1 #include <linux/init.h>
2 #include <linux/clocksource.h>
3 #include <linux/clockchips.h>
4 #include <linux/interrupt.h>
9 #include <linux/ioport.h>
11 #include <linux/platform_device.h>
12 #include <linux/atmel_tc.h>
16 * We're configured to use a specific TC block, one that's not hooked
17 * up to external hardware, to provide a time solution:
19 * - Two channels combine to create a free-running 32 bit counter
20 * with a base rate of 5+ MHz, packaged as a clocksource (with
21 * resolution better than 200 nsec).
22 * - Some chips support 32 bit counter. A single channel is used for
23 * this 32 bit free-running counter. the second channel is not used.
25 * - The third channel may be used to provide a 16-bit clockevent
26 * source, used in either periodic or oneshot mode. This runs
27 * at 32 KiHZ, and can handle delays of up to two seconds.
29 * A boot clocksource and clockevent source are also currently needed,
30 * unless the relevant platforms (ARM/AT91, AVR32/AT32) are changed so
31 * this code can be used when init_timers() is called, well before most
32 * devices are set up. (Some low end AT91 parts, which can run uClinux,
33 * have only the timers in one TC block... they currently don't support
34 * the tclib code, because of that initialization issue.)
36 * REVISIT behavior during system suspend states... we should disable
37 * all clocks and save the power. Easily done for clockevent devices,
38 * but clocksources won't necessarily get the needed notifications.
39 * For deeper system sleep states, this will be mandatory...
42 static void __iomem
*tcaddr
;
44 static cycle_t
tc_get_cycles(struct clocksource
*cs
)
49 raw_local_irq_save(flags
);
51 upper
= __raw_readl(tcaddr
+ ATMEL_TC_REG(1, CV
));
52 lower
= __raw_readl(tcaddr
+ ATMEL_TC_REG(0, CV
));
53 } while (upper
!= __raw_readl(tcaddr
+ ATMEL_TC_REG(1, CV
)));
55 raw_local_irq_restore(flags
);
56 return (upper
<< 16) | lower
;
59 static cycle_t
tc_get_cycles32(struct clocksource
*cs
)
61 return __raw_readl(tcaddr
+ ATMEL_TC_REG(0, CV
));
64 static struct clocksource clksrc
= {
67 .read
= tc_get_cycles
,
68 .mask
= CLOCKSOURCE_MASK(32),
69 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
72 #ifdef CONFIG_GENERIC_CLOCKEVENTS
74 struct tc_clkevt_device
{
75 struct clock_event_device clkevt
;
80 static struct tc_clkevt_device
*to_tc_clkevt(struct clock_event_device
*clkevt
)
82 return container_of(clkevt
, struct tc_clkevt_device
, clkevt
);
85 /* For now, we always use the 32K clock ... this optimizes for NO_HZ,
86 * because using one of the divided clocks would usually mean the
87 * tick rate can never be less than several dozen Hz (vs 0.5 Hz).
89 * A divided clock could be good for high resolution timers, since
90 * 30.5 usec resolution can seem "low".
92 static u32 timer_clock
;
94 static void tc_mode(enum clock_event_mode m
, struct clock_event_device
*d
)
96 struct tc_clkevt_device
*tcd
= to_tc_clkevt(d
);
97 void __iomem
*regs
= tcd
->regs
;
99 if (tcd
->clkevt
.mode
== CLOCK_EVT_MODE_PERIODIC
100 || tcd
->clkevt
.mode
== CLOCK_EVT_MODE_ONESHOT
) {
101 __raw_writel(0xff, regs
+ ATMEL_TC_REG(2, IDR
));
102 __raw_writel(ATMEL_TC_CLKDIS
, regs
+ ATMEL_TC_REG(2, CCR
));
103 clk_disable(tcd
->clk
);
108 /* By not making the gentime core emulate periodic mode on top
109 * of oneshot, we get lower overhead and improved accuracy.
111 case CLOCK_EVT_MODE_PERIODIC
:
112 clk_enable(tcd
->clk
);
114 /* slow clock, count up to RC, then irq and restart */
115 __raw_writel(timer_clock
116 | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
117 regs
+ ATMEL_TC_REG(2, CMR
));
118 __raw_writel((32768 + HZ
/2) / HZ
, tcaddr
+ ATMEL_TC_REG(2, RC
));
120 /* Enable clock and interrupts on RC compare */
121 __raw_writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
124 __raw_writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
125 regs
+ ATMEL_TC_REG(2, CCR
));
128 case CLOCK_EVT_MODE_ONESHOT
:
129 clk_enable(tcd
->clk
);
131 /* slow clock, count up to RC, then irq and stop */
132 __raw_writel(timer_clock
| ATMEL_TC_CPCSTOP
133 | ATMEL_TC_WAVE
| ATMEL_TC_WAVESEL_UP_AUTO
,
134 regs
+ ATMEL_TC_REG(2, CMR
));
135 __raw_writel(ATMEL_TC_CPCS
, regs
+ ATMEL_TC_REG(2, IER
));
137 /* set_next_event() configures and starts the timer */
145 static int tc_next_event(unsigned long delta
, struct clock_event_device
*d
)
147 __raw_writel(delta
, tcaddr
+ ATMEL_TC_REG(2, RC
));
150 __raw_writel(ATMEL_TC_CLKEN
| ATMEL_TC_SWTRG
,
151 tcaddr
+ ATMEL_TC_REG(2, CCR
));
155 static struct tc_clkevt_device clkevt
= {
158 .features
= CLOCK_EVT_FEAT_PERIODIC
159 | CLOCK_EVT_FEAT_ONESHOT
,
161 /* Should be lower than at91rm9200's system timer */
163 .set_next_event
= tc_next_event
,
168 static irqreturn_t
ch2_irq(int irq
, void *handle
)
170 struct tc_clkevt_device
*dev
= handle
;
173 sr
= __raw_readl(dev
->regs
+ ATMEL_TC_REG(2, SR
));
174 if (sr
& ATMEL_TC_CPCS
) {
175 dev
->clkevt
.event_handler(&dev
->clkevt
);
182 static struct irqaction tc_irqaction
= {
184 .flags
= IRQF_TIMER
| IRQF_DISABLED
,
188 static void __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
190 struct clk
*t2_clk
= tc
->clk
[2];
191 int irq
= tc
->irq
[2];
193 clkevt
.regs
= tc
->regs
;
195 tc_irqaction
.dev_id
= &clkevt
;
197 timer_clock
= clk32k_divisor_idx
;
199 clkevt
.clkevt
.mult
= div_sc(32768, NSEC_PER_SEC
, clkevt
.clkevt
.shift
);
200 clkevt
.clkevt
.max_delta_ns
201 = clockevent_delta2ns(0xffff, &clkevt
.clkevt
);
202 clkevt
.clkevt
.min_delta_ns
= clockevent_delta2ns(1, &clkevt
.clkevt
) + 1;
203 clkevt
.clkevt
.cpumask
= cpumask_of(0);
205 clockevents_register_device(&clkevt
.clkevt
);
207 setup_irq(irq
, &tc_irqaction
);
210 #else /* !CONFIG_GENERIC_CLOCKEVENTS */
212 static void __init
setup_clkevents(struct atmel_tc
*tc
, int clk32k_divisor_idx
)
219 static void __init
tcb_setup_dual_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
221 /* channel 0: waveform mode, input mclk/8, clock TIOA0 on overflow */
222 __raw_writel(mck_divisor_idx
/* likely divide-by-8 */
224 | ATMEL_TC_WAVESEL_UP
/* free-run */
225 | ATMEL_TC_ACPA_SET
/* TIOA0 rises at 0 */
226 | ATMEL_TC_ACPC_CLEAR
, /* (duty cycle 50%) */
227 tcaddr
+ ATMEL_TC_REG(0, CMR
));
228 __raw_writel(0x0000, tcaddr
+ ATMEL_TC_REG(0, RA
));
229 __raw_writel(0x8000, tcaddr
+ ATMEL_TC_REG(0, RC
));
230 __raw_writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
231 __raw_writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
233 /* channel 1: waveform mode, input TIOA0 */
234 __raw_writel(ATMEL_TC_XC1
/* input: TIOA0 */
236 | ATMEL_TC_WAVESEL_UP
, /* free-run */
237 tcaddr
+ ATMEL_TC_REG(1, CMR
));
238 __raw_writel(0xff, tcaddr
+ ATMEL_TC_REG(1, IDR
)); /* no irqs */
239 __raw_writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(1, CCR
));
241 /* chain channel 0 to channel 1*/
242 __raw_writel(ATMEL_TC_TC1XC1S_TIOA0
, tcaddr
+ ATMEL_TC_BMR
);
243 /* then reset all the timers */
244 __raw_writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
247 static void __init
tcb_setup_single_chan(struct atmel_tc
*tc
, int mck_divisor_idx
)
249 /* channel 0: waveform mode, input mclk/8 */
250 __raw_writel(mck_divisor_idx
/* likely divide-by-8 */
252 | ATMEL_TC_WAVESEL_UP
, /* free-run */
253 tcaddr
+ ATMEL_TC_REG(0, CMR
));
254 __raw_writel(0xff, tcaddr
+ ATMEL_TC_REG(0, IDR
)); /* no irqs */
255 __raw_writel(ATMEL_TC_CLKEN
, tcaddr
+ ATMEL_TC_REG(0, CCR
));
257 /* then reset all the timers */
258 __raw_writel(ATMEL_TC_SYNC
, tcaddr
+ ATMEL_TC_BCR
);
261 static int __init
tcb_clksrc_init(void)
263 static char bootinfo
[] __initdata
264 = KERN_DEBUG
"%s: tc%d at %d.%03d MHz\n";
266 struct platform_device
*pdev
;
269 u32 rate
, divided_rate
= 0;
270 int best_divisor_idx
= -1;
271 int clk32k_divisor_idx
= -1;
274 tc
= atmel_tc_alloc(CONFIG_ATMEL_TCB_CLKSRC_BLOCK
, clksrc
.name
);
276 pr_debug("can't alloc TC for clocksource\n");
285 /* How fast will we be counting? Pick something over 5 MHz. */
286 rate
= (u32
) clk_get_rate(t0_clk
);
287 for (i
= 0; i
< 5; i
++) {
288 unsigned divisor
= atmel_tc_divisors
[i
];
291 /* remember 32 KiHz clock for later */
293 clk32k_divisor_idx
= i
;
297 tmp
= rate
/ divisor
;
298 pr_debug("TC: %u / %-3u [%d] --> %u\n", rate
, divisor
, i
, tmp
);
299 if (best_divisor_idx
> 0) {
300 if (tmp
< 5 * 1000 * 1000)
304 best_divisor_idx
= i
;
308 printk(bootinfo
, clksrc
.name
, CONFIG_ATMEL_TCB_CLKSRC_BLOCK
,
309 divided_rate
/ 1000000,
310 ((divided_rate
+ 500000) % 1000000) / 1000);
312 if (tc
->tcb_config
&& tc
->tcb_config
->counter_width
== 32) {
313 /* use apropriate function to read 32 bit counter */
314 clksrc
.read
= tc_get_cycles32
;
315 /* setup ony channel 0 */
316 tcb_setup_single_chan(tc
, best_divisor_idx
);
318 /* tclib will give us three clocks no matter what the
319 * underlying platform supports.
321 clk_enable(tc
->clk
[1]);
322 /* setup both channel 0 & 1 */
323 tcb_setup_dual_chan(tc
, best_divisor_idx
);
326 /* and away we go! */
327 clocksource_register_hz(&clksrc
, divided_rate
);
329 /* channel 2: periodic and oneshot timer support */
330 setup_clkevents(tc
, clk32k_divisor_idx
);
334 arch_initcall(tcb_clksrc_init
);