2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
3 * Copyright © 2004 Micron Technology Inc.
4 * Copyright © 2004 David Brownell
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/platform_device.h>
12 #include <linux/dmaengine.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/delay.h>
15 #include <linux/module.h>
16 #include <linux/interrupt.h>
17 #include <linux/jiffies.h>
18 #include <linux/sched.h>
19 #include <linux/mtd/mtd.h>
20 #include <linux/mtd/nand.h>
21 #include <linux/mtd/partitions.h>
22 #include <linux/omap-dma.h>
24 #include <linux/slab.h>
26 #include <linux/of_device.h>
28 #ifdef CONFIG_MTD_NAND_OMAP_BCH
29 #include <linux/bch.h>
30 #include <linux/platform_data/elm.h>
33 #include <linux/platform_data/mtd-nand-omap2.h>
35 #define DRIVER_NAME "omap2-nand"
36 #define OMAP_NAND_TIMEOUT_MS 5000
38 #define NAND_Ecc_P1e (1 << 0)
39 #define NAND_Ecc_P2e (1 << 1)
40 #define NAND_Ecc_P4e (1 << 2)
41 #define NAND_Ecc_P8e (1 << 3)
42 #define NAND_Ecc_P16e (1 << 4)
43 #define NAND_Ecc_P32e (1 << 5)
44 #define NAND_Ecc_P64e (1 << 6)
45 #define NAND_Ecc_P128e (1 << 7)
46 #define NAND_Ecc_P256e (1 << 8)
47 #define NAND_Ecc_P512e (1 << 9)
48 #define NAND_Ecc_P1024e (1 << 10)
49 #define NAND_Ecc_P2048e (1 << 11)
51 #define NAND_Ecc_P1o (1 << 16)
52 #define NAND_Ecc_P2o (1 << 17)
53 #define NAND_Ecc_P4o (1 << 18)
54 #define NAND_Ecc_P8o (1 << 19)
55 #define NAND_Ecc_P16o (1 << 20)
56 #define NAND_Ecc_P32o (1 << 21)
57 #define NAND_Ecc_P64o (1 << 22)
58 #define NAND_Ecc_P128o (1 << 23)
59 #define NAND_Ecc_P256o (1 << 24)
60 #define NAND_Ecc_P512o (1 << 25)
61 #define NAND_Ecc_P1024o (1 << 26)
62 #define NAND_Ecc_P2048o (1 << 27)
64 #define TF(value) (value ? 1 : 0)
66 #define P2048e(a) (TF(a & NAND_Ecc_P2048e) << 0)
67 #define P2048o(a) (TF(a & NAND_Ecc_P2048o) << 1)
68 #define P1e(a) (TF(a & NAND_Ecc_P1e) << 2)
69 #define P1o(a) (TF(a & NAND_Ecc_P1o) << 3)
70 #define P2e(a) (TF(a & NAND_Ecc_P2e) << 4)
71 #define P2o(a) (TF(a & NAND_Ecc_P2o) << 5)
72 #define P4e(a) (TF(a & NAND_Ecc_P4e) << 6)
73 #define P4o(a) (TF(a & NAND_Ecc_P4o) << 7)
75 #define P8e(a) (TF(a & NAND_Ecc_P8e) << 0)
76 #define P8o(a) (TF(a & NAND_Ecc_P8o) << 1)
77 #define P16e(a) (TF(a & NAND_Ecc_P16e) << 2)
78 #define P16o(a) (TF(a & NAND_Ecc_P16o) << 3)
79 #define P32e(a) (TF(a & NAND_Ecc_P32e) << 4)
80 #define P32o(a) (TF(a & NAND_Ecc_P32o) << 5)
81 #define P64e(a) (TF(a & NAND_Ecc_P64e) << 6)
82 #define P64o(a) (TF(a & NAND_Ecc_P64o) << 7)
84 #define P128e(a) (TF(a & NAND_Ecc_P128e) << 0)
85 #define P128o(a) (TF(a & NAND_Ecc_P128o) << 1)
86 #define P256e(a) (TF(a & NAND_Ecc_P256e) << 2)
87 #define P256o(a) (TF(a & NAND_Ecc_P256o) << 3)
88 #define P512e(a) (TF(a & NAND_Ecc_P512e) << 4)
89 #define P512o(a) (TF(a & NAND_Ecc_P512o) << 5)
90 #define P1024e(a) (TF(a & NAND_Ecc_P1024e) << 6)
91 #define P1024o(a) (TF(a & NAND_Ecc_P1024o) << 7)
93 #define P8e_s(a) (TF(a & NAND_Ecc_P8e) << 0)
94 #define P8o_s(a) (TF(a & NAND_Ecc_P8o) << 1)
95 #define P16e_s(a) (TF(a & NAND_Ecc_P16e) << 2)
96 #define P16o_s(a) (TF(a & NAND_Ecc_P16o) << 3)
97 #define P1e_s(a) (TF(a & NAND_Ecc_P1e) << 4)
98 #define P1o_s(a) (TF(a & NAND_Ecc_P1o) << 5)
99 #define P2e_s(a) (TF(a & NAND_Ecc_P2e) << 6)
100 #define P2o_s(a) (TF(a & NAND_Ecc_P2o) << 7)
102 #define P4e_s(a) (TF(a & NAND_Ecc_P4e) << 0)
103 #define P4o_s(a) (TF(a & NAND_Ecc_P4o) << 1)
105 #define PREFETCH_CONFIG1_CS_SHIFT 24
106 #define ECC_CONFIG_CS_SHIFT 1
108 #define ENABLE_PREFETCH (0x1 << 7)
109 #define DMA_MPU_MODE_SHIFT 2
110 #define ECCSIZE0_SHIFT 12
111 #define ECCSIZE1_SHIFT 22
112 #define ECC1RESULTSIZE 0x1
113 #define ECCCLEAR 0x100
115 #define PREFETCH_FIFOTHRESHOLD_MAX 0x40
116 #define PREFETCH_FIFOTHRESHOLD(val) ((val) << 8)
117 #define PREFETCH_STATUS_COUNT(val) (val & 0x00003fff)
118 #define PREFETCH_STATUS_FIFO_CNT(val) ((val >> 24) & 0x7F)
119 #define STATUS_BUFF_EMPTY 0x00000001
121 #define OMAP24XX_DMA_GPMC 4
123 #define BCH8_MAX_ERROR 8 /* upto 8 bit correctable */
124 #define BCH4_MAX_ERROR 4 /* upto 4 bit correctable */
126 #define SECTOR_BYTES 512
127 /* 4 bit padding to make byte aligned, 56 = 52 + 4 */
128 #define BCH4_BIT_PAD 4
129 #define BCH8_ECC_MAX ((SECTOR_BYTES + BCH8_ECC_OOB_BYTES) * 8)
130 #define BCH4_ECC_MAX ((SECTOR_BYTES + BCH4_ECC_OOB_BYTES) * 8)
132 /* GPMC ecc engine settings for read */
133 #define BCH_WRAPMODE_1 1 /* BCH wrap mode 1 */
134 #define BCH8R_ECC_SIZE0 0x1a /* ecc_size0 = 26 */
135 #define BCH8R_ECC_SIZE1 0x2 /* ecc_size1 = 2 */
136 #define BCH4R_ECC_SIZE0 0xd /* ecc_size0 = 13 */
137 #define BCH4R_ECC_SIZE1 0x3 /* ecc_size1 = 3 */
139 /* GPMC ecc engine settings for write */
140 #define BCH_WRAPMODE_6 6 /* BCH wrap mode 6 */
141 #define BCH_ECC_SIZE0 0x0 /* ecc_size0 = 0, no oob protection */
142 #define BCH_ECC_SIZE1 0x20 /* ecc_size1 = 32 */
144 #ifdef CONFIG_MTD_NAND_OMAP_BCH
145 static u_char bch8_vector
[] = {0xf3, 0xdb, 0x14, 0x16, 0x8b, 0xd2, 0xbe, 0xcc,
146 0xac, 0x6b, 0xff, 0x99, 0x7b};
147 static u_char bch4_vector
[] = {0x00, 0x6b, 0x31, 0xdd, 0x41, 0xbc, 0x10};
150 /* oob info generated runtime depending on ecc algorithm and layout selected */
151 static struct nand_ecclayout omap_oobinfo
;
152 /* Define some generic bad / good block scan pattern which are used
153 * while scanning a device for factory marked good / bad blocks
155 static uint8_t scan_ff_pattern
[] = { 0xff };
156 static struct nand_bbt_descr bb_descrip_flashbased
= {
157 .options
= NAND_BBT_SCANALLPAGES
,
160 .pattern
= scan_ff_pattern
,
164 struct omap_nand_info
{
165 struct nand_hw_control controller
;
166 struct omap_nand_platform_data
*pdata
;
168 struct nand_chip nand
;
169 struct platform_device
*pdev
;
172 unsigned long phys_base
;
173 unsigned long mem_size
;
174 struct completion comp
;
175 struct dma_chan
*dma
;
179 OMAP_NAND_IO_READ
= 0, /* read */
180 OMAP_NAND_IO_WRITE
, /* write */
184 struct gpmc_nand_regs reg
;
186 #ifdef CONFIG_MTD_NAND_OMAP_BCH
187 struct bch_control
*bch
;
188 struct nand_ecclayout ecclayout
;
190 struct device
*elm_dev
;
191 struct device_node
*of_node
;
196 * omap_prefetch_enable - configures and starts prefetch transfer
197 * @cs: cs (chip select) number
198 * @fifo_th: fifo threshold to be used for read/ write
199 * @dma_mode: dma mode enable (1) or disable (0)
200 * @u32_count: number of bytes to be transferred
201 * @is_write: prefetch read(0) or write post(1) mode
203 static int omap_prefetch_enable(int cs
, int fifo_th
, int dma_mode
,
204 unsigned int u32_count
, int is_write
, struct omap_nand_info
*info
)
208 if (fifo_th
> PREFETCH_FIFOTHRESHOLD_MAX
)
211 if (readl(info
->reg
.gpmc_prefetch_control
))
214 /* Set the amount of bytes to be prefetched */
215 writel(u32_count
, info
->reg
.gpmc_prefetch_config2
);
217 /* Set dma/mpu mode, the prefetch read / post write and
218 * enable the engine. Set which cs is has requested for.
220 val
= ((cs
<< PREFETCH_CONFIG1_CS_SHIFT
) |
221 PREFETCH_FIFOTHRESHOLD(fifo_th
) | ENABLE_PREFETCH
|
222 (dma_mode
<< DMA_MPU_MODE_SHIFT
) | (0x1 & is_write
));
223 writel(val
, info
->reg
.gpmc_prefetch_config1
);
225 /* Start the prefetch engine */
226 writel(0x1, info
->reg
.gpmc_prefetch_control
);
232 * omap_prefetch_reset - disables and stops the prefetch engine
234 static int omap_prefetch_reset(int cs
, struct omap_nand_info
*info
)
238 /* check if the same module/cs is trying to reset */
239 config1
= readl(info
->reg
.gpmc_prefetch_config1
);
240 if (((config1
>> PREFETCH_CONFIG1_CS_SHIFT
) & CS_MASK
) != cs
)
243 /* Stop the PFPW engine */
244 writel(0x0, info
->reg
.gpmc_prefetch_control
);
246 /* Reset/disable the PFPW engine */
247 writel(0x0, info
->reg
.gpmc_prefetch_config1
);
253 * omap_hwcontrol - hardware specific access to control-lines
254 * @mtd: MTD device structure
255 * @cmd: command to device
257 * NAND_NCE: bit 0 -> don't care
258 * NAND_CLE: bit 1 -> Command Latch
259 * NAND_ALE: bit 2 -> Address Latch
261 * NOTE: boards may use different bits for these!!
263 static void omap_hwcontrol(struct mtd_info
*mtd
, int cmd
, unsigned int ctrl
)
265 struct omap_nand_info
*info
= container_of(mtd
,
266 struct omap_nand_info
, mtd
);
268 if (cmd
!= NAND_CMD_NONE
) {
270 writeb(cmd
, info
->reg
.gpmc_nand_command
);
272 else if (ctrl
& NAND_ALE
)
273 writeb(cmd
, info
->reg
.gpmc_nand_address
);
276 writeb(cmd
, info
->reg
.gpmc_nand_data
);
281 * omap_read_buf8 - read data from NAND controller into buffer
282 * @mtd: MTD device structure
283 * @buf: buffer to store date
284 * @len: number of bytes to read
286 static void omap_read_buf8(struct mtd_info
*mtd
, u_char
*buf
, int len
)
288 struct nand_chip
*nand
= mtd
->priv
;
290 ioread8_rep(nand
->IO_ADDR_R
, buf
, len
);
294 * omap_write_buf8 - write buffer to NAND controller
295 * @mtd: MTD device structure
297 * @len: number of bytes to write
299 static void omap_write_buf8(struct mtd_info
*mtd
, const u_char
*buf
, int len
)
301 struct omap_nand_info
*info
= container_of(mtd
,
302 struct omap_nand_info
, mtd
);
303 u_char
*p
= (u_char
*)buf
;
307 iowrite8(*p
++, info
->nand
.IO_ADDR_W
);
308 /* wait until buffer is available for write */
310 status
= readl(info
->reg
.gpmc_status
) &
317 * omap_read_buf16 - read data from NAND controller into buffer
318 * @mtd: MTD device structure
319 * @buf: buffer to store date
320 * @len: number of bytes to read
322 static void omap_read_buf16(struct mtd_info
*mtd
, u_char
*buf
, int len
)
324 struct nand_chip
*nand
= mtd
->priv
;
326 ioread16_rep(nand
->IO_ADDR_R
, buf
, len
/ 2);
330 * omap_write_buf16 - write buffer to NAND controller
331 * @mtd: MTD device structure
333 * @len: number of bytes to write
335 static void omap_write_buf16(struct mtd_info
*mtd
, const u_char
* buf
, int len
)
337 struct omap_nand_info
*info
= container_of(mtd
,
338 struct omap_nand_info
, mtd
);
339 u16
*p
= (u16
*) buf
;
341 /* FIXME try bursts of writesw() or DMA ... */
345 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
346 /* wait until buffer is available for write */
348 status
= readl(info
->reg
.gpmc_status
) &
355 * omap_read_buf_pref - read data from NAND controller into buffer
356 * @mtd: MTD device structure
357 * @buf: buffer to store date
358 * @len: number of bytes to read
360 static void omap_read_buf_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
362 struct omap_nand_info
*info
= container_of(mtd
,
363 struct omap_nand_info
, mtd
);
364 uint32_t r_count
= 0;
368 /* take care of subpage reads */
370 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
371 omap_read_buf16(mtd
, buf
, len
% 4);
373 omap_read_buf8(mtd
, buf
, len
% 4);
374 p
= (u32
*) (buf
+ len
% 4);
378 /* configure and start prefetch transfer */
379 ret
= omap_prefetch_enable(info
->gpmc_cs
,
380 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x0, info
);
382 /* PFPW engine is busy, use cpu copy method */
383 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
384 omap_read_buf16(mtd
, (u_char
*)p
, len
);
386 omap_read_buf8(mtd
, (u_char
*)p
, len
);
389 r_count
= readl(info
->reg
.gpmc_prefetch_status
);
390 r_count
= PREFETCH_STATUS_FIFO_CNT(r_count
);
391 r_count
= r_count
>> 2;
392 ioread32_rep(info
->nand
.IO_ADDR_R
, p
, r_count
);
396 /* disable and stop the PFPW engine */
397 omap_prefetch_reset(info
->gpmc_cs
, info
);
402 * omap_write_buf_pref - write buffer to NAND controller
403 * @mtd: MTD device structure
405 * @len: number of bytes to write
407 static void omap_write_buf_pref(struct mtd_info
*mtd
,
408 const u_char
*buf
, int len
)
410 struct omap_nand_info
*info
= container_of(mtd
,
411 struct omap_nand_info
, mtd
);
412 uint32_t w_count
= 0;
415 unsigned long tim
, limit
;
418 /* take care of subpage writes */
420 writeb(*buf
, info
->nand
.IO_ADDR_W
);
421 p
= (u16
*)(buf
+ 1);
425 /* configure and start prefetch transfer */
426 ret
= omap_prefetch_enable(info
->gpmc_cs
,
427 PREFETCH_FIFOTHRESHOLD_MAX
, 0x0, len
, 0x1, info
);
429 /* PFPW engine is busy, use cpu copy method */
430 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
431 omap_write_buf16(mtd
, (u_char
*)p
, len
);
433 omap_write_buf8(mtd
, (u_char
*)p
, len
);
436 w_count
= readl(info
->reg
.gpmc_prefetch_status
);
437 w_count
= PREFETCH_STATUS_FIFO_CNT(w_count
);
438 w_count
= w_count
>> 1;
439 for (i
= 0; (i
< w_count
) && len
; i
++, len
-= 2)
440 iowrite16(*p
++, info
->nand
.IO_ADDR_W
);
442 /* wait for data to flushed-out before reset the prefetch */
444 limit
= (loops_per_jiffy
*
445 msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
448 val
= readl(info
->reg
.gpmc_prefetch_status
);
449 val
= PREFETCH_STATUS_COUNT(val
);
450 } while (val
&& (tim
++ < limit
));
452 /* disable and stop the PFPW engine */
453 omap_prefetch_reset(info
->gpmc_cs
, info
);
458 * omap_nand_dma_callback: callback on the completion of dma transfer
459 * @data: pointer to completion data structure
461 static void omap_nand_dma_callback(void *data
)
463 complete((struct completion
*) data
);
467 * omap_nand_dma_transfer: configure and start dma transfer
468 * @mtd: MTD device structure
469 * @addr: virtual address in RAM of source/destination
470 * @len: number of data bytes to be transferred
471 * @is_write: flag for read/write operation
473 static inline int omap_nand_dma_transfer(struct mtd_info
*mtd
, void *addr
,
474 unsigned int len
, int is_write
)
476 struct omap_nand_info
*info
= container_of(mtd
,
477 struct omap_nand_info
, mtd
);
478 struct dma_async_tx_descriptor
*tx
;
479 enum dma_data_direction dir
= is_write
? DMA_TO_DEVICE
:
481 struct scatterlist sg
;
482 unsigned long tim
, limit
;
487 if (addr
>= high_memory
) {
490 if (((size_t)addr
& PAGE_MASK
) !=
491 ((size_t)(addr
+ len
- 1) & PAGE_MASK
))
493 p1
= vmalloc_to_page(addr
);
496 addr
= page_address(p1
) + ((size_t)addr
& ~PAGE_MASK
);
499 sg_init_one(&sg
, addr
, len
);
500 n
= dma_map_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
502 dev_err(&info
->pdev
->dev
,
503 "Couldn't DMA map a %d byte buffer\n", len
);
507 tx
= dmaengine_prep_slave_sg(info
->dma
, &sg
, n
,
508 is_write
? DMA_MEM_TO_DEV
: DMA_DEV_TO_MEM
,
509 DMA_PREP_INTERRUPT
| DMA_CTRL_ACK
);
513 tx
->callback
= omap_nand_dma_callback
;
514 tx
->callback_param
= &info
->comp
;
515 dmaengine_submit(tx
);
517 /* configure and start prefetch transfer */
518 ret
= omap_prefetch_enable(info
->gpmc_cs
,
519 PREFETCH_FIFOTHRESHOLD_MAX
, 0x1, len
, is_write
, info
);
521 /* PFPW engine is busy, use cpu copy method */
524 init_completion(&info
->comp
);
525 dma_async_issue_pending(info
->dma
);
527 /* setup and start DMA using dma_addr */
528 wait_for_completion(&info
->comp
);
530 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
534 val
= readl(info
->reg
.gpmc_prefetch_status
);
535 val
= PREFETCH_STATUS_COUNT(val
);
536 } while (val
&& (tim
++ < limit
));
538 /* disable and stop the PFPW engine */
539 omap_prefetch_reset(info
->gpmc_cs
, info
);
541 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
545 dma_unmap_sg(info
->dma
->device
->dev
, &sg
, 1, dir
);
547 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
548 is_write
== 0 ? omap_read_buf16(mtd
, (u_char
*) addr
, len
)
549 : omap_write_buf16(mtd
, (u_char
*) addr
, len
);
551 is_write
== 0 ? omap_read_buf8(mtd
, (u_char
*) addr
, len
)
552 : omap_write_buf8(mtd
, (u_char
*) addr
, len
);
557 * omap_read_buf_dma_pref - read data from NAND controller into buffer
558 * @mtd: MTD device structure
559 * @buf: buffer to store date
560 * @len: number of bytes to read
562 static void omap_read_buf_dma_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
564 if (len
<= mtd
->oobsize
)
565 omap_read_buf_pref(mtd
, buf
, len
);
567 /* start transfer in DMA mode */
568 omap_nand_dma_transfer(mtd
, buf
, len
, 0x0);
572 * omap_write_buf_dma_pref - write buffer to NAND controller
573 * @mtd: MTD device structure
575 * @len: number of bytes to write
577 static void omap_write_buf_dma_pref(struct mtd_info
*mtd
,
578 const u_char
*buf
, int len
)
580 if (len
<= mtd
->oobsize
)
581 omap_write_buf_pref(mtd
, buf
, len
);
583 /* start transfer in DMA mode */
584 omap_nand_dma_transfer(mtd
, (u_char
*) buf
, len
, 0x1);
588 * omap_nand_irq - GPMC irq handler
589 * @this_irq: gpmc irq number
590 * @dev: omap_nand_info structure pointer is passed here
592 static irqreturn_t
omap_nand_irq(int this_irq
, void *dev
)
594 struct omap_nand_info
*info
= (struct omap_nand_info
*) dev
;
597 bytes
= readl(info
->reg
.gpmc_prefetch_status
);
598 bytes
= PREFETCH_STATUS_FIFO_CNT(bytes
);
599 bytes
= bytes
& 0xFFFC; /* io in multiple of 4 bytes */
600 if (info
->iomode
== OMAP_NAND_IO_WRITE
) { /* checks for write io */
601 if (this_irq
== info
->gpmc_irq_count
)
604 if (info
->buf_len
&& (info
->buf_len
< bytes
))
605 bytes
= info
->buf_len
;
606 else if (!info
->buf_len
)
608 iowrite32_rep(info
->nand
.IO_ADDR_W
,
609 (u32
*)info
->buf
, bytes
>> 2);
610 info
->buf
= info
->buf
+ bytes
;
611 info
->buf_len
-= bytes
;
614 ioread32_rep(info
->nand
.IO_ADDR_R
,
615 (u32
*)info
->buf
, bytes
>> 2);
616 info
->buf
= info
->buf
+ bytes
;
618 if (this_irq
== info
->gpmc_irq_count
)
625 complete(&info
->comp
);
627 disable_irq_nosync(info
->gpmc_irq_fifo
);
628 disable_irq_nosync(info
->gpmc_irq_count
);
634 * omap_read_buf_irq_pref - read data from NAND controller into buffer
635 * @mtd: MTD device structure
636 * @buf: buffer to store date
637 * @len: number of bytes to read
639 static void omap_read_buf_irq_pref(struct mtd_info
*mtd
, u_char
*buf
, int len
)
641 struct omap_nand_info
*info
= container_of(mtd
,
642 struct omap_nand_info
, mtd
);
645 if (len
<= mtd
->oobsize
) {
646 omap_read_buf_pref(mtd
, buf
, len
);
650 info
->iomode
= OMAP_NAND_IO_READ
;
652 init_completion(&info
->comp
);
654 /* configure and start prefetch transfer */
655 ret
= omap_prefetch_enable(info
->gpmc_cs
,
656 PREFETCH_FIFOTHRESHOLD_MAX
/2, 0x0, len
, 0x0, info
);
658 /* PFPW engine is busy, use cpu copy method */
663 enable_irq(info
->gpmc_irq_count
);
664 enable_irq(info
->gpmc_irq_fifo
);
666 /* waiting for read to complete */
667 wait_for_completion(&info
->comp
);
669 /* disable and stop the PFPW engine */
670 omap_prefetch_reset(info
->gpmc_cs
, info
);
674 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
675 omap_read_buf16(mtd
, buf
, len
);
677 omap_read_buf8(mtd
, buf
, len
);
681 * omap_write_buf_irq_pref - write buffer to NAND controller
682 * @mtd: MTD device structure
684 * @len: number of bytes to write
686 static void omap_write_buf_irq_pref(struct mtd_info
*mtd
,
687 const u_char
*buf
, int len
)
689 struct omap_nand_info
*info
= container_of(mtd
,
690 struct omap_nand_info
, mtd
);
692 unsigned long tim
, limit
;
695 if (len
<= mtd
->oobsize
) {
696 omap_write_buf_pref(mtd
, buf
, len
);
700 info
->iomode
= OMAP_NAND_IO_WRITE
;
701 info
->buf
= (u_char
*) buf
;
702 init_completion(&info
->comp
);
704 /* configure and start prefetch transfer : size=24 */
705 ret
= omap_prefetch_enable(info
->gpmc_cs
,
706 (PREFETCH_FIFOTHRESHOLD_MAX
* 3) / 8, 0x0, len
, 0x1, info
);
708 /* PFPW engine is busy, use cpu copy method */
713 enable_irq(info
->gpmc_irq_count
);
714 enable_irq(info
->gpmc_irq_fifo
);
716 /* waiting for write to complete */
717 wait_for_completion(&info
->comp
);
719 /* wait for data to flushed-out before reset the prefetch */
721 limit
= (loops_per_jiffy
* msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS
));
723 val
= readl(info
->reg
.gpmc_prefetch_status
);
724 val
= PREFETCH_STATUS_COUNT(val
);
726 } while (val
&& (tim
++ < limit
));
728 /* disable and stop the PFPW engine */
729 omap_prefetch_reset(info
->gpmc_cs
, info
);
733 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
734 omap_write_buf16(mtd
, buf
, len
);
736 omap_write_buf8(mtd
, buf
, len
);
740 * gen_true_ecc - This function will generate true ECC value
741 * @ecc_buf: buffer to store ecc code
743 * This generated true ECC value can be used when correcting
744 * data read from NAND flash memory core
746 static void gen_true_ecc(u8
*ecc_buf
)
748 u32 tmp
= ecc_buf
[0] | (ecc_buf
[1] << 16) |
749 ((ecc_buf
[2] & 0xF0) << 20) | ((ecc_buf
[2] & 0x0F) << 8);
751 ecc_buf
[0] = ~(P64o(tmp
) | P64e(tmp
) | P32o(tmp
) | P32e(tmp
) |
752 P16o(tmp
) | P16e(tmp
) | P8o(tmp
) | P8e(tmp
));
753 ecc_buf
[1] = ~(P1024o(tmp
) | P1024e(tmp
) | P512o(tmp
) | P512e(tmp
) |
754 P256o(tmp
) | P256e(tmp
) | P128o(tmp
) | P128e(tmp
));
755 ecc_buf
[2] = ~(P4o(tmp
) | P4e(tmp
) | P2o(tmp
) | P2e(tmp
) | P1o(tmp
) |
756 P1e(tmp
) | P2048o(tmp
) | P2048e(tmp
));
760 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
761 * @ecc_data1: ecc code from nand spare area
762 * @ecc_data2: ecc code from hardware register obtained from hardware ecc
763 * @page_data: page data
765 * This function compares two ECC's and indicates if there is an error.
766 * If the error can be corrected it will be corrected to the buffer.
767 * If there is no error, %0 is returned. If there is an error but it
768 * was corrected, %1 is returned. Otherwise, %-1 is returned.
770 static int omap_compare_ecc(u8
*ecc_data1
, /* read from NAND memory */
771 u8
*ecc_data2
, /* read from register */
775 u8 tmp0_bit
[8], tmp1_bit
[8], tmp2_bit
[8];
776 u8 comp0_bit
[8], comp1_bit
[8], comp2_bit
[8];
783 isEccFF
= ((*(u32
*)ecc_data1
& 0xFFFFFF) == 0xFFFFFF);
785 gen_true_ecc(ecc_data1
);
786 gen_true_ecc(ecc_data2
);
788 for (i
= 0; i
<= 2; i
++) {
789 *(ecc_data1
+ i
) = ~(*(ecc_data1
+ i
));
790 *(ecc_data2
+ i
) = ~(*(ecc_data2
+ i
));
793 for (i
= 0; i
< 8; i
++) {
794 tmp0_bit
[i
] = *ecc_data1
% 2;
795 *ecc_data1
= *ecc_data1
/ 2;
798 for (i
= 0; i
< 8; i
++) {
799 tmp1_bit
[i
] = *(ecc_data1
+ 1) % 2;
800 *(ecc_data1
+ 1) = *(ecc_data1
+ 1) / 2;
803 for (i
= 0; i
< 8; i
++) {
804 tmp2_bit
[i
] = *(ecc_data1
+ 2) % 2;
805 *(ecc_data1
+ 2) = *(ecc_data1
+ 2) / 2;
808 for (i
= 0; i
< 8; i
++) {
809 comp0_bit
[i
] = *ecc_data2
% 2;
810 *ecc_data2
= *ecc_data2
/ 2;
813 for (i
= 0; i
< 8; i
++) {
814 comp1_bit
[i
] = *(ecc_data2
+ 1) % 2;
815 *(ecc_data2
+ 1) = *(ecc_data2
+ 1) / 2;
818 for (i
= 0; i
< 8; i
++) {
819 comp2_bit
[i
] = *(ecc_data2
+ 2) % 2;
820 *(ecc_data2
+ 2) = *(ecc_data2
+ 2) / 2;
823 for (i
= 0; i
< 6; i
++)
824 ecc_bit
[i
] = tmp2_bit
[i
+ 2] ^ comp2_bit
[i
+ 2];
826 for (i
= 0; i
< 8; i
++)
827 ecc_bit
[i
+ 6] = tmp0_bit
[i
] ^ comp0_bit
[i
];
829 for (i
= 0; i
< 8; i
++)
830 ecc_bit
[i
+ 14] = tmp1_bit
[i
] ^ comp1_bit
[i
];
832 ecc_bit
[22] = tmp2_bit
[0] ^ comp2_bit
[0];
833 ecc_bit
[23] = tmp2_bit
[1] ^ comp2_bit
[1];
835 for (i
= 0; i
< 24; i
++)
836 ecc_sum
+= ecc_bit
[i
];
840 /* Not reached because this function is not called if
841 * ECC values are equal
846 /* Uncorrectable error */
847 pr_debug("ECC UNCORRECTED_ERROR 1\n");
851 /* UN-Correctable error */
852 pr_debug("ECC UNCORRECTED_ERROR B\n");
856 /* Correctable error */
857 find_byte
= (ecc_bit
[23] << 8) +
867 find_bit
= (ecc_bit
[5] << 2) + (ecc_bit
[3] << 1) + ecc_bit
[1];
869 pr_debug("Correcting single bit ECC error at offset: "
870 "%d, bit: %d\n", find_byte
, find_bit
);
872 page_data
[find_byte
] ^= (1 << find_bit
);
877 if (ecc_data2
[0] == 0 &&
882 pr_debug("UNCORRECTED_ERROR default\n");
888 * omap_correct_data - Compares the ECC read with HW generated ECC
889 * @mtd: MTD device structure
891 * @read_ecc: ecc read from nand flash
892 * @calc_ecc: ecc read from HW ECC registers
894 * Compares the ecc read from nand spare area with ECC registers values
895 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
896 * detection and correction. If there are no errors, %0 is returned. If
897 * there were errors and all of the errors were corrected, the number of
898 * corrected errors is returned. If uncorrectable errors exist, %-1 is
901 static int omap_correct_data(struct mtd_info
*mtd
, u_char
*dat
,
902 u_char
*read_ecc
, u_char
*calc_ecc
)
904 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
906 int blockCnt
= 0, i
= 0, ret
= 0;
909 /* Ex NAND_ECC_HW12_2048 */
910 if ((info
->nand
.ecc
.mode
== NAND_ECC_HW
) &&
911 (info
->nand
.ecc
.size
== 2048))
916 for (i
= 0; i
< blockCnt
; i
++) {
917 if (memcmp(read_ecc
, calc_ecc
, 3) != 0) {
918 ret
= omap_compare_ecc(read_ecc
, calc_ecc
, dat
);
921 /* keep track of the number of corrected errors */
932 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
933 * @mtd: MTD device structure
934 * @dat: The pointer to data on which ecc is computed
935 * @ecc_code: The ecc_code buffer
937 * Using noninverted ECC can be considered ugly since writing a blank
938 * page ie. padding will clear the ECC bytes. This is no problem as long
939 * nobody is trying to write data on the seemingly unused page. Reading
940 * an erased page will produce an ECC mismatch between generated and read
941 * ECC bytes that has to be dealt with separately.
943 static int omap_calculate_ecc(struct mtd_info
*mtd
, const u_char
*dat
,
946 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
950 val
= readl(info
->reg
.gpmc_ecc_config
);
951 if (((val
>> ECC_CONFIG_CS_SHIFT
) & ~CS_MASK
) != info
->gpmc_cs
)
954 /* read ecc result */
955 val
= readl(info
->reg
.gpmc_ecc1_result
);
956 *ecc_code
++ = val
; /* P128e, ..., P1e */
957 *ecc_code
++ = val
>> 16; /* P128o, ..., P1o */
958 /* P2048o, P1024o, P512o, P256o, P2048e, P1024e, P512e, P256e */
959 *ecc_code
++ = ((val
>> 8) & 0x0f) | ((val
>> 20) & 0xf0);
965 * omap_enable_hwecc - This function enables the hardware ecc functionality
966 * @mtd: MTD device structure
967 * @mode: Read/Write mode
969 static void omap_enable_hwecc(struct mtd_info
*mtd
, int mode
)
971 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
973 struct nand_chip
*chip
= mtd
->priv
;
974 unsigned int dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
977 /* clear ecc and enable bits */
978 val
= ECCCLEAR
| ECC1
;
979 writel(val
, info
->reg
.gpmc_ecc_control
);
981 /* program ecc and result sizes */
982 val
= ((((info
->nand
.ecc
.size
>> 1) - 1) << ECCSIZE1_SHIFT
) |
984 writel(val
, info
->reg
.gpmc_ecc_size_config
);
989 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
991 case NAND_ECC_READSYN
:
992 writel(ECCCLEAR
, info
->reg
.gpmc_ecc_control
);
995 dev_info(&info
->pdev
->dev
,
996 "error: unrecognized Mode[%d]!\n", mode
);
1000 /* (ECC 16 or 8 bit col) | ( CS ) | ECC Enable */
1001 val
= (dev_width
<< 7) | (info
->gpmc_cs
<< 1) | (0x1);
1002 writel(val
, info
->reg
.gpmc_ecc_config
);
1006 * omap_wait - wait until the command is done
1007 * @mtd: MTD device structure
1008 * @chip: NAND Chip structure
1010 * Wait function is called during Program and erase operations and
1011 * the way it is called from MTD layer, we should wait till the NAND
1012 * chip is ready after the programming/erase operation has completed.
1014 * Erase can take up to 400ms and program up to 20ms according to
1015 * general NAND and SmartMedia specs
1017 static int omap_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
1019 struct nand_chip
*this = mtd
->priv
;
1020 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1022 unsigned long timeo
= jiffies
;
1023 int status
, state
= this->state
;
1025 if (state
== FL_ERASING
)
1026 timeo
+= msecs_to_jiffies(400);
1028 timeo
+= msecs_to_jiffies(20);
1030 writeb(NAND_CMD_STATUS
& 0xFF, info
->reg
.gpmc_nand_command
);
1031 while (time_before(jiffies
, timeo
)) {
1032 status
= readb(info
->reg
.gpmc_nand_data
);
1033 if (status
& NAND_STATUS_READY
)
1038 status
= readb(info
->reg
.gpmc_nand_data
);
1043 * omap_dev_ready - calls the platform specific dev_ready function
1044 * @mtd: MTD device structure
1046 static int omap_dev_ready(struct mtd_info
*mtd
)
1048 unsigned int val
= 0;
1049 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1052 val
= readl(info
->reg
.gpmc_status
);
1054 if ((val
& 0x100) == 0x100) {
1061 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1064 * omap3_enable_hwecc_bch - Program OMAP3 GPMC to perform BCH ECC correction
1065 * @mtd: MTD device structure
1066 * @mode: Read/Write mode
1068 * When using BCH, sector size is hardcoded to 512 bytes.
1069 * Using wrapping mode 6 both for reading and writing if ELM module not uses
1070 * for error correction.
1072 * eccsize0 = 0 (no additional protected byte in spare area)
1073 * eccsize1 = 32 (skip 32 nibbles = 16 bytes per sector in spare area)
1075 static void omap3_enable_hwecc_bch(struct mtd_info
*mtd
, int mode
)
1078 unsigned int dev_width
, nsectors
;
1079 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1081 struct nand_chip
*chip
= mtd
->priv
;
1083 unsigned int ecc_size1
, ecc_size0
;
1085 /* Using wrapping mode 6 for writing */
1086 wr_mode
= BCH_WRAPMODE_6
;
1089 * ECC engine enabled for valid ecc_size0 nibbles
1090 * and disabled for ecc_size1 nibbles.
1092 ecc_size0
= BCH_ECC_SIZE0
;
1093 ecc_size1
= BCH_ECC_SIZE1
;
1095 /* Perform ecc calculation on 512-byte sector */
1098 /* Update number of error correction */
1099 nerrors
= info
->nand
.ecc
.strength
;
1101 /* Multi sector reading/writing for NAND flash with page size < 4096 */
1102 if (info
->is_elm_used
&& (mtd
->writesize
<= 4096)) {
1103 if (mode
== NAND_ECC_READ
) {
1104 /* Using wrapping mode 1 for reading */
1105 wr_mode
= BCH_WRAPMODE_1
;
1108 * ECC engine enabled for ecc_size0 nibbles
1109 * and disabled for ecc_size1 nibbles.
1111 ecc_size0
= (nerrors
== 8) ?
1112 BCH8R_ECC_SIZE0
: BCH4R_ECC_SIZE0
;
1113 ecc_size1
= (nerrors
== 8) ?
1114 BCH8R_ECC_SIZE1
: BCH4R_ECC_SIZE1
;
1117 /* Perform ecc calculation for one page (< 4096) */
1118 nsectors
= info
->nand
.ecc
.steps
;
1121 writel(ECC1
, info
->reg
.gpmc_ecc_control
);
1123 /* Configure ecc size for BCH */
1124 val
= (ecc_size1
<< ECCSIZE1_SHIFT
) | (ecc_size0
<< ECCSIZE0_SHIFT
);
1125 writel(val
, info
->reg
.gpmc_ecc_size_config
);
1127 dev_width
= (chip
->options
& NAND_BUSWIDTH_16
) ? 1 : 0;
1129 /* BCH configuration */
1130 val
= ((1 << 16) | /* enable BCH */
1131 (((nerrors
== 8) ? 1 : 0) << 12) | /* 8 or 4 bits */
1132 (wr_mode
<< 8) | /* wrap mode */
1133 (dev_width
<< 7) | /* bus width */
1134 (((nsectors
-1) & 0x7) << 4) | /* number of sectors */
1135 (info
->gpmc_cs
<< 1) | /* ECC CS */
1136 (0x1)); /* enable ECC */
1138 writel(val
, info
->reg
.gpmc_ecc_config
);
1140 /* Clear ecc and enable bits */
1141 writel(ECCCLEAR
| ECC1
, info
->reg
.gpmc_ecc_control
);
1145 * omap3_calculate_ecc_bch4 - Generate 7 bytes of ECC bytes
1146 * @mtd: MTD device structure
1147 * @dat: The pointer to data on which ecc is computed
1148 * @ecc_code: The ecc_code buffer
1150 static int omap3_calculate_ecc_bch4(struct mtd_info
*mtd
, const u_char
*dat
,
1153 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1155 unsigned long nsectors
, val1
, val2
;
1158 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1160 for (i
= 0; i
< nsectors
; i
++) {
1162 /* Read hw-computed remainder */
1163 val1
= readl(info
->reg
.gpmc_bch_result0
[i
]);
1164 val2
= readl(info
->reg
.gpmc_bch_result1
[i
]);
1167 * Add constant polynomial to remainder, in order to get an ecc
1168 * sequence of 0xFFs for a buffer filled with 0xFFs; and
1169 * left-justify the resulting polynomial.
1171 *ecc_code
++ = 0x28 ^ ((val2
>> 12) & 0xFF);
1172 *ecc_code
++ = 0x13 ^ ((val2
>> 4) & 0xFF);
1173 *ecc_code
++ = 0xcc ^ (((val2
& 0xF) << 4)|((val1
>> 28) & 0xF));
1174 *ecc_code
++ = 0x39 ^ ((val1
>> 20) & 0xFF);
1175 *ecc_code
++ = 0x96 ^ ((val1
>> 12) & 0xFF);
1176 *ecc_code
++ = 0xac ^ ((val1
>> 4) & 0xFF);
1177 *ecc_code
++ = 0x7f ^ ((val1
& 0xF) << 4);
1184 * omap3_calculate_ecc_bch8 - Generate 13 bytes of ECC bytes
1185 * @mtd: MTD device structure
1186 * @dat: The pointer to data on which ecc is computed
1187 * @ecc_code: The ecc_code buffer
1189 static int omap3_calculate_ecc_bch8(struct mtd_info
*mtd
, const u_char
*dat
,
1192 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1194 unsigned long nsectors
, val1
, val2
, val3
, val4
;
1197 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1199 for (i
= 0; i
< nsectors
; i
++) {
1201 /* Read hw-computed remainder */
1202 val1
= readl(info
->reg
.gpmc_bch_result0
[i
]);
1203 val2
= readl(info
->reg
.gpmc_bch_result1
[i
]);
1204 val3
= readl(info
->reg
.gpmc_bch_result2
[i
]);
1205 val4
= readl(info
->reg
.gpmc_bch_result3
[i
]);
1208 * Add constant polynomial to remainder, in order to get an ecc
1209 * sequence of 0xFFs for a buffer filled with 0xFFs.
1211 *ecc_code
++ = 0xef ^ (val4
& 0xFF);
1212 *ecc_code
++ = 0x51 ^ ((val3
>> 24) & 0xFF);
1213 *ecc_code
++ = 0x2e ^ ((val3
>> 16) & 0xFF);
1214 *ecc_code
++ = 0x09 ^ ((val3
>> 8) & 0xFF);
1215 *ecc_code
++ = 0xed ^ (val3
& 0xFF);
1216 *ecc_code
++ = 0x93 ^ ((val2
>> 24) & 0xFF);
1217 *ecc_code
++ = 0x9a ^ ((val2
>> 16) & 0xFF);
1218 *ecc_code
++ = 0xc2 ^ ((val2
>> 8) & 0xFF);
1219 *ecc_code
++ = 0x97 ^ (val2
& 0xFF);
1220 *ecc_code
++ = 0x79 ^ ((val1
>> 24) & 0xFF);
1221 *ecc_code
++ = 0xe5 ^ ((val1
>> 16) & 0xFF);
1222 *ecc_code
++ = 0x24 ^ ((val1
>> 8) & 0xFF);
1223 *ecc_code
++ = 0xb5 ^ (val1
& 0xFF);
1230 * omap3_calculate_ecc_bch - Generate bytes of ECC bytes
1231 * @mtd: MTD device structure
1232 * @dat: The pointer to data on which ecc is computed
1233 * @ecc_code: The ecc_code buffer
1235 * Support calculating of BCH4/8 ecc vectors for the page
1237 static int omap3_calculate_ecc_bch(struct mtd_info
*mtd
, const u_char
*dat
,
1240 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1242 unsigned long nsectors
, bch_val1
, bch_val2
, bch_val3
, bch_val4
;
1245 nsectors
= ((readl(info
->reg
.gpmc_ecc_config
) >> 4) & 0x7) + 1;
1247 * find BCH scheme used
1251 eccbchtsel
= ((readl(info
->reg
.gpmc_ecc_config
) >> 12) & 0x3);
1253 for (i
= 0; i
< nsectors
; i
++) {
1255 /* Read hw-computed remainder */
1256 bch_val1
= readl(info
->reg
.gpmc_bch_result0
[i
]);
1257 bch_val2
= readl(info
->reg
.gpmc_bch_result1
[i
]);
1259 bch_val3
= readl(info
->reg
.gpmc_bch_result2
[i
]);
1260 bch_val4
= readl(info
->reg
.gpmc_bch_result3
[i
]);
1264 /* BCH8 ecc scheme */
1265 *ecc_code
++ = (bch_val4
& 0xFF);
1266 *ecc_code
++ = ((bch_val3
>> 24) & 0xFF);
1267 *ecc_code
++ = ((bch_val3
>> 16) & 0xFF);
1268 *ecc_code
++ = ((bch_val3
>> 8) & 0xFF);
1269 *ecc_code
++ = (bch_val3
& 0xFF);
1270 *ecc_code
++ = ((bch_val2
>> 24) & 0xFF);
1271 *ecc_code
++ = ((bch_val2
>> 16) & 0xFF);
1272 *ecc_code
++ = ((bch_val2
>> 8) & 0xFF);
1273 *ecc_code
++ = (bch_val2
& 0xFF);
1274 *ecc_code
++ = ((bch_val1
>> 24) & 0xFF);
1275 *ecc_code
++ = ((bch_val1
>> 16) & 0xFF);
1276 *ecc_code
++ = ((bch_val1
>> 8) & 0xFF);
1277 *ecc_code
++ = (bch_val1
& 0xFF);
1279 * Setting 14th byte to zero to handle
1280 * erased page & maintain compatibility
1285 /* BCH4 ecc scheme */
1286 *ecc_code
++ = ((bch_val2
>> 12) & 0xFF);
1287 *ecc_code
++ = ((bch_val2
>> 4) & 0xFF);
1288 *ecc_code
++ = ((bch_val2
& 0xF) << 4) |
1289 ((bch_val1
>> 28) & 0xF);
1290 *ecc_code
++ = ((bch_val1
>> 20) & 0xFF);
1291 *ecc_code
++ = ((bch_val1
>> 12) & 0xFF);
1292 *ecc_code
++ = ((bch_val1
>> 4) & 0xFF);
1293 *ecc_code
++ = ((bch_val1
& 0xF) << 4);
1295 * Setting 8th byte to zero to handle
1306 * erased_sector_bitflips - count bit flips
1307 * @data: data sector buffer
1309 * @info: omap_nand_info
1311 * Check the bit flips in erased page falls below correctable level.
1312 * If falls below, report the page as erased with correctable bit
1313 * flip, else report as uncorrectable page.
1315 static int erased_sector_bitflips(u_char
*data
, u_char
*oob
,
1316 struct omap_nand_info
*info
)
1318 int flip_bits
= 0, i
;
1320 for (i
= 0; i
< info
->nand
.ecc
.size
; i
++) {
1321 flip_bits
+= hweight8(~data
[i
]);
1322 if (flip_bits
> info
->nand
.ecc
.strength
)
1326 for (i
= 0; i
< info
->nand
.ecc
.bytes
- 1; i
++) {
1327 flip_bits
+= hweight8(~oob
[i
]);
1328 if (flip_bits
> info
->nand
.ecc
.strength
)
1333 * Bit flips falls in correctable level.
1334 * Fill data area with 0xFF
1337 memset(data
, 0xFF, info
->nand
.ecc
.size
);
1338 memset(oob
, 0xFF, info
->nand
.ecc
.bytes
);
1345 * omap_elm_correct_data - corrects page data area in case error reported
1346 * @mtd: MTD device structure
1348 * @read_ecc: ecc read from nand flash
1349 * @calc_ecc: ecc read from HW ECC registers
1351 * Calculated ecc vector reported as zero in case of non-error pages.
1352 * In case of error/erased pages non-zero error vector is reported.
1353 * In case of non-zero ecc vector, check read_ecc at fixed offset
1354 * (x = 13/7 in case of BCH8/4 == 0) to find page programmed or not.
1355 * To handle bit flips in this data, count the number of 0's in
1356 * read_ecc[x] and check if it greater than 4. If it is less, it is
1357 * programmed page, else erased page.
1359 * 1. If page is erased, check with standard ecc vector (ecc vector
1360 * for erased page to find any bit flip). If check fails, bit flip
1361 * is present in erased page. Count the bit flips in erased page and
1362 * if it falls under correctable level, report page with 0xFF and
1363 * update the correctable bit information.
1364 * 2. If error is reported on programmed page, update elm error
1365 * vector and correct the page with ELM error correction routine.
1368 static int omap_elm_correct_data(struct mtd_info
*mtd
, u_char
*data
,
1369 u_char
*read_ecc
, u_char
*calc_ecc
)
1371 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1373 int eccsteps
= info
->nand
.ecc
.steps
;
1374 int i
, j
, stat
= 0;
1375 int eccsize
, eccflag
, ecc_vector_size
;
1376 struct elm_errorvec err_vec
[ERROR_VECTOR_MAX
];
1377 u_char
*ecc_vec
= calc_ecc
;
1378 u_char
*spare_ecc
= read_ecc
;
1379 u_char
*erased_ecc_vec
;
1381 bool is_error_reported
= false;
1383 /* Initialize elm error vector to zero */
1384 memset(err_vec
, 0, sizeof(err_vec
));
1386 if (info
->nand
.ecc
.strength
== BCH8_MAX_ERROR
) {
1388 erased_ecc_vec
= bch8_vector
;
1391 erased_ecc_vec
= bch4_vector
;
1394 ecc_vector_size
= info
->nand
.ecc
.bytes
;
1397 * Remove extra byte padding for BCH8 RBL
1398 * compatibility and erased page handling
1400 eccsize
= ecc_vector_size
- 1;
1402 for (i
= 0; i
< eccsteps
; i
++) {
1403 eccflag
= 0; /* initialize eccflag */
1406 * Check any error reported,
1407 * In case of error, non zero ecc reported.
1410 for (j
= 0; (j
< eccsize
); j
++) {
1411 if (calc_ecc
[j
] != 0) {
1412 eccflag
= 1; /* non zero ecc, error present */
1419 * Set threshold to minimum of 4, half of ecc.strength/2
1420 * to allow max bit flip in byte to 4
1422 unsigned int threshold
= min_t(unsigned int, 4,
1423 info
->nand
.ecc
.strength
/ 2);
1426 * Check data area is programmed by counting
1427 * number of 0's at fixed offset in spare area.
1428 * Checking count of 0's against threshold.
1429 * In case programmed page expects at least threshold
1431 * If zeros are less than threshold for programmed page/
1432 * zeros are more than threshold erased page, either
1433 * case page reported as uncorrectable.
1435 if (hweight8(~read_ecc
[eccsize
]) >= threshold
) {
1437 * Update elm error vector as
1438 * data area is programmed
1440 err_vec
[i
].error_reported
= true;
1441 is_error_reported
= true;
1443 /* Error reported in erased page */
1445 u_char
*buf
= &data
[info
->nand
.ecc
.size
* i
];
1447 if (memcmp(calc_ecc
, erased_ecc_vec
, eccsize
)) {
1448 bitflip_count
= erased_sector_bitflips(
1449 buf
, read_ecc
, info
);
1452 stat
+= bitflip_count
;
1459 /* Update the ecc vector */
1460 calc_ecc
+= ecc_vector_size
;
1461 read_ecc
+= ecc_vector_size
;
1464 /* Check if any error reported */
1465 if (!is_error_reported
)
1468 /* Decode BCH error using ELM module */
1469 elm_decode_bch_error_page(info
->elm_dev
, ecc_vec
, err_vec
);
1471 for (i
= 0; i
< eccsteps
; i
++) {
1472 if (err_vec
[i
].error_reported
) {
1473 for (j
= 0; j
< err_vec
[i
].error_count
; j
++) {
1474 u32 bit_pos
, byte_pos
, error_max
, pos
;
1476 if (type
== BCH8_ECC
)
1477 error_max
= BCH8_ECC_MAX
;
1479 error_max
= BCH4_ECC_MAX
;
1481 if (info
->nand
.ecc
.strength
== BCH8_MAX_ERROR
)
1482 pos
= err_vec
[i
].error_loc
[j
];
1484 /* Add 4 to take care 4 bit padding */
1485 pos
= err_vec
[i
].error_loc
[j
] +
1488 /* Calculate bit position of error */
1491 /* Calculate byte position of error */
1492 byte_pos
= (error_max
- pos
- 1) / 8;
1494 if (pos
< error_max
) {
1496 data
[byte_pos
] ^= 1 << bit_pos
;
1498 spare_ecc
[byte_pos
- 512] ^=
1501 /* else, not interested to correct ecc */
1505 /* Update number of correctable errors */
1506 stat
+= err_vec
[i
].error_count
;
1508 /* Update page data with sector size */
1509 data
+= info
->nand
.ecc
.size
;
1510 spare_ecc
+= ecc_vector_size
;
1513 for (i
= 0; i
< eccsteps
; i
++)
1514 /* Return error if uncorrectable error present */
1515 if (err_vec
[i
].error_uncorrectable
)
1522 * omap3_correct_data_bch - Decode received data and correct errors
1523 * @mtd: MTD device structure
1525 * @read_ecc: ecc read from nand flash
1526 * @calc_ecc: ecc read from HW ECC registers
1528 static int omap3_correct_data_bch(struct mtd_info
*mtd
, u_char
*data
,
1529 u_char
*read_ecc
, u_char
*calc_ecc
)
1532 /* cannot correct more than 8 errors */
1533 unsigned int errloc
[8];
1534 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1537 count
= decode_bch(info
->bch
, NULL
, 512, read_ecc
, calc_ecc
, NULL
,
1540 /* correct errors */
1541 for (i
= 0; i
< count
; i
++) {
1542 /* correct data only, not ecc bytes */
1543 if (errloc
[i
] < 8*512)
1544 data
[errloc
[i
]/8] ^= 1 << (errloc
[i
] & 7);
1545 pr_debug("corrected bitflip %u\n", errloc
[i
]);
1547 } else if (count
< 0) {
1548 pr_err("ecc unrecoverable error\n");
1554 * omap_write_page_bch - BCH ecc based write page function for entire page
1555 * @mtd: mtd info structure
1556 * @chip: nand chip info structure
1558 * @oob_required: must write chip->oob_poi to OOB
1560 * Custom write page method evolved to support multi sector writing in one shot
1562 static int omap_write_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1563 const uint8_t *buf
, int oob_required
)
1566 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1567 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1569 /* Enable GPMC ecc engine */
1570 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1573 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1575 /* Update ecc vector from GPMC result registers */
1576 chip
->ecc
.calculate(mtd
, buf
, &ecc_calc
[0]);
1578 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1579 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1581 /* Write ecc vector to OOB area */
1582 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1587 * omap_read_page_bch - BCH ecc based page read function for entire page
1588 * @mtd: mtd info structure
1589 * @chip: nand chip info structure
1590 * @buf: buffer to store read data
1591 * @oob_required: caller requires OOB data read to chip->oob_poi
1592 * @page: page number to read
1594 * For BCH ecc scheme, GPMC used for syndrome calculation and ELM module
1595 * used for error correction.
1596 * Custom method evolved to support ELM error correction & multi sector
1597 * reading. On reading page data area is read along with OOB data with
1598 * ecc engine enabled. ecc vector updated after read of OOB data.
1599 * For non error pages ecc vector reported as zero.
1601 static int omap_read_page_bch(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1602 uint8_t *buf
, int oob_required
, int page
)
1604 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1605 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1606 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1607 uint8_t *oob
= &chip
->oob_poi
[eccpos
[0]];
1608 uint32_t oob_pos
= mtd
->writesize
+ chip
->ecc
.layout
->eccpos
[0];
1610 unsigned int max_bitflips
= 0;
1612 /* Enable GPMC ecc engine */
1613 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1616 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1618 /* Read oob bytes */
1619 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, oob_pos
, -1);
1620 chip
->read_buf(mtd
, oob
, chip
->ecc
.total
);
1622 /* Calculate ecc bytes */
1623 chip
->ecc
.calculate(mtd
, buf
, ecc_calc
);
1625 memcpy(ecc_code
, &chip
->oob_poi
[eccpos
[0]], chip
->ecc
.total
);
1627 stat
= chip
->ecc
.correct(mtd
, buf
, ecc_code
, ecc_calc
);
1630 mtd
->ecc_stats
.failed
++;
1632 mtd
->ecc_stats
.corrected
+= stat
;
1633 max_bitflips
= max_t(unsigned int, max_bitflips
, stat
);
1636 return max_bitflips
;
1640 * omap3_free_bch - Release BCH ecc resources
1641 * @mtd: MTD device structure
1643 static void omap3_free_bch(struct mtd_info
*mtd
)
1645 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1648 free_bch(info
->bch
);
1654 * omap3_init_bch - Initialize BCH ECC
1655 * @mtd: MTD device structure
1656 * @ecc_opt: OMAP ECC mode (OMAP_ECC_BCH4_CODE_HW or OMAP_ECC_BCH8_CODE_HW)
1658 static int omap3_init_bch(struct mtd_info
*mtd
, int ecc_opt
)
1661 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1663 #ifdef CONFIG_MTD_NAND_OMAP_BCH8
1664 const int hw_errors
= BCH8_MAX_ERROR
;
1666 const int hw_errors
= BCH4_MAX_ERROR
;
1668 enum bch_ecc bch_type
;
1671 struct device_node
*elm_node
;
1675 max_errors
= (ecc_opt
== OMAP_ECC_BCH8_CODE_HW
) ?
1676 BCH8_MAX_ERROR
: BCH4_MAX_ERROR
;
1677 if (max_errors
!= hw_errors
) {
1678 pr_err("cannot configure %d-bit BCH ecc, only %d-bit supported",
1679 max_errors
, hw_errors
);
1683 info
->nand
.ecc
.size
= 512;
1684 info
->nand
.ecc
.hwctl
= omap3_enable_hwecc_bch
;
1685 info
->nand
.ecc
.mode
= NAND_ECC_HW
;
1686 info
->nand
.ecc
.strength
= max_errors
;
1688 if (hw_errors
== BCH8_MAX_ERROR
)
1689 bch_type
= BCH8_ECC
;
1691 bch_type
= BCH4_ECC
;
1693 /* Detect availability of ELM module */
1694 parp
= of_get_property(info
->of_node
, "elm_id", &lenp
);
1695 if ((parp
== NULL
) && (lenp
!= (sizeof(void *) * 2))) {
1696 pr_err("Missing elm_id property, fall back to Software BCH\n");
1697 info
->is_elm_used
= false;
1699 struct platform_device
*pdev
;
1701 elm_node
= of_find_node_by_phandle(be32_to_cpup(parp
));
1702 pdev
= of_find_device_by_node(elm_node
);
1703 info
->elm_dev
= &pdev
->dev
;
1705 if (elm_config(info
->elm_dev
, bch_type
) == 0)
1706 info
->is_elm_used
= true;
1709 if (info
->is_elm_used
&& (mtd
->writesize
<= 4096)) {
1711 if (hw_errors
== BCH8_MAX_ERROR
)
1712 info
->nand
.ecc
.bytes
= BCH8_SIZE
;
1714 info
->nand
.ecc
.bytes
= BCH4_SIZE
;
1716 info
->nand
.ecc
.correct
= omap_elm_correct_data
;
1717 info
->nand
.ecc
.calculate
= omap3_calculate_ecc_bch
;
1718 info
->nand
.ecc
.read_page
= omap_read_page_bch
;
1719 info
->nand
.ecc
.write_page
= omap_write_page_bch
;
1722 * software bch library is only used to detect and
1725 info
->bch
= init_bch(13, max_errors
,
1726 0x201b /* hw polynomial */);
1730 info
->nand
.ecc
.correct
= omap3_correct_data_bch
;
1733 * The number of corrected errors in an ecc block that will
1734 * trigger block scrubbing defaults to the ecc strength (4 or 8)
1735 * Set mtd->bitflip_threshold here to define a custom threshold.
1738 if (max_errors
== 8) {
1739 info
->nand
.ecc
.bytes
= 13;
1740 info
->nand
.ecc
.calculate
= omap3_calculate_ecc_bch8
;
1742 info
->nand
.ecc
.bytes
= 7;
1743 info
->nand
.ecc
.calculate
= omap3_calculate_ecc_bch4
;
1747 pr_info("enabling NAND BCH ecc with %d-bit correction\n", max_errors
);
1750 omap3_free_bch(mtd
);
1755 * omap3_init_bch_tail - Build an oob layout for BCH ECC correction.
1756 * @mtd: MTD device structure
1758 static int omap3_init_bch_tail(struct mtd_info
*mtd
)
1760 int i
, steps
, offset
;
1761 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
1763 struct nand_ecclayout
*layout
= &info
->ecclayout
;
1765 /* build oob layout */
1766 steps
= mtd
->writesize
/info
->nand
.ecc
.size
;
1767 layout
->eccbytes
= steps
*info
->nand
.ecc
.bytes
;
1769 /* do not bother creating special oob layouts for small page devices */
1770 if (mtd
->oobsize
< 64) {
1771 pr_err("BCH ecc is not supported on small page devices\n");
1775 /* reserve 2 bytes for bad block marker */
1776 if (layout
->eccbytes
+2 > mtd
->oobsize
) {
1777 pr_err("no oob layout available for oobsize %d eccbytes %u\n",
1778 mtd
->oobsize
, layout
->eccbytes
);
1782 /* ECC layout compatible with RBL for BCH8 */
1783 if (info
->is_elm_used
&& (info
->nand
.ecc
.bytes
== BCH8_SIZE
))
1786 offset
= mtd
->oobsize
- layout
->eccbytes
;
1788 /* put ecc bytes at oob tail */
1789 for (i
= 0; i
< layout
->eccbytes
; i
++)
1790 layout
->eccpos
[i
] = offset
+ i
;
1792 if (info
->is_elm_used
&& (info
->nand
.ecc
.bytes
== BCH8_SIZE
))
1793 layout
->oobfree
[0].offset
= 2 + layout
->eccbytes
* steps
;
1795 layout
->oobfree
[0].offset
= 2;
1797 layout
->oobfree
[0].length
= mtd
->oobsize
-2-layout
->eccbytes
;
1798 info
->nand
.ecc
.layout
= layout
;
1800 if (!(info
->nand
.options
& NAND_BUSWIDTH_16
))
1801 info
->nand
.badblock_pattern
= &bb_descrip_flashbased
;
1804 omap3_free_bch(mtd
);
1809 static int omap3_init_bch(struct mtd_info
*mtd
, int ecc_opt
)
1811 pr_err("CONFIG_MTD_NAND_OMAP_BCH is not enabled\n");
1814 static int omap3_init_bch_tail(struct mtd_info
*mtd
)
1818 static void omap3_free_bch(struct mtd_info
*mtd
)
1821 #endif /* CONFIG_MTD_NAND_OMAP_BCH */
1823 static int omap_nand_probe(struct platform_device
*pdev
)
1825 struct omap_nand_info
*info
;
1826 struct omap_nand_platform_data
*pdata
;
1829 dma_cap_mask_t mask
;
1831 struct resource
*res
;
1832 struct mtd_part_parser_data ppdata
= {};
1834 pdata
= dev_get_platdata(&pdev
->dev
);
1835 if (pdata
== NULL
) {
1836 dev_err(&pdev
->dev
, "platform data missing\n");
1840 info
= kzalloc(sizeof(struct omap_nand_info
), GFP_KERNEL
);
1844 platform_set_drvdata(pdev
, info
);
1846 spin_lock_init(&info
->controller
.lock
);
1847 init_waitqueue_head(&info
->controller
.wq
);
1851 info
->gpmc_cs
= pdata
->cs
;
1852 info
->reg
= pdata
->reg
;
1854 info
->mtd
.priv
= &info
->nand
;
1855 info
->mtd
.name
= dev_name(&pdev
->dev
);
1856 info
->mtd
.owner
= THIS_MODULE
;
1858 info
->nand
.options
= pdata
->devsize
;
1859 info
->nand
.options
|= NAND_SKIP_BBTSCAN
;
1860 #ifdef CONFIG_MTD_NAND_OMAP_BCH
1861 info
->of_node
= pdata
->of_node
;
1864 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1867 dev_err(&pdev
->dev
, "error getting memory resource\n");
1871 info
->phys_base
= res
->start
;
1872 info
->mem_size
= resource_size(res
);
1874 if (!request_mem_region(info
->phys_base
, info
->mem_size
,
1875 pdev
->dev
.driver
->name
)) {
1880 info
->nand
.IO_ADDR_R
= ioremap(info
->phys_base
, info
->mem_size
);
1881 if (!info
->nand
.IO_ADDR_R
) {
1883 goto out_release_mem_region
;
1886 info
->nand
.controller
= &info
->controller
;
1888 info
->nand
.IO_ADDR_W
= info
->nand
.IO_ADDR_R
;
1889 info
->nand
.cmd_ctrl
= omap_hwcontrol
;
1892 * If RDY/BSY line is connected to OMAP then use the omap ready
1893 * function and the generic nand_wait function which reads the status
1894 * register after monitoring the RDY/BSY line. Otherwise use a standard
1895 * chip delay which is slightly more than tR (AC Timing) of the NAND
1896 * device and read status register until you get a failure or success
1898 if (pdata
->dev_ready
) {
1899 info
->nand
.dev_ready
= omap_dev_ready
;
1900 info
->nand
.chip_delay
= 0;
1902 info
->nand
.waitfunc
= omap_wait
;
1903 info
->nand
.chip_delay
= 50;
1906 switch (pdata
->xfer_type
) {
1907 case NAND_OMAP_PREFETCH_POLLED
:
1908 info
->nand
.read_buf
= omap_read_buf_pref
;
1909 info
->nand
.write_buf
= omap_write_buf_pref
;
1912 case NAND_OMAP_POLLED
:
1913 if (info
->nand
.options
& NAND_BUSWIDTH_16
) {
1914 info
->nand
.read_buf
= omap_read_buf16
;
1915 info
->nand
.write_buf
= omap_write_buf16
;
1917 info
->nand
.read_buf
= omap_read_buf8
;
1918 info
->nand
.write_buf
= omap_write_buf8
;
1922 case NAND_OMAP_PREFETCH_DMA
:
1924 dma_cap_set(DMA_SLAVE
, mask
);
1925 sig
= OMAP24XX_DMA_GPMC
;
1926 info
->dma
= dma_request_channel(mask
, omap_dma_filter_fn
, &sig
);
1928 dev_err(&pdev
->dev
, "DMA engine request failed\n");
1930 goto out_release_mem_region
;
1932 struct dma_slave_config cfg
;
1934 memset(&cfg
, 0, sizeof(cfg
));
1935 cfg
.src_addr
= info
->phys_base
;
1936 cfg
.dst_addr
= info
->phys_base
;
1937 cfg
.src_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1938 cfg
.dst_addr_width
= DMA_SLAVE_BUSWIDTH_4_BYTES
;
1939 cfg
.src_maxburst
= 16;
1940 cfg
.dst_maxburst
= 16;
1941 err
= dmaengine_slave_config(info
->dma
, &cfg
);
1943 dev_err(&pdev
->dev
, "DMA engine slave config failed: %d\n",
1945 goto out_release_mem_region
;
1947 info
->nand
.read_buf
= omap_read_buf_dma_pref
;
1948 info
->nand
.write_buf
= omap_write_buf_dma_pref
;
1952 case NAND_OMAP_PREFETCH_IRQ
:
1953 info
->gpmc_irq_fifo
= platform_get_irq(pdev
, 0);
1954 if (info
->gpmc_irq_fifo
<= 0) {
1955 dev_err(&pdev
->dev
, "error getting fifo irq\n");
1957 goto out_release_mem_region
;
1959 err
= request_irq(info
->gpmc_irq_fifo
, omap_nand_irq
,
1960 IRQF_SHARED
, "gpmc-nand-fifo", info
);
1962 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1963 info
->gpmc_irq_fifo
, err
);
1964 info
->gpmc_irq_fifo
= 0;
1965 goto out_release_mem_region
;
1968 info
->gpmc_irq_count
= platform_get_irq(pdev
, 1);
1969 if (info
->gpmc_irq_count
<= 0) {
1970 dev_err(&pdev
->dev
, "error getting count irq\n");
1972 goto out_release_mem_region
;
1974 err
= request_irq(info
->gpmc_irq_count
, omap_nand_irq
,
1975 IRQF_SHARED
, "gpmc-nand-count", info
);
1977 dev_err(&pdev
->dev
, "requesting irq(%d) error:%d",
1978 info
->gpmc_irq_count
, err
);
1979 info
->gpmc_irq_count
= 0;
1980 goto out_release_mem_region
;
1983 info
->nand
.read_buf
= omap_read_buf_irq_pref
;
1984 info
->nand
.write_buf
= omap_write_buf_irq_pref
;
1990 "xfer_type(%d) not supported!\n", pdata
->xfer_type
);
1992 goto out_release_mem_region
;
1995 /* select the ecc type */
1996 if (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_DEFAULT
)
1997 info
->nand
.ecc
.mode
= NAND_ECC_SOFT
;
1998 else if ((pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW
) ||
1999 (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW_ROMCODE
)) {
2000 info
->nand
.ecc
.bytes
= 3;
2001 info
->nand
.ecc
.size
= 512;
2002 info
->nand
.ecc
.strength
= 1;
2003 info
->nand
.ecc
.calculate
= omap_calculate_ecc
;
2004 info
->nand
.ecc
.hwctl
= omap_enable_hwecc
;
2005 info
->nand
.ecc
.correct
= omap_correct_data
;
2006 info
->nand
.ecc
.mode
= NAND_ECC_HW
;
2007 } else if ((pdata
->ecc_opt
== OMAP_ECC_BCH4_CODE_HW
) ||
2008 (pdata
->ecc_opt
== OMAP_ECC_BCH8_CODE_HW
)) {
2009 err
= omap3_init_bch(&info
->mtd
, pdata
->ecc_opt
);
2012 goto out_release_mem_region
;
2016 /* DIP switches on some boards change between 8 and 16 bit
2017 * bus widths for flash. Try the other width if the first try fails.
2019 if (nand_scan_ident(&info
->mtd
, 1, NULL
)) {
2020 info
->nand
.options
^= NAND_BUSWIDTH_16
;
2021 if (nand_scan_ident(&info
->mtd
, 1, NULL
)) {
2023 goto out_release_mem_region
;
2027 /* rom code layout */
2028 if (pdata
->ecc_opt
== OMAP_ECC_HAMMING_CODE_HW_ROMCODE
) {
2030 if (info
->nand
.options
& NAND_BUSWIDTH_16
)
2034 info
->nand
.badblock_pattern
= &bb_descrip_flashbased
;
2036 omap_oobinfo
.eccbytes
= 3 * (info
->mtd
.oobsize
/16);
2037 for (i
= 0; i
< omap_oobinfo
.eccbytes
; i
++)
2038 omap_oobinfo
.eccpos
[i
] = i
+offset
;
2040 omap_oobinfo
.oobfree
->offset
= offset
+ omap_oobinfo
.eccbytes
;
2041 omap_oobinfo
.oobfree
->length
= info
->mtd
.oobsize
-
2042 (offset
+ omap_oobinfo
.eccbytes
);
2044 info
->nand
.ecc
.layout
= &omap_oobinfo
;
2045 } else if ((pdata
->ecc_opt
== OMAP_ECC_BCH4_CODE_HW
) ||
2046 (pdata
->ecc_opt
== OMAP_ECC_BCH8_CODE_HW
)) {
2047 /* build OOB layout for BCH ECC correction */
2048 err
= omap3_init_bch_tail(&info
->mtd
);
2051 goto out_release_mem_region
;
2055 /* second phase scan */
2056 if (nand_scan_tail(&info
->mtd
)) {
2058 goto out_release_mem_region
;
2061 ppdata
.of_node
= pdata
->of_node
;
2062 mtd_device_parse_register(&info
->mtd
, NULL
, &ppdata
, pdata
->parts
,
2065 platform_set_drvdata(pdev
, &info
->mtd
);
2069 out_release_mem_region
:
2071 dma_release_channel(info
->dma
);
2072 if (info
->gpmc_irq_count
> 0)
2073 free_irq(info
->gpmc_irq_count
, info
);
2074 if (info
->gpmc_irq_fifo
> 0)
2075 free_irq(info
->gpmc_irq_fifo
, info
);
2076 release_mem_region(info
->phys_base
, info
->mem_size
);
2083 static int omap_nand_remove(struct platform_device
*pdev
)
2085 struct mtd_info
*mtd
= platform_get_drvdata(pdev
);
2086 struct omap_nand_info
*info
= container_of(mtd
, struct omap_nand_info
,
2088 omap3_free_bch(&info
->mtd
);
2091 dma_release_channel(info
->dma
);
2093 if (info
->gpmc_irq_count
> 0)
2094 free_irq(info
->gpmc_irq_count
, info
);
2095 if (info
->gpmc_irq_fifo
> 0)
2096 free_irq(info
->gpmc_irq_fifo
, info
);
2098 /* Release NAND device, its internal structures and partitions */
2099 nand_release(&info
->mtd
);
2100 iounmap(info
->nand
.IO_ADDR_R
);
2101 release_mem_region(info
->phys_base
, info
->mem_size
);
2106 static struct platform_driver omap_nand_driver
= {
2107 .probe
= omap_nand_probe
,
2108 .remove
= omap_nand_remove
,
2110 .name
= DRIVER_NAME
,
2111 .owner
= THIS_MODULE
,
2115 module_platform_driver(omap_nand_driver
);
2117 MODULE_ALIAS("platform:" DRIVER_NAME
);
2118 MODULE_LICENSE("GPL");
2119 MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");