kobject: introduce kobj_completion
[linux/fpc-iii.git] / drivers / firewire / ohci.c
blob6aa8a86cb83b33223aa7e2d26db2308aa440bdd8
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
54 #include "core.h"
55 #include "ohci.h"
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
75 #define DESCRIPTOR_CMD (0xf << 12)
77 struct descriptor {
78 __le16 req_count;
79 __le16 control;
80 __le32 data_address;
81 __le32 branch_address;
82 __le16 res_count;
83 __le16 transfer_status;
84 } __attribute__((aligned(16)));
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
100 struct ar_context {
101 struct fw_ohci *ohci;
102 struct page *pages[AR_BUFFERS];
103 void *buffer;
104 struct descriptor *descriptors;
105 dma_addr_t descriptors_bus;
106 void *pointer;
107 unsigned int last_buffer_index;
108 u32 regs;
109 struct tasklet_struct tasklet;
112 struct context;
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115 struct descriptor *d,
116 struct descriptor *last);
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
122 struct descriptor_buffer {
123 struct list_head list;
124 dma_addr_t buffer_bus;
125 size_t buffer_size;
126 size_t used;
127 struct descriptor buffer[0];
130 struct context {
131 struct fw_ohci *ohci;
132 u32 regs;
133 int total_allocation;
134 u32 current_bus;
135 bool running;
136 bool flushing;
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
141 * free buffers.
143 struct list_head buffer_list;
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
149 struct descriptor_buffer *buffer_tail;
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
155 struct descriptor *last;
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
161 struct descriptor *prev;
162 int prev_z;
164 descriptor_callback_t callback;
166 struct tasklet_struct tasklet;
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
176 struct iso_context {
177 struct fw_iso_context base;
178 struct context context;
179 void *header;
180 size_t header_length;
181 unsigned long flushing_completions;
182 u32 mc_buffer_bus;
183 u16 mc_completed;
184 u16 last_timestamp;
185 u8 sync;
186 u8 tags;
189 #define CONFIG_ROM_SIZE 1024
191 struct fw_ohci {
192 struct fw_card card;
194 __iomem char *registers;
195 int node_id;
196 int generation;
197 int request_generation; /* for timestamping incoming requests */
198 unsigned quirks;
199 unsigned int pri_req_max;
200 u32 bus_time;
201 bool bus_time_running;
202 bool is_root;
203 bool csr_state_setclear_abdicate;
204 int n_ir;
205 int n_it;
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
210 spinlock_t lock;
212 struct mutex phy_reg_mutex;
214 void *misc_buffer;
215 dma_addr_t misc_buffer_bus;
217 struct ar_context ar_request_ctx;
218 struct ar_context ar_response_ctx;
219 struct context at_request_ctx;
220 struct context at_response_ctx;
222 u32 it_context_support;
223 u32 it_context_mask; /* unoccupied IT contexts */
224 struct iso_context *it_context_list;
225 u64 ir_context_channels; /* unoccupied channels */
226 u32 ir_context_support;
227 u32 ir_context_mask; /* unoccupied IR contexts */
228 struct iso_context *ir_context_list;
229 u64 mc_channels; /* channels in use by the multichannel IR context */
230 bool mc_allocated;
232 __be32 *config_rom;
233 dma_addr_t config_rom_bus;
234 __be32 *next_config_rom;
235 dma_addr_t next_config_rom_bus;
236 __be32 next_header;
238 __le32 *self_id;
239 dma_addr_t self_id_bus;
240 struct work_struct bus_reset_work;
242 u32 self_id_buffer[512];
245 static struct workqueue_struct *selfid_workqueue;
247 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
249 return container_of(card, struct fw_ohci, card);
252 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
253 #define IR_CONTEXT_BUFFER_FILL 0x80000000
254 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
255 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
256 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
257 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
259 #define CONTEXT_RUN 0x8000
260 #define CONTEXT_WAKE 0x1000
261 #define CONTEXT_DEAD 0x0800
262 #define CONTEXT_ACTIVE 0x0400
264 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
265 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
266 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
268 #define OHCI1394_REGISTER_SIZE 0x800
269 #define OHCI1394_PCI_HCI_Control 0x40
270 #define SELF_ID_BUF_SIZE 0x800
271 #define OHCI_TCODE_PHY_PACKET 0x0e
272 #define OHCI_VERSION_1_1 0x010010
274 static char ohci_driver_name[] = KBUILD_MODNAME;
276 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
277 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
278 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
279 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
280 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
281 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
282 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
283 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
284 #define PCI_REV_ID_VIA_VT6306 0x46
286 #define QUIRK_CYCLE_TIMER 0x1
287 #define QUIRK_RESET_PACKET 0x2
288 #define QUIRK_BE_HEADERS 0x4
289 #define QUIRK_NO_1394A 0x8
290 #define QUIRK_NO_MSI 0x10
291 #define QUIRK_TI_SLLZ059 0x20
292 #define QUIRK_IR_WAKE 0x40
293 #define QUIRK_PHY_LCTRL_TIMEOUT 0x80
295 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
296 static const struct {
297 unsigned short vendor, device, revision, flags;
298 } ohci_quirks[] = {
299 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
300 QUIRK_CYCLE_TIMER},
302 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
303 QUIRK_BE_HEADERS},
305 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
306 QUIRK_PHY_LCTRL_TIMEOUT | QUIRK_NO_MSI},
308 {PCI_VENDOR_ID_ATT, PCI_ANY_ID, PCI_ANY_ID,
309 QUIRK_PHY_LCTRL_TIMEOUT},
311 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
312 QUIRK_RESET_PACKET},
314 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
315 QUIRK_NO_MSI},
317 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
318 QUIRK_CYCLE_TIMER},
320 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
321 QUIRK_NO_MSI},
323 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
324 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
326 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
327 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
329 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
330 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
332 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
333 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
335 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
336 QUIRK_RESET_PACKET},
338 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
339 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
341 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
342 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
345 /* This overrides anything that was found in ohci_quirks[]. */
346 static int param_quirks;
347 module_param_named(quirks, param_quirks, int, 0644);
348 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
349 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
350 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
351 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
352 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
353 ", disable MSI = " __stringify(QUIRK_NO_MSI)
354 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
355 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
356 ", phy LCtrl timeout = " __stringify(QUIRK_PHY_LCTRL_TIMEOUT)
357 ")");
359 #define OHCI_PARAM_DEBUG_AT_AR 1
360 #define OHCI_PARAM_DEBUG_SELFIDS 2
361 #define OHCI_PARAM_DEBUG_IRQS 4
362 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
364 static int param_debug;
365 module_param_named(debug, param_debug, int, 0644);
366 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
367 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
368 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
369 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
370 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
371 ", or a combination, or all = -1)");
373 static void log_irqs(struct fw_ohci *ohci, u32 evt)
375 if (likely(!(param_debug &
376 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
377 return;
379 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
380 !(evt & OHCI1394_busReset))
381 return;
383 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
384 evt & OHCI1394_selfIDComplete ? " selfID" : "",
385 evt & OHCI1394_RQPkt ? " AR_req" : "",
386 evt & OHCI1394_RSPkt ? " AR_resp" : "",
387 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
388 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
389 evt & OHCI1394_isochRx ? " IR" : "",
390 evt & OHCI1394_isochTx ? " IT" : "",
391 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
392 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
393 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
394 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
395 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
396 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
397 evt & OHCI1394_busReset ? " busReset" : "",
398 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
399 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
400 OHCI1394_respTxComplete | OHCI1394_isochRx |
401 OHCI1394_isochTx | OHCI1394_postedWriteErr |
402 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
403 OHCI1394_cycleInconsistent |
404 OHCI1394_regAccessFail | OHCI1394_busReset)
405 ? " ?" : "");
408 static const char *speed[] = {
409 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
411 static const char *power[] = {
412 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
413 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
415 static const char port[] = { '.', '-', 'p', 'c', };
417 static char _p(u32 *s, int shift)
419 return port[*s >> shift & 3];
422 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
424 u32 *s;
426 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
427 return;
429 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
430 self_id_count, generation, ohci->node_id);
432 for (s = ohci->self_id_buffer; self_id_count--; ++s)
433 if ((*s & 1 << 23) == 0)
434 ohci_notice(ohci,
435 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
436 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
437 speed[*s >> 14 & 3], *s >> 16 & 63,
438 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
439 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
440 else
441 ohci_notice(ohci,
442 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
443 *s, *s >> 24 & 63,
444 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
445 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
448 static const char *evts[] = {
449 [0x00] = "evt_no_status", [0x01] = "-reserved-",
450 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
451 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
452 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
453 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
454 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
455 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
456 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
457 [0x10] = "-reserved-", [0x11] = "ack_complete",
458 [0x12] = "ack_pending ", [0x13] = "-reserved-",
459 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
460 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
461 [0x18] = "-reserved-", [0x19] = "-reserved-",
462 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
463 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
464 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
465 [0x20] = "pending/cancelled",
467 static const char *tcodes[] = {
468 [0x0] = "QW req", [0x1] = "BW req",
469 [0x2] = "W resp", [0x3] = "-reserved-",
470 [0x4] = "QR req", [0x5] = "BR req",
471 [0x6] = "QR resp", [0x7] = "BR resp",
472 [0x8] = "cycle start", [0x9] = "Lk req",
473 [0xa] = "async stream packet", [0xb] = "Lk resp",
474 [0xc] = "-reserved-", [0xd] = "-reserved-",
475 [0xe] = "link internal", [0xf] = "-reserved-",
478 static void log_ar_at_event(struct fw_ohci *ohci,
479 char dir, int speed, u32 *header, int evt)
481 int tcode = header[0] >> 4 & 0xf;
482 char specific[12];
484 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
485 return;
487 if (unlikely(evt >= ARRAY_SIZE(evts)))
488 evt = 0x1f;
490 if (evt == OHCI1394_evt_bus_reset) {
491 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
492 dir, (header[2] >> 16) & 0xff);
493 return;
496 switch (tcode) {
497 case 0x0: case 0x6: case 0x8:
498 snprintf(specific, sizeof(specific), " = %08x",
499 be32_to_cpu((__force __be32)header[3]));
500 break;
501 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
502 snprintf(specific, sizeof(specific), " %x,%x",
503 header[3] >> 16, header[3] & 0xffff);
504 break;
505 default:
506 specific[0] = '\0';
509 switch (tcode) {
510 case 0xa:
511 ohci_notice(ohci, "A%c %s, %s\n",
512 dir, evts[evt], tcodes[tcode]);
513 break;
514 case 0xe:
515 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
516 dir, evts[evt], header[1], header[2]);
517 break;
518 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
519 ohci_notice(ohci,
520 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
521 dir, speed, header[0] >> 10 & 0x3f,
522 header[1] >> 16, header[0] >> 16, evts[evt],
523 tcodes[tcode], header[1] & 0xffff, header[2], specific);
524 break;
525 default:
526 ohci_notice(ohci,
527 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
528 dir, speed, header[0] >> 10 & 0x3f,
529 header[1] >> 16, header[0] >> 16, evts[evt],
530 tcodes[tcode], specific);
534 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
536 writel(data, ohci->registers + offset);
539 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
541 return readl(ohci->registers + offset);
544 static inline void flush_writes(const struct fw_ohci *ohci)
546 /* Do a dummy read to flush writes. */
547 reg_read(ohci, OHCI1394_Version);
551 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
552 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
553 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
554 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
556 static int read_phy_reg(struct fw_ohci *ohci, int addr)
558 u32 val;
559 int i;
561 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
562 for (i = 0; i < 3 + 100; i++) {
563 val = reg_read(ohci, OHCI1394_PhyControl);
564 if (!~val)
565 return -ENODEV; /* Card was ejected. */
567 if (val & OHCI1394_PhyControl_ReadDone)
568 return OHCI1394_PhyControl_ReadData(val);
571 * Try a few times without waiting. Sleeping is necessary
572 * only when the link/PHY interface is busy.
574 if (i >= 3)
575 msleep(1);
577 ohci_err(ohci, "failed to read phy reg %d\n", addr);
578 dump_stack();
580 return -EBUSY;
583 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
585 int i;
587 reg_write(ohci, OHCI1394_PhyControl,
588 OHCI1394_PhyControl_Write(addr, val));
589 for (i = 0; i < 3 + 100; i++) {
590 val = reg_read(ohci, OHCI1394_PhyControl);
591 if (!~val)
592 return -ENODEV; /* Card was ejected. */
594 if (!(val & OHCI1394_PhyControl_WritePending))
595 return 0;
597 if (i >= 3)
598 msleep(1);
600 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
601 dump_stack();
603 return -EBUSY;
606 static int update_phy_reg(struct fw_ohci *ohci, int addr,
607 int clear_bits, int set_bits)
609 int ret = read_phy_reg(ohci, addr);
610 if (ret < 0)
611 return ret;
614 * The interrupt status bits are cleared by writing a one bit.
615 * Avoid clearing them unless explicitly requested in set_bits.
617 if (addr == 5)
618 clear_bits |= PHY_INT_STATUS_BITS;
620 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
623 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
625 int ret;
627 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
628 if (ret < 0)
629 return ret;
631 return read_phy_reg(ohci, addr);
634 static int ohci_read_phy_reg(struct fw_card *card, int addr)
636 struct fw_ohci *ohci = fw_ohci(card);
637 int ret;
639 mutex_lock(&ohci->phy_reg_mutex);
640 ret = read_phy_reg(ohci, addr);
641 mutex_unlock(&ohci->phy_reg_mutex);
643 return ret;
646 static int ohci_update_phy_reg(struct fw_card *card, int addr,
647 int clear_bits, int set_bits)
649 struct fw_ohci *ohci = fw_ohci(card);
650 int ret;
652 mutex_lock(&ohci->phy_reg_mutex);
653 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
654 mutex_unlock(&ohci->phy_reg_mutex);
656 return ret;
659 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
661 return page_private(ctx->pages[i]);
664 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
666 struct descriptor *d;
668 d = &ctx->descriptors[index];
669 d->branch_address &= cpu_to_le32(~0xf);
670 d->res_count = cpu_to_le16(PAGE_SIZE);
671 d->transfer_status = 0;
673 wmb(); /* finish init of new descriptors before branch_address update */
674 d = &ctx->descriptors[ctx->last_buffer_index];
675 d->branch_address |= cpu_to_le32(1);
677 ctx->last_buffer_index = index;
679 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
682 static void ar_context_release(struct ar_context *ctx)
684 unsigned int i;
686 if (ctx->buffer)
687 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
689 for (i = 0; i < AR_BUFFERS; i++)
690 if (ctx->pages[i]) {
691 dma_unmap_page(ctx->ohci->card.device,
692 ar_buffer_bus(ctx, i),
693 PAGE_SIZE, DMA_FROM_DEVICE);
694 __free_page(ctx->pages[i]);
698 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
700 struct fw_ohci *ohci = ctx->ohci;
702 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
703 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
704 flush_writes(ohci);
706 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
708 /* FIXME: restart? */
711 static inline unsigned int ar_next_buffer_index(unsigned int index)
713 return (index + 1) % AR_BUFFERS;
716 static inline unsigned int ar_prev_buffer_index(unsigned int index)
718 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
721 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
723 return ar_next_buffer_index(ctx->last_buffer_index);
727 * We search for the buffer that contains the last AR packet DMA data written
728 * by the controller.
730 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
731 unsigned int *buffer_offset)
733 unsigned int i, next_i, last = ctx->last_buffer_index;
734 __le16 res_count, next_res_count;
736 i = ar_first_buffer_index(ctx);
737 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
739 /* A buffer that is not yet completely filled must be the last one. */
740 while (i != last && res_count == 0) {
742 /* Peek at the next descriptor. */
743 next_i = ar_next_buffer_index(i);
744 rmb(); /* read descriptors in order */
745 next_res_count = ACCESS_ONCE(
746 ctx->descriptors[next_i].res_count);
748 * If the next descriptor is still empty, we must stop at this
749 * descriptor.
751 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
753 * The exception is when the DMA data for one packet is
754 * split over three buffers; in this case, the middle
755 * buffer's descriptor might be never updated by the
756 * controller and look still empty, and we have to peek
757 * at the third one.
759 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
760 next_i = ar_next_buffer_index(next_i);
761 rmb();
762 next_res_count = ACCESS_ONCE(
763 ctx->descriptors[next_i].res_count);
764 if (next_res_count != cpu_to_le16(PAGE_SIZE))
765 goto next_buffer_is_active;
768 break;
771 next_buffer_is_active:
772 i = next_i;
773 res_count = next_res_count;
776 rmb(); /* read res_count before the DMA data */
778 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
779 if (*buffer_offset > PAGE_SIZE) {
780 *buffer_offset = 0;
781 ar_context_abort(ctx, "corrupted descriptor");
784 return i;
787 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
788 unsigned int end_buffer_index,
789 unsigned int end_buffer_offset)
791 unsigned int i;
793 i = ar_first_buffer_index(ctx);
794 while (i != end_buffer_index) {
795 dma_sync_single_for_cpu(ctx->ohci->card.device,
796 ar_buffer_bus(ctx, i),
797 PAGE_SIZE, DMA_FROM_DEVICE);
798 i = ar_next_buffer_index(i);
800 if (end_buffer_offset > 0)
801 dma_sync_single_for_cpu(ctx->ohci->card.device,
802 ar_buffer_bus(ctx, i),
803 end_buffer_offset, DMA_FROM_DEVICE);
806 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
807 #define cond_le32_to_cpu(v) \
808 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
809 #else
810 #define cond_le32_to_cpu(v) le32_to_cpu(v)
811 #endif
813 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
815 struct fw_ohci *ohci = ctx->ohci;
816 struct fw_packet p;
817 u32 status, length, tcode;
818 int evt;
820 p.header[0] = cond_le32_to_cpu(buffer[0]);
821 p.header[1] = cond_le32_to_cpu(buffer[1]);
822 p.header[2] = cond_le32_to_cpu(buffer[2]);
824 tcode = (p.header[0] >> 4) & 0x0f;
825 switch (tcode) {
826 case TCODE_WRITE_QUADLET_REQUEST:
827 case TCODE_READ_QUADLET_RESPONSE:
828 p.header[3] = (__force __u32) buffer[3];
829 p.header_length = 16;
830 p.payload_length = 0;
831 break;
833 case TCODE_READ_BLOCK_REQUEST :
834 p.header[3] = cond_le32_to_cpu(buffer[3]);
835 p.header_length = 16;
836 p.payload_length = 0;
837 break;
839 case TCODE_WRITE_BLOCK_REQUEST:
840 case TCODE_READ_BLOCK_RESPONSE:
841 case TCODE_LOCK_REQUEST:
842 case TCODE_LOCK_RESPONSE:
843 p.header[3] = cond_le32_to_cpu(buffer[3]);
844 p.header_length = 16;
845 p.payload_length = p.header[3] >> 16;
846 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
847 ar_context_abort(ctx, "invalid packet length");
848 return NULL;
850 break;
852 case TCODE_WRITE_RESPONSE:
853 case TCODE_READ_QUADLET_REQUEST:
854 case OHCI_TCODE_PHY_PACKET:
855 p.header_length = 12;
856 p.payload_length = 0;
857 break;
859 default:
860 ar_context_abort(ctx, "invalid tcode");
861 return NULL;
864 p.payload = (void *) buffer + p.header_length;
866 /* FIXME: What to do about evt_* errors? */
867 length = (p.header_length + p.payload_length + 3) / 4;
868 status = cond_le32_to_cpu(buffer[length]);
869 evt = (status >> 16) & 0x1f;
871 p.ack = evt - 16;
872 p.speed = (status >> 21) & 0x7;
873 p.timestamp = status & 0xffff;
874 p.generation = ohci->request_generation;
876 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
879 * Several controllers, notably from NEC and VIA, forget to
880 * write ack_complete status at PHY packet reception.
882 if (evt == OHCI1394_evt_no_status &&
883 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
884 p.ack = ACK_COMPLETE;
887 * The OHCI bus reset handler synthesizes a PHY packet with
888 * the new generation number when a bus reset happens (see
889 * section 8.4.2.3). This helps us determine when a request
890 * was received and make sure we send the response in the same
891 * generation. We only need this for requests; for responses
892 * we use the unique tlabel for finding the matching
893 * request.
895 * Alas some chips sometimes emit bus reset packets with a
896 * wrong generation. We set the correct generation for these
897 * at a slightly incorrect time (in bus_reset_work).
899 if (evt == OHCI1394_evt_bus_reset) {
900 if (!(ohci->quirks & QUIRK_RESET_PACKET))
901 ohci->request_generation = (p.header[2] >> 16) & 0xff;
902 } else if (ctx == &ohci->ar_request_ctx) {
903 fw_core_handle_request(&ohci->card, &p);
904 } else {
905 fw_core_handle_response(&ohci->card, &p);
908 return buffer + length + 1;
911 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
913 void *next;
915 while (p < end) {
916 next = handle_ar_packet(ctx, p);
917 if (!next)
918 return p;
919 p = next;
922 return p;
925 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
927 unsigned int i;
929 i = ar_first_buffer_index(ctx);
930 while (i != end_buffer) {
931 dma_sync_single_for_device(ctx->ohci->card.device,
932 ar_buffer_bus(ctx, i),
933 PAGE_SIZE, DMA_FROM_DEVICE);
934 ar_context_link_page(ctx, i);
935 i = ar_next_buffer_index(i);
939 static void ar_context_tasklet(unsigned long data)
941 struct ar_context *ctx = (struct ar_context *)data;
942 unsigned int end_buffer_index, end_buffer_offset;
943 void *p, *end;
945 p = ctx->pointer;
946 if (!p)
947 return;
949 end_buffer_index = ar_search_last_active_buffer(ctx,
950 &end_buffer_offset);
951 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
952 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
954 if (end_buffer_index < ar_first_buffer_index(ctx)) {
956 * The filled part of the overall buffer wraps around; handle
957 * all packets up to the buffer end here. If the last packet
958 * wraps around, its tail will be visible after the buffer end
959 * because the buffer start pages are mapped there again.
961 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
962 p = handle_ar_packets(ctx, p, buffer_end);
963 if (p < buffer_end)
964 goto error;
965 /* adjust p to point back into the actual buffer */
966 p -= AR_BUFFERS * PAGE_SIZE;
969 p = handle_ar_packets(ctx, p, end);
970 if (p != end) {
971 if (p > end)
972 ar_context_abort(ctx, "inconsistent descriptor");
973 goto error;
976 ctx->pointer = p;
977 ar_recycle_buffers(ctx, end_buffer_index);
979 return;
981 error:
982 ctx->pointer = NULL;
985 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
986 unsigned int descriptors_offset, u32 regs)
988 unsigned int i;
989 dma_addr_t dma_addr;
990 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
991 struct descriptor *d;
993 ctx->regs = regs;
994 ctx->ohci = ohci;
995 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
997 for (i = 0; i < AR_BUFFERS; i++) {
998 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
999 if (!ctx->pages[i])
1000 goto out_of_memory;
1001 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
1002 0, PAGE_SIZE, DMA_FROM_DEVICE);
1003 if (dma_mapping_error(ohci->card.device, dma_addr)) {
1004 __free_page(ctx->pages[i]);
1005 ctx->pages[i] = NULL;
1006 goto out_of_memory;
1008 set_page_private(ctx->pages[i], dma_addr);
1011 for (i = 0; i < AR_BUFFERS; i++)
1012 pages[i] = ctx->pages[i];
1013 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1014 pages[AR_BUFFERS + i] = ctx->pages[i];
1015 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1016 -1, PAGE_KERNEL);
1017 if (!ctx->buffer)
1018 goto out_of_memory;
1020 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1021 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1023 for (i = 0; i < AR_BUFFERS; i++) {
1024 d = &ctx->descriptors[i];
1025 d->req_count = cpu_to_le16(PAGE_SIZE);
1026 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1027 DESCRIPTOR_STATUS |
1028 DESCRIPTOR_BRANCH_ALWAYS);
1029 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1030 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1031 ar_next_buffer_index(i) * sizeof(struct descriptor));
1034 return 0;
1036 out_of_memory:
1037 ar_context_release(ctx);
1039 return -ENOMEM;
1042 static void ar_context_run(struct ar_context *ctx)
1044 unsigned int i;
1046 for (i = 0; i < AR_BUFFERS; i++)
1047 ar_context_link_page(ctx, i);
1049 ctx->pointer = ctx->buffer;
1051 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1052 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1055 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1057 __le16 branch;
1059 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1061 /* figure out which descriptor the branch address goes in */
1062 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1063 return d;
1064 else
1065 return d + z - 1;
1068 static void context_tasklet(unsigned long data)
1070 struct context *ctx = (struct context *) data;
1071 struct descriptor *d, *last;
1072 u32 address;
1073 int z;
1074 struct descriptor_buffer *desc;
1076 desc = list_entry(ctx->buffer_list.next,
1077 struct descriptor_buffer, list);
1078 last = ctx->last;
1079 while (last->branch_address != 0) {
1080 struct descriptor_buffer *old_desc = desc;
1081 address = le32_to_cpu(last->branch_address);
1082 z = address & 0xf;
1083 address &= ~0xf;
1084 ctx->current_bus = address;
1086 /* If the branch address points to a buffer outside of the
1087 * current buffer, advance to the next buffer. */
1088 if (address < desc->buffer_bus ||
1089 address >= desc->buffer_bus + desc->used)
1090 desc = list_entry(desc->list.next,
1091 struct descriptor_buffer, list);
1092 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1093 last = find_branch_descriptor(d, z);
1095 if (!ctx->callback(ctx, d, last))
1096 break;
1098 if (old_desc != desc) {
1099 /* If we've advanced to the next buffer, move the
1100 * previous buffer to the free list. */
1101 unsigned long flags;
1102 old_desc->used = 0;
1103 spin_lock_irqsave(&ctx->ohci->lock, flags);
1104 list_move_tail(&old_desc->list, &ctx->buffer_list);
1105 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1107 ctx->last = last;
1112 * Allocate a new buffer and add it to the list of free buffers for this
1113 * context. Must be called with ohci->lock held.
1115 static int context_add_buffer(struct context *ctx)
1117 struct descriptor_buffer *desc;
1118 dma_addr_t uninitialized_var(bus_addr);
1119 int offset;
1122 * 16MB of descriptors should be far more than enough for any DMA
1123 * program. This will catch run-away userspace or DoS attacks.
1125 if (ctx->total_allocation >= 16*1024*1024)
1126 return -ENOMEM;
1128 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1129 &bus_addr, GFP_ATOMIC);
1130 if (!desc)
1131 return -ENOMEM;
1133 offset = (void *)&desc->buffer - (void *)desc;
1134 desc->buffer_size = PAGE_SIZE - offset;
1135 desc->buffer_bus = bus_addr + offset;
1136 desc->used = 0;
1138 list_add_tail(&desc->list, &ctx->buffer_list);
1139 ctx->total_allocation += PAGE_SIZE;
1141 return 0;
1144 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1145 u32 regs, descriptor_callback_t callback)
1147 ctx->ohci = ohci;
1148 ctx->regs = regs;
1149 ctx->total_allocation = 0;
1151 INIT_LIST_HEAD(&ctx->buffer_list);
1152 if (context_add_buffer(ctx) < 0)
1153 return -ENOMEM;
1155 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1156 struct descriptor_buffer, list);
1158 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1159 ctx->callback = callback;
1162 * We put a dummy descriptor in the buffer that has a NULL
1163 * branch address and looks like it's been sent. That way we
1164 * have a descriptor to append DMA programs to.
1166 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1167 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1168 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1169 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1170 ctx->last = ctx->buffer_tail->buffer;
1171 ctx->prev = ctx->buffer_tail->buffer;
1172 ctx->prev_z = 1;
1174 return 0;
1177 static void context_release(struct context *ctx)
1179 struct fw_card *card = &ctx->ohci->card;
1180 struct descriptor_buffer *desc, *tmp;
1182 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1183 dma_free_coherent(card->device, PAGE_SIZE, desc,
1184 desc->buffer_bus -
1185 ((void *)&desc->buffer - (void *)desc));
1188 /* Must be called with ohci->lock held */
1189 static struct descriptor *context_get_descriptors(struct context *ctx,
1190 int z, dma_addr_t *d_bus)
1192 struct descriptor *d = NULL;
1193 struct descriptor_buffer *desc = ctx->buffer_tail;
1195 if (z * sizeof(*d) > desc->buffer_size)
1196 return NULL;
1198 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1199 /* No room for the descriptor in this buffer, so advance to the
1200 * next one. */
1202 if (desc->list.next == &ctx->buffer_list) {
1203 /* If there is no free buffer next in the list,
1204 * allocate one. */
1205 if (context_add_buffer(ctx) < 0)
1206 return NULL;
1208 desc = list_entry(desc->list.next,
1209 struct descriptor_buffer, list);
1210 ctx->buffer_tail = desc;
1213 d = desc->buffer + desc->used / sizeof(*d);
1214 memset(d, 0, z * sizeof(*d));
1215 *d_bus = desc->buffer_bus + desc->used;
1217 return d;
1220 static void context_run(struct context *ctx, u32 extra)
1222 struct fw_ohci *ohci = ctx->ohci;
1224 reg_write(ohci, COMMAND_PTR(ctx->regs),
1225 le32_to_cpu(ctx->last->branch_address));
1226 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1227 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1228 ctx->running = true;
1229 flush_writes(ohci);
1232 static void context_append(struct context *ctx,
1233 struct descriptor *d, int z, int extra)
1235 dma_addr_t d_bus;
1236 struct descriptor_buffer *desc = ctx->buffer_tail;
1237 struct descriptor *d_branch;
1239 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1241 desc->used += (z + extra) * sizeof(*d);
1243 wmb(); /* finish init of new descriptors before branch_address update */
1245 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1246 d_branch->branch_address = cpu_to_le32(d_bus | z);
1249 * VT6306 incorrectly checks only the single descriptor at the
1250 * CommandPtr when the wake bit is written, so if it's a
1251 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1252 * the branch address in the first descriptor.
1254 * Not doing this for transmit contexts since not sure how it interacts
1255 * with skip addresses.
1257 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1258 d_branch != ctx->prev &&
1259 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1260 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1261 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1264 ctx->prev = d;
1265 ctx->prev_z = z;
1268 static void context_stop(struct context *ctx)
1270 struct fw_ohci *ohci = ctx->ohci;
1271 u32 reg;
1272 int i;
1274 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1275 ctx->running = false;
1277 for (i = 0; i < 1000; i++) {
1278 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1279 if ((reg & CONTEXT_ACTIVE) == 0)
1280 return;
1282 if (i)
1283 udelay(10);
1285 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1288 struct driver_data {
1289 u8 inline_data[8];
1290 struct fw_packet *packet;
1294 * This function apppends a packet to the DMA queue for transmission.
1295 * Must always be called with the ochi->lock held to ensure proper
1296 * generation handling and locking around packet queue manipulation.
1298 static int at_context_queue_packet(struct context *ctx,
1299 struct fw_packet *packet)
1301 struct fw_ohci *ohci = ctx->ohci;
1302 dma_addr_t d_bus, uninitialized_var(payload_bus);
1303 struct driver_data *driver_data;
1304 struct descriptor *d, *last;
1305 __le32 *header;
1306 int z, tcode;
1308 d = context_get_descriptors(ctx, 4, &d_bus);
1309 if (d == NULL) {
1310 packet->ack = RCODE_SEND_ERROR;
1311 return -1;
1314 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1315 d[0].res_count = cpu_to_le16(packet->timestamp);
1318 * The DMA format for asynchronous link packets is different
1319 * from the IEEE1394 layout, so shift the fields around
1320 * accordingly.
1323 tcode = (packet->header[0] >> 4) & 0x0f;
1324 header = (__le32 *) &d[1];
1325 switch (tcode) {
1326 case TCODE_WRITE_QUADLET_REQUEST:
1327 case TCODE_WRITE_BLOCK_REQUEST:
1328 case TCODE_WRITE_RESPONSE:
1329 case TCODE_READ_QUADLET_REQUEST:
1330 case TCODE_READ_BLOCK_REQUEST:
1331 case TCODE_READ_QUADLET_RESPONSE:
1332 case TCODE_READ_BLOCK_RESPONSE:
1333 case TCODE_LOCK_REQUEST:
1334 case TCODE_LOCK_RESPONSE:
1335 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1336 (packet->speed << 16));
1337 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1338 (packet->header[0] & 0xffff0000));
1339 header[2] = cpu_to_le32(packet->header[2]);
1341 if (TCODE_IS_BLOCK_PACKET(tcode))
1342 header[3] = cpu_to_le32(packet->header[3]);
1343 else
1344 header[3] = (__force __le32) packet->header[3];
1346 d[0].req_count = cpu_to_le16(packet->header_length);
1347 break;
1349 case TCODE_LINK_INTERNAL:
1350 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1351 (packet->speed << 16));
1352 header[1] = cpu_to_le32(packet->header[1]);
1353 header[2] = cpu_to_le32(packet->header[2]);
1354 d[0].req_count = cpu_to_le16(12);
1356 if (is_ping_packet(&packet->header[1]))
1357 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1358 break;
1360 case TCODE_STREAM_DATA:
1361 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1362 (packet->speed << 16));
1363 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1364 d[0].req_count = cpu_to_le16(8);
1365 break;
1367 default:
1368 /* BUG(); */
1369 packet->ack = RCODE_SEND_ERROR;
1370 return -1;
1373 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1374 driver_data = (struct driver_data *) &d[3];
1375 driver_data->packet = packet;
1376 packet->driver_data = driver_data;
1378 if (packet->payload_length > 0) {
1379 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1380 payload_bus = dma_map_single(ohci->card.device,
1381 packet->payload,
1382 packet->payload_length,
1383 DMA_TO_DEVICE);
1384 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1385 packet->ack = RCODE_SEND_ERROR;
1386 return -1;
1388 packet->payload_bus = payload_bus;
1389 packet->payload_mapped = true;
1390 } else {
1391 memcpy(driver_data->inline_data, packet->payload,
1392 packet->payload_length);
1393 payload_bus = d_bus + 3 * sizeof(*d);
1396 d[2].req_count = cpu_to_le16(packet->payload_length);
1397 d[2].data_address = cpu_to_le32(payload_bus);
1398 last = &d[2];
1399 z = 3;
1400 } else {
1401 last = &d[0];
1402 z = 2;
1405 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1406 DESCRIPTOR_IRQ_ALWAYS |
1407 DESCRIPTOR_BRANCH_ALWAYS);
1409 /* FIXME: Document how the locking works. */
1410 if (ohci->generation != packet->generation) {
1411 if (packet->payload_mapped)
1412 dma_unmap_single(ohci->card.device, payload_bus,
1413 packet->payload_length, DMA_TO_DEVICE);
1414 packet->ack = RCODE_GENERATION;
1415 return -1;
1418 context_append(ctx, d, z, 4 - z);
1420 if (ctx->running)
1421 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1422 else
1423 context_run(ctx, 0);
1425 return 0;
1428 static void at_context_flush(struct context *ctx)
1430 tasklet_disable(&ctx->tasklet);
1432 ctx->flushing = true;
1433 context_tasklet((unsigned long)ctx);
1434 ctx->flushing = false;
1436 tasklet_enable(&ctx->tasklet);
1439 static int handle_at_packet(struct context *context,
1440 struct descriptor *d,
1441 struct descriptor *last)
1443 struct driver_data *driver_data;
1444 struct fw_packet *packet;
1445 struct fw_ohci *ohci = context->ohci;
1446 int evt;
1448 if (last->transfer_status == 0 && !context->flushing)
1449 /* This descriptor isn't done yet, stop iteration. */
1450 return 0;
1452 driver_data = (struct driver_data *) &d[3];
1453 packet = driver_data->packet;
1454 if (packet == NULL)
1455 /* This packet was cancelled, just continue. */
1456 return 1;
1458 if (packet->payload_mapped)
1459 dma_unmap_single(ohci->card.device, packet->payload_bus,
1460 packet->payload_length, DMA_TO_DEVICE);
1462 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1463 packet->timestamp = le16_to_cpu(last->res_count);
1465 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1467 switch (evt) {
1468 case OHCI1394_evt_timeout:
1469 /* Async response transmit timed out. */
1470 packet->ack = RCODE_CANCELLED;
1471 break;
1473 case OHCI1394_evt_flushed:
1475 * The packet was flushed should give same error as
1476 * when we try to use a stale generation count.
1478 packet->ack = RCODE_GENERATION;
1479 break;
1481 case OHCI1394_evt_missing_ack:
1482 if (context->flushing)
1483 packet->ack = RCODE_GENERATION;
1484 else {
1486 * Using a valid (current) generation count, but the
1487 * node is not on the bus or not sending acks.
1489 packet->ack = RCODE_NO_ACK;
1491 break;
1493 case ACK_COMPLETE + 0x10:
1494 case ACK_PENDING + 0x10:
1495 case ACK_BUSY_X + 0x10:
1496 case ACK_BUSY_A + 0x10:
1497 case ACK_BUSY_B + 0x10:
1498 case ACK_DATA_ERROR + 0x10:
1499 case ACK_TYPE_ERROR + 0x10:
1500 packet->ack = evt - 0x10;
1501 break;
1503 case OHCI1394_evt_no_status:
1504 if (context->flushing) {
1505 packet->ack = RCODE_GENERATION;
1506 break;
1508 /* fall through */
1510 default:
1511 packet->ack = RCODE_SEND_ERROR;
1512 break;
1515 packet->callback(packet, &ohci->card, packet->ack);
1517 return 1;
1520 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1521 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1522 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1523 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1524 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1526 static void handle_local_rom(struct fw_ohci *ohci,
1527 struct fw_packet *packet, u32 csr)
1529 struct fw_packet response;
1530 int tcode, length, i;
1532 tcode = HEADER_GET_TCODE(packet->header[0]);
1533 if (TCODE_IS_BLOCK_PACKET(tcode))
1534 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1535 else
1536 length = 4;
1538 i = csr - CSR_CONFIG_ROM;
1539 if (i + length > CONFIG_ROM_SIZE) {
1540 fw_fill_response(&response, packet->header,
1541 RCODE_ADDRESS_ERROR, NULL, 0);
1542 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1543 fw_fill_response(&response, packet->header,
1544 RCODE_TYPE_ERROR, NULL, 0);
1545 } else {
1546 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1547 (void *) ohci->config_rom + i, length);
1550 fw_core_handle_response(&ohci->card, &response);
1553 static void handle_local_lock(struct fw_ohci *ohci,
1554 struct fw_packet *packet, u32 csr)
1556 struct fw_packet response;
1557 int tcode, length, ext_tcode, sel, try;
1558 __be32 *payload, lock_old;
1559 u32 lock_arg, lock_data;
1561 tcode = HEADER_GET_TCODE(packet->header[0]);
1562 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1563 payload = packet->payload;
1564 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1566 if (tcode == TCODE_LOCK_REQUEST &&
1567 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1568 lock_arg = be32_to_cpu(payload[0]);
1569 lock_data = be32_to_cpu(payload[1]);
1570 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1571 lock_arg = 0;
1572 lock_data = 0;
1573 } else {
1574 fw_fill_response(&response, packet->header,
1575 RCODE_TYPE_ERROR, NULL, 0);
1576 goto out;
1579 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1580 reg_write(ohci, OHCI1394_CSRData, lock_data);
1581 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1582 reg_write(ohci, OHCI1394_CSRControl, sel);
1584 for (try = 0; try < 20; try++)
1585 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1586 lock_old = cpu_to_be32(reg_read(ohci,
1587 OHCI1394_CSRData));
1588 fw_fill_response(&response, packet->header,
1589 RCODE_COMPLETE,
1590 &lock_old, sizeof(lock_old));
1591 goto out;
1594 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1595 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1597 out:
1598 fw_core_handle_response(&ohci->card, &response);
1601 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1603 u64 offset, csr;
1605 if (ctx == &ctx->ohci->at_request_ctx) {
1606 packet->ack = ACK_PENDING;
1607 packet->callback(packet, &ctx->ohci->card, packet->ack);
1610 offset =
1611 ((unsigned long long)
1612 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1613 packet->header[2];
1614 csr = offset - CSR_REGISTER_BASE;
1616 /* Handle config rom reads. */
1617 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1618 handle_local_rom(ctx->ohci, packet, csr);
1619 else switch (csr) {
1620 case CSR_BUS_MANAGER_ID:
1621 case CSR_BANDWIDTH_AVAILABLE:
1622 case CSR_CHANNELS_AVAILABLE_HI:
1623 case CSR_CHANNELS_AVAILABLE_LO:
1624 handle_local_lock(ctx->ohci, packet, csr);
1625 break;
1626 default:
1627 if (ctx == &ctx->ohci->at_request_ctx)
1628 fw_core_handle_request(&ctx->ohci->card, packet);
1629 else
1630 fw_core_handle_response(&ctx->ohci->card, packet);
1631 break;
1634 if (ctx == &ctx->ohci->at_response_ctx) {
1635 packet->ack = ACK_COMPLETE;
1636 packet->callback(packet, &ctx->ohci->card, packet->ack);
1640 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1642 unsigned long flags;
1643 int ret;
1645 spin_lock_irqsave(&ctx->ohci->lock, flags);
1647 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1648 ctx->ohci->generation == packet->generation) {
1649 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1650 handle_local_request(ctx, packet);
1651 return;
1654 ret = at_context_queue_packet(ctx, packet);
1655 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1657 if (ret < 0)
1658 packet->callback(packet, &ctx->ohci->card, packet->ack);
1662 static void detect_dead_context(struct fw_ohci *ohci,
1663 const char *name, unsigned int regs)
1665 u32 ctl;
1667 ctl = reg_read(ohci, CONTROL_SET(regs));
1668 if (ctl & CONTEXT_DEAD)
1669 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1670 name, evts[ctl & 0x1f]);
1673 static void handle_dead_contexts(struct fw_ohci *ohci)
1675 unsigned int i;
1676 char name[8];
1678 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1679 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1680 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1681 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1682 for (i = 0; i < 32; ++i) {
1683 if (!(ohci->it_context_support & (1 << i)))
1684 continue;
1685 sprintf(name, "IT%u", i);
1686 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1688 for (i = 0; i < 32; ++i) {
1689 if (!(ohci->ir_context_support & (1 << i)))
1690 continue;
1691 sprintf(name, "IR%u", i);
1692 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1694 /* TODO: maybe try to flush and restart the dead contexts */
1697 static u32 cycle_timer_ticks(u32 cycle_timer)
1699 u32 ticks;
1701 ticks = cycle_timer & 0xfff;
1702 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1703 ticks += (3072 * 8000) * (cycle_timer >> 25);
1705 return ticks;
1709 * Some controllers exhibit one or more of the following bugs when updating the
1710 * iso cycle timer register:
1711 * - When the lowest six bits are wrapping around to zero, a read that happens
1712 * at the same time will return garbage in the lowest ten bits.
1713 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1714 * not incremented for about 60 ns.
1715 * - Occasionally, the entire register reads zero.
1717 * To catch these, we read the register three times and ensure that the
1718 * difference between each two consecutive reads is approximately the same, i.e.
1719 * less than twice the other. Furthermore, any negative difference indicates an
1720 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1721 * execute, so we have enough precision to compute the ratio of the differences.)
1723 static u32 get_cycle_time(struct fw_ohci *ohci)
1725 u32 c0, c1, c2;
1726 u32 t0, t1, t2;
1727 s32 diff01, diff12;
1728 int i;
1730 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1732 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1733 i = 0;
1734 c1 = c2;
1735 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1736 do {
1737 c0 = c1;
1738 c1 = c2;
1739 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1740 t0 = cycle_timer_ticks(c0);
1741 t1 = cycle_timer_ticks(c1);
1742 t2 = cycle_timer_ticks(c2);
1743 diff01 = t1 - t0;
1744 diff12 = t2 - t1;
1745 } while ((diff01 <= 0 || diff12 <= 0 ||
1746 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1747 && i++ < 20);
1750 return c2;
1754 * This function has to be called at least every 64 seconds. The bus_time
1755 * field stores not only the upper 25 bits of the BUS_TIME register but also
1756 * the most significant bit of the cycle timer in bit 6 so that we can detect
1757 * changes in this bit.
1759 static u32 update_bus_time(struct fw_ohci *ohci)
1761 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1763 if (unlikely(!ohci->bus_time_running)) {
1764 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1765 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1766 (cycle_time_seconds & 0x40);
1767 ohci->bus_time_running = true;
1770 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1771 ohci->bus_time += 0x40;
1773 return ohci->bus_time | cycle_time_seconds;
1776 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1778 int reg;
1780 mutex_lock(&ohci->phy_reg_mutex);
1781 reg = write_phy_reg(ohci, 7, port_index);
1782 if (reg >= 0)
1783 reg = read_phy_reg(ohci, 8);
1784 mutex_unlock(&ohci->phy_reg_mutex);
1785 if (reg < 0)
1786 return reg;
1788 switch (reg & 0x0f) {
1789 case 0x06:
1790 return 2; /* is child node (connected to parent node) */
1791 case 0x0e:
1792 return 3; /* is parent node (connected to child node) */
1794 return 1; /* not connected */
1797 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1798 int self_id_count)
1800 int i;
1801 u32 entry;
1803 for (i = 0; i < self_id_count; i++) {
1804 entry = ohci->self_id_buffer[i];
1805 if ((self_id & 0xff000000) == (entry & 0xff000000))
1806 return -1;
1807 if ((self_id & 0xff000000) < (entry & 0xff000000))
1808 return i;
1810 return i;
1813 static int initiated_reset(struct fw_ohci *ohci)
1815 int reg;
1816 int ret = 0;
1818 mutex_lock(&ohci->phy_reg_mutex);
1819 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1820 if (reg >= 0) {
1821 reg = read_phy_reg(ohci, 8);
1822 reg |= 0x40;
1823 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1824 if (reg >= 0) {
1825 reg = read_phy_reg(ohci, 12); /* read register 12 */
1826 if (reg >= 0) {
1827 if ((reg & 0x08) == 0x08) {
1828 /* bit 3 indicates "initiated reset" */
1829 ret = 0x2;
1834 mutex_unlock(&ohci->phy_reg_mutex);
1835 return ret;
1839 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1840 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1841 * Construct the selfID from phy register contents.
1843 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1845 int reg, i, pos, status;
1846 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1847 u32 self_id = 0x8040c800;
1849 reg = reg_read(ohci, OHCI1394_NodeID);
1850 if (!(reg & OHCI1394_NodeID_idValid)) {
1851 ohci_notice(ohci,
1852 "node ID not valid, new bus reset in progress\n");
1853 return -EBUSY;
1855 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1857 reg = ohci_read_phy_reg(&ohci->card, 4);
1858 if (reg < 0)
1859 return reg;
1860 self_id |= ((reg & 0x07) << 8); /* power class */
1862 reg = ohci_read_phy_reg(&ohci->card, 1);
1863 if (reg < 0)
1864 return reg;
1865 self_id |= ((reg & 0x3f) << 16); /* gap count */
1867 for (i = 0; i < 3; i++) {
1868 status = get_status_for_port(ohci, i);
1869 if (status < 0)
1870 return status;
1871 self_id |= ((status & 0x3) << (6 - (i * 2)));
1874 self_id |= initiated_reset(ohci);
1876 pos = get_self_id_pos(ohci, self_id, self_id_count);
1877 if (pos >= 0) {
1878 memmove(&(ohci->self_id_buffer[pos+1]),
1879 &(ohci->self_id_buffer[pos]),
1880 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1881 ohci->self_id_buffer[pos] = self_id;
1882 self_id_count++;
1884 return self_id_count;
1887 static void bus_reset_work(struct work_struct *work)
1889 struct fw_ohci *ohci =
1890 container_of(work, struct fw_ohci, bus_reset_work);
1891 int self_id_count, generation, new_generation, i, j;
1892 u32 reg;
1893 void *free_rom = NULL;
1894 dma_addr_t free_rom_bus = 0;
1895 bool is_new_root;
1897 reg = reg_read(ohci, OHCI1394_NodeID);
1898 if (!(reg & OHCI1394_NodeID_idValid)) {
1899 ohci_notice(ohci,
1900 "node ID not valid, new bus reset in progress\n");
1901 return;
1903 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1904 ohci_notice(ohci, "malconfigured bus\n");
1905 return;
1907 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1908 OHCI1394_NodeID_nodeNumber);
1910 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1911 if (!(ohci->is_root && is_new_root))
1912 reg_write(ohci, OHCI1394_LinkControlSet,
1913 OHCI1394_LinkControl_cycleMaster);
1914 ohci->is_root = is_new_root;
1916 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1917 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1918 ohci_notice(ohci, "self ID receive error\n");
1919 return;
1922 * The count in the SelfIDCount register is the number of
1923 * bytes in the self ID receive buffer. Since we also receive
1924 * the inverted quadlets and a header quadlet, we shift one
1925 * bit extra to get the actual number of self IDs.
1927 self_id_count = (reg >> 3) & 0xff;
1929 if (self_id_count > 252) {
1930 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1931 return;
1934 generation = (cond_le32_to_cpu(ohci->self_id[0]) >> 16) & 0xff;
1935 rmb();
1937 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1938 u32 id = cond_le32_to_cpu(ohci->self_id[i]);
1939 u32 id2 = cond_le32_to_cpu(ohci->self_id[i + 1]);
1941 if (id != ~id2) {
1943 * If the invalid data looks like a cycle start packet,
1944 * it's likely to be the result of the cycle master
1945 * having a wrong gap count. In this case, the self IDs
1946 * so far are valid and should be processed so that the
1947 * bus manager can then correct the gap count.
1949 if (id == 0xffff008f) {
1950 ohci_notice(ohci, "ignoring spurious self IDs\n");
1951 self_id_count = j;
1952 break;
1955 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1956 j, self_id_count, id, id2);
1957 return;
1959 ohci->self_id_buffer[j] = id;
1962 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1963 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1964 if (self_id_count < 0) {
1965 ohci_notice(ohci,
1966 "could not construct local self ID\n");
1967 return;
1971 if (self_id_count == 0) {
1972 ohci_notice(ohci, "no self IDs\n");
1973 return;
1975 rmb();
1978 * Check the consistency of the self IDs we just read. The
1979 * problem we face is that a new bus reset can start while we
1980 * read out the self IDs from the DMA buffer. If this happens,
1981 * the DMA buffer will be overwritten with new self IDs and we
1982 * will read out inconsistent data. The OHCI specification
1983 * (section 11.2) recommends a technique similar to
1984 * linux/seqlock.h, where we remember the generation of the
1985 * self IDs in the buffer before reading them out and compare
1986 * it to the current generation after reading them out. If
1987 * the two generations match we know we have a consistent set
1988 * of self IDs.
1991 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1992 if (new_generation != generation) {
1993 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1994 return;
1997 /* FIXME: Document how the locking works. */
1998 spin_lock_irq(&ohci->lock);
2000 ohci->generation = -1; /* prevent AT packet queueing */
2001 context_stop(&ohci->at_request_ctx);
2002 context_stop(&ohci->at_response_ctx);
2004 spin_unlock_irq(&ohci->lock);
2007 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2008 * packets in the AT queues and software needs to drain them.
2009 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2011 at_context_flush(&ohci->at_request_ctx);
2012 at_context_flush(&ohci->at_response_ctx);
2014 spin_lock_irq(&ohci->lock);
2016 ohci->generation = generation;
2017 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2019 if (ohci->quirks & QUIRK_RESET_PACKET)
2020 ohci->request_generation = generation;
2023 * This next bit is unrelated to the AT context stuff but we
2024 * have to do it under the spinlock also. If a new config rom
2025 * was set up before this reset, the old one is now no longer
2026 * in use and we can free it. Update the config rom pointers
2027 * to point to the current config rom and clear the
2028 * next_config_rom pointer so a new update can take place.
2031 if (ohci->next_config_rom != NULL) {
2032 if (ohci->next_config_rom != ohci->config_rom) {
2033 free_rom = ohci->config_rom;
2034 free_rom_bus = ohci->config_rom_bus;
2036 ohci->config_rom = ohci->next_config_rom;
2037 ohci->config_rom_bus = ohci->next_config_rom_bus;
2038 ohci->next_config_rom = NULL;
2041 * Restore config_rom image and manually update
2042 * config_rom registers. Writing the header quadlet
2043 * will indicate that the config rom is ready, so we
2044 * do that last.
2046 reg_write(ohci, OHCI1394_BusOptions,
2047 be32_to_cpu(ohci->config_rom[2]));
2048 ohci->config_rom[0] = ohci->next_header;
2049 reg_write(ohci, OHCI1394_ConfigROMhdr,
2050 be32_to_cpu(ohci->next_header));
2053 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2054 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2055 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2056 #endif
2058 spin_unlock_irq(&ohci->lock);
2060 if (free_rom)
2061 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2062 free_rom, free_rom_bus);
2064 log_selfids(ohci, generation, self_id_count);
2066 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2067 self_id_count, ohci->self_id_buffer,
2068 ohci->csr_state_setclear_abdicate);
2069 ohci->csr_state_setclear_abdicate = false;
2072 static irqreturn_t irq_handler(int irq, void *data)
2074 struct fw_ohci *ohci = data;
2075 u32 event, iso_event;
2076 int i;
2078 event = reg_read(ohci, OHCI1394_IntEventClear);
2080 if (!event || !~event)
2081 return IRQ_NONE;
2084 * busReset and postedWriteErr must not be cleared yet
2085 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2087 reg_write(ohci, OHCI1394_IntEventClear,
2088 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2089 log_irqs(ohci, event);
2091 if (event & OHCI1394_selfIDComplete)
2092 queue_work(selfid_workqueue, &ohci->bus_reset_work);
2094 if (event & OHCI1394_RQPkt)
2095 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2097 if (event & OHCI1394_RSPkt)
2098 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2100 if (event & OHCI1394_reqTxComplete)
2101 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2103 if (event & OHCI1394_respTxComplete)
2104 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2106 if (event & OHCI1394_isochRx) {
2107 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2108 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2110 while (iso_event) {
2111 i = ffs(iso_event) - 1;
2112 tasklet_schedule(
2113 &ohci->ir_context_list[i].context.tasklet);
2114 iso_event &= ~(1 << i);
2118 if (event & OHCI1394_isochTx) {
2119 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2120 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2122 while (iso_event) {
2123 i = ffs(iso_event) - 1;
2124 tasklet_schedule(
2125 &ohci->it_context_list[i].context.tasklet);
2126 iso_event &= ~(1 << i);
2130 if (unlikely(event & OHCI1394_regAccessFail))
2131 ohci_err(ohci, "register access failure\n");
2133 if (unlikely(event & OHCI1394_postedWriteErr)) {
2134 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2135 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2136 reg_write(ohci, OHCI1394_IntEventClear,
2137 OHCI1394_postedWriteErr);
2138 if (printk_ratelimit())
2139 ohci_err(ohci, "PCI posted write error\n");
2142 if (unlikely(event & OHCI1394_cycleTooLong)) {
2143 if (printk_ratelimit())
2144 ohci_notice(ohci, "isochronous cycle too long\n");
2145 reg_write(ohci, OHCI1394_LinkControlSet,
2146 OHCI1394_LinkControl_cycleMaster);
2149 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2151 * We need to clear this event bit in order to make
2152 * cycleMatch isochronous I/O work. In theory we should
2153 * stop active cycleMatch iso contexts now and restart
2154 * them at least two cycles later. (FIXME?)
2156 if (printk_ratelimit())
2157 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2160 if (unlikely(event & OHCI1394_unrecoverableError))
2161 handle_dead_contexts(ohci);
2163 if (event & OHCI1394_cycle64Seconds) {
2164 spin_lock(&ohci->lock);
2165 update_bus_time(ohci);
2166 spin_unlock(&ohci->lock);
2167 } else
2168 flush_writes(ohci);
2170 return IRQ_HANDLED;
2173 static int software_reset(struct fw_ohci *ohci)
2175 u32 val;
2176 int i;
2178 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2179 for (i = 0; i < 500; i++) {
2180 val = reg_read(ohci, OHCI1394_HCControlSet);
2181 if (!~val)
2182 return -ENODEV; /* Card was ejected. */
2184 if (!(val & OHCI1394_HCControl_softReset))
2185 return 0;
2187 msleep(1);
2190 return -EBUSY;
2193 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2195 size_t size = length * 4;
2197 memcpy(dest, src, size);
2198 if (size < CONFIG_ROM_SIZE)
2199 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2202 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2204 bool enable_1394a;
2205 int ret, clear, set, offset;
2207 /* Check if the driver should configure link and PHY. */
2208 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2209 OHCI1394_HCControl_programPhyEnable))
2210 return 0;
2212 /* Paranoia: check whether the PHY supports 1394a, too. */
2213 enable_1394a = false;
2214 ret = read_phy_reg(ohci, 2);
2215 if (ret < 0)
2216 return ret;
2217 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2218 ret = read_paged_phy_reg(ohci, 1, 8);
2219 if (ret < 0)
2220 return ret;
2221 if (ret >= 1)
2222 enable_1394a = true;
2225 if (ohci->quirks & QUIRK_NO_1394A)
2226 enable_1394a = false;
2228 /* Configure PHY and link consistently. */
2229 if (enable_1394a) {
2230 clear = 0;
2231 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2232 } else {
2233 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2234 set = 0;
2236 ret = update_phy_reg(ohci, 5, clear, set);
2237 if (ret < 0)
2238 return ret;
2240 if (enable_1394a)
2241 offset = OHCI1394_HCControlSet;
2242 else
2243 offset = OHCI1394_HCControlClear;
2244 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2246 /* Clean up: configuration has been taken care of. */
2247 reg_write(ohci, OHCI1394_HCControlClear,
2248 OHCI1394_HCControl_programPhyEnable);
2250 return 0;
2253 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2255 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2256 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2257 int reg, i;
2259 reg = read_phy_reg(ohci, 2);
2260 if (reg < 0)
2261 return reg;
2262 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2263 return 0;
2265 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2266 reg = read_paged_phy_reg(ohci, 1, i + 10);
2267 if (reg < 0)
2268 return reg;
2269 if (reg != id[i])
2270 return 0;
2272 return 1;
2275 static int ohci_enable(struct fw_card *card,
2276 const __be32 *config_rom, size_t length)
2278 struct fw_ohci *ohci = fw_ohci(card);
2279 u32 lps, version, irqs;
2280 int i, ret;
2282 if (software_reset(ohci)) {
2283 ohci_err(ohci, "failed to reset ohci card\n");
2284 return -EBUSY;
2288 * Now enable LPS, which we need in order to start accessing
2289 * most of the registers. In fact, on some cards (ALI M5251),
2290 * accessing registers in the SClk domain without LPS enabled
2291 * will lock up the machine. Wait 50msec to make sure we have
2292 * full link enabled. However, with some cards (well, at least
2293 * a JMicron PCIe card), we have to try again sometimes.
2295 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2296 * cannot actually use the phy at that time. These need tens of
2297 * millisecods pause between LPS write and first phy access too.
2299 * But do not wait for 50msec on Agere/LSI cards. Their phy
2300 * arbitration state machine may time out during such a long wait.
2303 reg_write(ohci, OHCI1394_HCControlSet,
2304 OHCI1394_HCControl_LPS |
2305 OHCI1394_HCControl_postedWriteEnable);
2306 flush_writes(ohci);
2308 if (!(ohci->quirks & QUIRK_PHY_LCTRL_TIMEOUT))
2309 msleep(50);
2311 for (lps = 0, i = 0; !lps && i < 150; i++) {
2312 msleep(1);
2313 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2314 OHCI1394_HCControl_LPS;
2317 if (!lps) {
2318 ohci_err(ohci, "failed to set Link Power Status\n");
2319 return -EIO;
2322 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2323 ret = probe_tsb41ba3d(ohci);
2324 if (ret < 0)
2325 return ret;
2326 if (ret)
2327 ohci_notice(ohci, "local TSB41BA3D phy\n");
2328 else
2329 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2332 reg_write(ohci, OHCI1394_HCControlClear,
2333 OHCI1394_HCControl_noByteSwapData);
2335 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2336 reg_write(ohci, OHCI1394_LinkControlSet,
2337 OHCI1394_LinkControl_cycleTimerEnable |
2338 OHCI1394_LinkControl_cycleMaster);
2340 reg_write(ohci, OHCI1394_ATRetries,
2341 OHCI1394_MAX_AT_REQ_RETRIES |
2342 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2343 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2344 (200 << 16));
2346 ohci->bus_time_running = false;
2348 for (i = 0; i < 32; i++)
2349 if (ohci->ir_context_support & (1 << i))
2350 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2351 IR_CONTEXT_MULTI_CHANNEL_MODE);
2353 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2354 if (version >= OHCI_VERSION_1_1) {
2355 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2356 0xfffffffe);
2357 card->broadcast_channel_auto_allocated = true;
2360 /* Get implemented bits of the priority arbitration request counter. */
2361 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2362 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2363 reg_write(ohci, OHCI1394_FairnessControl, 0);
2364 card->priority_budget_implemented = ohci->pri_req_max != 0;
2366 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2367 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2368 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2370 ret = configure_1394a_enhancements(ohci);
2371 if (ret < 0)
2372 return ret;
2374 /* Activate link_on bit and contender bit in our self ID packets.*/
2375 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2376 if (ret < 0)
2377 return ret;
2380 * When the link is not yet enabled, the atomic config rom
2381 * update mechanism described below in ohci_set_config_rom()
2382 * is not active. We have to update ConfigRomHeader and
2383 * BusOptions manually, and the write to ConfigROMmap takes
2384 * effect immediately. We tie this to the enabling of the
2385 * link, so we have a valid config rom before enabling - the
2386 * OHCI requires that ConfigROMhdr and BusOptions have valid
2387 * values before enabling.
2389 * However, when the ConfigROMmap is written, some controllers
2390 * always read back quadlets 0 and 2 from the config rom to
2391 * the ConfigRomHeader and BusOptions registers on bus reset.
2392 * They shouldn't do that in this initial case where the link
2393 * isn't enabled. This means we have to use the same
2394 * workaround here, setting the bus header to 0 and then write
2395 * the right values in the bus reset tasklet.
2398 if (config_rom) {
2399 ohci->next_config_rom =
2400 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2401 &ohci->next_config_rom_bus,
2402 GFP_KERNEL);
2403 if (ohci->next_config_rom == NULL)
2404 return -ENOMEM;
2406 copy_config_rom(ohci->next_config_rom, config_rom, length);
2407 } else {
2409 * In the suspend case, config_rom is NULL, which
2410 * means that we just reuse the old config rom.
2412 ohci->next_config_rom = ohci->config_rom;
2413 ohci->next_config_rom_bus = ohci->config_rom_bus;
2416 ohci->next_header = ohci->next_config_rom[0];
2417 ohci->next_config_rom[0] = 0;
2418 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2419 reg_write(ohci, OHCI1394_BusOptions,
2420 be32_to_cpu(ohci->next_config_rom[2]));
2421 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2423 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2425 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2426 OHCI1394_RQPkt | OHCI1394_RSPkt |
2427 OHCI1394_isochTx | OHCI1394_isochRx |
2428 OHCI1394_postedWriteErr |
2429 OHCI1394_selfIDComplete |
2430 OHCI1394_regAccessFail |
2431 OHCI1394_cycleInconsistent |
2432 OHCI1394_unrecoverableError |
2433 OHCI1394_cycleTooLong |
2434 OHCI1394_masterIntEnable;
2435 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2436 irqs |= OHCI1394_busReset;
2437 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2439 reg_write(ohci, OHCI1394_HCControlSet,
2440 OHCI1394_HCControl_linkEnable |
2441 OHCI1394_HCControl_BIBimageValid);
2443 reg_write(ohci, OHCI1394_LinkControlSet,
2444 OHCI1394_LinkControl_rcvSelfID |
2445 OHCI1394_LinkControl_rcvPhyPkt);
2447 ar_context_run(&ohci->ar_request_ctx);
2448 ar_context_run(&ohci->ar_response_ctx);
2450 flush_writes(ohci);
2452 /* We are ready to go, reset bus to finish initialization. */
2453 fw_schedule_bus_reset(&ohci->card, false, true);
2455 return 0;
2458 static int ohci_set_config_rom(struct fw_card *card,
2459 const __be32 *config_rom, size_t length)
2461 struct fw_ohci *ohci;
2462 __be32 *next_config_rom;
2463 dma_addr_t uninitialized_var(next_config_rom_bus);
2465 ohci = fw_ohci(card);
2468 * When the OHCI controller is enabled, the config rom update
2469 * mechanism is a bit tricky, but easy enough to use. See
2470 * section 5.5.6 in the OHCI specification.
2472 * The OHCI controller caches the new config rom address in a
2473 * shadow register (ConfigROMmapNext) and needs a bus reset
2474 * for the changes to take place. When the bus reset is
2475 * detected, the controller loads the new values for the
2476 * ConfigRomHeader and BusOptions registers from the specified
2477 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2478 * shadow register. All automatically and atomically.
2480 * Now, there's a twist to this story. The automatic load of
2481 * ConfigRomHeader and BusOptions doesn't honor the
2482 * noByteSwapData bit, so with a be32 config rom, the
2483 * controller will load be32 values in to these registers
2484 * during the atomic update, even on litte endian
2485 * architectures. The workaround we use is to put a 0 in the
2486 * header quadlet; 0 is endian agnostic and means that the
2487 * config rom isn't ready yet. In the bus reset tasklet we
2488 * then set up the real values for the two registers.
2490 * We use ohci->lock to avoid racing with the code that sets
2491 * ohci->next_config_rom to NULL (see bus_reset_work).
2494 next_config_rom =
2495 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2496 &next_config_rom_bus, GFP_KERNEL);
2497 if (next_config_rom == NULL)
2498 return -ENOMEM;
2500 spin_lock_irq(&ohci->lock);
2503 * If there is not an already pending config_rom update,
2504 * push our new allocation into the ohci->next_config_rom
2505 * and then mark the local variable as null so that we
2506 * won't deallocate the new buffer.
2508 * OTOH, if there is a pending config_rom update, just
2509 * use that buffer with the new config_rom data, and
2510 * let this routine free the unused DMA allocation.
2513 if (ohci->next_config_rom == NULL) {
2514 ohci->next_config_rom = next_config_rom;
2515 ohci->next_config_rom_bus = next_config_rom_bus;
2516 next_config_rom = NULL;
2519 copy_config_rom(ohci->next_config_rom, config_rom, length);
2521 ohci->next_header = config_rom[0];
2522 ohci->next_config_rom[0] = 0;
2524 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2526 spin_unlock_irq(&ohci->lock);
2528 /* If we didn't use the DMA allocation, delete it. */
2529 if (next_config_rom != NULL)
2530 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2531 next_config_rom, next_config_rom_bus);
2534 * Now initiate a bus reset to have the changes take
2535 * effect. We clean up the old config rom memory and DMA
2536 * mappings in the bus reset tasklet, since the OHCI
2537 * controller could need to access it before the bus reset
2538 * takes effect.
2541 fw_schedule_bus_reset(&ohci->card, true, true);
2543 return 0;
2546 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2548 struct fw_ohci *ohci = fw_ohci(card);
2550 at_context_transmit(&ohci->at_request_ctx, packet);
2553 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2555 struct fw_ohci *ohci = fw_ohci(card);
2557 at_context_transmit(&ohci->at_response_ctx, packet);
2560 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2562 struct fw_ohci *ohci = fw_ohci(card);
2563 struct context *ctx = &ohci->at_request_ctx;
2564 struct driver_data *driver_data = packet->driver_data;
2565 int ret = -ENOENT;
2567 tasklet_disable(&ctx->tasklet);
2569 if (packet->ack != 0)
2570 goto out;
2572 if (packet->payload_mapped)
2573 dma_unmap_single(ohci->card.device, packet->payload_bus,
2574 packet->payload_length, DMA_TO_DEVICE);
2576 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2577 driver_data->packet = NULL;
2578 packet->ack = RCODE_CANCELLED;
2579 packet->callback(packet, &ohci->card, packet->ack);
2580 ret = 0;
2581 out:
2582 tasklet_enable(&ctx->tasklet);
2584 return ret;
2587 static int ohci_enable_phys_dma(struct fw_card *card,
2588 int node_id, int generation)
2590 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2591 return 0;
2592 #else
2593 struct fw_ohci *ohci = fw_ohci(card);
2594 unsigned long flags;
2595 int n, ret = 0;
2598 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2599 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2602 spin_lock_irqsave(&ohci->lock, flags);
2604 if (ohci->generation != generation) {
2605 ret = -ESTALE;
2606 goto out;
2610 * Note, if the node ID contains a non-local bus ID, physical DMA is
2611 * enabled for _all_ nodes on remote buses.
2614 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2615 if (n < 32)
2616 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2617 else
2618 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2620 flush_writes(ohci);
2621 out:
2622 spin_unlock_irqrestore(&ohci->lock, flags);
2624 return ret;
2625 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2628 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2630 struct fw_ohci *ohci = fw_ohci(card);
2631 unsigned long flags;
2632 u32 value;
2634 switch (csr_offset) {
2635 case CSR_STATE_CLEAR:
2636 case CSR_STATE_SET:
2637 if (ohci->is_root &&
2638 (reg_read(ohci, OHCI1394_LinkControlSet) &
2639 OHCI1394_LinkControl_cycleMaster))
2640 value = CSR_STATE_BIT_CMSTR;
2641 else
2642 value = 0;
2643 if (ohci->csr_state_setclear_abdicate)
2644 value |= CSR_STATE_BIT_ABDICATE;
2646 return value;
2648 case CSR_NODE_IDS:
2649 return reg_read(ohci, OHCI1394_NodeID) << 16;
2651 case CSR_CYCLE_TIME:
2652 return get_cycle_time(ohci);
2654 case CSR_BUS_TIME:
2656 * We might be called just after the cycle timer has wrapped
2657 * around but just before the cycle64Seconds handler, so we
2658 * better check here, too, if the bus time needs to be updated.
2660 spin_lock_irqsave(&ohci->lock, flags);
2661 value = update_bus_time(ohci);
2662 spin_unlock_irqrestore(&ohci->lock, flags);
2663 return value;
2665 case CSR_BUSY_TIMEOUT:
2666 value = reg_read(ohci, OHCI1394_ATRetries);
2667 return (value >> 4) & 0x0ffff00f;
2669 case CSR_PRIORITY_BUDGET:
2670 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2671 (ohci->pri_req_max << 8);
2673 default:
2674 WARN_ON(1);
2675 return 0;
2679 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2681 struct fw_ohci *ohci = fw_ohci(card);
2682 unsigned long flags;
2684 switch (csr_offset) {
2685 case CSR_STATE_CLEAR:
2686 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2687 reg_write(ohci, OHCI1394_LinkControlClear,
2688 OHCI1394_LinkControl_cycleMaster);
2689 flush_writes(ohci);
2691 if (value & CSR_STATE_BIT_ABDICATE)
2692 ohci->csr_state_setclear_abdicate = false;
2693 break;
2695 case CSR_STATE_SET:
2696 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2697 reg_write(ohci, OHCI1394_LinkControlSet,
2698 OHCI1394_LinkControl_cycleMaster);
2699 flush_writes(ohci);
2701 if (value & CSR_STATE_BIT_ABDICATE)
2702 ohci->csr_state_setclear_abdicate = true;
2703 break;
2705 case CSR_NODE_IDS:
2706 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2707 flush_writes(ohci);
2708 break;
2710 case CSR_CYCLE_TIME:
2711 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2712 reg_write(ohci, OHCI1394_IntEventSet,
2713 OHCI1394_cycleInconsistent);
2714 flush_writes(ohci);
2715 break;
2717 case CSR_BUS_TIME:
2718 spin_lock_irqsave(&ohci->lock, flags);
2719 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2720 (value & ~0x7f);
2721 spin_unlock_irqrestore(&ohci->lock, flags);
2722 break;
2724 case CSR_BUSY_TIMEOUT:
2725 value = (value & 0xf) | ((value & 0xf) << 4) |
2726 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2727 reg_write(ohci, OHCI1394_ATRetries, value);
2728 flush_writes(ohci);
2729 break;
2731 case CSR_PRIORITY_BUDGET:
2732 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2733 flush_writes(ohci);
2734 break;
2736 default:
2737 WARN_ON(1);
2738 break;
2742 static void flush_iso_completions(struct iso_context *ctx)
2744 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2745 ctx->header_length, ctx->header,
2746 ctx->base.callback_data);
2747 ctx->header_length = 0;
2750 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2752 u32 *ctx_hdr;
2754 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2755 if (ctx->base.drop_overflow_headers)
2756 return;
2757 flush_iso_completions(ctx);
2760 ctx_hdr = ctx->header + ctx->header_length;
2761 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2764 * The two iso header quadlets are byteswapped to little
2765 * endian by the controller, but we want to present them
2766 * as big endian for consistency with the bus endianness.
2768 if (ctx->base.header_size > 0)
2769 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2770 if (ctx->base.header_size > 4)
2771 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2772 if (ctx->base.header_size > 8)
2773 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2774 ctx->header_length += ctx->base.header_size;
2777 static int handle_ir_packet_per_buffer(struct context *context,
2778 struct descriptor *d,
2779 struct descriptor *last)
2781 struct iso_context *ctx =
2782 container_of(context, struct iso_context, context);
2783 struct descriptor *pd;
2784 u32 buffer_dma;
2786 for (pd = d; pd <= last; pd++)
2787 if (pd->transfer_status)
2788 break;
2789 if (pd > last)
2790 /* Descriptor(s) not done yet, stop iteration */
2791 return 0;
2793 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2794 d++;
2795 buffer_dma = le32_to_cpu(d->data_address);
2796 dma_sync_single_range_for_cpu(context->ohci->card.device,
2797 buffer_dma & PAGE_MASK,
2798 buffer_dma & ~PAGE_MASK,
2799 le16_to_cpu(d->req_count),
2800 DMA_FROM_DEVICE);
2803 copy_iso_headers(ctx, (u32 *) (last + 1));
2805 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2806 flush_iso_completions(ctx);
2808 return 1;
2811 /* d == last because each descriptor block is only a single descriptor. */
2812 static int handle_ir_buffer_fill(struct context *context,
2813 struct descriptor *d,
2814 struct descriptor *last)
2816 struct iso_context *ctx =
2817 container_of(context, struct iso_context, context);
2818 unsigned int req_count, res_count, completed;
2819 u32 buffer_dma;
2821 req_count = le16_to_cpu(last->req_count);
2822 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2823 completed = req_count - res_count;
2824 buffer_dma = le32_to_cpu(last->data_address);
2826 if (completed > 0) {
2827 ctx->mc_buffer_bus = buffer_dma;
2828 ctx->mc_completed = completed;
2831 if (res_count != 0)
2832 /* Descriptor(s) not done yet, stop iteration */
2833 return 0;
2835 dma_sync_single_range_for_cpu(context->ohci->card.device,
2836 buffer_dma & PAGE_MASK,
2837 buffer_dma & ~PAGE_MASK,
2838 completed, DMA_FROM_DEVICE);
2840 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2841 ctx->base.callback.mc(&ctx->base,
2842 buffer_dma + completed,
2843 ctx->base.callback_data);
2844 ctx->mc_completed = 0;
2847 return 1;
2850 static void flush_ir_buffer_fill(struct iso_context *ctx)
2852 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2853 ctx->mc_buffer_bus & PAGE_MASK,
2854 ctx->mc_buffer_bus & ~PAGE_MASK,
2855 ctx->mc_completed, DMA_FROM_DEVICE);
2857 ctx->base.callback.mc(&ctx->base,
2858 ctx->mc_buffer_bus + ctx->mc_completed,
2859 ctx->base.callback_data);
2860 ctx->mc_completed = 0;
2863 static inline void sync_it_packet_for_cpu(struct context *context,
2864 struct descriptor *pd)
2866 __le16 control;
2867 u32 buffer_dma;
2869 /* only packets beginning with OUTPUT_MORE* have data buffers */
2870 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871 return;
2873 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2874 pd += 2;
2877 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2878 * data buffer is in the context program's coherent page and must not
2879 * be synced.
2881 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2882 (context->current_bus & PAGE_MASK)) {
2883 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2884 return;
2885 pd++;
2888 do {
2889 buffer_dma = le32_to_cpu(pd->data_address);
2890 dma_sync_single_range_for_cpu(context->ohci->card.device,
2891 buffer_dma & PAGE_MASK,
2892 buffer_dma & ~PAGE_MASK,
2893 le16_to_cpu(pd->req_count),
2894 DMA_TO_DEVICE);
2895 control = pd->control;
2896 pd++;
2897 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2900 static int handle_it_packet(struct context *context,
2901 struct descriptor *d,
2902 struct descriptor *last)
2904 struct iso_context *ctx =
2905 container_of(context, struct iso_context, context);
2906 struct descriptor *pd;
2907 __be32 *ctx_hdr;
2909 for (pd = d; pd <= last; pd++)
2910 if (pd->transfer_status)
2911 break;
2912 if (pd > last)
2913 /* Descriptor(s) not done yet, stop iteration */
2914 return 0;
2916 sync_it_packet_for_cpu(context, d);
2918 if (ctx->header_length + 4 > PAGE_SIZE) {
2919 if (ctx->base.drop_overflow_headers)
2920 return 1;
2921 flush_iso_completions(ctx);
2924 ctx_hdr = ctx->header + ctx->header_length;
2925 ctx->last_timestamp = le16_to_cpu(last->res_count);
2926 /* Present this value as big-endian to match the receive code */
2927 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2928 le16_to_cpu(pd->res_count));
2929 ctx->header_length += 4;
2931 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2932 flush_iso_completions(ctx);
2934 return 1;
2937 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2939 u32 hi = channels >> 32, lo = channels;
2941 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2942 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2943 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2944 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2945 mmiowb();
2946 ohci->mc_channels = channels;
2949 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2950 int type, int channel, size_t header_size)
2952 struct fw_ohci *ohci = fw_ohci(card);
2953 struct iso_context *uninitialized_var(ctx);
2954 descriptor_callback_t uninitialized_var(callback);
2955 u64 *uninitialized_var(channels);
2956 u32 *uninitialized_var(mask), uninitialized_var(regs);
2957 int index, ret = -EBUSY;
2959 spin_lock_irq(&ohci->lock);
2961 switch (type) {
2962 case FW_ISO_CONTEXT_TRANSMIT:
2963 mask = &ohci->it_context_mask;
2964 callback = handle_it_packet;
2965 index = ffs(*mask) - 1;
2966 if (index >= 0) {
2967 *mask &= ~(1 << index);
2968 regs = OHCI1394_IsoXmitContextBase(index);
2969 ctx = &ohci->it_context_list[index];
2971 break;
2973 case FW_ISO_CONTEXT_RECEIVE:
2974 channels = &ohci->ir_context_channels;
2975 mask = &ohci->ir_context_mask;
2976 callback = handle_ir_packet_per_buffer;
2977 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2978 if (index >= 0) {
2979 *channels &= ~(1ULL << channel);
2980 *mask &= ~(1 << index);
2981 regs = OHCI1394_IsoRcvContextBase(index);
2982 ctx = &ohci->ir_context_list[index];
2984 break;
2986 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2987 mask = &ohci->ir_context_mask;
2988 callback = handle_ir_buffer_fill;
2989 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2990 if (index >= 0) {
2991 ohci->mc_allocated = true;
2992 *mask &= ~(1 << index);
2993 regs = OHCI1394_IsoRcvContextBase(index);
2994 ctx = &ohci->ir_context_list[index];
2996 break;
2998 default:
2999 index = -1;
3000 ret = -ENOSYS;
3003 spin_unlock_irq(&ohci->lock);
3005 if (index < 0)
3006 return ERR_PTR(ret);
3008 memset(ctx, 0, sizeof(*ctx));
3009 ctx->header_length = 0;
3010 ctx->header = (void *) __get_free_page(GFP_KERNEL);
3011 if (ctx->header == NULL) {
3012 ret = -ENOMEM;
3013 goto out;
3015 ret = context_init(&ctx->context, ohci, regs, callback);
3016 if (ret < 0)
3017 goto out_with_header;
3019 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3020 set_multichannel_mask(ohci, 0);
3021 ctx->mc_completed = 0;
3024 return &ctx->base;
3026 out_with_header:
3027 free_page((unsigned long)ctx->header);
3028 out:
3029 spin_lock_irq(&ohci->lock);
3031 switch (type) {
3032 case FW_ISO_CONTEXT_RECEIVE:
3033 *channels |= 1ULL << channel;
3034 break;
3036 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3037 ohci->mc_allocated = false;
3038 break;
3040 *mask |= 1 << index;
3042 spin_unlock_irq(&ohci->lock);
3044 return ERR_PTR(ret);
3047 static int ohci_start_iso(struct fw_iso_context *base,
3048 s32 cycle, u32 sync, u32 tags)
3050 struct iso_context *ctx = container_of(base, struct iso_context, base);
3051 struct fw_ohci *ohci = ctx->context.ohci;
3052 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3053 int index;
3055 /* the controller cannot start without any queued packets */
3056 if (ctx->context.last->branch_address == 0)
3057 return -ENODATA;
3059 switch (ctx->base.type) {
3060 case FW_ISO_CONTEXT_TRANSMIT:
3061 index = ctx - ohci->it_context_list;
3062 match = 0;
3063 if (cycle >= 0)
3064 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3065 (cycle & 0x7fff) << 16;
3067 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3068 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3069 context_run(&ctx->context, match);
3070 break;
3072 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3073 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3074 /* fall through */
3075 case FW_ISO_CONTEXT_RECEIVE:
3076 index = ctx - ohci->ir_context_list;
3077 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3078 if (cycle >= 0) {
3079 match |= (cycle & 0x07fff) << 12;
3080 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3083 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3084 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3085 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3086 context_run(&ctx->context, control);
3088 ctx->sync = sync;
3089 ctx->tags = tags;
3091 break;
3094 return 0;
3097 static int ohci_stop_iso(struct fw_iso_context *base)
3099 struct fw_ohci *ohci = fw_ohci(base->card);
3100 struct iso_context *ctx = container_of(base, struct iso_context, base);
3101 int index;
3103 switch (ctx->base.type) {
3104 case FW_ISO_CONTEXT_TRANSMIT:
3105 index = ctx - ohci->it_context_list;
3106 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3107 break;
3109 case FW_ISO_CONTEXT_RECEIVE:
3110 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3111 index = ctx - ohci->ir_context_list;
3112 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3113 break;
3115 flush_writes(ohci);
3116 context_stop(&ctx->context);
3117 tasklet_kill(&ctx->context.tasklet);
3119 return 0;
3122 static void ohci_free_iso_context(struct fw_iso_context *base)
3124 struct fw_ohci *ohci = fw_ohci(base->card);
3125 struct iso_context *ctx = container_of(base, struct iso_context, base);
3126 unsigned long flags;
3127 int index;
3129 ohci_stop_iso(base);
3130 context_release(&ctx->context);
3131 free_page((unsigned long)ctx->header);
3133 spin_lock_irqsave(&ohci->lock, flags);
3135 switch (base->type) {
3136 case FW_ISO_CONTEXT_TRANSMIT:
3137 index = ctx - ohci->it_context_list;
3138 ohci->it_context_mask |= 1 << index;
3139 break;
3141 case FW_ISO_CONTEXT_RECEIVE:
3142 index = ctx - ohci->ir_context_list;
3143 ohci->ir_context_mask |= 1 << index;
3144 ohci->ir_context_channels |= 1ULL << base->channel;
3145 break;
3147 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3148 index = ctx - ohci->ir_context_list;
3149 ohci->ir_context_mask |= 1 << index;
3150 ohci->ir_context_channels |= ohci->mc_channels;
3151 ohci->mc_channels = 0;
3152 ohci->mc_allocated = false;
3153 break;
3156 spin_unlock_irqrestore(&ohci->lock, flags);
3159 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3161 struct fw_ohci *ohci = fw_ohci(base->card);
3162 unsigned long flags;
3163 int ret;
3165 switch (base->type) {
3166 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3168 spin_lock_irqsave(&ohci->lock, flags);
3170 /* Don't allow multichannel to grab other contexts' channels. */
3171 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3172 *channels = ohci->ir_context_channels;
3173 ret = -EBUSY;
3174 } else {
3175 set_multichannel_mask(ohci, *channels);
3176 ret = 0;
3179 spin_unlock_irqrestore(&ohci->lock, flags);
3181 break;
3182 default:
3183 ret = -EINVAL;
3186 return ret;
3189 #ifdef CONFIG_PM
3190 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3192 int i;
3193 struct iso_context *ctx;
3195 for (i = 0 ; i < ohci->n_ir ; i++) {
3196 ctx = &ohci->ir_context_list[i];
3197 if (ctx->context.running)
3198 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3201 for (i = 0 ; i < ohci->n_it ; i++) {
3202 ctx = &ohci->it_context_list[i];
3203 if (ctx->context.running)
3204 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3207 #endif
3209 static int queue_iso_transmit(struct iso_context *ctx,
3210 struct fw_iso_packet *packet,
3211 struct fw_iso_buffer *buffer,
3212 unsigned long payload)
3214 struct descriptor *d, *last, *pd;
3215 struct fw_iso_packet *p;
3216 __le32 *header;
3217 dma_addr_t d_bus, page_bus;
3218 u32 z, header_z, payload_z, irq;
3219 u32 payload_index, payload_end_index, next_page_index;
3220 int page, end_page, i, length, offset;
3222 p = packet;
3223 payload_index = payload;
3225 if (p->skip)
3226 z = 1;
3227 else
3228 z = 2;
3229 if (p->header_length > 0)
3230 z++;
3232 /* Determine the first page the payload isn't contained in. */
3233 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3234 if (p->payload_length > 0)
3235 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3236 else
3237 payload_z = 0;
3239 z += payload_z;
3241 /* Get header size in number of descriptors. */
3242 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3244 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3245 if (d == NULL)
3246 return -ENOMEM;
3248 if (!p->skip) {
3249 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3250 d[0].req_count = cpu_to_le16(8);
3252 * Link the skip address to this descriptor itself. This causes
3253 * a context to skip a cycle whenever lost cycles or FIFO
3254 * overruns occur, without dropping the data. The application
3255 * should then decide whether this is an error condition or not.
3256 * FIXME: Make the context's cycle-lost behaviour configurable?
3258 d[0].branch_address = cpu_to_le32(d_bus | z);
3260 header = (__le32 *) &d[1];
3261 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3262 IT_HEADER_TAG(p->tag) |
3263 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3264 IT_HEADER_CHANNEL(ctx->base.channel) |
3265 IT_HEADER_SPEED(ctx->base.speed));
3266 header[1] =
3267 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3268 p->payload_length));
3271 if (p->header_length > 0) {
3272 d[2].req_count = cpu_to_le16(p->header_length);
3273 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3274 memcpy(&d[z], p->header, p->header_length);
3277 pd = d + z - payload_z;
3278 payload_end_index = payload_index + p->payload_length;
3279 for (i = 0; i < payload_z; i++) {
3280 page = payload_index >> PAGE_SHIFT;
3281 offset = payload_index & ~PAGE_MASK;
3282 next_page_index = (page + 1) << PAGE_SHIFT;
3283 length =
3284 min(next_page_index, payload_end_index) - payload_index;
3285 pd[i].req_count = cpu_to_le16(length);
3287 page_bus = page_private(buffer->pages[page]);
3288 pd[i].data_address = cpu_to_le32(page_bus + offset);
3290 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3291 page_bus, offset, length,
3292 DMA_TO_DEVICE);
3294 payload_index += length;
3297 if (p->interrupt)
3298 irq = DESCRIPTOR_IRQ_ALWAYS;
3299 else
3300 irq = DESCRIPTOR_NO_IRQ;
3302 last = z == 2 ? d : d + z - 1;
3303 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3304 DESCRIPTOR_STATUS |
3305 DESCRIPTOR_BRANCH_ALWAYS |
3306 irq);
3308 context_append(&ctx->context, d, z, header_z);
3310 return 0;
3313 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3314 struct fw_iso_packet *packet,
3315 struct fw_iso_buffer *buffer,
3316 unsigned long payload)
3318 struct device *device = ctx->context.ohci->card.device;
3319 struct descriptor *d, *pd;
3320 dma_addr_t d_bus, page_bus;
3321 u32 z, header_z, rest;
3322 int i, j, length;
3323 int page, offset, packet_count, header_size, payload_per_buffer;
3326 * The OHCI controller puts the isochronous header and trailer in the
3327 * buffer, so we need at least 8 bytes.
3329 packet_count = packet->header_length / ctx->base.header_size;
3330 header_size = max(ctx->base.header_size, (size_t)8);
3332 /* Get header size in number of descriptors. */
3333 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3334 page = payload >> PAGE_SHIFT;
3335 offset = payload & ~PAGE_MASK;
3336 payload_per_buffer = packet->payload_length / packet_count;
3338 for (i = 0; i < packet_count; i++) {
3339 /* d points to the header descriptor */
3340 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3341 d = context_get_descriptors(&ctx->context,
3342 z + header_z, &d_bus);
3343 if (d == NULL)
3344 return -ENOMEM;
3346 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3347 DESCRIPTOR_INPUT_MORE);
3348 if (packet->skip && i == 0)
3349 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3350 d->req_count = cpu_to_le16(header_size);
3351 d->res_count = d->req_count;
3352 d->transfer_status = 0;
3353 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3355 rest = payload_per_buffer;
3356 pd = d;
3357 for (j = 1; j < z; j++) {
3358 pd++;
3359 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3360 DESCRIPTOR_INPUT_MORE);
3362 if (offset + rest < PAGE_SIZE)
3363 length = rest;
3364 else
3365 length = PAGE_SIZE - offset;
3366 pd->req_count = cpu_to_le16(length);
3367 pd->res_count = pd->req_count;
3368 pd->transfer_status = 0;
3370 page_bus = page_private(buffer->pages[page]);
3371 pd->data_address = cpu_to_le32(page_bus + offset);
3373 dma_sync_single_range_for_device(device, page_bus,
3374 offset, length,
3375 DMA_FROM_DEVICE);
3377 offset = (offset + length) & ~PAGE_MASK;
3378 rest -= length;
3379 if (offset == 0)
3380 page++;
3382 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3383 DESCRIPTOR_INPUT_LAST |
3384 DESCRIPTOR_BRANCH_ALWAYS);
3385 if (packet->interrupt && i == packet_count - 1)
3386 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3388 context_append(&ctx->context, d, z, header_z);
3391 return 0;
3394 static int queue_iso_buffer_fill(struct iso_context *ctx,
3395 struct fw_iso_packet *packet,
3396 struct fw_iso_buffer *buffer,
3397 unsigned long payload)
3399 struct descriptor *d;
3400 dma_addr_t d_bus, page_bus;
3401 int page, offset, rest, z, i, length;
3403 page = payload >> PAGE_SHIFT;
3404 offset = payload & ~PAGE_MASK;
3405 rest = packet->payload_length;
3407 /* We need one descriptor for each page in the buffer. */
3408 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3410 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3411 return -EFAULT;
3413 for (i = 0; i < z; i++) {
3414 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3415 if (d == NULL)
3416 return -ENOMEM;
3418 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3419 DESCRIPTOR_BRANCH_ALWAYS);
3420 if (packet->skip && i == 0)
3421 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3422 if (packet->interrupt && i == z - 1)
3423 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3425 if (offset + rest < PAGE_SIZE)
3426 length = rest;
3427 else
3428 length = PAGE_SIZE - offset;
3429 d->req_count = cpu_to_le16(length);
3430 d->res_count = d->req_count;
3431 d->transfer_status = 0;
3433 page_bus = page_private(buffer->pages[page]);
3434 d->data_address = cpu_to_le32(page_bus + offset);
3436 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3437 page_bus, offset, length,
3438 DMA_FROM_DEVICE);
3440 rest -= length;
3441 offset = 0;
3442 page++;
3444 context_append(&ctx->context, d, 1, 0);
3447 return 0;
3450 static int ohci_queue_iso(struct fw_iso_context *base,
3451 struct fw_iso_packet *packet,
3452 struct fw_iso_buffer *buffer,
3453 unsigned long payload)
3455 struct iso_context *ctx = container_of(base, struct iso_context, base);
3456 unsigned long flags;
3457 int ret = -ENOSYS;
3459 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3460 switch (base->type) {
3461 case FW_ISO_CONTEXT_TRANSMIT:
3462 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3463 break;
3464 case FW_ISO_CONTEXT_RECEIVE:
3465 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3466 break;
3467 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3468 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3469 break;
3471 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3473 return ret;
3476 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3478 struct context *ctx =
3479 &container_of(base, struct iso_context, base)->context;
3481 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3484 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3486 struct iso_context *ctx = container_of(base, struct iso_context, base);
3487 int ret = 0;
3489 tasklet_disable(&ctx->context.tasklet);
3491 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3492 context_tasklet((unsigned long)&ctx->context);
3494 switch (base->type) {
3495 case FW_ISO_CONTEXT_TRANSMIT:
3496 case FW_ISO_CONTEXT_RECEIVE:
3497 if (ctx->header_length != 0)
3498 flush_iso_completions(ctx);
3499 break;
3500 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3501 if (ctx->mc_completed != 0)
3502 flush_ir_buffer_fill(ctx);
3503 break;
3504 default:
3505 ret = -ENOSYS;
3508 clear_bit_unlock(0, &ctx->flushing_completions);
3509 smp_mb__after_clear_bit();
3512 tasklet_enable(&ctx->context.tasklet);
3514 return ret;
3517 static const struct fw_card_driver ohci_driver = {
3518 .enable = ohci_enable,
3519 .read_phy_reg = ohci_read_phy_reg,
3520 .update_phy_reg = ohci_update_phy_reg,
3521 .set_config_rom = ohci_set_config_rom,
3522 .send_request = ohci_send_request,
3523 .send_response = ohci_send_response,
3524 .cancel_packet = ohci_cancel_packet,
3525 .enable_phys_dma = ohci_enable_phys_dma,
3526 .read_csr = ohci_read_csr,
3527 .write_csr = ohci_write_csr,
3529 .allocate_iso_context = ohci_allocate_iso_context,
3530 .free_iso_context = ohci_free_iso_context,
3531 .set_iso_channels = ohci_set_iso_channels,
3532 .queue_iso = ohci_queue_iso,
3533 .flush_queue_iso = ohci_flush_queue_iso,
3534 .flush_iso_completions = ohci_flush_iso_completions,
3535 .start_iso = ohci_start_iso,
3536 .stop_iso = ohci_stop_iso,
3539 #ifdef CONFIG_PPC_PMAC
3540 static void pmac_ohci_on(struct pci_dev *dev)
3542 if (machine_is(powermac)) {
3543 struct device_node *ofn = pci_device_to_OF_node(dev);
3545 if (ofn) {
3546 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3547 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3552 static void pmac_ohci_off(struct pci_dev *dev)
3554 if (machine_is(powermac)) {
3555 struct device_node *ofn = pci_device_to_OF_node(dev);
3557 if (ofn) {
3558 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3559 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3563 #else
3564 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3565 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3566 #endif /* CONFIG_PPC_PMAC */
3568 static int pci_probe(struct pci_dev *dev,
3569 const struct pci_device_id *ent)
3571 struct fw_ohci *ohci;
3572 u32 bus_options, max_receive, link_speed, version;
3573 u64 guid;
3574 int i, err;
3575 size_t size;
3577 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3578 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3579 return -ENOSYS;
3582 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3583 if (ohci == NULL) {
3584 err = -ENOMEM;
3585 goto fail;
3588 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3590 pmac_ohci_on(dev);
3592 err = pci_enable_device(dev);
3593 if (err) {
3594 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3595 goto fail_free;
3598 pci_set_master(dev);
3599 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3600 pci_set_drvdata(dev, ohci);
3602 spin_lock_init(&ohci->lock);
3603 mutex_init(&ohci->phy_reg_mutex);
3605 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3607 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3608 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3609 ohci_err(ohci, "invalid MMIO resource\n");
3610 err = -ENXIO;
3611 goto fail_disable;
3614 err = pci_request_region(dev, 0, ohci_driver_name);
3615 if (err) {
3616 ohci_err(ohci, "MMIO resource unavailable\n");
3617 goto fail_disable;
3620 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3621 if (ohci->registers == NULL) {
3622 ohci_err(ohci, "failed to remap registers\n");
3623 err = -ENXIO;
3624 goto fail_iomem;
3627 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3628 if ((ohci_quirks[i].vendor == dev->vendor) &&
3629 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3630 ohci_quirks[i].device == dev->device) &&
3631 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3632 ohci_quirks[i].revision >= dev->revision)) {
3633 ohci->quirks = ohci_quirks[i].flags;
3634 break;
3636 if (param_quirks)
3637 ohci->quirks = param_quirks;
3640 * Because dma_alloc_coherent() allocates at least one page,
3641 * we save space by using a common buffer for the AR request/
3642 * response descriptors and the self IDs buffer.
3644 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3645 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3646 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3647 PAGE_SIZE,
3648 &ohci->misc_buffer_bus,
3649 GFP_KERNEL);
3650 if (!ohci->misc_buffer) {
3651 err = -ENOMEM;
3652 goto fail_iounmap;
3655 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3656 OHCI1394_AsReqRcvContextControlSet);
3657 if (err < 0)
3658 goto fail_misc_buf;
3660 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3661 OHCI1394_AsRspRcvContextControlSet);
3662 if (err < 0)
3663 goto fail_arreq_ctx;
3665 err = context_init(&ohci->at_request_ctx, ohci,
3666 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3667 if (err < 0)
3668 goto fail_arrsp_ctx;
3670 err = context_init(&ohci->at_response_ctx, ohci,
3671 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3672 if (err < 0)
3673 goto fail_atreq_ctx;
3675 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3676 ohci->ir_context_channels = ~0ULL;
3677 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3678 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3679 ohci->ir_context_mask = ohci->ir_context_support;
3680 ohci->n_ir = hweight32(ohci->ir_context_mask);
3681 size = sizeof(struct iso_context) * ohci->n_ir;
3682 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3684 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3685 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3686 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3687 ohci->it_context_mask = ohci->it_context_support;
3688 ohci->n_it = hweight32(ohci->it_context_mask);
3689 size = sizeof(struct iso_context) * ohci->n_it;
3690 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3692 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3693 err = -ENOMEM;
3694 goto fail_contexts;
3697 ohci->self_id = ohci->misc_buffer + PAGE_SIZE/2;
3698 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3700 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3701 max_receive = (bus_options >> 12) & 0xf;
3702 link_speed = bus_options & 0x7;
3703 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3704 reg_read(ohci, OHCI1394_GUIDLo);
3706 if (!(ohci->quirks & QUIRK_NO_MSI))
3707 pci_enable_msi(dev);
3708 if (request_irq(dev->irq, irq_handler,
3709 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3710 ohci_driver_name, ohci)) {
3711 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3712 err = -EIO;
3713 goto fail_msi;
3716 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3717 if (err)
3718 goto fail_irq;
3720 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3721 ohci_notice(ohci,
3722 "added OHCI v%x.%x device as card %d, "
3723 "%d IR + %d IT contexts, quirks 0x%x\n",
3724 version >> 16, version & 0xff, ohci->card.index,
3725 ohci->n_ir, ohci->n_it, ohci->quirks);
3727 return 0;
3729 fail_irq:
3730 free_irq(dev->irq, ohci);
3731 fail_msi:
3732 pci_disable_msi(dev);
3733 fail_contexts:
3734 kfree(ohci->ir_context_list);
3735 kfree(ohci->it_context_list);
3736 context_release(&ohci->at_response_ctx);
3737 fail_atreq_ctx:
3738 context_release(&ohci->at_request_ctx);
3739 fail_arrsp_ctx:
3740 ar_context_release(&ohci->ar_response_ctx);
3741 fail_arreq_ctx:
3742 ar_context_release(&ohci->ar_request_ctx);
3743 fail_misc_buf:
3744 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3745 ohci->misc_buffer, ohci->misc_buffer_bus);
3746 fail_iounmap:
3747 pci_iounmap(dev, ohci->registers);
3748 fail_iomem:
3749 pci_release_region(dev, 0);
3750 fail_disable:
3751 pci_disable_device(dev);
3752 fail_free:
3753 kfree(ohci);
3754 pmac_ohci_off(dev);
3755 fail:
3756 return err;
3759 static void pci_remove(struct pci_dev *dev)
3761 struct fw_ohci *ohci = pci_get_drvdata(dev);
3764 * If the removal is happening from the suspend state, LPS won't be
3765 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3767 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3768 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3769 flush_writes(ohci);
3771 cancel_work_sync(&ohci->bus_reset_work);
3772 fw_core_remove_card(&ohci->card);
3775 * FIXME: Fail all pending packets here, now that the upper
3776 * layers can't queue any more.
3779 software_reset(ohci);
3780 free_irq(dev->irq, ohci);
3782 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3783 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3784 ohci->next_config_rom, ohci->next_config_rom_bus);
3785 if (ohci->config_rom)
3786 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3787 ohci->config_rom, ohci->config_rom_bus);
3788 ar_context_release(&ohci->ar_request_ctx);
3789 ar_context_release(&ohci->ar_response_ctx);
3790 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3791 ohci->misc_buffer, ohci->misc_buffer_bus);
3792 context_release(&ohci->at_request_ctx);
3793 context_release(&ohci->at_response_ctx);
3794 kfree(ohci->it_context_list);
3795 kfree(ohci->ir_context_list);
3796 pci_disable_msi(dev);
3797 pci_iounmap(dev, ohci->registers);
3798 pci_release_region(dev, 0);
3799 pci_disable_device(dev);
3800 kfree(ohci);
3801 pmac_ohci_off(dev);
3803 dev_notice(&dev->dev, "removed fw-ohci device\n");
3806 #ifdef CONFIG_PM
3807 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3809 struct fw_ohci *ohci = pci_get_drvdata(dev);
3810 int err;
3812 software_reset(ohci);
3813 err = pci_save_state(dev);
3814 if (err) {
3815 ohci_err(ohci, "pci_save_state failed\n");
3816 return err;
3818 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3819 if (err)
3820 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3821 pmac_ohci_off(dev);
3823 return 0;
3826 static int pci_resume(struct pci_dev *dev)
3828 struct fw_ohci *ohci = pci_get_drvdata(dev);
3829 int err;
3831 pmac_ohci_on(dev);
3832 pci_set_power_state(dev, PCI_D0);
3833 pci_restore_state(dev);
3834 err = pci_enable_device(dev);
3835 if (err) {
3836 ohci_err(ohci, "pci_enable_device failed\n");
3837 return err;
3840 /* Some systems don't setup GUID register on resume from ram */
3841 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3842 !reg_read(ohci, OHCI1394_GUIDHi)) {
3843 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3844 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3847 err = ohci_enable(&ohci->card, NULL, 0);
3848 if (err)
3849 return err;
3851 ohci_resume_iso_dma(ohci);
3853 return 0;
3855 #endif
3857 static const struct pci_device_id pci_table[] = {
3858 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3862 MODULE_DEVICE_TABLE(pci, pci_table);
3864 static struct pci_driver fw_ohci_pci_driver = {
3865 .name = ohci_driver_name,
3866 .id_table = pci_table,
3867 .probe = pci_probe,
3868 .remove = pci_remove,
3869 #ifdef CONFIG_PM
3870 .resume = pci_resume,
3871 .suspend = pci_suspend,
3872 #endif
3875 static int __init fw_ohci_init(void)
3877 selfid_workqueue = alloc_workqueue(KBUILD_MODNAME, WQ_MEM_RECLAIM, 0);
3878 if (!selfid_workqueue)
3879 return -ENOMEM;
3881 return pci_register_driver(&fw_ohci_pci_driver);
3884 static void __exit fw_ohci_cleanup(void)
3886 pci_unregister_driver(&fw_ohci_pci_driver);
3887 destroy_workqueue(selfid_workqueue);
3890 module_init(fw_ohci_init);
3891 module_exit(fw_ohci_cleanup);
3893 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3894 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3895 MODULE_LICENSE("GPL");
3897 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3898 MODULE_ALIAS("ohci1394");