data the specified service queue belongs to
259 * @sq: the throtl_service_queue of interest
261 * A service_queue can be embedded in either a throtl_grp or throtl_data.
262 * Determine the associated throtl_data accordingly and return it.
264 static struct throtl_data
*sq_to_td(struct throtl_service_queue
*sq
)
266 struct throtl_grp
*tg
= sq_to_tg(sq
);
271 return container_of(sq
, struct throtl_data
, service_queue
);
275 * cgroup's limit in LIMIT_MAX is scaled if low limit is set. This scale is to
276 * make the IO dispatch more smooth.
277 * Scale up: linearly scale up according to lapsed time since upgrade. For
278 * every throtl_slice, the limit scales up 1/2 .low limit till the
279 * limit hits .max limit
280 * Scale down: exponentially scale down if a cgroup doesn't hit its .low limit
282 static uint64_t throtl_adjusted_limit(uint64_t low
, struct throtl_data
*td
)
284 /* arbitrary value to avoid too big scale */
285 if (td
->scale
< 4096 && time_after_eq(jiffies
,
286 td
->low_upgrade_time
+ td
->scale
* td
->throtl_slice
))
287 td
->scale
= (jiffies
- td
->low_upgrade_time
) / td
->throtl_slice
;
289 return low
+ (low
>> 1) * td
->scale
;
292 static uint64_t tg_bps_limit(struct throtl_grp
*tg
, int rw
)
294 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
295 struct throtl_data
*td
;
298 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
302 ret
= tg
->bps
[rw
][td
->limit_index
];
303 if (ret
== 0 && td
->limit_index
== LIMIT_LOW
) {
304 /* intermediate node or iops isn't 0 */
305 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
306 tg
->iops
[rw
][td
->limit_index
])
309 return MIN_THROTL_BPS
;
312 if (td
->limit_index
== LIMIT_MAX
&& tg
->bps
[rw
][LIMIT_LOW
] &&
313 tg
->bps
[rw
][LIMIT_LOW
] != tg
->bps
[rw
][LIMIT_MAX
]) {
316 adjusted
= throtl_adjusted_limit(tg
->bps
[rw
][LIMIT_LOW
], td
);
317 ret
= min(tg
->bps
[rw
][LIMIT_MAX
], adjusted
);
322 static unsigned int tg_iops_limit(struct throtl_grp
*tg
, int rw
)
324 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
325 struct throtl_data
*td
;
328 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && !blkg
->parent
)
332 ret
= tg
->iops
[rw
][td
->limit_index
];
333 if (ret
== 0 && tg
->td
->limit_index
== LIMIT_LOW
) {
334 /* intermediate node or bps isn't 0 */
335 if (!list_empty(&blkg
->blkcg
->css
.children
) ||
336 tg
->bps
[rw
][td
->limit_index
])
339 return MIN_THROTL_IOPS
;
342 if (td
->limit_index
== LIMIT_MAX
&& tg
->iops
[rw
][LIMIT_LOW
] &&
343 tg
->iops
[rw
][LIMIT_LOW
] != tg
->iops
[rw
][LIMIT_MAX
]) {
346 adjusted
= throtl_adjusted_limit(tg
->iops
[rw
][LIMIT_LOW
], td
);
347 if (adjusted
> UINT_MAX
)
349 ret
= min_t(unsigned int, tg
->iops
[rw
][LIMIT_MAX
], adjusted
);
354 #define request_bucket_index(sectors) \
355 clamp_t(int, order_base_2(sectors) - 3, 0, LATENCY_BUCKET_SIZE - 1)
358 * throtl_log - log debug message via blktrace
359 * @sq: the service_queue being reported
360 * @fmt: printf format string
363 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
364 * throtl_grp; otherwise, just "throtl".
366 #define throtl_log(sq, fmt, args...) do { \
367 struct throtl_grp *__tg = sq_to_tg((sq)); \
368 struct throtl_data *__td = sq_to_td((sq)); \
371 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
374 blk_add_cgroup_trace_msg(__td->queue, \
375 tg_to_blkg(__tg)->blkcg, "throtl " fmt, ##args);\
377 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
381 static inline unsigned int throtl_bio_data_size(struct bio
*bio
)
383 /* assume it's one sector */
384 if (unlikely(bio_op(bio
) == REQ_OP_DISCARD
))
386 return bio
->bi_iter
.bi_size
;
389 static void throtl_qnode_init(struct throtl_qnode
*qn
, struct throtl_grp
*tg
)
391 INIT_LIST_HEAD(&qn
->node
);
392 bio_list_init(&qn
->bios
);
397 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
398 * @bio: bio being added
399 * @qn: qnode to add bio to
400 * @queued: the service_queue->queued[] list @qn belongs to
402 * Add @bio to @qn and put @qn on @queued if it's not already on.
403 * @qn->tg's reference count is bumped when @qn is activated. See the
404 * comment on top of throtl_qnode definition for details.
406 static void throtl_qnode_add_bio(struct bio
*bio
, struct throtl_qnode
*qn
,
407 struct list_head
*queued
)
409 bio_list_add(&qn
->bios
, bio
);
410 if (list_empty(&qn
->node
)) {
411 list_add_tail(&qn
->node
, queued
);
412 blkg_get(tg_to_blkg(qn
->tg
));
417 * throtl_peek_queued - peek the first bio on a qnode list
418 * @queued: the qnode list to peek
420 static struct bio
*throtl_peek_queued(struct list_head
*queued
)
422 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
425 if (list_empty(queued
))
428 bio
= bio_list_peek(&qn
->bios
);
434 * throtl_pop_queued - pop the first bio form a qnode list
435 * @queued: the qnode list to pop a bio from
436 * @tg_to_put: optional out argument for throtl_grp to put
438 * Pop the first bio from the qnode list @queued. After popping, the first
439 * qnode is removed from @queued if empty or moved to the end of @queued so
440 * that the popping order is round-robin.
442 * When the first qnode is removed, its associated throtl_grp should be put
443 * too. If @tg_to_put is NULL, this function automatically puts it;
444 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
445 * responsible for putting it.
447 static struct bio
*throtl_pop_queued(struct list_head
*queued
,
448 struct throtl_grp
**tg_to_put
)
450 struct throtl_qnode
*qn
= list_first_entry(queued
, struct throtl_qnode
, node
);
453 if (list_empty(queued
))
456 bio
= bio_list_pop(&qn
->bios
);
459 if (bio_list_empty(&qn
->bios
)) {
460 list_del_init(&qn
->node
);
464 blkg_put(tg_to_blkg(qn
->tg
));
466 list_move_tail(&qn
->node
, queued
);
472 /* init a service_queue, assumes the caller zeroed it */
473 static void throtl_service_queue_init(struct throtl_service_queue
*sq
)
475 INIT_LIST_HEAD(&sq
->queued
[0]);
476 INIT_LIST_HEAD(&sq
->queued
[1]);
477 sq
->pending_tree
= RB_ROOT_CACHED
;
478 timer_setup(&sq
->pending_timer
, throtl_pending_timer_fn
, 0);
481 static struct blkg_policy_data
*throtl_pd_alloc(gfp_t gfp
, int node
)
483 struct throtl_grp
*tg
;
486 tg
= kzalloc_node(sizeof(*tg
), gfp
, node
);
490 throtl_service_queue_init(&tg
->service_queue
);
492 for (rw
= READ
; rw
<= WRITE
; rw
++) {
493 throtl_qnode_init(&tg
->qnode_on_self
[rw
], tg
);
494 throtl_qnode_init(&tg
->qnode_on_parent
[rw
], tg
);
497 RB_CLEAR_NODE(&tg
->rb_node
);
498 tg
->bps
[READ
][LIMIT_MAX
] = U64_MAX
;
499 tg
->bps
[WRITE
][LIMIT_MAX
] = U64_MAX
;
500 tg
->iops
[READ
][LIMIT_MAX
] = UINT_MAX
;
501 tg
->iops
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
502 tg
->bps_conf
[READ
][LIMIT_MAX
] = U64_MAX
;
503 tg
->bps_conf
[WRITE
][LIMIT_MAX
] = U64_MAX
;
504 tg
->iops_conf
[READ
][LIMIT_MAX
] = UINT_MAX
;
505 tg
->iops_conf
[WRITE
][LIMIT_MAX
] = UINT_MAX
;
506 /* LIMIT_LOW will have default value 0 */
508 tg
->latency_target
= DFL_LATENCY_TARGET
;
509 tg
->latency_target_conf
= DFL_LATENCY_TARGET
;
510 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
511 tg
->idletime_threshold_conf
= DFL_IDLE_THRESHOLD
;
516 static void throtl_pd_init(struct blkg_policy_data
*pd
)
518 struct throtl_grp
*tg
= pd_to_tg(pd
);
519 struct blkcg_gq
*blkg
= tg_to_blkg(tg
);
520 struct throtl_data
*td
= blkg
->q
->td
;
521 struct throtl_service_queue
*sq
= &tg
->service_queue
;
524 * If on the default hierarchy, we switch to properly hierarchical
525 * behavior where limits on a given throtl_grp are applied to the
526 * whole subtree rather than just the group itself. e.g. If 16M
527 * read_bps limit is set on the root group, the whole system can't
528 * exceed 16M for the device.
530 * If not on the default hierarchy, the broken flat hierarchy
531 * behavior is retained where all throtl_grps are treated as if
532 * they're all separate root groups right below throtl_data.
533 * Limits of a group don't interact with limits of other groups
534 * regardless of the position of the group in the hierarchy.
536 sq
->parent_sq
= &td
->service_queue
;
537 if (cgroup_subsys_on_dfl(io_cgrp_subsys
) && blkg
->parent
)
538 sq
->parent_sq
= &blkg_to_tg(blkg
->parent
)->service_queue
;
543 * Set has_rules[] if @tg or any of its parents have limits configured.
544 * This doesn't require walking up to the top of the hierarchy as the
545 * parent's has_rules[] is guaranteed to be correct.
547 static void tg_update_has_rules(struct throtl_grp
*tg
)
549 struct throtl_grp
*parent_tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
550 struct throtl_data
*td
= tg
->td
;
553 for (rw
= READ
; rw
<= WRITE
; rw
++)
554 tg
->has_rules
[rw
] = (parent_tg
&& parent_tg
->has_rules
[rw
]) ||
555 (td
->limit_valid
[td
->limit_index
] &&
556 (tg_bps_limit(tg
, rw
) != U64_MAX
||
557 tg_iops_limit(tg
, rw
) != UINT_MAX
));
560 static void throtl_pd_online(struct blkg_policy_data
*pd
)
562 struct throtl_grp
*tg
= pd_to_tg(pd
);
564 * We don't want new groups to escape the limits of its ancestors.
565 * Update has_rules[] after a new group is brought online.
567 tg_update_has_rules(tg
);
570 static void blk_throtl_update_limit_valid(struct throtl_data
*td
)
572 struct cgroup_subsys_state
*pos_css
;
573 struct blkcg_gq
*blkg
;
574 bool low_valid
= false;
577 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
578 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
580 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->bps
[WRITE
][LIMIT_LOW
] ||
581 tg
->iops
[READ
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) {
588 td
->limit_valid
[LIMIT_LOW
] = low_valid
;
591 static void throtl_upgrade_state(struct throtl_data
*td
);
592 static void throtl_pd_offline(struct blkg_policy_data
*pd
)
594 struct throtl_grp
*tg
= pd_to_tg(pd
);
596 tg
->bps
[READ
][LIMIT_LOW
] = 0;
597 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
598 tg
->iops
[READ
][LIMIT_LOW
] = 0;
599 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
601 blk_throtl_update_limit_valid(tg
->td
);
603 if (!tg
->td
->limit_valid
[tg
->td
->limit_index
])
604 throtl_upgrade_state(tg
->td
);
607 static void throtl_pd_free(struct blkg_policy_data
*pd
)
609 struct throtl_grp
*tg
= pd_to_tg(pd
);
611 del_timer_sync(&tg
->service_queue
.pending_timer
);
615 static struct throtl_grp
*
616 throtl_rb_first(struct throtl_service_queue
*parent_sq
)
619 /* Service tree is empty */
620 if (!parent_sq
->nr_pending
)
623 n
= rb_first_cached(&parent_sq
->pending_tree
);
627 return rb_entry_tg(n
);
630 static void throtl_rb_erase(struct rb_node
*n
,
631 struct throtl_service_queue
*parent_sq
)
633 rb_erase_cached(n
, &parent_sq
->pending_tree
);
635 --parent_sq
->nr_pending
;
638 static void update_min_dispatch_time(struct throtl_service_queue
*parent_sq
)
640 struct throtl_grp
*tg
;
642 tg
= throtl_rb_first(parent_sq
);
646 parent_sq
->first_pending_disptime
= tg
->disptime
;
649 static void tg_service_queue_add(struct throtl_grp
*tg
)
651 struct throtl_service_queue
*parent_sq
= tg
->service_queue
.parent_sq
;
652 struct rb_node
**node
= &parent_sq
->pending_tree
.rb_root
.rb_node
;
653 struct rb_node
*parent
= NULL
;
654 struct throtl_grp
*__tg
;
655 unsigned long key
= tg
->disptime
;
656 bool leftmost
= true;
658 while (*node
!= NULL
) {
660 __tg
= rb_entry_tg(parent
);
662 if (time_before(key
, __tg
->disptime
))
663 node
= &parent
->rb_left
;
665 node
= &parent
->rb_right
;
670 rb_link_node(&tg
->rb_node
, parent
, node
);
671 rb_insert_color_cached(&tg
->rb_node
, &parent_sq
->pending_tree
,
675 static void __throtl_enqueue_tg(struct throtl_grp
*tg
)
677 tg_service_queue_add(tg
);
678 tg
->flags
|= THROTL_TG_PENDING
;
679 tg
->service_queue
.parent_sq
->nr_pending
++;
682 static void throtl_enqueue_tg(struct throtl_grp
*tg
)
684 if (!(tg
->flags
& THROTL_TG_PENDING
))
685 __throtl_enqueue_tg(tg
);
688 static void __throtl_dequeue_tg(struct throtl_grp
*tg
)
690 throtl_rb_erase(&tg
->rb_node
, tg
->service_queue
.parent_sq
);
691 tg
->flags
&= ~THROTL_TG_PENDING
;
694 static void throtl_dequeue_tg(struct throtl_grp
*tg
)
696 if (tg
->flags
& THROTL_TG_PENDING
)
697 __throtl_dequeue_tg(tg
);
700 /* Call with queue lock held */
701 static void throtl_schedule_pending_timer(struct throtl_service_queue
*sq
,
702 unsigned long expires
)
704 unsigned long max_expire
= jiffies
+ 8 * sq_to_td(sq
)->throtl_slice
;
707 * Since we are adjusting the throttle limit dynamically, the sleep
708 * time calculated according to previous limit might be invalid. It's
709 * possible the cgroup sleep time is very long and no other cgroups
710 * have IO running so notify the limit changes. Make sure the cgroup
711 * doesn't sleep too long to avoid the missed notification.
713 if (time_after(expires
, max_expire
))
714 expires
= max_expire
;
715 mod_timer(&sq
->pending_timer
, expires
);
716 throtl_log(sq
, "schedule timer. delay=%lu jiffies=%lu",
717 expires
- jiffies
, jiffies
);
721 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
722 * @sq: the service_queue to schedule dispatch for
723 * @force: force scheduling
725 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
726 * dispatch time of the first pending child. Returns %true if either timer
727 * is armed or there's no pending child left. %false if the current
728 * dispatch window is still open and the caller should continue
731 * If @force is %true, the dispatch timer is always scheduled and this
732 * function is guaranteed to return %true. This is to be used when the
733 * caller can't dispatch itself and needs to invoke pending_timer
734 * unconditionally. Note that forced scheduling is likely to induce short
735 * delay before dispatch starts even if @sq->first_pending_disptime is not
736 * in the future and thus shouldn't be used in hot paths.
738 static bool throtl_schedule_next_dispatch(struct throtl_service_queue
*sq
,
741 /* any pending children left? */
745 update_min_dispatch_time(sq
);
747 /* is the next dispatch time in the future? */
748 if (force
|| time_after(sq
->first_pending_disptime
, jiffies
)) {
749 throtl_schedule_pending_timer(sq
, sq
->first_pending_disptime
);
753 /* tell the caller to continue dispatching */
757 static inline void throtl_start_new_slice_with_credit(struct throtl_grp
*tg
,
758 bool rw
, unsigned long start
)
760 tg
->bytes_disp
[rw
] = 0;
764 * Previous slice has expired. We must have trimmed it after last
765 * bio dispatch. That means since start of last slice, we never used
766 * that bandwidth. Do try to make use of that bandwidth while giving
769 if (time_after_eq(start
, tg
->slice_start
[rw
]))
770 tg
->slice_start
[rw
] = start
;
772 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
773 throtl_log(&tg
->service_queue
,
774 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
775 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
776 tg
->slice_end
[rw
], jiffies
);
779 static inline void throtl_start_new_slice(struct throtl_grp
*tg
, bool rw
)
781 tg
->bytes_disp
[rw
] = 0;
783 tg
->slice_start
[rw
] = jiffies
;
784 tg
->slice_end
[rw
] = jiffies
+ tg
->td
->throtl_slice
;
785 throtl_log(&tg
->service_queue
,
786 "[%c] new slice start=%lu end=%lu jiffies=%lu",
787 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
788 tg
->slice_end
[rw
], jiffies
);
791 static inline void throtl_set_slice_end(struct throtl_grp
*tg
, bool rw
,
792 unsigned long jiffy_end
)
794 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
797 static inline void throtl_extend_slice(struct throtl_grp
*tg
, bool rw
,
798 unsigned long jiffy_end
)
800 tg
->slice_end
[rw
] = roundup(jiffy_end
, tg
->td
->throtl_slice
);
801 throtl_log(&tg
->service_queue
,
802 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
803 rw
== READ
? 'R' : 'W', tg
->slice_start
[rw
],
804 tg
->slice_end
[rw
], jiffies
);
807 /* Determine if previously allocated or extended slice is complete or not */
808 static bool throtl_slice_used(struct throtl_grp
*tg
, bool rw
)
810 if (time_in_range(jiffies
, tg
->slice_start
[rw
], tg
->slice_end
[rw
]))
816 /* Trim the used slices and adjust slice start accordingly */
817 static inline void throtl_trim_slice(struct throtl_grp
*tg
, bool rw
)
819 unsigned long nr_slices
, time_elapsed
, io_trim
;
822 BUG_ON(time_before(tg
->slice_end
[rw
], tg
->slice_start
[rw
]));
825 * If bps are unlimited (-1), then time slice don't get
826 * renewed. Don't try to trim the slice if slice is used. A new
827 * slice will start when appropriate.
829 if (throtl_slice_used(tg
, rw
))
833 * A bio has been dispatched. Also adjust slice_end. It might happen
834 * that initially cgroup limit was very low resulting in high
835 * slice_end, but later limit was bumped up and bio was dispached
836 * sooner, then we need to reduce slice_end. A high bogus slice_end
837 * is bad because it does not allow new slice to start.
840 throtl_set_slice_end(tg
, rw
, jiffies
+ tg
->td
->throtl_slice
);
842 time_elapsed
= jiffies
- tg
->slice_start
[rw
];
844 nr_slices
= time_elapsed
/ tg
->td
->throtl_slice
;
848 tmp
= tg_bps_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
;
852 io_trim
= (tg_iops_limit(tg
, rw
) * tg
->td
->throtl_slice
* nr_slices
) /
855 if (!bytes_trim
&& !io_trim
)
858 if (tg
->bytes_disp
[rw
] >= bytes_trim
)
859 tg
->bytes_disp
[rw
] -= bytes_trim
;
861 tg
->bytes_disp
[rw
] = 0;
863 if (tg
->io_disp
[rw
] >= io_trim
)
864 tg
->io_disp
[rw
] -= io_trim
;
868 tg
->slice_start
[rw
] += nr_slices
* tg
->td
->throtl_slice
;
870 throtl_log(&tg
->service_queue
,
871 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
872 rw
== READ
? 'R' : 'W', nr_slices
, bytes_trim
, io_trim
,
873 tg
->slice_start
[rw
], tg
->slice_end
[rw
], jiffies
);
876 static bool tg_with_in_iops_limit(struct throtl_grp
*tg
, struct bio
*bio
,
879 bool rw
= bio_data_dir(bio
);
880 unsigned int io_allowed
;
881 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
884 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
886 /* Slice has just started. Consider one slice interval */
888 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
890 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
893 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
894 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
895 * will allow dispatch after 1 second and after that slice should
899 tmp
= (u64
)tg_iops_limit(tg
, rw
) * jiffy_elapsed_rnd
;
903 io_allowed
= UINT_MAX
;
907 if (tg
->io_disp
[rw
] + 1 <= io_allowed
) {
913 /* Calc approx time to dispatch */
914 jiffy_wait
= jiffy_elapsed_rnd
- jiffy_elapsed
;
921 static bool tg_with_in_bps_limit(struct throtl_grp
*tg
, struct bio
*bio
,
924 bool rw
= bio_data_dir(bio
);
925 u64 bytes_allowed
, extra_bytes
, tmp
;
926 unsigned long jiffy_elapsed
, jiffy_wait
, jiffy_elapsed_rnd
;
927 unsigned int bio_size
= throtl_bio_data_size(bio
);
929 jiffy_elapsed
= jiffy_elapsed_rnd
= jiffies
- tg
->slice_start
[rw
];
931 /* Slice has just started. Consider one slice interval */
933 jiffy_elapsed_rnd
= tg
->td
->throtl_slice
;
935 jiffy_elapsed_rnd
= roundup(jiffy_elapsed_rnd
, tg
->td
->throtl_slice
);
937 tmp
= tg_bps_limit(tg
, rw
) * jiffy_elapsed_rnd
;
941 if (tg
->bytes_disp
[rw
] + bio_size
<= bytes_allowed
) {
947 /* Calc approx time to dispatch */
948 extra_bytes
= tg
->bytes_disp
[rw
] + bio_size
- bytes_allowed
;
949 jiffy_wait
= div64_u64(extra_bytes
* HZ
, tg_bps_limit(tg
, rw
));
955 * This wait time is without taking into consideration the rounding
956 * up we did. Add that time also.
958 jiffy_wait
= jiffy_wait
+ (jiffy_elapsed_rnd
- jiffy_elapsed
);
965 * Returns whether one can dispatch a bio or not. Also returns approx number
966 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
968 static bool tg_may_dispatch(struct throtl_grp
*tg
, struct bio
*bio
,
971 bool rw
= bio_data_dir(bio
);
972 unsigned long bps_wait
= 0, iops_wait
= 0, max_wait
= 0;
975 * Currently whole state machine of group depends on first bio
976 * queued in the group bio list. So one should not be calling
977 * this function with a different bio if there are other bios
980 BUG_ON(tg
->service_queue
.nr_queued
[rw
] &&
981 bio
!= throtl_peek_queued(&tg
->service_queue
.queued
[rw
]));
983 /* If tg->bps = -1, then BW is unlimited */
984 if (tg_bps_limit(tg
, rw
) == U64_MAX
&&
985 tg_iops_limit(tg
, rw
) == UINT_MAX
) {
992 * If previous slice expired, start a new one otherwise renew/extend
993 * existing slice to make sure it is at least throtl_slice interval
994 * long since now. New slice is started only for empty throttle group.
995 * If there is queued bio, that means there should be an active
996 * slice and it should be extended instead.
998 if (throtl_slice_used(tg
, rw
) && !(tg
->service_queue
.nr_queued
[rw
]))
999 throtl_start_new_slice(tg
, rw
);
1001 if (time_before(tg
->slice_end
[rw
],
1002 jiffies
+ tg
->td
->throtl_slice
))
1003 throtl_extend_slice(tg
, rw
,
1004 jiffies
+ tg
->td
->throtl_slice
);
1007 if (tg_with_in_bps_limit(tg
, bio
, &bps_wait
) &&
1008 tg_with_in_iops_limit(tg
, bio
, &iops_wait
)) {
1014 max_wait
= max(bps_wait
, iops_wait
);
1019 if (time_before(tg
->slice_end
[rw
], jiffies
+ max_wait
))
1020 throtl_extend_slice(tg
, rw
, jiffies
+ max_wait
);
1025 static void throtl_charge_bio(struct throtl_grp
*tg
, struct bio
*bio
)
1027 bool rw
= bio_data_dir(bio
);
1028 unsigned int bio_size
= throtl_bio_data_size(bio
);
1030 /* Charge the bio to the group */
1031 tg
->bytes_disp
[rw
] += bio_size
;
1033 tg
->last_bytes_disp
[rw
] += bio_size
;
1034 tg
->last_io_disp
[rw
]++;
1037 * BIO_THROTTLED is used to prevent the same bio to be throttled
1038 * more than once as a throttled bio will go through blk-throtl the
1039 * second time when it eventually gets issued. Set it when a bio
1040 * is being charged to a tg.
1042 if (!bio_flagged(bio
, BIO_THROTTLED
))
1043 bio_set_flag(bio
, BIO_THROTTLED
);
1047 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1050 * @tg: the target throtl_grp
1052 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
1053 * tg->qnode_on_self[] is used.
1055 static void throtl_add_bio_tg(struct bio
*bio
, struct throtl_qnode
*qn
,
1056 struct throtl_grp
*tg
)
1058 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1059 bool rw
= bio_data_dir(bio
);
1062 qn
= &tg
->qnode_on_self
[rw
];
1065 * If @tg doesn't currently have any bios queued in the same
1066 * direction, queueing @bio can change when @tg should be
1067 * dispatched. Mark that @tg was empty. This is automatically
1068 * cleaered on the next tg_update_disptime().
1070 if (!sq
->nr_queued
[rw
])
1071 tg
->flags
|= THROTL_TG_WAS_EMPTY
;
1073 throtl_qnode_add_bio(bio
, qn
, &sq
->queued
[rw
]);
1075 sq
->nr_queued
[rw
]++;
1076 throtl_enqueue_tg(tg
);
1079 static void tg_update_disptime(struct throtl_grp
*tg
)
1081 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1082 unsigned long read_wait
= -1, write_wait
= -1, min_wait
= -1, disptime
;
1085 bio
= throtl_peek_queued(&sq
->queued
[READ
]);
1087 tg_may_dispatch(tg
, bio
, &read_wait
);
1089 bio
= throtl_peek_queued(&sq
->queued
[WRITE
]);
1091 tg_may_dispatch(tg
, bio
, &write_wait
);
1093 min_wait
= min(read_wait
, write_wait
);
1094 disptime
= jiffies
+ min_wait
;
1096 /* Update dispatch time */
1097 throtl_dequeue_tg(tg
);
1098 tg
->disptime
= disptime
;
1099 throtl_enqueue_tg(tg
);
1101 /* see throtl_add_bio_tg() */
1102 tg
->flags
&= ~THROTL_TG_WAS_EMPTY
;
1105 static void start_parent_slice_with_credit(struct throtl_grp
*child_tg
,
1106 struct throtl_grp
*parent_tg
, bool rw
)
1108 if (throtl_slice_used(parent_tg
, rw
)) {
1109 throtl_start_new_slice_with_credit(parent_tg
, rw
,
1110 child_tg
->slice_start
[rw
]);
1115 static void tg_dispatch_one_bio(struct throtl_grp
*tg
, bool rw
)
1117 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1118 struct throtl_service_queue
*parent_sq
= sq
->parent_sq
;
1119 struct throtl_grp
*parent_tg
= sq_to_tg(parent_sq
);
1120 struct throtl_grp
*tg_to_put
= NULL
;
1124 * @bio is being transferred from @tg to @parent_sq. Popping a bio
1125 * from @tg may put its reference and @parent_sq might end up
1126 * getting released prematurely. Remember the tg to put and put it
1127 * after @bio is transferred to @parent_sq.
1129 bio
= throtl_pop_queued(&sq
->queued
[rw
], &tg_to_put
);
1130 sq
->nr_queued
[rw
]--;
1132 throtl_charge_bio(tg
, bio
);
1135 * If our parent is another tg, we just need to transfer @bio to
1136 * the parent using throtl_add_bio_tg(). If our parent is
1137 * @td->service_queue, @bio is ready to be issued. Put it on its
1138 * bio_lists[] and decrease total number queued. The caller is
1139 * responsible for issuing these bios.
1142 throtl_add_bio_tg(bio
, &tg
->qnode_on_parent
[rw
], parent_tg
);
1143 start_parent_slice_with_credit(tg
, parent_tg
, rw
);
1145 throtl_qnode_add_bio(bio
, &tg
->qnode_on_parent
[rw
],
1146 &parent_sq
->queued
[rw
]);
1147 BUG_ON(tg
->td
->nr_queued
[rw
] <= 0);
1148 tg
->td
->nr_queued
[rw
]--;
1151 throtl_trim_slice(tg
, rw
);
1154 blkg_put(tg_to_blkg(tg_to_put
));
1157 static int throtl_dispatch_tg(struct throtl_grp
*tg
)
1159 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1160 unsigned int nr_reads
= 0, nr_writes
= 0;
1161 unsigned int max_nr_reads
= throtl_grp_quantum
*3/4;
1162 unsigned int max_nr_writes
= throtl_grp_quantum
- max_nr_reads
;
1165 /* Try to dispatch 75% READS and 25% WRITES */
1167 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])) &&
1168 tg_may_dispatch(tg
, bio
, NULL
)) {
1170 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1173 if (nr_reads
>= max_nr_reads
)
1177 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])) &&
1178 tg_may_dispatch(tg
, bio
, NULL
)) {
1180 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
1183 if (nr_writes
>= max_nr_writes
)
1187 return nr_reads
+ nr_writes
;
1190 static int throtl_select_dispatch(struct throtl_service_queue
*parent_sq
)
1192 unsigned int nr_disp
= 0;
1195 struct throtl_grp
*tg
= throtl_rb_first(parent_sq
);
1196 struct throtl_service_queue
*sq
;
1201 if (time_before(jiffies
, tg
->disptime
))
1204 throtl_dequeue_tg(tg
);
1206 nr_disp
+= throtl_dispatch_tg(tg
);
1208 sq
= &tg
->service_queue
;
1209 if (sq
->nr_queued
[0] || sq
->nr_queued
[1])
1210 tg_update_disptime(tg
);
1212 if (nr_disp
>= throtl_quantum
)
1219 static bool throtl_can_upgrade(struct throtl_data
*td
,
1220 struct throtl_grp
*this_tg
);
1222 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1223 * @arg: the throtl_service_queue being serviced
1225 * This timer is armed when a child throtl_grp with active bio's become
1226 * pending and queued on the service_queue's pending_tree and expires when
1227 * the first child throtl_grp should be dispatched. This function
1228 * dispatches bio's from the children throtl_grps to the parent
1231 * If the parent's parent is another throtl_grp, dispatching is propagated
1232 * by either arming its pending_timer or repeating dispatch directly. If
1233 * the top-level service_tree is reached, throtl_data->dispatch_work is
1234 * kicked so that the ready bio's are issued.
1236 static void throtl_pending_timer_fn(struct timer_list
*t
)
1238 struct throtl_service_queue
*sq
= from_timer(sq
, t
, pending_timer
);
1239 struct throtl_grp
*tg
= sq_to_tg(sq
);
1240 struct throtl_data
*td
= sq_to_td(sq
);
1241 struct request_queue
*q
= td
->queue
;
1242 struct throtl_service_queue
*parent_sq
;
1246 spin_lock_irq(q
->queue_lock
);
1247 if (throtl_can_upgrade(td
, NULL
))
1248 throtl_upgrade_state(td
);
1251 parent_sq
= sq
->parent_sq
;
1255 throtl_log(sq
, "dispatch nr_queued=%u read=%u write=%u",
1256 sq
->nr_queued
[READ
] + sq
->nr_queued
[WRITE
],
1257 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
1259 ret
= throtl_select_dispatch(sq
);
1261 throtl_log(sq
, "bios disp=%u", ret
);
1265 if (throtl_schedule_next_dispatch(sq
, false))
1268 /* this dispatch windows is still open, relax and repeat */
1269 spin_unlock_irq(q
->queue_lock
);
1271 spin_lock_irq(q
->queue_lock
);
1278 /* @parent_sq is another throl_grp, propagate dispatch */
1279 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
1280 tg_update_disptime(tg
);
1281 if (!throtl_schedule_next_dispatch(parent_sq
, false)) {
1282 /* window is already open, repeat dispatching */
1289 /* reached the top-level, queue issueing */
1290 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1293 spin_unlock_irq(q
->queue_lock
);
1297 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1298 * @work: work item being executed
1300 * This function is queued for execution when bio's reach the bio_lists[]
1301 * of throtl_data->service_queue. Those bio's are ready and issued by this
1304 static void blk_throtl_dispatch_work_fn(struct work_struct
*work
)
1306 struct throtl_data
*td
= container_of(work
, struct throtl_data
,
1308 struct throtl_service_queue
*td_sq
= &td
->service_queue
;
1309 struct request_queue
*q
= td
->queue
;
1310 struct bio_list bio_list_on_stack
;
1312 struct blk_plug plug
;
1315 bio_list_init(&bio_list_on_stack
);
1317 spin_lock_irq(q
->queue_lock
);
1318 for (rw
= READ
; rw
<= WRITE
; rw
++)
1319 while ((bio
= throtl_pop_queued(&td_sq
->queued
[rw
], NULL
)))
1320 bio_list_add(&bio_list_on_stack
, bio
);
1321 spin_unlock_irq(q
->queue_lock
);
1323 if (!bio_list_empty(&bio_list_on_stack
)) {
1324 blk_start_plug(&plug
);
1325 while((bio
= bio_list_pop(&bio_list_on_stack
)))
1326 generic_make_request(bio
);
1327 blk_finish_plug(&plug
);
1331 static u64
tg_prfill_conf_u64(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1334 struct throtl_grp
*tg
= pd_to_tg(pd
);
1335 u64 v
= *(u64
*)((void *)tg
+ off
);
1339 return __blkg_prfill_u64(sf
, pd
, v
);
1342 static u64
tg_prfill_conf_uint(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1345 struct throtl_grp
*tg
= pd_to_tg(pd
);
1346 unsigned int v
= *(unsigned int *)((void *)tg
+ off
);
1350 return __blkg_prfill_u64(sf
, pd
, v
);
1353 static int tg_print_conf_u64(struct seq_file
*sf
, void *v
)
1355 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_u64
,
1356 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1360 static int tg_print_conf_uint(struct seq_file
*sf
, void *v
)
1362 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_conf_uint
,
1363 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1367 static void tg_conf_updated(struct throtl_grp
*tg
, bool global
)
1369 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1370 struct cgroup_subsys_state
*pos_css
;
1371 struct blkcg_gq
*blkg
;
1373 throtl_log(&tg
->service_queue
,
1374 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1375 tg_bps_limit(tg
, READ
), tg_bps_limit(tg
, WRITE
),
1376 tg_iops_limit(tg
, READ
), tg_iops_limit(tg
, WRITE
));
1379 * Update has_rules[] flags for the updated tg's subtree. A tg is
1380 * considered to have rules if either the tg itself or any of its
1381 * ancestors has rules. This identifies groups without any
1382 * restrictions in the whole hierarchy and allows them to bypass
1385 blkg_for_each_descendant_pre(blkg
, pos_css
,
1386 global
? tg
->td
->queue
->root_blkg
: tg_to_blkg(tg
)) {
1387 struct throtl_grp
*this_tg
= blkg_to_tg(blkg
);
1388 struct throtl_grp
*parent_tg
;
1390 tg_update_has_rules(this_tg
);
1391 /* ignore root/second level */
1392 if (!cgroup_subsys_on_dfl(io_cgrp_subsys
) || !blkg
->parent
||
1393 !blkg
->parent
->parent
)
1395 parent_tg
= blkg_to_tg(blkg
->parent
);
1397 * make sure all children has lower idle time threshold and
1398 * higher latency target
1400 this_tg
->idletime_threshold
= min(this_tg
->idletime_threshold
,
1401 parent_tg
->idletime_threshold
);
1402 this_tg
->latency_target
= max(this_tg
->latency_target
,
1403 parent_tg
->latency_target
);
1407 * We're already holding queue_lock and know @tg is valid. Let's
1408 * apply the new config directly.
1410 * Restart the slices for both READ and WRITES. It might happen
1411 * that a group's limit are dropped suddenly and we don't want to
1412 * account recently dispatched IO with new low rate.
1414 throtl_start_new_slice(tg
, 0);
1415 throtl_start_new_slice(tg
, 1);
1417 if (tg
->flags
& THROTL_TG_PENDING
) {
1418 tg_update_disptime(tg
);
1419 throtl_schedule_next_dispatch(sq
->parent_sq
, true);
1423 static ssize_t
tg_set_conf(struct kernfs_open_file
*of
,
1424 char *buf
, size_t nbytes
, loff_t off
, bool is_u64
)
1426 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1427 struct blkg_conf_ctx ctx
;
1428 struct throtl_grp
*tg
;
1432 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1437 if (sscanf(ctx
.body
, "%llu", &v
) != 1)
1442 tg
= blkg_to_tg(ctx
.blkg
);
1445 *(u64
*)((void *)tg
+ of_cft(of
)->private) = v
;
1447 *(unsigned int *)((void *)tg
+ of_cft(of
)->private) = v
;
1449 tg_conf_updated(tg
, false);
1452 blkg_conf_finish(&ctx
);
1453 return ret
?: nbytes
;
1456 static ssize_t
tg_set_conf_u64(struct kernfs_open_file
*of
,
1457 char *buf
, size_t nbytes
, loff_t off
)
1459 return tg_set_conf(of
, buf
, nbytes
, off
, true);
1462 static ssize_t
tg_set_conf_uint(struct kernfs_open_file
*of
,
1463 char *buf
, size_t nbytes
, loff_t off
)
1465 return tg_set_conf(of
, buf
, nbytes
, off
, false);
1468 static struct cftype throtl_legacy_files
[] = {
1470 .name
= "throttle.read_bps_device",
1471 .private = offsetof(struct throtl_grp
, bps
[READ
][LIMIT_MAX
]),
1472 .seq_show
= tg_print_conf_u64
,
1473 .write
= tg_set_conf_u64
,
1476 .name
= "throttle.write_bps_device",
1477 .private = offsetof(struct throtl_grp
, bps
[WRITE
][LIMIT_MAX
]),
1478 .seq_show
= tg_print_conf_u64
,
1479 .write
= tg_set_conf_u64
,
1482 .name
= "throttle.read_iops_device",
1483 .private = offsetof(struct throtl_grp
, iops
[READ
][LIMIT_MAX
]),
1484 .seq_show
= tg_print_conf_uint
,
1485 .write
= tg_set_conf_uint
,
1488 .name
= "throttle.write_iops_device",
1489 .private = offsetof(struct throtl_grp
, iops
[WRITE
][LIMIT_MAX
]),
1490 .seq_show
= tg_print_conf_uint
,
1491 .write
= tg_set_conf_uint
,
1494 .name
= "throttle.io_service_bytes",
1495 .private = (unsigned long)&blkcg_policy_throtl
,
1496 .seq_show
= blkg_print_stat_bytes
,
1499 .name
= "throttle.io_service_bytes_recursive",
1500 .private = (unsigned long)&blkcg_policy_throtl
,
1501 .seq_show
= blkg_print_stat_bytes_recursive
,
1504 .name
= "throttle.io_serviced",
1505 .private = (unsigned long)&blkcg_policy_throtl
,
1506 .seq_show
= blkg_print_stat_ios
,
1509 .name
= "throttle.io_serviced_recursive",
1510 .private = (unsigned long)&blkcg_policy_throtl
,
1511 .seq_show
= blkg_print_stat_ios_recursive
,
1516 static u64
tg_prfill_limit(struct seq_file
*sf
, struct blkg_policy_data
*pd
,
1519 struct throtl_grp
*tg
= pd_to_tg(pd
);
1520 const char *dname
= blkg_dev_name(pd
->blkg
);
1521 char bufs
[4][21] = { "max", "max", "max", "max" };
1523 unsigned int iops_dft
;
1524 char idle_time
[26] = "";
1525 char latency_time
[26] = "";
1530 if (off
== LIMIT_LOW
) {
1535 iops_dft
= UINT_MAX
;
1538 if (tg
->bps_conf
[READ
][off
] == bps_dft
&&
1539 tg
->bps_conf
[WRITE
][off
] == bps_dft
&&
1540 tg
->iops_conf
[READ
][off
] == iops_dft
&&
1541 tg
->iops_conf
[WRITE
][off
] == iops_dft
&&
1542 (off
!= LIMIT_LOW
||
1543 (tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
&&
1544 tg
->latency_target_conf
== DFL_LATENCY_TARGET
)))
1547 if (tg
->bps_conf
[READ
][off
] != U64_MAX
)
1548 snprintf(bufs
[0], sizeof(bufs
[0]), "%llu",
1549 tg
->bps_conf
[READ
][off
]);
1550 if (tg
->bps_conf
[WRITE
][off
] != U64_MAX
)
1551 snprintf(bufs
[1], sizeof(bufs
[1]), "%llu",
1552 tg
->bps_conf
[WRITE
][off
]);
1553 if (tg
->iops_conf
[READ
][off
] != UINT_MAX
)
1554 snprintf(bufs
[2], sizeof(bufs
[2]), "%u",
1555 tg
->iops_conf
[READ
][off
]);
1556 if (tg
->iops_conf
[WRITE
][off
] != UINT_MAX
)
1557 snprintf(bufs
[3], sizeof(bufs
[3]), "%u",
1558 tg
->iops_conf
[WRITE
][off
]);
1559 if (off
== LIMIT_LOW
) {
1560 if (tg
->idletime_threshold_conf
== ULONG_MAX
)
1561 strcpy(idle_time
, " idle=max");
1563 snprintf(idle_time
, sizeof(idle_time
), " idle=%lu",
1564 tg
->idletime_threshold_conf
);
1566 if (tg
->latency_target_conf
== ULONG_MAX
)
1567 strcpy(latency_time
, " latency=max");
1569 snprintf(latency_time
, sizeof(latency_time
),
1570 " latency=%lu", tg
->latency_target_conf
);
1573 seq_printf(sf
, "%s rbps=%s wbps=%s riops=%s wiops=%s%s%s\n",
1574 dname
, bufs
[0], bufs
[1], bufs
[2], bufs
[3], idle_time
,
1579 static int tg_print_limit(struct seq_file
*sf
, void *v
)
1581 blkcg_print_blkgs(sf
, css_to_blkcg(seq_css(sf
)), tg_prfill_limit
,
1582 &blkcg_policy_throtl
, seq_cft(sf
)->private, false);
1586 static ssize_t
tg_set_limit(struct kernfs_open_file
*of
,
1587 char *buf
, size_t nbytes
, loff_t off
)
1589 struct blkcg
*blkcg
= css_to_blkcg(of_css(of
));
1590 struct blkg_conf_ctx ctx
;
1591 struct throtl_grp
*tg
;
1593 unsigned long idle_time
;
1594 unsigned long latency_time
;
1596 int index
= of_cft(of
)->private;
1598 ret
= blkg_conf_prep(blkcg
, &blkcg_policy_throtl
, buf
, &ctx
);
1602 tg
= blkg_to_tg(ctx
.blkg
);
1604 v
[0] = tg
->bps_conf
[READ
][index
];
1605 v
[1] = tg
->bps_conf
[WRITE
][index
];
1606 v
[2] = tg
->iops_conf
[READ
][index
];
1607 v
[3] = tg
->iops_conf
[WRITE
][index
];
1609 idle_time
= tg
->idletime_threshold_conf
;
1610 latency_time
= tg
->latency_target_conf
;
1612 char tok
[27]; /* wiops=18446744073709551616 */
1617 if (sscanf(ctx
.body
, "%26s%n", tok
, &len
) != 1)
1626 if (!p
|| (sscanf(p
, "%llu", &val
) != 1 && strcmp(p
, "max")))
1634 if (!strcmp(tok
, "rbps"))
1636 else if (!strcmp(tok
, "wbps"))
1638 else if (!strcmp(tok
, "riops"))
1639 v
[2] = min_t(u64
, val
, UINT_MAX
);
1640 else if (!strcmp(tok
, "wiops"))
1641 v
[3] = min_t(u64
, val
, UINT_MAX
);
1642 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "idle"))
1644 else if (off
== LIMIT_LOW
&& !strcmp(tok
, "latency"))
1650 tg
->bps_conf
[READ
][index
] = v
[0];
1651 tg
->bps_conf
[WRITE
][index
] = v
[1];
1652 tg
->iops_conf
[READ
][index
] = v
[2];
1653 tg
->iops_conf
[WRITE
][index
] = v
[3];
1655 if (index
== LIMIT_MAX
) {
1656 tg
->bps
[READ
][index
] = v
[0];
1657 tg
->bps
[WRITE
][index
] = v
[1];
1658 tg
->iops
[READ
][index
] = v
[2];
1659 tg
->iops
[WRITE
][index
] = v
[3];
1661 tg
->bps
[READ
][LIMIT_LOW
] = min(tg
->bps_conf
[READ
][LIMIT_LOW
],
1662 tg
->bps_conf
[READ
][LIMIT_MAX
]);
1663 tg
->bps
[WRITE
][LIMIT_LOW
] = min(tg
->bps_conf
[WRITE
][LIMIT_LOW
],
1664 tg
->bps_conf
[WRITE
][LIMIT_MAX
]);
1665 tg
->iops
[READ
][LIMIT_LOW
] = min(tg
->iops_conf
[READ
][LIMIT_LOW
],
1666 tg
->iops_conf
[READ
][LIMIT_MAX
]);
1667 tg
->iops
[WRITE
][LIMIT_LOW
] = min(tg
->iops_conf
[WRITE
][LIMIT_LOW
],
1668 tg
->iops_conf
[WRITE
][LIMIT_MAX
]);
1669 tg
->idletime_threshold_conf
= idle_time
;
1670 tg
->latency_target_conf
= latency_time
;
1672 /* force user to configure all settings for low limit */
1673 if (!(tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
] ||
1674 tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
]) ||
1675 tg
->idletime_threshold_conf
== DFL_IDLE_THRESHOLD
||
1676 tg
->latency_target_conf
== DFL_LATENCY_TARGET
) {
1677 tg
->bps
[READ
][LIMIT_LOW
] = 0;
1678 tg
->bps
[WRITE
][LIMIT_LOW
] = 0;
1679 tg
->iops
[READ
][LIMIT_LOW
] = 0;
1680 tg
->iops
[WRITE
][LIMIT_LOW
] = 0;
1681 tg
->idletime_threshold
= DFL_IDLE_THRESHOLD
;
1682 tg
->latency_target
= DFL_LATENCY_TARGET
;
1683 } else if (index
== LIMIT_LOW
) {
1684 tg
->idletime_threshold
= tg
->idletime_threshold_conf
;
1685 tg
->latency_target
= tg
->latency_target_conf
;
1688 blk_throtl_update_limit_valid(tg
->td
);
1689 if (tg
->td
->limit_valid
[LIMIT_LOW
]) {
1690 if (index
== LIMIT_LOW
)
1691 tg
->td
->limit_index
= LIMIT_LOW
;
1693 tg
->td
->limit_index
= LIMIT_MAX
;
1694 tg_conf_updated(tg
, index
== LIMIT_LOW
&&
1695 tg
->td
->limit_valid
[LIMIT_LOW
]);
1698 blkg_conf_finish(&ctx
);
1699 return ret
?: nbytes
;
1702 static struct cftype throtl_files
[] = {
1703 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
1706 .flags
= CFTYPE_NOT_ON_ROOT
,
1707 .seq_show
= tg_print_limit
,
1708 .write
= tg_set_limit
,
1709 .private = LIMIT_LOW
,
1714 .flags
= CFTYPE_NOT_ON_ROOT
,
1715 .seq_show
= tg_print_limit
,
1716 .write
= tg_set_limit
,
1717 .private = LIMIT_MAX
,
1722 static void throtl_shutdown_wq(struct request_queue
*q
)
1724 struct throtl_data
*td
= q
->td
;
1726 cancel_work_sync(&td
->dispatch_work
);
1729 static struct blkcg_policy blkcg_policy_throtl
= {
1730 .dfl_cftypes
= throtl_files
,
1731 .legacy_cftypes
= throtl_legacy_files
,
1733 .pd_alloc_fn
= throtl_pd_alloc
,
1734 .pd_init_fn
= throtl_pd_init
,
1735 .pd_online_fn
= throtl_pd_online
,
1736 .pd_offline_fn
= throtl_pd_offline
,
1737 .pd_free_fn
= throtl_pd_free
,
1740 static unsigned long __tg_last_low_overflow_time(struct throtl_grp
*tg
)
1742 unsigned long rtime
= jiffies
, wtime
= jiffies
;
1744 if (tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
])
1745 rtime
= tg
->last_low_overflow_time
[READ
];
1746 if (tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
])
1747 wtime
= tg
->last_low_overflow_time
[WRITE
];
1748 return min(rtime
, wtime
);
1751 /* tg should not be an intermediate node */
1752 static unsigned long tg_last_low_overflow_time(struct throtl_grp
*tg
)
1754 struct throtl_service_queue
*parent_sq
;
1755 struct throtl_grp
*parent
= tg
;
1756 unsigned long ret
= __tg_last_low_overflow_time(tg
);
1759 parent_sq
= parent
->service_queue
.parent_sq
;
1760 parent
= sq_to_tg(parent_sq
);
1765 * The parent doesn't have low limit, it always reaches low
1766 * limit. Its overflow time is useless for children
1768 if (!parent
->bps
[READ
][LIMIT_LOW
] &&
1769 !parent
->iops
[READ
][LIMIT_LOW
] &&
1770 !parent
->bps
[WRITE
][LIMIT_LOW
] &&
1771 !parent
->iops
[WRITE
][LIMIT_LOW
])
1773 if (time_after(__tg_last_low_overflow_time(parent
), ret
))
1774 ret
= __tg_last_low_overflow_time(parent
);
1779 static bool throtl_tg_is_idle(struct throtl_grp
*tg
)
1782 * cgroup is idle if:
1783 * - single idle is too long, longer than a fixed value (in case user
1784 * configure a too big threshold) or 4 times of idletime threshold
1785 * - average think time is more than threshold
1786 * - IO latency is largely below threshold
1791 time
= min_t(unsigned long, MAX_IDLE_TIME
, 4 * tg
->idletime_threshold
);
1792 ret
= tg
->latency_target
== DFL_LATENCY_TARGET
||
1793 tg
->idletime_threshold
== DFL_IDLE_THRESHOLD
||
1794 (ktime_get_ns() >> 10) - tg
->last_finish_time
> time
||
1795 tg
->avg_idletime
> tg
->idletime_threshold
||
1796 (tg
->latency_target
&& tg
->bio_cnt
&&
1797 tg
->bad_bio_cnt
* 5 < tg
->bio_cnt
);
1798 throtl_log(&tg
->service_queue
,
1799 "avg_idle=%ld, idle_threshold=%ld, bad_bio=%d, total_bio=%d, is_idle=%d, scale=%d",
1800 tg
->avg_idletime
, tg
->idletime_threshold
, tg
->bad_bio_cnt
,
1801 tg
->bio_cnt
, ret
, tg
->td
->scale
);
1805 static bool throtl_tg_can_upgrade(struct throtl_grp
*tg
)
1807 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1808 bool read_limit
, write_limit
;
1811 * if cgroup reaches low limit (if low limit is 0, the cgroup always
1812 * reaches), it's ok to upgrade to next limit
1814 read_limit
= tg
->bps
[READ
][LIMIT_LOW
] || tg
->iops
[READ
][LIMIT_LOW
];
1815 write_limit
= tg
->bps
[WRITE
][LIMIT_LOW
] || tg
->iops
[WRITE
][LIMIT_LOW
];
1816 if (!read_limit
&& !write_limit
)
1818 if (read_limit
&& sq
->nr_queued
[READ
] &&
1819 (!write_limit
|| sq
->nr_queued
[WRITE
]))
1821 if (write_limit
&& sq
->nr_queued
[WRITE
] &&
1822 (!read_limit
|| sq
->nr_queued
[READ
]))
1825 if (time_after_eq(jiffies
,
1826 tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
) &&
1827 throtl_tg_is_idle(tg
))
1832 static bool throtl_hierarchy_can_upgrade(struct throtl_grp
*tg
)
1835 if (throtl_tg_can_upgrade(tg
))
1837 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1838 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1844 static bool throtl_can_upgrade(struct throtl_data
*td
,
1845 struct throtl_grp
*this_tg
)
1847 struct cgroup_subsys_state
*pos_css
;
1848 struct blkcg_gq
*blkg
;
1850 if (td
->limit_index
!= LIMIT_LOW
)
1853 if (time_before(jiffies
, td
->low_downgrade_time
+ td
->throtl_slice
))
1857 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1858 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1862 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1864 if (!throtl_hierarchy_can_upgrade(tg
)) {
1873 static void throtl_upgrade_check(struct throtl_grp
*tg
)
1875 unsigned long now
= jiffies
;
1877 if (tg
->td
->limit_index
!= LIMIT_LOW
)
1880 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1883 tg
->last_check_time
= now
;
1885 if (!time_after_eq(now
,
1886 __tg_last_low_overflow_time(tg
) + tg
->td
->throtl_slice
))
1889 if (throtl_can_upgrade(tg
->td
, NULL
))
1890 throtl_upgrade_state(tg
->td
);
1893 static void throtl_upgrade_state(struct throtl_data
*td
)
1895 struct cgroup_subsys_state
*pos_css
;
1896 struct blkcg_gq
*blkg
;
1898 throtl_log(&td
->service_queue
, "upgrade to max");
1899 td
->limit_index
= LIMIT_MAX
;
1900 td
->low_upgrade_time
= jiffies
;
1903 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
) {
1904 struct throtl_grp
*tg
= blkg_to_tg(blkg
);
1905 struct throtl_service_queue
*sq
= &tg
->service_queue
;
1907 tg
->disptime
= jiffies
- 1;
1908 throtl_select_dispatch(sq
);
1909 throtl_schedule_next_dispatch(sq
, true);
1912 throtl_select_dispatch(&td
->service_queue
);
1913 throtl_schedule_next_dispatch(&td
->service_queue
, true);
1914 queue_work(kthrotld_workqueue
, &td
->dispatch_work
);
1917 static void throtl_downgrade_state(struct throtl_data
*td
, int new)
1921 throtl_log(&td
->service_queue
, "downgrade, scale %d", td
->scale
);
1923 td
->low_upgrade_time
= jiffies
- td
->scale
* td
->throtl_slice
;
1927 td
->limit_index
= new;
1928 td
->low_downgrade_time
= jiffies
;
1931 static bool throtl_tg_can_downgrade(struct throtl_grp
*tg
)
1933 struct throtl_data
*td
= tg
->td
;
1934 unsigned long now
= jiffies
;
1937 * If cgroup is below low limit, consider downgrade and throttle other
1940 if (time_after_eq(now
, td
->low_upgrade_time
+ td
->throtl_slice
) &&
1941 time_after_eq(now
, tg_last_low_overflow_time(tg
) +
1942 td
->throtl_slice
) &&
1943 (!throtl_tg_is_idle(tg
) ||
1944 !list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
)))
1949 static bool throtl_hierarchy_can_downgrade(struct throtl_grp
*tg
)
1952 if (!throtl_tg_can_downgrade(tg
))
1954 tg
= sq_to_tg(tg
->service_queue
.parent_sq
);
1955 if (!tg
|| !tg_to_blkg(tg
)->parent
)
1961 static void throtl_downgrade_check(struct throtl_grp
*tg
)
1965 unsigned long elapsed_time
;
1966 unsigned long now
= jiffies
;
1968 if (tg
->td
->limit_index
!= LIMIT_MAX
||
1969 !tg
->td
->limit_valid
[LIMIT_LOW
])
1971 if (!list_empty(&tg_to_blkg(tg
)->blkcg
->css
.children
))
1973 if (time_after(tg
->last_check_time
+ tg
->td
->throtl_slice
, now
))
1976 elapsed_time
= now
- tg
->last_check_time
;
1977 tg
->last_check_time
= now
;
1979 if (time_before(now
, tg_last_low_overflow_time(tg
) +
1980 tg
->td
->throtl_slice
))
1983 if (tg
->bps
[READ
][LIMIT_LOW
]) {
1984 bps
= tg
->last_bytes_disp
[READ
] * HZ
;
1985 do_div(bps
, elapsed_time
);
1986 if (bps
>= tg
->bps
[READ
][LIMIT_LOW
])
1987 tg
->last_low_overflow_time
[READ
] = now
;
1990 if (tg
->bps
[WRITE
][LIMIT_LOW
]) {
1991 bps
= tg
->last_bytes_disp
[WRITE
] * HZ
;
1992 do_div(bps
, elapsed_time
);
1993 if (bps
>= tg
->bps
[WRITE
][LIMIT_LOW
])
1994 tg
->last_low_overflow_time
[WRITE
] = now
;
1997 if (tg
->iops
[READ
][LIMIT_LOW
]) {
1998 iops
= tg
->last_io_disp
[READ
] * HZ
/ elapsed_time
;
1999 if (iops
>= tg
->iops
[READ
][LIMIT_LOW
])
2000 tg
->last_low_overflow_time
[READ
] = now
;
2003 if (tg
->iops
[WRITE
][LIMIT_LOW
]) {
2004 iops
= tg
->last_io_disp
[WRITE
] * HZ
/ elapsed_time
;
2005 if (iops
>= tg
->iops
[WRITE
][LIMIT_LOW
])
2006 tg
->last_low_overflow_time
[WRITE
] = now
;
2010 * If cgroup is below low limit, consider downgrade and throttle other
2013 if (throtl_hierarchy_can_downgrade(tg
))
2014 throtl_downgrade_state(tg
->td
, LIMIT_LOW
);
2016 tg
->last_bytes_disp
[READ
] = 0;
2017 tg
->last_bytes_disp
[WRITE
] = 0;
2018 tg
->last_io_disp
[READ
] = 0;
2019 tg
->last_io_disp
[WRITE
] = 0;
2022 static void blk_throtl_update_idletime(struct throtl_grp
*tg
)
2024 unsigned long now
= ktime_get_ns() >> 10;
2025 unsigned long last_finish_time
= tg
->last_finish_time
;
2027 if (now
<= last_finish_time
|| last_finish_time
== 0 ||
2028 last_finish_time
== tg
->checked_last_finish_time
)
2031 tg
->avg_idletime
= (tg
->avg_idletime
* 7 + now
- last_finish_time
) >> 3;
2032 tg
->checked_last_finish_time
= last_finish_time
;
2035 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2036 static void throtl_update_latency_buckets(struct throtl_data
*td
)
2038 struct avg_latency_bucket avg_latency
[2][LATENCY_BUCKET_SIZE
];
2040 unsigned long last_latency
[2] = { 0 };
2041 unsigned long latency
[2];
2043 if (!blk_queue_nonrot(td
->queue
))
2045 if (time_before(jiffies
, td
->last_calculate_time
+ HZ
))
2047 td
->last_calculate_time
= jiffies
;
2049 memset(avg_latency
, 0, sizeof(avg_latency
));
2050 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2051 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2052 struct latency_bucket
*tmp
= &td
->tmp_buckets
[rw
][i
];
2054 for_each_possible_cpu(cpu
) {
2055 struct latency_bucket
*bucket
;
2057 /* this isn't race free, but ok in practice */
2058 bucket
= per_cpu_ptr(td
->latency_buckets
[rw
],
2060 tmp
->total_latency
+= bucket
[i
].total_latency
;
2061 tmp
->samples
+= bucket
[i
].samples
;
2062 bucket
[i
].total_latency
= 0;
2063 bucket
[i
].samples
= 0;
2066 if (tmp
->samples
>= 32) {
2067 int samples
= tmp
->samples
;
2069 latency
[rw
] = tmp
->total_latency
;
2071 tmp
->total_latency
= 0;
2073 latency
[rw
] /= samples
;
2074 if (latency
[rw
] == 0)
2076 avg_latency
[rw
][i
].latency
= latency
[rw
];
2081 for (rw
= READ
; rw
<= WRITE
; rw
++) {
2082 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2083 if (!avg_latency
[rw
][i
].latency
) {
2084 if (td
->avg_buckets
[rw
][i
].latency
< last_latency
[rw
])
2085 td
->avg_buckets
[rw
][i
].latency
=
2090 if (!td
->avg_buckets
[rw
][i
].valid
)
2091 latency
[rw
] = avg_latency
[rw
][i
].latency
;
2093 latency
[rw
] = (td
->avg_buckets
[rw
][i
].latency
* 7 +
2094 avg_latency
[rw
][i
].latency
) >> 3;
2096 td
->avg_buckets
[rw
][i
].latency
= max(latency
[rw
],
2098 td
->avg_buckets
[rw
][i
].valid
= true;
2099 last_latency
[rw
] = td
->avg_buckets
[rw
][i
].latency
;
2103 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++)
2104 throtl_log(&td
->service_queue
,
2105 "Latency bucket %d: read latency=%ld, read valid=%d, "
2106 "write latency=%ld, write valid=%d", i
,
2107 td
->avg_buckets
[READ
][i
].latency
,
2108 td
->avg_buckets
[READ
][i
].valid
,
2109 td
->avg_buckets
[WRITE
][i
].latency
,
2110 td
->avg_buckets
[WRITE
][i
].valid
);
2113 static inline void throtl_update_latency_buckets(struct throtl_data
*td
)
2118 static void blk_throtl_assoc_bio(struct throtl_grp
*tg
, struct bio
*bio
)
2120 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2121 /* fallback to root_blkg if we fail to get a blkg ref */
2122 if (bio
->bi_css
&& (bio_associate_blkg(bio
, tg_to_blkg(tg
)) == -ENODEV
))
2123 bio_associate_blkg(bio
, bio
->bi_disk
->queue
->root_blkg
);
2124 bio_issue_init(&bio
->bi_issue
, bio_sectors(bio
));
2128 bool blk_throtl_bio(struct request_queue
*q
, struct blkcg_gq
*blkg
,
2131 struct throtl_qnode
*qn
= NULL
;
2132 struct throtl_grp
*tg
= blkg_to_tg(blkg
?: q
->root_blkg
);
2133 struct throtl_service_queue
*sq
;
2134 bool rw
= bio_data_dir(bio
);
2135 bool throttled
= false;
2136 struct throtl_data
*td
= tg
->td
;
2138 WARN_ON_ONCE(!rcu_read_lock_held());
2140 /* see throtl_charge_bio() */
2141 if (bio_flagged(bio
, BIO_THROTTLED
) || !tg
->has_rules
[rw
])
2144 spin_lock_irq(q
->queue_lock
);
2146 throtl_update_latency_buckets(td
);
2148 if (unlikely(blk_queue_bypass(q
)))
2151 blk_throtl_assoc_bio(tg
, bio
);
2152 blk_throtl_update_idletime(tg
);
2154 sq
= &tg
->service_queue
;
2158 if (tg
->last_low_overflow_time
[rw
] == 0)
2159 tg
->last_low_overflow_time
[rw
] = jiffies
;
2160 throtl_downgrade_check(tg
);
2161 throtl_upgrade_check(tg
);
2162 /* throtl is FIFO - if bios are already queued, should queue */
2163 if (sq
->nr_queued
[rw
])
2166 /* if above limits, break to queue */
2167 if (!tg_may_dispatch(tg
, bio
, NULL
)) {
2168 tg
->last_low_overflow_time
[rw
] = jiffies
;
2169 if (throtl_can_upgrade(td
, tg
)) {
2170 throtl_upgrade_state(td
);
2176 /* within limits, let's charge and dispatch directly */
2177 throtl_charge_bio(tg
, bio
);
2180 * We need to trim slice even when bios are not being queued
2181 * otherwise it might happen that a bio is not queued for
2182 * a long time and slice keeps on extending and trim is not
2183 * called for a long time. Now if limits are reduced suddenly
2184 * we take into account all the IO dispatched so far at new
2185 * low rate and * newly queued IO gets a really long dispatch
2188 * So keep on trimming slice even if bio is not queued.
2190 throtl_trim_slice(tg
, rw
);
2193 * @bio passed through this layer without being throttled.
2194 * Climb up the ladder. If we''re already at the top, it
2195 * can be executed directly.
2197 qn
= &tg
->qnode_on_parent
[rw
];
2204 /* out-of-limit, queue to @tg */
2205 throtl_log(sq
, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
2206 rw
== READ
? 'R' : 'W',
2207 tg
->bytes_disp
[rw
], bio
->bi_iter
.bi_size
,
2208 tg_bps_limit(tg
, rw
),
2209 tg
->io_disp
[rw
], tg_iops_limit(tg
, rw
),
2210 sq
->nr_queued
[READ
], sq
->nr_queued
[WRITE
]);
2212 tg
->last_low_overflow_time
[rw
] = jiffies
;
2214 td
->nr_queued
[rw
]++;
2215 throtl_add_bio_tg(bio
, qn
, tg
);
2219 * Update @tg's dispatch time and force schedule dispatch if @tg
2220 * was empty before @bio. The forced scheduling isn't likely to
2221 * cause undue delay as @bio is likely to be dispatched directly if
2222 * its @tg's disptime is not in the future.
2224 if (tg
->flags
& THROTL_TG_WAS_EMPTY
) {
2225 tg_update_disptime(tg
);
2226 throtl_schedule_next_dispatch(tg
->service_queue
.parent_sq
, true);
2230 spin_unlock_irq(q
->queue_lock
);
2232 bio_set_flag(bio
, BIO_THROTTLED
);
2234 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2235 if (throttled
|| !td
->track_bio_latency
)
2236 bio
->bi_issue
.value
|= BIO_ISSUE_THROTL_SKIP_LATENCY
;
2241 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2242 static void throtl_track_latency(struct throtl_data
*td
, sector_t size
,
2243 int op
, unsigned long time
)
2245 struct latency_bucket
*latency
;
2248 if (!td
|| td
->limit_index
!= LIMIT_LOW
||
2249 !(op
== REQ_OP_READ
|| op
== REQ_OP_WRITE
) ||
2250 !blk_queue_nonrot(td
->queue
))
2253 index
= request_bucket_index(size
);
2255 latency
= get_cpu_ptr(td
->latency_buckets
[op
]);
2256 latency
[index
].total_latency
+= time
;
2257 latency
[index
].samples
++;
2258 put_cpu_ptr(td
->latency_buckets
[op
]);
2261 void blk_throtl_stat_add(struct request
*rq
, u64 time_ns
)
2263 struct request_queue
*q
= rq
->q
;
2264 struct throtl_data
*td
= q
->td
;
2266 throtl_track_latency(td
, rq
->throtl_size
, req_op(rq
), time_ns
>> 10);
2269 void blk_throtl_bio_endio(struct bio
*bio
)
2271 struct blkcg_gq
*blkg
;
2272 struct throtl_grp
*tg
;
2274 unsigned long finish_time
;
2275 unsigned long start_time
;
2277 int rw
= bio_data_dir(bio
);
2279 blkg
= bio
->bi_blkg
;
2282 tg
= blkg_to_tg(blkg
);
2284 finish_time_ns
= ktime_get_ns();
2285 tg
->last_finish_time
= finish_time_ns
>> 10;
2287 start_time
= bio_issue_time(&bio
->bi_issue
) >> 10;
2288 finish_time
= __bio_issue_time(finish_time_ns
) >> 10;
2289 if (!start_time
|| finish_time
<= start_time
)
2292 lat
= finish_time
- start_time
;
2293 /* this is only for bio based driver */
2294 if (!(bio
->bi_issue
.value
& BIO_ISSUE_THROTL_SKIP_LATENCY
))
2295 throtl_track_latency(tg
->td
, bio_issue_size(&bio
->bi_issue
),
2298 if (tg
->latency_target
&& lat
>= tg
->td
->filtered_latency
) {
2300 unsigned int threshold
;
2302 bucket
= request_bucket_index(bio_issue_size(&bio
->bi_issue
));
2303 threshold
= tg
->td
->avg_buckets
[rw
][bucket
].latency
+
2305 if (lat
> threshold
)
2308 * Not race free, could get wrong count, which means cgroups
2314 if (time_after(jiffies
, tg
->bio_cnt_reset_time
) || tg
->bio_cnt
> 1024) {
2315 tg
->bio_cnt_reset_time
= tg
->td
->throtl_slice
+ jiffies
;
2317 tg
->bad_bio_cnt
/= 2;
2323 * Dispatch all bios from all children tg's queued on @parent_sq. On
2324 * return, @parent_sq is guaranteed to not have any active children tg's
2325 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
2327 static void tg_drain_bios(struct throtl_service_queue
*parent_sq
)
2329 struct throtl_grp
*tg
;
2331 while ((tg
= throtl_rb_first(parent_sq
))) {
2332 struct throtl_service_queue
*sq
= &tg
->service_queue
;
2335 throtl_dequeue_tg(tg
);
2337 while ((bio
= throtl_peek_queued(&sq
->queued
[READ
])))
2338 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2339 while ((bio
= throtl_peek_queued(&sq
->queued
[WRITE
])))
2340 tg_dispatch_one_bio(tg
, bio_data_dir(bio
));
2345 * blk_throtl_drain - drain throttled bios
2346 * @q: request_queue to drain throttled bios for
2348 * Dispatch all currently throttled bios on @q through ->make_request_fn().
2350 void blk_throtl_drain(struct request_queue
*q
)
2351 __releases(q
->queue_lock
) __acquires(q
->queue_lock
)
2353 struct throtl_data
*td
= q
->td
;
2354 struct blkcg_gq
*blkg
;
2355 struct cgroup_subsys_state
*pos_css
;
2359 queue_lockdep_assert_held(q
);
2363 * Drain each tg while doing post-order walk on the blkg tree, so
2364 * that all bios are propagated to td->service_queue. It'd be
2365 * better to walk service_queue tree directly but blkg walk is
2368 blkg_for_each_descendant_post(blkg
, pos_css
, td
->queue
->root_blkg
)
2369 tg_drain_bios(&blkg_to_tg(blkg
)->service_queue
);
2371 /* finally, transfer bios from top-level tg's into the td */
2372 tg_drain_bios(&td
->service_queue
);
2375 spin_unlock_irq(q
->queue_lock
);
2377 /* all bios now should be in td->service_queue, issue them */
2378 for (rw
= READ
; rw
<= WRITE
; rw
++)
2379 while ((bio
= throtl_pop_queued(&td
->service_queue
.queued
[rw
],
2381 generic_make_request(bio
);
2383 spin_lock_irq(q
->queue_lock
);
2386 int blk_throtl_init(struct request_queue
*q
)
2388 struct throtl_data
*td
;
2391 td
= kzalloc_node(sizeof(*td
), GFP_KERNEL
, q
->node
);
2394 td
->latency_buckets
[READ
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2395 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2396 if (!td
->latency_buckets
[READ
]) {
2400 td
->latency_buckets
[WRITE
] = __alloc_percpu(sizeof(struct latency_bucket
) *
2401 LATENCY_BUCKET_SIZE
, __alignof__(u64
));
2402 if (!td
->latency_buckets
[WRITE
]) {
2403 free_percpu(td
->latency_buckets
[READ
]);
2408 INIT_WORK(&td
->dispatch_work
, blk_throtl_dispatch_work_fn
);
2409 throtl_service_queue_init(&td
->service_queue
);
2414 td
->limit_valid
[LIMIT_MAX
] = true;
2415 td
->limit_index
= LIMIT_MAX
;
2416 td
->low_upgrade_time
= jiffies
;
2417 td
->low_downgrade_time
= jiffies
;
2419 /* activate policy */
2420 ret
= blkcg_activate_policy(q
, &blkcg_policy_throtl
);
2422 free_percpu(td
->latency_buckets
[READ
]);
2423 free_percpu(td
->latency_buckets
[WRITE
]);
2429 void blk_throtl_exit(struct request_queue
*q
)
2432 throtl_shutdown_wq(q
);
2433 blkcg_deactivate_policy(q
, &blkcg_policy_throtl
);
2434 free_percpu(q
->td
->latency_buckets
[READ
]);
2435 free_percpu(q
->td
->latency_buckets
[WRITE
]);
2439 void blk_throtl_register_queue(struct request_queue
*q
)
2441 struct throtl_data
*td
;
2447 if (blk_queue_nonrot(q
)) {
2448 td
->throtl_slice
= DFL_THROTL_SLICE_SSD
;
2449 td
->filtered_latency
= LATENCY_FILTERED_SSD
;
2451 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2452 td
->filtered_latency
= LATENCY_FILTERED_HD
;
2453 for (i
= 0; i
< LATENCY_BUCKET_SIZE
; i
++) {
2454 td
->avg_buckets
[READ
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2455 td
->avg_buckets
[WRITE
][i
].latency
= DFL_HD_BASELINE_LATENCY
;
2458 #ifndef CONFIG_BLK_DEV_THROTTLING_LOW
2459 /* if no low limit, use previous default */
2460 td
->throtl_slice
= DFL_THROTL_SLICE_HD
;
2463 td
->track_bio_latency
= !queue_is_rq_based(q
);
2464 if (!td
->track_bio_latency
)
2465 blk_stat_enable_accounting(q
);
2468 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
2469 ssize_t
blk_throtl_sample_time_show(struct request_queue
*q
, char *page
)
2473 return sprintf(page
, "%u\n", jiffies_to_msecs(q
->td
->throtl_slice
));
2476 ssize_t
blk_throtl_sample_time_store(struct request_queue
*q
,
2477 const char *page
, size_t count
)
2484 if (kstrtoul(page
, 10, &v
))
2486 t
= msecs_to_jiffies(v
);
2487 if (t
== 0 || t
> MAX_THROTL_SLICE
)
2489 q
->td
->throtl_slice
= t
;
2494 static int __init
throtl_init(void)
2496 kthrotld_workqueue
= alloc_workqueue("kthrotld", WQ_MEM_RECLAIM
, 0);
2497 if (!kthrotld_workqueue
)
2498 panic("Failed to create kthrotld\n");
2500 return blkcg_policy_register(&blkcg_policy_throtl
);
2503 module_init(throtl_init
);