2 * NXP LPC32XX NAND SLC driver
5 * Kevin Wells <kevin.wells@nxp.com>
6 * Roland Stigge <stigge@antcom.de>
8 * Copyright © 2011 NXP Semiconductors
9 * Copyright © 2012 Roland Stigge
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/slab.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/mtd/mtd.h>
26 #include <linux/mtd/nand.h>
27 #include <linux/mtd/partitions.h>
28 #include <linux/clk.h>
29 #include <linux/err.h>
30 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmaengine.h>
35 #include <linux/mtd/nand_ecc.h>
36 #include <linux/gpio.h>
38 #include <linux/of_mtd.h>
39 #include <linux/of_gpio.h>
40 #include <linux/mtd/lpc32xx_slc.h>
42 #define LPC32XX_MODNAME "lpc32xx-nand"
44 /**********************************************************************
45 * SLC NAND controller register offsets
46 **********************************************************************/
48 #define SLC_DATA(x) (x + 0x000)
49 #define SLC_ADDR(x) (x + 0x004)
50 #define SLC_CMD(x) (x + 0x008)
51 #define SLC_STOP(x) (x + 0x00C)
52 #define SLC_CTRL(x) (x + 0x010)
53 #define SLC_CFG(x) (x + 0x014)
54 #define SLC_STAT(x) (x + 0x018)
55 #define SLC_INT_STAT(x) (x + 0x01C)
56 #define SLC_IEN(x) (x + 0x020)
57 #define SLC_ISR(x) (x + 0x024)
58 #define SLC_ICR(x) (x + 0x028)
59 #define SLC_TAC(x) (x + 0x02C)
60 #define SLC_TC(x) (x + 0x030)
61 #define SLC_ECC(x) (x + 0x034)
62 #define SLC_DMA_DATA(x) (x + 0x038)
64 /**********************************************************************
65 * slc_ctrl register definitions
66 **********************************************************************/
67 #define SLCCTRL_SW_RESET (1 << 2) /* Reset the NAND controller bit */
68 #define SLCCTRL_ECC_CLEAR (1 << 1) /* Reset ECC bit */
69 #define SLCCTRL_DMA_START (1 << 0) /* Start DMA channel bit */
71 /**********************************************************************
72 * slc_cfg register definitions
73 **********************************************************************/
74 #define SLCCFG_CE_LOW (1 << 5) /* Force CE low bit */
75 #define SLCCFG_DMA_ECC (1 << 4) /* Enable DMA ECC bit */
76 #define SLCCFG_ECC_EN (1 << 3) /* ECC enable bit */
77 #define SLCCFG_DMA_BURST (1 << 2) /* DMA burst bit */
78 #define SLCCFG_DMA_DIR (1 << 1) /* DMA write(0)/read(1) bit */
79 #define SLCCFG_WIDTH (1 << 0) /* External device width, 0=8bit */
81 /**********************************************************************
82 * slc_stat register definitions
83 **********************************************************************/
84 #define SLCSTAT_DMA_FIFO (1 << 2) /* DMA FIFO has data bit */
85 #define SLCSTAT_SLC_FIFO (1 << 1) /* SLC FIFO has data bit */
86 #define SLCSTAT_NAND_READY (1 << 0) /* NAND device is ready bit */
88 /**********************************************************************
89 * slc_int_stat, slc_ien, slc_isr, and slc_icr register definitions
90 **********************************************************************/
91 #define SLCSTAT_INT_TC (1 << 1) /* Transfer count bit */
92 #define SLCSTAT_INT_RDY_EN (1 << 0) /* Ready interrupt bit */
94 /**********************************************************************
95 * slc_tac register definitions
96 **********************************************************************/
97 /* Clock setting for RDY write sample wait time in 2*n clocks */
98 #define SLCTAC_WDR(n) (((n) & 0xF) << 28)
99 /* Write pulse width in clock cycles, 1 to 16 clocks */
100 #define SLCTAC_WWIDTH(n) (((n) & 0xF) << 24)
101 /* Write hold time of control and data signals, 1 to 16 clocks */
102 #define SLCTAC_WHOLD(n) (((n) & 0xF) << 20)
103 /* Write setup time of control and data signals, 1 to 16 clocks */
104 #define SLCTAC_WSETUP(n) (((n) & 0xF) << 16)
105 /* Clock setting for RDY read sample wait time in 2*n clocks */
106 #define SLCTAC_RDR(n) (((n) & 0xF) << 12)
107 /* Read pulse width in clock cycles, 1 to 16 clocks */
108 #define SLCTAC_RWIDTH(n) (((n) & 0xF) << 8)
109 /* Read hold time of control and data signals, 1 to 16 clocks */
110 #define SLCTAC_RHOLD(n) (((n) & 0xF) << 4)
111 /* Read setup time of control and data signals, 1 to 16 clocks */
112 #define SLCTAC_RSETUP(n) (((n) & 0xF) << 0)
114 /**********************************************************************
115 * slc_ecc register definitions
116 **********************************************************************/
117 /* ECC line party fetch macro */
118 #define SLCECC_TO_LINEPAR(n) (((n) >> 6) & 0x7FFF)
119 #define SLCECC_TO_COLPAR(n) ((n) & 0x3F)
122 * DMA requires storage space for the DMA local buffer and the hardware ECC
123 * storage area. The DMA local buffer is only used if DMA mapping fails
126 #define LPC32XX_DMA_DATA_SIZE 4096
127 #define LPC32XX_ECC_SAVE_SIZE ((4096 / 256) * 4)
129 /* Number of bytes used for ECC stored in NAND per 256 bytes */
130 #define LPC32XX_SLC_DEV_ECC_BYTES 3
133 * If the NAND base clock frequency can't be fetched, this frequency will be
134 * used instead as the base. This rate is used to setup the timing registers
135 * used for NAND accesses.
137 #define LPC32XX_DEF_BUS_RATE 133250000
139 /* Milliseconds for DMA FIFO timeout (unlikely anyway) */
140 #define LPC32XX_DMA_TIMEOUT 100
143 * NAND ECC Layout for small page NAND devices
144 * Note: For large and huge page devices, the default layouts are used
146 static struct nand_ecclayout lpc32xx_nand_oob_16
= {
148 .eccpos
= {10, 11, 12, 13, 14, 15},
150 { .offset
= 0, .length
= 4 },
151 { .offset
= 6, .length
= 4 },
155 static u8 bbt_pattern
[] = {'B', 'b', 't', '0' };
156 static u8 mirror_pattern
[] = {'1', 't', 'b', 'B' };
159 * Small page FLASH BBT descriptors, marker at offset 0, version at offset 6
160 * Note: Large page devices used the default layout
162 static struct nand_bbt_descr bbt_smallpage_main_descr
= {
163 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
164 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
169 .pattern
= bbt_pattern
172 static struct nand_bbt_descr bbt_smallpage_mirror_descr
= {
173 .options
= NAND_BBT_LASTBLOCK
| NAND_BBT_CREATE
| NAND_BBT_WRITE
174 | NAND_BBT_2BIT
| NAND_BBT_VERSION
| NAND_BBT_PERCHIP
,
179 .pattern
= mirror_pattern
183 * NAND platform configuration structure
185 struct lpc32xx_nand_cfg_slc
{
196 struct mtd_partition
*parts
;
200 struct lpc32xx_nand_host
{
201 struct nand_chip nand_chip
;
202 struct lpc32xx_slc_platform_data
*pdata
;
205 void __iomem
*io_base
;
206 struct lpc32xx_nand_cfg_slc
*ncfg
;
208 struct completion comp
;
209 struct dma_chan
*dma_chan
;
210 uint32_t dma_buf_len
;
211 struct dma_slave_config dma_slave_config
;
212 struct scatterlist sgl
;
215 * DMA and CPU addresses of ECC work area and data buffer
219 dma_addr_t io_base_dma
;
222 static void lpc32xx_nand_setup(struct lpc32xx_nand_host
*host
)
224 uint32_t clkrate
, tmp
;
226 /* Reset SLC controller */
227 writel(SLCCTRL_SW_RESET
, SLC_CTRL(host
->io_base
));
231 writel(0, SLC_CFG(host
->io_base
));
232 writel(0, SLC_IEN(host
->io_base
));
233 writel((SLCSTAT_INT_TC
| SLCSTAT_INT_RDY_EN
),
234 SLC_ICR(host
->io_base
));
236 /* Get base clock for SLC block */
237 clkrate
= clk_get_rate(host
->clk
);
239 clkrate
= LPC32XX_DEF_BUS_RATE
;
241 /* Compute clock setup values */
242 tmp
= SLCTAC_WDR(host
->ncfg
->wdr_clks
) |
243 SLCTAC_WWIDTH(1 + (clkrate
/ host
->ncfg
->wwidth
)) |
244 SLCTAC_WHOLD(1 + (clkrate
/ host
->ncfg
->whold
)) |
245 SLCTAC_WSETUP(1 + (clkrate
/ host
->ncfg
->wsetup
)) |
246 SLCTAC_RDR(host
->ncfg
->rdr_clks
) |
247 SLCTAC_RWIDTH(1 + (clkrate
/ host
->ncfg
->rwidth
)) |
248 SLCTAC_RHOLD(1 + (clkrate
/ host
->ncfg
->rhold
)) |
249 SLCTAC_RSETUP(1 + (clkrate
/ host
->ncfg
->rsetup
));
250 writel(tmp
, SLC_TAC(host
->io_base
));
254 * Hardware specific access to control lines
256 static void lpc32xx_nand_cmd_ctrl(struct mtd_info
*mtd
, int cmd
,
260 struct nand_chip
*chip
= mtd
->priv
;
261 struct lpc32xx_nand_host
*host
= chip
->priv
;
263 /* Does CE state need to be changed? */
264 tmp
= readl(SLC_CFG(host
->io_base
));
266 tmp
|= SLCCFG_CE_LOW
;
268 tmp
&= ~SLCCFG_CE_LOW
;
269 writel(tmp
, SLC_CFG(host
->io_base
));
271 if (cmd
!= NAND_CMD_NONE
) {
273 writel(cmd
, SLC_CMD(host
->io_base
));
275 writel(cmd
, SLC_ADDR(host
->io_base
));
280 * Read the Device Ready pin
282 static int lpc32xx_nand_device_ready(struct mtd_info
*mtd
)
284 struct nand_chip
*chip
= mtd
->priv
;
285 struct lpc32xx_nand_host
*host
= chip
->priv
;
288 if ((readl(SLC_STAT(host
->io_base
)) & SLCSTAT_NAND_READY
) != 0)
295 * Enable NAND write protect
297 static void lpc32xx_wp_enable(struct lpc32xx_nand_host
*host
)
299 if (gpio_is_valid(host
->ncfg
->wp_gpio
))
300 gpio_set_value(host
->ncfg
->wp_gpio
, 0);
304 * Disable NAND write protect
306 static void lpc32xx_wp_disable(struct lpc32xx_nand_host
*host
)
308 if (gpio_is_valid(host
->ncfg
->wp_gpio
))
309 gpio_set_value(host
->ncfg
->wp_gpio
, 1);
313 * Prepares SLC for transfers with H/W ECC enabled
315 static void lpc32xx_nand_ecc_enable(struct mtd_info
*mtd
, int mode
)
317 /* Hardware ECC is enabled automatically in hardware as needed */
321 * Calculates the ECC for the data
323 static int lpc32xx_nand_ecc_calculate(struct mtd_info
*mtd
,
324 const unsigned char *buf
,
328 * ECC is calculated automatically in hardware during syndrome read
329 * and write operations, so it doesn't need to be calculated here.
335 * Read a single byte from NAND device
337 static uint8_t lpc32xx_nand_read_byte(struct mtd_info
*mtd
)
339 struct nand_chip
*chip
= mtd
->priv
;
340 struct lpc32xx_nand_host
*host
= chip
->priv
;
342 return (uint8_t)readl(SLC_DATA(host
->io_base
));
346 * Simple device read without ECC
348 static void lpc32xx_nand_read_buf(struct mtd_info
*mtd
, u_char
*buf
, int len
)
350 struct nand_chip
*chip
= mtd
->priv
;
351 struct lpc32xx_nand_host
*host
= chip
->priv
;
353 /* Direct device read with no ECC */
355 *buf
++ = (uint8_t)readl(SLC_DATA(host
->io_base
));
359 * Simple device write without ECC
361 static void lpc32xx_nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
363 struct nand_chip
*chip
= mtd
->priv
;
364 struct lpc32xx_nand_host
*host
= chip
->priv
;
366 /* Direct device write with no ECC */
368 writel((uint32_t)*buf
++, SLC_DATA(host
->io_base
));
372 * Read the OOB data from the device without ECC using FIFO method
374 static int lpc32xx_nand_read_oob_syndrome(struct mtd_info
*mtd
,
375 struct nand_chip
*chip
, int page
)
377 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
378 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
384 * Write the OOB data to the device without ECC using FIFO method
386 static int lpc32xx_nand_write_oob_syndrome(struct mtd_info
*mtd
,
387 struct nand_chip
*chip
, int page
)
391 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
392 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
394 /* Send command to program the OOB data */
395 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
397 status
= chip
->waitfunc(mtd
, chip
);
399 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
403 * Fills in the ECC fields in the OOB buffer with the hardware generated ECC
405 static void lpc32xx_slc_ecc_copy(uint8_t *spare
, const uint32_t *ecc
, int count
)
409 for (i
= 0; i
< (count
* 3); i
+= 3) {
410 uint32_t ce
= ecc
[i
/ 3];
411 ce
= ~(ce
<< 2) & 0xFFFFFF;
412 spare
[i
+ 2] = (uint8_t)(ce
& 0xFF);
414 spare
[i
+ 1] = (uint8_t)(ce
& 0xFF);
416 spare
[i
] = (uint8_t)(ce
& 0xFF);
420 static void lpc32xx_dma_complete_func(void *completion
)
422 complete(completion
);
425 static int lpc32xx_xmit_dma(struct mtd_info
*mtd
, dma_addr_t dma
,
426 void *mem
, int len
, enum dma_transfer_direction dir
)
428 struct nand_chip
*chip
= mtd
->priv
;
429 struct lpc32xx_nand_host
*host
= chip
->priv
;
430 struct dma_async_tx_descriptor
*desc
;
431 int flags
= DMA_CTRL_ACK
| DMA_PREP_INTERRUPT
;
434 host
->dma_slave_config
.direction
= dir
;
435 host
->dma_slave_config
.src_addr
= dma
;
436 host
->dma_slave_config
.dst_addr
= dma
;
437 host
->dma_slave_config
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
438 host
->dma_slave_config
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
439 host
->dma_slave_config
.src_maxburst
= 4;
440 host
->dma_slave_config
.dst_maxburst
= 4;
441 /* DMA controller does flow control: */
442 host
->dma_slave_config
.device_fc
= false;
443 if (dmaengine_slave_config(host
->dma_chan
, &host
->dma_slave_config
)) {
444 dev_err(mtd
->dev
.parent
, "Failed to setup DMA slave\n");
448 sg_init_one(&host
->sgl
, mem
, len
);
450 res
= dma_map_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
453 dev_err(mtd
->dev
.parent
, "Failed to map sg list\n");
456 desc
= dmaengine_prep_slave_sg(host
->dma_chan
, &host
->sgl
, 1, dir
,
459 dev_err(mtd
->dev
.parent
, "Failed to prepare slave sg\n");
463 init_completion(&host
->comp
);
464 desc
->callback
= lpc32xx_dma_complete_func
;
465 desc
->callback_param
= &host
->comp
;
467 dmaengine_submit(desc
);
468 dma_async_issue_pending(host
->dma_chan
);
470 wait_for_completion_timeout(&host
->comp
, msecs_to_jiffies(1000));
472 dma_unmap_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
477 dma_unmap_sg(host
->dma_chan
->device
->dev
, &host
->sgl
, 1,
483 * DMA read/write transfers with ECC support
485 static int lpc32xx_xfer(struct mtd_info
*mtd
, uint8_t *buf
, int eccsubpages
,
488 struct nand_chip
*chip
= mtd
->priv
;
489 struct lpc32xx_nand_host
*host
= chip
->priv
;
491 unsigned long timeout
;
493 enum dma_transfer_direction dir
=
494 read
? DMA_DEV_TO_MEM
: DMA_MEM_TO_DEV
;
498 if ((void *)buf
<= high_memory
) {
502 dma_buf
= host
->data_buf
;
505 memcpy(host
->data_buf
, buf
, mtd
->writesize
);
509 writel(readl(SLC_CFG(host
->io_base
)) |
510 SLCCFG_DMA_DIR
| SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
|
511 SLCCFG_DMA_BURST
, SLC_CFG(host
->io_base
));
513 writel((readl(SLC_CFG(host
->io_base
)) |
514 SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
| SLCCFG_DMA_BURST
) &
516 SLC_CFG(host
->io_base
));
519 /* Clear initial ECC */
520 writel(SLCCTRL_ECC_CLEAR
, SLC_CTRL(host
->io_base
));
522 /* Transfer size is data area only */
523 writel(mtd
->writesize
, SLC_TC(host
->io_base
));
525 /* Start transfer in the NAND controller */
526 writel(readl(SLC_CTRL(host
->io_base
)) | SLCCTRL_DMA_START
,
527 SLC_CTRL(host
->io_base
));
529 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
531 res
= lpc32xx_xmit_dma(mtd
, SLC_DMA_DATA(host
->io_base_dma
),
532 dma_buf
+ i
* chip
->ecc
.size
,
533 mtd
->writesize
/ chip
->ecc
.steps
, dir
);
537 /* Always _read_ ECC */
538 if (i
== chip
->ecc
.steps
- 1)
540 if (!read
) /* ECC availability delayed on write */
542 res
= lpc32xx_xmit_dma(mtd
, SLC_ECC(host
->io_base_dma
),
543 &host
->ecc_buf
[i
], 4, DMA_DEV_TO_MEM
);
549 * According to NXP, the DMA can be finished here, but the NAND
550 * controller may still have buffered data. After porting to using the
551 * dmaengine DMA driver (amba-pl080), the condition (DMA_FIFO empty)
552 * appears to be always true, according to tests. Keeping the check for
553 * safety reasons for now.
555 if (readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
) {
556 dev_warn(mtd
->dev
.parent
, "FIFO not empty!\n");
557 timeout
= jiffies
+ msecs_to_jiffies(LPC32XX_DMA_TIMEOUT
);
558 while ((readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
) &&
559 time_before(jiffies
, timeout
))
561 if (!time_before(jiffies
, timeout
)) {
562 dev_err(mtd
->dev
.parent
, "FIFO held data too long\n");
567 /* Read last calculated ECC value */
570 host
->ecc_buf
[chip
->ecc
.steps
- 1] =
571 readl(SLC_ECC(host
->io_base
));
574 dmaengine_terminate_all(host
->dma_chan
);
576 if (readl(SLC_STAT(host
->io_base
)) & SLCSTAT_DMA_FIFO
||
577 readl(SLC_TC(host
->io_base
))) {
578 /* Something is left in the FIFO, something is wrong */
579 dev_err(mtd
->dev
.parent
, "DMA FIFO failure\n");
583 /* Stop DMA & HW ECC */
584 writel(readl(SLC_CTRL(host
->io_base
)) & ~SLCCTRL_DMA_START
,
585 SLC_CTRL(host
->io_base
));
586 writel(readl(SLC_CFG(host
->io_base
)) &
587 ~(SLCCFG_DMA_DIR
| SLCCFG_ECC_EN
| SLCCFG_DMA_ECC
|
588 SLCCFG_DMA_BURST
), SLC_CFG(host
->io_base
));
590 if (!dma_mapped
&& read
)
591 memcpy(buf
, host
->data_buf
, mtd
->writesize
);
597 * Read the data and OOB data from the device, use ECC correction with the
598 * data, disable ECC for the OOB data
600 static int lpc32xx_nand_read_page_syndrome(struct mtd_info
*mtd
,
601 struct nand_chip
*chip
, uint8_t *buf
,
602 int oob_required
, int page
)
604 struct lpc32xx_nand_host
*host
= chip
->priv
;
606 uint8_t *oobecc
, tmpecc
[LPC32XX_ECC_SAVE_SIZE
];
608 /* Issue read command */
609 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
611 /* Read data and oob, calculate ECC */
612 status
= lpc32xx_xfer(mtd
, buf
, chip
->ecc
.steps
, 1);
615 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
617 /* Convert to stored ECC format */
618 lpc32xx_slc_ecc_copy(tmpecc
, (uint32_t *) host
->ecc_buf
, chip
->ecc
.steps
);
620 /* Pointer to ECC data retrieved from NAND spare area */
621 oobecc
= chip
->oob_poi
+ chip
->ecc
.layout
->eccpos
[0];
623 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
624 stat
= chip
->ecc
.correct(mtd
, buf
, oobecc
,
625 &tmpecc
[i
* chip
->ecc
.bytes
]);
627 mtd
->ecc_stats
.failed
++;
629 mtd
->ecc_stats
.corrected
+= stat
;
631 buf
+= chip
->ecc
.size
;
632 oobecc
+= chip
->ecc
.bytes
;
639 * Read the data and OOB data from the device, no ECC correction with the
642 static int lpc32xx_nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
643 struct nand_chip
*chip
,
644 uint8_t *buf
, int oob_required
,
647 /* Issue read command */
648 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
650 /* Raw reads can just use the FIFO interface */
651 chip
->read_buf(mtd
, buf
, chip
->ecc
.size
* chip
->ecc
.steps
);
652 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
658 * Write the data and OOB data to the device, use ECC with the data,
659 * disable ECC for the OOB data
661 static int lpc32xx_nand_write_page_syndrome(struct mtd_info
*mtd
,
662 struct nand_chip
*chip
,
663 const uint8_t *buf
, int oob_required
)
665 struct lpc32xx_nand_host
*host
= chip
->priv
;
666 uint8_t *pb
= chip
->oob_poi
+ chip
->ecc
.layout
->eccpos
[0];
669 /* Write data, calculate ECC on outbound data */
670 error
= lpc32xx_xfer(mtd
, (uint8_t *)buf
, chip
->ecc
.steps
, 0);
675 * The calculated ECC needs some manual work done to it before
676 * committing it to NAND. Process the calculated ECC and place
677 * the resultant values directly into the OOB buffer. */
678 lpc32xx_slc_ecc_copy(pb
, (uint32_t *)host
->ecc_buf
, chip
->ecc
.steps
);
680 /* Write ECC data to device */
681 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
686 * Write the data and OOB data to the device, no ECC correction with the
689 static int lpc32xx_nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
690 struct nand_chip
*chip
,
694 /* Raw writes can just use the FIFO interface */
695 chip
->write_buf(mtd
, buf
, chip
->ecc
.size
* chip
->ecc
.steps
);
696 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
700 static int lpc32xx_nand_dma_setup(struct lpc32xx_nand_host
*host
)
702 struct mtd_info
*mtd
= &host
->mtd
;
705 if (!host
->pdata
|| !host
->pdata
->dma_filter
) {
706 dev_err(mtd
->dev
.parent
, "no DMA platform data\n");
711 dma_cap_set(DMA_SLAVE
, mask
);
712 host
->dma_chan
= dma_request_channel(mask
, host
->pdata
->dma_filter
,
714 if (!host
->dma_chan
) {
715 dev_err(mtd
->dev
.parent
, "Failed to request DMA channel\n");
722 static struct lpc32xx_nand_cfg_slc
*lpc32xx_parse_dt(struct device
*dev
)
724 struct lpc32xx_nand_cfg_slc
*ncfg
;
725 struct device_node
*np
= dev
->of_node
;
727 ncfg
= devm_kzalloc(dev
, sizeof(*ncfg
), GFP_KERNEL
);
729 dev_err(dev
, "could not allocate memory for NAND config\n");
733 of_property_read_u32(np
, "nxp,wdr-clks", &ncfg
->wdr_clks
);
734 of_property_read_u32(np
, "nxp,wwidth", &ncfg
->wwidth
);
735 of_property_read_u32(np
, "nxp,whold", &ncfg
->whold
);
736 of_property_read_u32(np
, "nxp,wsetup", &ncfg
->wsetup
);
737 of_property_read_u32(np
, "nxp,rdr-clks", &ncfg
->rdr_clks
);
738 of_property_read_u32(np
, "nxp,rwidth", &ncfg
->rwidth
);
739 of_property_read_u32(np
, "nxp,rhold", &ncfg
->rhold
);
740 of_property_read_u32(np
, "nxp,rsetup", &ncfg
->rsetup
);
742 if (!ncfg
->wdr_clks
|| !ncfg
->wwidth
|| !ncfg
->whold
||
743 !ncfg
->wsetup
|| !ncfg
->rdr_clks
|| !ncfg
->rwidth
||
744 !ncfg
->rhold
|| !ncfg
->rsetup
) {
745 dev_err(dev
, "chip parameters not specified correctly\n");
749 ncfg
->use_bbt
= of_get_nand_on_flash_bbt(np
);
750 ncfg
->wp_gpio
= of_get_named_gpio(np
, "gpios", 0);
756 * Probe for NAND controller
758 static int lpc32xx_nand_probe(struct platform_device
*pdev
)
760 struct lpc32xx_nand_host
*host
;
761 struct mtd_info
*mtd
;
762 struct nand_chip
*chip
;
764 struct mtd_part_parser_data ppdata
= {};
767 rc
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
769 dev_err(&pdev
->dev
, "No memory resource found for device\n");
773 /* Allocate memory for the device structure (and zero it) */
774 host
= devm_kzalloc(&pdev
->dev
, sizeof(*host
), GFP_KERNEL
);
776 dev_err(&pdev
->dev
, "failed to allocate device structure\n");
779 host
->io_base_dma
= rc
->start
;
781 host
->io_base
= devm_ioremap_resource(&pdev
->dev
, rc
);
782 if (IS_ERR(host
->io_base
))
783 return PTR_ERR(host
->io_base
);
785 if (pdev
->dev
.of_node
)
786 host
->ncfg
= lpc32xx_parse_dt(&pdev
->dev
);
789 "Missing or bad NAND config from device tree\n");
792 if (host
->ncfg
->wp_gpio
== -EPROBE_DEFER
)
793 return -EPROBE_DEFER
;
794 if (gpio_is_valid(host
->ncfg
->wp_gpio
) &&
795 gpio_request(host
->ncfg
->wp_gpio
, "NAND WP")) {
796 dev_err(&pdev
->dev
, "GPIO not available\n");
799 lpc32xx_wp_disable(host
);
801 host
->pdata
= dev_get_platdata(&pdev
->dev
);
804 chip
= &host
->nand_chip
;
807 mtd
->owner
= THIS_MODULE
;
808 mtd
->dev
.parent
= &pdev
->dev
;
811 host
->clk
= clk_get(&pdev
->dev
, NULL
);
812 if (IS_ERR(host
->clk
)) {
813 dev_err(&pdev
->dev
, "Clock failure\n");
817 clk_enable(host
->clk
);
819 /* Set NAND IO addresses and command/ready functions */
820 chip
->IO_ADDR_R
= SLC_DATA(host
->io_base
);
821 chip
->IO_ADDR_W
= SLC_DATA(host
->io_base
);
822 chip
->cmd_ctrl
= lpc32xx_nand_cmd_ctrl
;
823 chip
->dev_ready
= lpc32xx_nand_device_ready
;
824 chip
->chip_delay
= 20; /* 20us command delay time */
826 /* Init NAND controller */
827 lpc32xx_nand_setup(host
);
829 platform_set_drvdata(pdev
, host
);
831 /* NAND callbacks for LPC32xx SLC hardware */
832 chip
->ecc
.mode
= NAND_ECC_HW_SYNDROME
;
833 chip
->read_byte
= lpc32xx_nand_read_byte
;
834 chip
->read_buf
= lpc32xx_nand_read_buf
;
835 chip
->write_buf
= lpc32xx_nand_write_buf
;
836 chip
->ecc
.read_page_raw
= lpc32xx_nand_read_page_raw_syndrome
;
837 chip
->ecc
.read_page
= lpc32xx_nand_read_page_syndrome
;
838 chip
->ecc
.write_page_raw
= lpc32xx_nand_write_page_raw_syndrome
;
839 chip
->ecc
.write_page
= lpc32xx_nand_write_page_syndrome
;
840 chip
->ecc
.write_oob
= lpc32xx_nand_write_oob_syndrome
;
841 chip
->ecc
.read_oob
= lpc32xx_nand_read_oob_syndrome
;
842 chip
->ecc
.calculate
= lpc32xx_nand_ecc_calculate
;
843 chip
->ecc
.correct
= nand_correct_data
;
844 chip
->ecc
.strength
= 1;
845 chip
->ecc
.hwctl
= lpc32xx_nand_ecc_enable
;
847 /* bitflip_threshold's default is defined as ecc_strength anyway.
848 * Unfortunately, it is set only later at add_mtd_device(). Meanwhile
849 * being 0, it causes bad block table scanning errors in
850 * nand_scan_tail(), so preparing it here already. */
851 mtd
->bitflip_threshold
= chip
->ecc
.strength
;
854 * Allocate a large enough buffer for a single huge page plus
855 * extra space for the spare area and ECC storage area
857 host
->dma_buf_len
= LPC32XX_DMA_DATA_SIZE
+ LPC32XX_ECC_SAVE_SIZE
;
858 host
->data_buf
= devm_kzalloc(&pdev
->dev
, host
->dma_buf_len
,
860 if (host
->data_buf
== NULL
) {
861 dev_err(&pdev
->dev
, "Error allocating memory\n");
866 res
= lpc32xx_nand_dma_setup(host
);
872 /* Find NAND device */
873 if (nand_scan_ident(mtd
, 1, NULL
)) {
878 /* OOB and ECC CPU and DMA work areas */
879 host
->ecc_buf
= (uint32_t *)(host
->data_buf
+ LPC32XX_DMA_DATA_SIZE
);
882 * Small page FLASH has a unique OOB layout, but large and huge
883 * page FLASH use the standard layout. Small page FLASH uses a
884 * custom BBT marker layout.
886 if (mtd
->writesize
<= 512)
887 chip
->ecc
.layout
= &lpc32xx_nand_oob_16
;
889 /* These sizes remain the same regardless of page size */
890 chip
->ecc
.size
= 256;
891 chip
->ecc
.bytes
= LPC32XX_SLC_DEV_ECC_BYTES
;
892 chip
->ecc
.prepad
= chip
->ecc
.postpad
= 0;
894 /* Avoid extra scan if using BBT, setup BBT support */
895 if (host
->ncfg
->use_bbt
) {
896 chip
->options
|= NAND_SKIP_BBTSCAN
;
897 chip
->bbt_options
|= NAND_BBT_USE_FLASH
;
900 * Use a custom BBT marker setup for small page FLASH that
901 * won't interfere with the ECC layout. Large and huge page
902 * FLASH use the standard layout.
904 if (mtd
->writesize
<= 512) {
905 chip
->bbt_td
= &bbt_smallpage_main_descr
;
906 chip
->bbt_md
= &bbt_smallpage_mirror_descr
;
911 * Fills out all the uninitialized function pointers with the defaults
913 if (nand_scan_tail(mtd
)) {
918 /* Standard layout in FLASH for bad block tables */
919 if (host
->ncfg
->use_bbt
) {
920 if (nand_default_bbt(mtd
) < 0)
922 "Error initializing default bad block tables\n");
925 mtd
->name
= "nxp_lpc3220_slc";
926 ppdata
.of_node
= pdev
->dev
.of_node
;
927 res
= mtd_device_parse_register(mtd
, NULL
, &ppdata
, host
->ncfg
->parts
,
928 host
->ncfg
->num_parts
);
935 dma_release_channel(host
->dma_chan
);
937 clk_disable(host
->clk
);
940 lpc32xx_wp_enable(host
);
941 gpio_free(host
->ncfg
->wp_gpio
);
947 * Remove NAND device.
949 static int lpc32xx_nand_remove(struct platform_device
*pdev
)
952 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
953 struct mtd_info
*mtd
= &host
->mtd
;
956 dma_release_channel(host
->dma_chan
);
959 tmp
= readl(SLC_CTRL(host
->io_base
));
960 tmp
&= ~SLCCFG_CE_LOW
;
961 writel(tmp
, SLC_CTRL(host
->io_base
));
963 clk_disable(host
->clk
);
965 lpc32xx_wp_enable(host
);
966 gpio_free(host
->ncfg
->wp_gpio
);
972 static int lpc32xx_nand_resume(struct platform_device
*pdev
)
974 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
976 /* Re-enable NAND clock */
977 clk_enable(host
->clk
);
979 /* Fresh init of NAND controller */
980 lpc32xx_nand_setup(host
);
982 /* Disable write protect */
983 lpc32xx_wp_disable(host
);
988 static int lpc32xx_nand_suspend(struct platform_device
*pdev
, pm_message_t pm
)
991 struct lpc32xx_nand_host
*host
= platform_get_drvdata(pdev
);
994 tmp
= readl(SLC_CTRL(host
->io_base
));
995 tmp
&= ~SLCCFG_CE_LOW
;
996 writel(tmp
, SLC_CTRL(host
->io_base
));
998 /* Enable write protect for safety */
999 lpc32xx_wp_enable(host
);
1002 clk_disable(host
->clk
);
1008 #define lpc32xx_nand_resume NULL
1009 #define lpc32xx_nand_suspend NULL
1012 static const struct of_device_id lpc32xx_nand_match
[] = {
1013 { .compatible
= "nxp,lpc3220-slc" },
1016 MODULE_DEVICE_TABLE(of
, lpc32xx_nand_match
);
1018 static struct platform_driver lpc32xx_nand_driver
= {
1019 .probe
= lpc32xx_nand_probe
,
1020 .remove
= lpc32xx_nand_remove
,
1021 .resume
= lpc32xx_nand_resume
,
1022 .suspend
= lpc32xx_nand_suspend
,
1024 .name
= LPC32XX_MODNAME
,
1025 .owner
= THIS_MODULE
,
1026 .of_match_table
= of_match_ptr(lpc32xx_nand_match
),
1030 module_platform_driver(lpc32xx_nand_driver
);
1032 MODULE_LICENSE("GPL");
1033 MODULE_AUTHOR("Kevin Wells <kevin.wells@nxp.com>");
1034 MODULE_AUTHOR("Roland Stigge <stigge@antcom.de>");
1035 MODULE_DESCRIPTION("NAND driver for the NXP LPC32XX SLC controller");