usb: gadget: composite: Fix possible double free memory bug
[linux/fpc-iii.git] / security / keys / key.c
blob03160f1f1aa27990c73d26a1edfb02db11ca3f73
1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
48 #endif
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
54 struct key_user *key_user_lookup(kuid_t uid)
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
121 * Dispose of a user structure
123 void key_user_put(struct key_user *user)
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
129 kfree(user);
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
137 static inline void key_alloc_serial(struct key *key)
139 struct rb_node *parent, **p;
140 struct key *xkey;
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
150 spin_lock(&key_serial_lock);
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
172 spin_unlock(&key_serial_lock);
173 return;
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
205 * Allocate a key of the specified type with the attributes given. The key is
206 * returned in an uninstantiated state and the caller needs to instantiate the
207 * key before returning.
209 * The user's key count quota is updated to reflect the creation of the key and
210 * the user's key data quota has the default for the key type reserved. The
211 * instantiation function should amend this as necessary. If insufficient
212 * quota is available, -EDQUOT will be returned.
214 * The LSM security modules can prevent a key being created, in which case
215 * -EACCES will be returned.
217 * Returns a pointer to the new key if successful and an error code otherwise.
219 * Note that the caller needs to ensure the key type isn't uninstantiated.
220 * Internally this can be done by locking key_types_sem. Externally, this can
221 * be done by either never unregistering the key type, or making sure
222 * key_alloc() calls don't race with module unloading.
224 struct key *key_alloc(struct key_type *type, const char *desc,
225 kuid_t uid, kgid_t gid, const struct cred *cred,
226 key_perm_t perm, unsigned long flags)
228 struct key_user *user = NULL;
229 struct key *key;
230 size_t desclen, quotalen;
231 int ret;
233 key = ERR_PTR(-EINVAL);
234 if (!desc || !*desc)
235 goto error;
237 if (type->vet_description) {
238 ret = type->vet_description(desc);
239 if (ret < 0) {
240 key = ERR_PTR(ret);
241 goto error;
245 desclen = strlen(desc);
246 quotalen = desclen + 1 + type->def_datalen;
248 /* get hold of the key tracking for this user */
249 user = key_user_lookup(uid);
250 if (!user)
251 goto no_memory_1;
253 /* check that the user's quota permits allocation of another key and
254 * its description */
255 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
256 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
257 key_quota_root_maxkeys : key_quota_maxkeys;
258 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
259 key_quota_root_maxbytes : key_quota_maxbytes;
261 spin_lock(&user->lock);
262 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
263 if (user->qnkeys + 1 > maxkeys ||
264 user->qnbytes + quotalen > maxbytes ||
265 user->qnbytes + quotalen < user->qnbytes)
266 goto no_quota;
269 user->qnkeys++;
270 user->qnbytes += quotalen;
271 spin_unlock(&user->lock);
274 /* allocate and initialise the key and its description */
275 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
276 if (!key)
277 goto no_memory_2;
279 key->index_key.desc_len = desclen;
280 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
281 if (!key->index_key.description)
282 goto no_memory_3;
284 atomic_set(&key->usage, 1);
285 init_rwsem(&key->sem);
286 lockdep_set_class(&key->sem, &type->lock_class);
287 key->index_key.type = type;
288 key->user = user;
289 key->quotalen = quotalen;
290 key->datalen = type->def_datalen;
291 key->uid = uid;
292 key->gid = gid;
293 key->perm = perm;
295 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
296 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
297 if (flags & KEY_ALLOC_TRUSTED)
298 key->flags |= 1 << KEY_FLAG_TRUSTED;
299 if (flags & KEY_ALLOC_UID_KEYRING)
300 key->flags |= 1 << KEY_FLAG_UID_KEYRING;
302 #ifdef KEY_DEBUGGING
303 key->magic = KEY_DEBUG_MAGIC;
304 #endif
306 /* let the security module know about the key */
307 ret = security_key_alloc(key, cred, flags);
308 if (ret < 0)
309 goto security_error;
311 /* publish the key by giving it a serial number */
312 atomic_inc(&user->nkeys);
313 key_alloc_serial(key);
315 error:
316 return key;
318 security_error:
319 kfree(key->description);
320 kmem_cache_free(key_jar, key);
321 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
322 spin_lock(&user->lock);
323 user->qnkeys--;
324 user->qnbytes -= quotalen;
325 spin_unlock(&user->lock);
327 key_user_put(user);
328 key = ERR_PTR(ret);
329 goto error;
331 no_memory_3:
332 kmem_cache_free(key_jar, key);
333 no_memory_2:
334 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
335 spin_lock(&user->lock);
336 user->qnkeys--;
337 user->qnbytes -= quotalen;
338 spin_unlock(&user->lock);
340 key_user_put(user);
341 no_memory_1:
342 key = ERR_PTR(-ENOMEM);
343 goto error;
345 no_quota:
346 spin_unlock(&user->lock);
347 key_user_put(user);
348 key = ERR_PTR(-EDQUOT);
349 goto error;
351 EXPORT_SYMBOL(key_alloc);
354 * key_payload_reserve - Adjust data quota reservation for the key's payload
355 * @key: The key to make the reservation for.
356 * @datalen: The amount of data payload the caller now wants.
358 * Adjust the amount of the owning user's key data quota that a key reserves.
359 * If the amount is increased, then -EDQUOT may be returned if there isn't
360 * enough free quota available.
362 * If successful, 0 is returned.
364 int key_payload_reserve(struct key *key, size_t datalen)
366 int delta = (int)datalen - key->datalen;
367 int ret = 0;
369 key_check(key);
371 /* contemplate the quota adjustment */
372 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
373 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
374 key_quota_root_maxbytes : key_quota_maxbytes;
376 spin_lock(&key->user->lock);
378 if (delta > 0 &&
379 (key->user->qnbytes + delta >= maxbytes ||
380 key->user->qnbytes + delta < key->user->qnbytes)) {
381 ret = -EDQUOT;
383 else {
384 key->user->qnbytes += delta;
385 key->quotalen += delta;
387 spin_unlock(&key->user->lock);
390 /* change the recorded data length if that didn't generate an error */
391 if (ret == 0)
392 key->datalen = datalen;
394 return ret;
396 EXPORT_SYMBOL(key_payload_reserve);
399 * Change the key state to being instantiated.
401 static void mark_key_instantiated(struct key *key, int reject_error)
403 /* Commit the payload before setting the state; barrier versus
404 * key_read_state().
406 smp_store_release(&key->state,
407 (reject_error < 0) ? reject_error : KEY_IS_POSITIVE);
411 * Instantiate a key and link it into the target keyring atomically. Must be
412 * called with the target keyring's semaphore writelocked. The target key's
413 * semaphore need not be locked as instantiation is serialised by
414 * key_construction_mutex.
416 static int __key_instantiate_and_link(struct key *key,
417 struct key_preparsed_payload *prep,
418 struct key *keyring,
419 struct key *authkey,
420 struct assoc_array_edit **_edit)
422 int ret, awaken;
424 key_check(key);
425 key_check(keyring);
427 awaken = 0;
428 ret = -EBUSY;
430 mutex_lock(&key_construction_mutex);
432 /* can't instantiate twice */
433 if (key->state == KEY_IS_UNINSTANTIATED) {
434 /* instantiate the key */
435 ret = key->type->instantiate(key, prep);
437 if (ret == 0) {
438 /* mark the key as being instantiated */
439 atomic_inc(&key->user->nikeys);
440 mark_key_instantiated(key, 0);
442 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
443 awaken = 1;
445 /* and link it into the destination keyring */
446 if (keyring)
447 __key_link(key, _edit);
449 /* disable the authorisation key */
450 if (authkey)
451 key_revoke(authkey);
453 if (prep->expiry != TIME_T_MAX) {
454 key->expiry = prep->expiry;
455 key_schedule_gc(prep->expiry + key_gc_delay);
460 mutex_unlock(&key_construction_mutex);
462 /* wake up anyone waiting for a key to be constructed */
463 if (awaken)
464 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
466 return ret;
470 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
471 * @key: The key to instantiate.
472 * @data: The data to use to instantiate the keyring.
473 * @datalen: The length of @data.
474 * @keyring: Keyring to create a link in on success (or NULL).
475 * @authkey: The authorisation token permitting instantiation.
477 * Instantiate a key that's in the uninstantiated state using the provided data
478 * and, if successful, link it in to the destination keyring if one is
479 * supplied.
481 * If successful, 0 is returned, the authorisation token is revoked and anyone
482 * waiting for the key is woken up. If the key was already instantiated,
483 * -EBUSY will be returned.
485 int key_instantiate_and_link(struct key *key,
486 const void *data,
487 size_t datalen,
488 struct key *keyring,
489 struct key *authkey)
491 struct key_preparsed_payload prep;
492 struct assoc_array_edit *edit;
493 int ret;
495 memset(&prep, 0, sizeof(prep));
496 prep.data = data;
497 prep.datalen = datalen;
498 prep.quotalen = key->type->def_datalen;
499 prep.expiry = TIME_T_MAX;
500 if (key->type->preparse) {
501 ret = key->type->preparse(&prep);
502 if (ret < 0)
503 goto error;
506 if (keyring) {
507 ret = __key_link_begin(keyring, &key->index_key, &edit);
508 if (ret < 0)
509 goto error;
512 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
514 if (keyring)
515 __key_link_end(keyring, &key->index_key, edit);
517 error:
518 if (key->type->preparse)
519 key->type->free_preparse(&prep);
520 return ret;
523 EXPORT_SYMBOL(key_instantiate_and_link);
526 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
527 * @key: The key to instantiate.
528 * @timeout: The timeout on the negative key.
529 * @error: The error to return when the key is hit.
530 * @keyring: Keyring to create a link in on success (or NULL).
531 * @authkey: The authorisation token permitting instantiation.
533 * Negatively instantiate a key that's in the uninstantiated state and, if
534 * successful, set its timeout and stored error and link it in to the
535 * destination keyring if one is supplied. The key and any links to the key
536 * will be automatically garbage collected after the timeout expires.
538 * Negative keys are used to rate limit repeated request_key() calls by causing
539 * them to return the stored error code (typically ENOKEY) until the negative
540 * key expires.
542 * If successful, 0 is returned, the authorisation token is revoked and anyone
543 * waiting for the key is woken up. If the key was already instantiated,
544 * -EBUSY will be returned.
546 int key_reject_and_link(struct key *key,
547 unsigned timeout,
548 unsigned error,
549 struct key *keyring,
550 struct key *authkey)
552 struct assoc_array_edit *edit;
553 struct timespec now;
554 int ret, awaken, link_ret = 0;
556 key_check(key);
557 key_check(keyring);
559 awaken = 0;
560 ret = -EBUSY;
562 if (keyring)
563 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
565 mutex_lock(&key_construction_mutex);
567 /* can't instantiate twice */
568 if (key->state == KEY_IS_UNINSTANTIATED) {
569 /* mark the key as being negatively instantiated */
570 atomic_inc(&key->user->nikeys);
571 mark_key_instantiated(key, -error);
572 now = current_kernel_time();
573 key->expiry = now.tv_sec + timeout;
574 key_schedule_gc(key->expiry + key_gc_delay);
576 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
577 awaken = 1;
579 ret = 0;
581 /* and link it into the destination keyring */
582 if (keyring && link_ret == 0)
583 __key_link(key, &edit);
585 /* disable the authorisation key */
586 if (authkey)
587 key_revoke(authkey);
590 mutex_unlock(&key_construction_mutex);
592 if (keyring && link_ret == 0)
593 __key_link_end(keyring, &key->index_key, edit);
595 /* wake up anyone waiting for a key to be constructed */
596 if (awaken)
597 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
599 return ret == 0 ? link_ret : ret;
601 EXPORT_SYMBOL(key_reject_and_link);
604 * key_put - Discard a reference to a key.
605 * @key: The key to discard a reference from.
607 * Discard a reference to a key, and when all the references are gone, we
608 * schedule the cleanup task to come and pull it out of the tree in process
609 * context at some later time.
611 void key_put(struct key *key)
613 if (key) {
614 key_check(key);
616 if (atomic_dec_and_test(&key->usage))
617 schedule_work(&key_gc_work);
620 EXPORT_SYMBOL(key_put);
623 * Find a key by its serial number.
625 struct key *key_lookup(key_serial_t id)
627 struct rb_node *n;
628 struct key *key;
630 spin_lock(&key_serial_lock);
632 /* search the tree for the specified key */
633 n = key_serial_tree.rb_node;
634 while (n) {
635 key = rb_entry(n, struct key, serial_node);
637 if (id < key->serial)
638 n = n->rb_left;
639 else if (id > key->serial)
640 n = n->rb_right;
641 else
642 goto found;
645 not_found:
646 key = ERR_PTR(-ENOKEY);
647 goto error;
649 found:
650 /* pretend it doesn't exist if it is awaiting deletion */
651 if (atomic_read(&key->usage) == 0)
652 goto not_found;
654 /* this races with key_put(), but that doesn't matter since key_put()
655 * doesn't actually change the key
657 __key_get(key);
659 error:
660 spin_unlock(&key_serial_lock);
661 return key;
665 * Find and lock the specified key type against removal.
667 * We return with the sem read-locked if successful. If the type wasn't
668 * available -ENOKEY is returned instead.
670 struct key_type *key_type_lookup(const char *type)
672 struct key_type *ktype;
674 down_read(&key_types_sem);
676 /* look up the key type to see if it's one of the registered kernel
677 * types */
678 list_for_each_entry(ktype, &key_types_list, link) {
679 if (strcmp(ktype->name, type) == 0)
680 goto found_kernel_type;
683 up_read(&key_types_sem);
684 ktype = ERR_PTR(-ENOKEY);
686 found_kernel_type:
687 return ktype;
690 void key_set_timeout(struct key *key, unsigned timeout)
692 struct timespec now;
693 time_t expiry = 0;
695 /* make the changes with the locks held to prevent races */
696 down_write(&key->sem);
698 if (timeout > 0) {
699 now = current_kernel_time();
700 expiry = now.tv_sec + timeout;
703 key->expiry = expiry;
704 key_schedule_gc(key->expiry + key_gc_delay);
706 up_write(&key->sem);
708 EXPORT_SYMBOL_GPL(key_set_timeout);
711 * Unlock a key type locked by key_type_lookup().
713 void key_type_put(struct key_type *ktype)
715 up_read(&key_types_sem);
719 * Attempt to update an existing key.
721 * The key is given to us with an incremented refcount that we need to discard
722 * if we get an error.
724 static inline key_ref_t __key_update(key_ref_t key_ref,
725 struct key_preparsed_payload *prep)
727 struct key *key = key_ref_to_ptr(key_ref);
728 int ret;
730 /* need write permission on the key to update it */
731 ret = key_permission(key_ref, KEY_NEED_WRITE);
732 if (ret < 0)
733 goto error;
735 ret = -EEXIST;
736 if (!key->type->update)
737 goto error;
739 down_write(&key->sem);
741 ret = key->type->update(key, prep);
742 if (ret == 0)
743 /* Updating a negative key positively instantiates it */
744 mark_key_instantiated(key, 0);
746 up_write(&key->sem);
748 if (ret < 0)
749 goto error;
750 out:
751 return key_ref;
753 error:
754 key_put(key);
755 key_ref = ERR_PTR(ret);
756 goto out;
760 * key_create_or_update - Update or create and instantiate a key.
761 * @keyring_ref: A pointer to the destination keyring with possession flag.
762 * @type: The type of key.
763 * @description: The searchable description for the key.
764 * @payload: The data to use to instantiate or update the key.
765 * @plen: The length of @payload.
766 * @perm: The permissions mask for a new key.
767 * @flags: The quota flags for a new key.
769 * Search the destination keyring for a key of the same description and if one
770 * is found, update it, otherwise create and instantiate a new one and create a
771 * link to it from that keyring.
773 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
774 * concocted.
776 * Returns a pointer to the new key if successful, -ENODEV if the key type
777 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
778 * caller isn't permitted to modify the keyring or the LSM did not permit
779 * creation of the key.
781 * On success, the possession flag from the keyring ref will be tacked on to
782 * the key ref before it is returned.
784 key_ref_t key_create_or_update(key_ref_t keyring_ref,
785 const char *type,
786 const char *description,
787 const void *payload,
788 size_t plen,
789 key_perm_t perm,
790 unsigned long flags)
792 struct keyring_index_key index_key = {
793 .description = description,
795 struct key_preparsed_payload prep;
796 struct assoc_array_edit *edit;
797 const struct cred *cred = current_cred();
798 struct key *keyring, *key = NULL;
799 key_ref_t key_ref;
800 int ret;
802 /* look up the key type to see if it's one of the registered kernel
803 * types */
804 index_key.type = key_type_lookup(type);
805 if (IS_ERR(index_key.type)) {
806 key_ref = ERR_PTR(-ENODEV);
807 goto error;
810 key_ref = ERR_PTR(-EINVAL);
811 if (!index_key.type->instantiate ||
812 (!index_key.description && !index_key.type->preparse))
813 goto error_put_type;
815 keyring = key_ref_to_ptr(keyring_ref);
817 key_check(keyring);
819 key_ref = ERR_PTR(-ENOTDIR);
820 if (keyring->type != &key_type_keyring)
821 goto error_put_type;
823 memset(&prep, 0, sizeof(prep));
824 prep.data = payload;
825 prep.datalen = plen;
826 prep.quotalen = index_key.type->def_datalen;
827 prep.trusted = flags & KEY_ALLOC_TRUSTED;
828 prep.expiry = TIME_T_MAX;
829 if (index_key.type->preparse) {
830 ret = index_key.type->preparse(&prep);
831 if (ret < 0) {
832 key_ref = ERR_PTR(ret);
833 goto error_free_prep;
835 if (!index_key.description)
836 index_key.description = prep.description;
837 key_ref = ERR_PTR(-EINVAL);
838 if (!index_key.description)
839 goto error_free_prep;
841 index_key.desc_len = strlen(index_key.description);
843 key_ref = ERR_PTR(-EPERM);
844 if (!prep.trusted && test_bit(KEY_FLAG_TRUSTED_ONLY, &keyring->flags))
845 goto error_free_prep;
846 flags |= prep.trusted ? KEY_ALLOC_TRUSTED : 0;
848 ret = __key_link_begin(keyring, &index_key, &edit);
849 if (ret < 0) {
850 key_ref = ERR_PTR(ret);
851 goto error_free_prep;
854 /* if we're going to allocate a new key, we're going to have
855 * to modify the keyring */
856 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
857 if (ret < 0) {
858 key_ref = ERR_PTR(ret);
859 goto error_link_end;
862 /* if it's possible to update this type of key, search for an existing
863 * key of the same type and description in the destination keyring and
864 * update that instead if possible
866 if (index_key.type->update) {
867 key_ref = find_key_to_update(keyring_ref, &index_key);
868 if (key_ref)
869 goto found_matching_key;
872 /* if the client doesn't provide, decide on the permissions we want */
873 if (perm == KEY_PERM_UNDEF) {
874 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
875 perm |= KEY_USR_VIEW;
877 if (index_key.type->read)
878 perm |= KEY_POS_READ;
880 if (index_key.type == &key_type_keyring ||
881 index_key.type->update)
882 perm |= KEY_POS_WRITE;
885 /* allocate a new key */
886 key = key_alloc(index_key.type, index_key.description,
887 cred->fsuid, cred->fsgid, cred, perm, flags);
888 if (IS_ERR(key)) {
889 key_ref = ERR_CAST(key);
890 goto error_link_end;
893 /* instantiate it and link it into the target keyring */
894 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
895 if (ret < 0) {
896 key_put(key);
897 key_ref = ERR_PTR(ret);
898 goto error_link_end;
901 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
903 error_link_end:
904 __key_link_end(keyring, &index_key, edit);
905 error_free_prep:
906 if (index_key.type->preparse)
907 index_key.type->free_preparse(&prep);
908 error_put_type:
909 key_type_put(index_key.type);
910 error:
911 return key_ref;
913 found_matching_key:
914 /* we found a matching key, so we're going to try to update it
915 * - we can drop the locks first as we have the key pinned
917 __key_link_end(keyring, &index_key, edit);
919 key = key_ref_to_ptr(key_ref);
920 if (test_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags)) {
921 ret = wait_for_key_construction(key, true);
922 if (ret < 0) {
923 key_ref_put(key_ref);
924 key_ref = ERR_PTR(ret);
925 goto error_free_prep;
929 key_ref = __key_update(key_ref, &prep);
930 goto error_free_prep;
932 EXPORT_SYMBOL(key_create_or_update);
935 * key_update - Update a key's contents.
936 * @key_ref: The pointer (plus possession flag) to the key.
937 * @payload: The data to be used to update the key.
938 * @plen: The length of @payload.
940 * Attempt to update the contents of a key with the given payload data. The
941 * caller must be granted Write permission on the key. Negative keys can be
942 * instantiated by this method.
944 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
945 * type does not support updating. The key type may return other errors.
947 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
949 struct key_preparsed_payload prep;
950 struct key *key = key_ref_to_ptr(key_ref);
951 int ret;
953 key_check(key);
955 /* the key must be writable */
956 ret = key_permission(key_ref, KEY_NEED_WRITE);
957 if (ret < 0)
958 return ret;
960 /* attempt to update it if supported */
961 if (!key->type->update)
962 return -EOPNOTSUPP;
964 memset(&prep, 0, sizeof(prep));
965 prep.data = payload;
966 prep.datalen = plen;
967 prep.quotalen = key->type->def_datalen;
968 prep.expiry = TIME_T_MAX;
969 if (key->type->preparse) {
970 ret = key->type->preparse(&prep);
971 if (ret < 0)
972 goto error;
975 down_write(&key->sem);
977 ret = key->type->update(key, &prep);
978 if (ret == 0)
979 /* Updating a negative key positively instantiates it */
980 mark_key_instantiated(key, 0);
982 up_write(&key->sem);
984 error:
985 if (key->type->preparse)
986 key->type->free_preparse(&prep);
987 return ret;
989 EXPORT_SYMBOL(key_update);
992 * key_revoke - Revoke a key.
993 * @key: The key to be revoked.
995 * Mark a key as being revoked and ask the type to free up its resources. The
996 * revocation timeout is set and the key and all its links will be
997 * automatically garbage collected after key_gc_delay amount of time if they
998 * are not manually dealt with first.
1000 void key_revoke(struct key *key)
1002 struct timespec now;
1003 time_t time;
1005 key_check(key);
1007 /* make sure no one's trying to change or use the key when we mark it
1008 * - we tell lockdep that we might nest because we might be revoking an
1009 * authorisation key whilst holding the sem on a key we've just
1010 * instantiated
1012 down_write_nested(&key->sem, 1);
1013 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1014 key->type->revoke)
1015 key->type->revoke(key);
1017 /* set the death time to no more than the expiry time */
1018 now = current_kernel_time();
1019 time = now.tv_sec;
1020 if (key->revoked_at == 0 || key->revoked_at > time) {
1021 key->revoked_at = time;
1022 key_schedule_gc(key->revoked_at + key_gc_delay);
1025 up_write(&key->sem);
1027 EXPORT_SYMBOL(key_revoke);
1030 * key_invalidate - Invalidate a key.
1031 * @key: The key to be invalidated.
1033 * Mark a key as being invalidated and have it cleaned up immediately. The key
1034 * is ignored by all searches and other operations from this point.
1036 void key_invalidate(struct key *key)
1038 kenter("%d", key_serial(key));
1040 key_check(key);
1042 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1043 down_write_nested(&key->sem, 1);
1044 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1045 key_schedule_gc_links();
1046 up_write(&key->sem);
1049 EXPORT_SYMBOL(key_invalidate);
1052 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1053 * @key: The key to be instantiated
1054 * @prep: The preparsed data to load.
1056 * Instantiate a key from preparsed data. We assume we can just copy the data
1057 * in directly and clear the old pointers.
1059 * This can be pointed to directly by the key type instantiate op pointer.
1061 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1063 int ret;
1065 pr_devel("==>%s()\n", __func__);
1067 ret = key_payload_reserve(key, prep->quotalen);
1068 if (ret == 0) {
1069 rcu_assign_keypointer(key, prep->payload.data[0]);
1070 key->payload.data[1] = prep->payload.data[1];
1071 key->payload.data[2] = prep->payload.data[2];
1072 key->payload.data[3] = prep->payload.data[3];
1073 prep->payload.data[0] = NULL;
1074 prep->payload.data[1] = NULL;
1075 prep->payload.data[2] = NULL;
1076 prep->payload.data[3] = NULL;
1078 pr_devel("<==%s() = %d\n", __func__, ret);
1079 return ret;
1081 EXPORT_SYMBOL(generic_key_instantiate);
1084 * register_key_type - Register a type of key.
1085 * @ktype: The new key type.
1087 * Register a new key type.
1089 * Returns 0 on success or -EEXIST if a type of this name already exists.
1091 int register_key_type(struct key_type *ktype)
1093 struct key_type *p;
1094 int ret;
1096 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1098 ret = -EEXIST;
1099 down_write(&key_types_sem);
1101 /* disallow key types with the same name */
1102 list_for_each_entry(p, &key_types_list, link) {
1103 if (strcmp(p->name, ktype->name) == 0)
1104 goto out;
1107 /* store the type */
1108 list_add(&ktype->link, &key_types_list);
1110 pr_notice("Key type %s registered\n", ktype->name);
1111 ret = 0;
1113 out:
1114 up_write(&key_types_sem);
1115 return ret;
1117 EXPORT_SYMBOL(register_key_type);
1120 * unregister_key_type - Unregister a type of key.
1121 * @ktype: The key type.
1123 * Unregister a key type and mark all the extant keys of this type as dead.
1124 * Those keys of this type are then destroyed to get rid of their payloads and
1125 * they and their links will be garbage collected as soon as possible.
1127 void unregister_key_type(struct key_type *ktype)
1129 down_write(&key_types_sem);
1130 list_del_init(&ktype->link);
1131 downgrade_write(&key_types_sem);
1132 key_gc_keytype(ktype);
1133 pr_notice("Key type %s unregistered\n", ktype->name);
1134 up_read(&key_types_sem);
1136 EXPORT_SYMBOL(unregister_key_type);
1139 * Initialise the key management state.
1141 void __init key_init(void)
1143 /* allocate a slab in which we can store keys */
1144 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1145 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1147 /* add the special key types */
1148 list_add_tail(&key_type_keyring.link, &key_types_list);
1149 list_add_tail(&key_type_dead.link, &key_types_list);
1150 list_add_tail(&key_type_user.link, &key_types_list);
1151 list_add_tail(&key_type_logon.link, &key_types_list);
1153 /* record the root user tracking */
1154 rb_link_node(&root_key_user.node,
1155 NULL,
1156 &key_user_tree.rb_node);
1158 rb_insert_color(&root_key_user.node,
1159 &key_user_tree);