fs/ufs: restore s_lock mutex
[linux/fpc-iii.git] / block / blk-map.c
blobb8d2725324a6b88391db4c8a5daf7a9c1309dd86
1 /*
2 * Functions related to mapping data to requests
3 */
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/bio.h>
7 #include <linux/blkdev.h>
8 #include <linux/uio.h>
10 #include "blk.h"
12 int blk_rq_append_bio(struct request_queue *q, struct request *rq,
13 struct bio *bio)
15 if (!rq->bio)
16 blk_rq_bio_prep(q, rq, bio);
17 else if (!ll_back_merge_fn(q, rq, bio))
18 return -EINVAL;
19 else {
20 rq->biotail->bi_next = bio;
21 rq->biotail = bio;
23 rq->__data_len += bio->bi_iter.bi_size;
25 return 0;
28 static int __blk_rq_unmap_user(struct bio *bio)
30 int ret = 0;
32 if (bio) {
33 if (bio_flagged(bio, BIO_USER_MAPPED))
34 bio_unmap_user(bio);
35 else
36 ret = bio_uncopy_user(bio);
39 return ret;
42 /**
43 * blk_rq_map_user_iov - map user data to a request, for REQ_TYPE_BLOCK_PC usage
44 * @q: request queue where request should be inserted
45 * @rq: request to map data to
46 * @map_data: pointer to the rq_map_data holding pages (if necessary)
47 * @iter: iovec iterator
48 * @gfp_mask: memory allocation flags
50 * Description:
51 * Data will be mapped directly for zero copy I/O, if possible. Otherwise
52 * a kernel bounce buffer is used.
54 * A matching blk_rq_unmap_user() must be issued at the end of I/O, while
55 * still in process context.
57 * Note: The mapped bio may need to be bounced through blk_queue_bounce()
58 * before being submitted to the device, as pages mapped may be out of
59 * reach. It's the callers responsibility to make sure this happens. The
60 * original bio must be passed back in to blk_rq_unmap_user() for proper
61 * unmapping.
63 int blk_rq_map_user_iov(struct request_queue *q, struct request *rq,
64 struct rq_map_data *map_data,
65 const struct iov_iter *iter, gfp_t gfp_mask)
67 struct bio *bio;
68 int unaligned = 0;
69 struct iov_iter i;
70 struct iovec iov;
72 if (!iter || !iter->count)
73 return -EINVAL;
75 iov_for_each(iov, i, *iter) {
76 unsigned long uaddr = (unsigned long) iov.iov_base;
78 if (!iov.iov_len)
79 return -EINVAL;
82 * Keep going so we check length of all segments
84 if (uaddr & queue_dma_alignment(q))
85 unaligned = 1;
88 if (unaligned || (q->dma_pad_mask & iter->count) || map_data)
89 bio = bio_copy_user_iov(q, map_data, iter, gfp_mask);
90 else
91 bio = bio_map_user_iov(q, iter, gfp_mask);
93 if (IS_ERR(bio))
94 return PTR_ERR(bio);
96 if (map_data && map_data->null_mapped)
97 bio->bi_flags |= (1 << BIO_NULL_MAPPED);
99 if (bio->bi_iter.bi_size != iter->count) {
101 * Grab an extra reference to this bio, as bio_unmap_user()
102 * expects to be able to drop it twice as it happens on the
103 * normal IO completion path
105 bio_get(bio);
106 bio_endio(bio, 0);
107 __blk_rq_unmap_user(bio);
108 return -EINVAL;
111 if (!bio_flagged(bio, BIO_USER_MAPPED))
112 rq->cmd_flags |= REQ_COPY_USER;
114 blk_queue_bounce(q, &bio);
115 bio_get(bio);
116 blk_rq_bio_prep(q, rq, bio);
117 return 0;
119 EXPORT_SYMBOL(blk_rq_map_user_iov);
121 int blk_rq_map_user(struct request_queue *q, struct request *rq,
122 struct rq_map_data *map_data, void __user *ubuf,
123 unsigned long len, gfp_t gfp_mask)
125 struct iovec iov;
126 struct iov_iter i;
128 iov.iov_base = ubuf;
129 iov.iov_len = len;
130 iov_iter_init(&i, rq_data_dir(rq), &iov, 1, len);
132 return blk_rq_map_user_iov(q, rq, map_data, &i, gfp_mask);
134 EXPORT_SYMBOL(blk_rq_map_user);
137 * blk_rq_unmap_user - unmap a request with user data
138 * @bio: start of bio list
140 * Description:
141 * Unmap a rq previously mapped by blk_rq_map_user(). The caller must
142 * supply the original rq->bio from the blk_rq_map_user() return, since
143 * the I/O completion may have changed rq->bio.
145 int blk_rq_unmap_user(struct bio *bio)
147 struct bio *mapped_bio;
148 int ret = 0, ret2;
150 while (bio) {
151 mapped_bio = bio;
152 if (unlikely(bio_flagged(bio, BIO_BOUNCED)))
153 mapped_bio = bio->bi_private;
155 ret2 = __blk_rq_unmap_user(mapped_bio);
156 if (ret2 && !ret)
157 ret = ret2;
159 mapped_bio = bio;
160 bio = bio->bi_next;
161 bio_put(mapped_bio);
164 return ret;
166 EXPORT_SYMBOL(blk_rq_unmap_user);
169 * blk_rq_map_kern - map kernel data to a request, for REQ_TYPE_BLOCK_PC usage
170 * @q: request queue where request should be inserted
171 * @rq: request to fill
172 * @kbuf: the kernel buffer
173 * @len: length of user data
174 * @gfp_mask: memory allocation flags
176 * Description:
177 * Data will be mapped directly if possible. Otherwise a bounce
178 * buffer is used. Can be called multiple times to append multiple
179 * buffers.
181 int blk_rq_map_kern(struct request_queue *q, struct request *rq, void *kbuf,
182 unsigned int len, gfp_t gfp_mask)
184 int reading = rq_data_dir(rq) == READ;
185 unsigned long addr = (unsigned long) kbuf;
186 int do_copy = 0;
187 struct bio *bio;
188 int ret;
190 if (len > (queue_max_hw_sectors(q) << 9))
191 return -EINVAL;
192 if (!len || !kbuf)
193 return -EINVAL;
195 do_copy = !blk_rq_aligned(q, addr, len) || object_is_on_stack(kbuf);
196 if (do_copy)
197 bio = bio_copy_kern(q, kbuf, len, gfp_mask, reading);
198 else
199 bio = bio_map_kern(q, kbuf, len, gfp_mask);
201 if (IS_ERR(bio))
202 return PTR_ERR(bio);
204 if (!reading)
205 bio->bi_rw |= REQ_WRITE;
207 if (do_copy)
208 rq->cmd_flags |= REQ_COPY_USER;
210 ret = blk_rq_append_bio(q, rq, bio);
211 if (unlikely(ret)) {
212 /* request is too big */
213 bio_put(bio);
214 return ret;
217 blk_queue_bounce(q, &rq->bio);
218 return 0;
220 EXPORT_SYMBOL(blk_rq_map_kern);