2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex
);
33 static LIST_HEAD(all_q_list
);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
);
36 static void blk_mq_run_queues(struct request_queue
*q
);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx
*hctx
)
45 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++)
46 if (hctx
->ctx_map
.map
[i
].word
)
52 static inline struct blk_align_bitmap
*get_bm(struct blk_mq_hw_ctx
*hctx
,
53 struct blk_mq_ctx
*ctx
)
55 return &hctx
->ctx_map
.map
[ctx
->index_hw
/ hctx
->ctx_map
.bits_per_word
];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx
*hctx
,
65 struct blk_mq_ctx
*ctx
)
67 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
69 if (!test_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
))
70 set_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx
*hctx
,
74 struct blk_mq_ctx
*ctx
)
76 struct blk_align_bitmap
*bm
= get_bm(hctx
, ctx
);
78 clear_bit(CTX_TO_BIT(hctx
, ctx
), &bm
->word
);
81 static int blk_mq_queue_enter(struct request_queue
*q
)
86 if (percpu_ref_tryget_live(&q
->mq_usage_counter
))
89 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
90 !q
->mq_freeze_depth
|| blk_queue_dying(q
));
91 if (blk_queue_dying(q
))
98 static void blk_mq_queue_exit(struct request_queue
*q
)
100 percpu_ref_put(&q
->mq_usage_counter
);
103 static void blk_mq_usage_counter_release(struct percpu_ref
*ref
)
105 struct request_queue
*q
=
106 container_of(ref
, struct request_queue
, mq_usage_counter
);
108 wake_up_all(&q
->mq_freeze_wq
);
111 void blk_mq_freeze_queue_start(struct request_queue
*q
)
115 spin_lock_irq(q
->queue_lock
);
116 freeze
= !q
->mq_freeze_depth
++;
117 spin_unlock_irq(q
->queue_lock
);
120 percpu_ref_kill(&q
->mq_usage_counter
);
121 blk_mq_run_queues(q
);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start
);
126 static void blk_mq_freeze_queue_wait(struct request_queue
*q
)
128 wait_event(q
->mq_freeze_wq
, percpu_ref_is_zero(&q
->mq_usage_counter
));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue
*q
)
137 blk_mq_freeze_queue_start(q
);
138 blk_mq_freeze_queue_wait(q
);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue
);
142 void blk_mq_unfreeze_queue(struct request_queue
*q
)
146 spin_lock_irq(q
->queue_lock
);
147 wake
= !--q
->mq_freeze_depth
;
148 WARN_ON_ONCE(q
->mq_freeze_depth
< 0);
149 spin_unlock_irq(q
->queue_lock
);
151 percpu_ref_reinit(&q
->mq_usage_counter
);
152 wake_up_all(&q
->mq_freeze_wq
);
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue
);
157 void blk_mq_wake_waiters(struct request_queue
*q
)
159 struct blk_mq_hw_ctx
*hctx
;
162 queue_for_each_hw_ctx(q
, hctx
, i
)
163 if (blk_mq_hw_queue_mapped(hctx
))
164 blk_mq_tag_wakeup_all(hctx
->tags
, true);
167 * If we are called because the queue has now been marked as
168 * dying, we need to ensure that processes currently waiting on
169 * the queue are notified as well.
171 wake_up_all(&q
->mq_freeze_wq
);
174 bool blk_mq_can_queue(struct blk_mq_hw_ctx
*hctx
)
176 return blk_mq_has_free_tags(hctx
->tags
);
178 EXPORT_SYMBOL(blk_mq_can_queue
);
180 static void blk_mq_rq_ctx_init(struct request_queue
*q
, struct blk_mq_ctx
*ctx
,
181 struct request
*rq
, unsigned int rw_flags
)
183 if (blk_queue_io_stat(q
))
184 rw_flags
|= REQ_IO_STAT
;
186 INIT_LIST_HEAD(&rq
->queuelist
);
187 /* csd/requeue_work/fifo_time is initialized before use */
190 rq
->cmd_flags
|= rw_flags
;
191 /* do not touch atomic flags, it needs atomic ops against the timer */
193 INIT_HLIST_NODE(&rq
->hash
);
194 RB_CLEAR_NODE(&rq
->rb_node
);
197 rq
->start_time
= jiffies
;
198 #ifdef CONFIG_BLK_CGROUP
200 set_start_time_ns(rq
);
201 rq
->io_start_time_ns
= 0;
203 rq
->nr_phys_segments
= 0;
204 #if defined(CONFIG_BLK_DEV_INTEGRITY)
205 rq
->nr_integrity_segments
= 0;
208 /* tag was already set */
218 INIT_LIST_HEAD(&rq
->timeout_list
);
222 rq
->end_io_data
= NULL
;
225 ctx
->rq_dispatched
[rw_is_sync(rw_flags
)]++;
228 static struct request
*
229 __blk_mq_alloc_request(struct blk_mq_alloc_data
*data
, int rw
)
234 tag
= blk_mq_get_tag(data
);
235 if (tag
!= BLK_MQ_TAG_FAIL
) {
236 rq
= data
->hctx
->tags
->rqs
[tag
];
238 if (blk_mq_tag_busy(data
->hctx
)) {
239 rq
->cmd_flags
= REQ_MQ_INFLIGHT
;
240 atomic_inc(&data
->hctx
->nr_active
);
244 blk_mq_rq_ctx_init(data
->q
, data
->ctx
, rq
, rw
);
251 struct request
*blk_mq_alloc_request(struct request_queue
*q
, int rw
, gfp_t gfp
,
254 struct blk_mq_ctx
*ctx
;
255 struct blk_mq_hw_ctx
*hctx
;
257 struct blk_mq_alloc_data alloc_data
;
260 ret
= blk_mq_queue_enter(q
);
264 ctx
= blk_mq_get_ctx(q
);
265 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
266 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
& ~__GFP_WAIT
,
267 reserved
, ctx
, hctx
);
269 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
270 if (!rq
&& (gfp
& __GFP_WAIT
)) {
271 __blk_mq_run_hw_queue(hctx
);
274 ctx
= blk_mq_get_ctx(q
);
275 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
276 blk_mq_set_alloc_data(&alloc_data
, q
, gfp
, reserved
, ctx
,
278 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
279 ctx
= alloc_data
.ctx
;
283 blk_mq_queue_exit(q
);
284 return ERR_PTR(-EWOULDBLOCK
);
288 EXPORT_SYMBOL(blk_mq_alloc_request
);
290 static void __blk_mq_free_request(struct blk_mq_hw_ctx
*hctx
,
291 struct blk_mq_ctx
*ctx
, struct request
*rq
)
293 const int tag
= rq
->tag
;
294 struct request_queue
*q
= rq
->q
;
296 if (rq
->cmd_flags
& REQ_MQ_INFLIGHT
)
297 atomic_dec(&hctx
->nr_active
);
300 clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
301 blk_mq_put_tag(hctx
, tag
, &ctx
->last_tag
);
302 blk_mq_queue_exit(q
);
305 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx
*hctx
, struct request
*rq
)
307 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
309 ctx
->rq_completed
[rq_is_sync(rq
)]++;
310 __blk_mq_free_request(hctx
, ctx
, rq
);
313 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request
);
315 void blk_mq_free_request(struct request
*rq
)
317 struct blk_mq_hw_ctx
*hctx
;
318 struct request_queue
*q
= rq
->q
;
320 hctx
= q
->mq_ops
->map_queue(q
, rq
->mq_ctx
->cpu
);
321 blk_mq_free_hctx_request(hctx
, rq
);
323 EXPORT_SYMBOL_GPL(blk_mq_free_request
);
325 inline void __blk_mq_end_request(struct request
*rq
, int error
)
327 blk_account_io_done(rq
);
330 rq
->end_io(rq
, error
);
332 if (unlikely(blk_bidi_rq(rq
)))
333 blk_mq_free_request(rq
->next_rq
);
334 blk_mq_free_request(rq
);
337 EXPORT_SYMBOL(__blk_mq_end_request
);
339 void blk_mq_end_request(struct request
*rq
, int error
)
341 if (blk_update_request(rq
, error
, blk_rq_bytes(rq
)))
343 __blk_mq_end_request(rq
, error
);
345 EXPORT_SYMBOL(blk_mq_end_request
);
347 static void __blk_mq_complete_request_remote(void *data
)
349 struct request
*rq
= data
;
351 rq
->q
->softirq_done_fn(rq
);
354 static void blk_mq_ipi_complete_request(struct request
*rq
)
356 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
360 if (!test_bit(QUEUE_FLAG_SAME_COMP
, &rq
->q
->queue_flags
)) {
361 rq
->q
->softirq_done_fn(rq
);
366 if (!test_bit(QUEUE_FLAG_SAME_FORCE
, &rq
->q
->queue_flags
))
367 shared
= cpus_share_cache(cpu
, ctx
->cpu
);
369 if (cpu
!= ctx
->cpu
&& !shared
&& cpu_online(ctx
->cpu
)) {
370 rq
->csd
.func
= __blk_mq_complete_request_remote
;
373 smp_call_function_single_async(ctx
->cpu
, &rq
->csd
);
375 rq
->q
->softirq_done_fn(rq
);
380 void __blk_mq_complete_request(struct request
*rq
)
382 struct request_queue
*q
= rq
->q
;
384 if (!q
->softirq_done_fn
)
385 blk_mq_end_request(rq
, rq
->errors
);
387 blk_mq_ipi_complete_request(rq
);
391 * blk_mq_complete_request - end I/O on a request
392 * @rq: the request being processed
395 * Ends all I/O on a request. It does not handle partial completions.
396 * The actual completion happens out-of-order, through a IPI handler.
398 void blk_mq_complete_request(struct request
*rq
)
400 struct request_queue
*q
= rq
->q
;
402 if (unlikely(blk_should_fake_timeout(q
)))
404 if (!blk_mark_rq_complete(rq
))
405 __blk_mq_complete_request(rq
);
407 EXPORT_SYMBOL(blk_mq_complete_request
);
409 int blk_mq_request_started(struct request
*rq
)
411 return test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
413 EXPORT_SYMBOL_GPL(blk_mq_request_started
);
415 void blk_mq_start_request(struct request
*rq
)
417 struct request_queue
*q
= rq
->q
;
419 trace_block_rq_issue(q
, rq
);
421 rq
->resid_len
= blk_rq_bytes(rq
);
422 if (unlikely(blk_bidi_rq(rq
)))
423 rq
->next_rq
->resid_len
= blk_rq_bytes(rq
->next_rq
);
428 * Ensure that ->deadline is visible before set the started
429 * flag and clear the completed flag.
431 smp_mb__before_atomic();
434 * Mark us as started and clear complete. Complete might have been
435 * set if requeue raced with timeout, which then marked it as
436 * complete. So be sure to clear complete again when we start
437 * the request, otherwise we'll ignore the completion event.
439 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
))
440 set_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
);
441 if (test_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
))
442 clear_bit(REQ_ATOM_COMPLETE
, &rq
->atomic_flags
);
444 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
446 * Make sure space for the drain appears. We know we can do
447 * this because max_hw_segments has been adjusted to be one
448 * fewer than the device can handle.
450 rq
->nr_phys_segments
++;
453 EXPORT_SYMBOL(blk_mq_start_request
);
455 static void __blk_mq_requeue_request(struct request
*rq
)
457 struct request_queue
*q
= rq
->q
;
459 trace_block_rq_requeue(q
, rq
);
461 if (test_and_clear_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
462 if (q
->dma_drain_size
&& blk_rq_bytes(rq
))
463 rq
->nr_phys_segments
--;
467 void blk_mq_requeue_request(struct request
*rq
)
469 __blk_mq_requeue_request(rq
);
471 BUG_ON(blk_queued_rq(rq
));
472 blk_mq_add_to_requeue_list(rq
, true);
474 EXPORT_SYMBOL(blk_mq_requeue_request
);
476 static void blk_mq_requeue_work(struct work_struct
*work
)
478 struct request_queue
*q
=
479 container_of(work
, struct request_queue
, requeue_work
);
481 struct request
*rq
, *next
;
484 spin_lock_irqsave(&q
->requeue_lock
, flags
);
485 list_splice_init(&q
->requeue_list
, &rq_list
);
486 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
488 list_for_each_entry_safe(rq
, next
, &rq_list
, queuelist
) {
489 if (!(rq
->cmd_flags
& REQ_SOFTBARRIER
))
492 rq
->cmd_flags
&= ~REQ_SOFTBARRIER
;
493 list_del_init(&rq
->queuelist
);
494 blk_mq_insert_request(rq
, true, false, false);
497 while (!list_empty(&rq_list
)) {
498 rq
= list_entry(rq_list
.next
, struct request
, queuelist
);
499 list_del_init(&rq
->queuelist
);
500 blk_mq_insert_request(rq
, false, false, false);
504 * Use the start variant of queue running here, so that running
505 * the requeue work will kick stopped queues.
507 blk_mq_start_hw_queues(q
);
510 void blk_mq_add_to_requeue_list(struct request
*rq
, bool at_head
)
512 struct request_queue
*q
= rq
->q
;
516 * We abuse this flag that is otherwise used by the I/O scheduler to
517 * request head insertation from the workqueue.
519 BUG_ON(rq
->cmd_flags
& REQ_SOFTBARRIER
);
521 spin_lock_irqsave(&q
->requeue_lock
, flags
);
523 rq
->cmd_flags
|= REQ_SOFTBARRIER
;
524 list_add(&rq
->queuelist
, &q
->requeue_list
);
526 list_add_tail(&rq
->queuelist
, &q
->requeue_list
);
528 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list
);
532 void blk_mq_cancel_requeue_work(struct request_queue
*q
)
534 cancel_work_sync(&q
->requeue_work
);
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work
);
538 void blk_mq_kick_requeue_list(struct request_queue
*q
)
540 kblockd_schedule_work(&q
->requeue_work
);
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list
);
544 void blk_mq_abort_requeue_list(struct request_queue
*q
)
549 spin_lock_irqsave(&q
->requeue_lock
, flags
);
550 list_splice_init(&q
->requeue_list
, &rq_list
);
551 spin_unlock_irqrestore(&q
->requeue_lock
, flags
);
553 while (!list_empty(&rq_list
)) {
556 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
557 list_del_init(&rq
->queuelist
);
559 blk_mq_end_request(rq
, rq
->errors
);
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list
);
564 static inline bool is_flush_request(struct request
*rq
,
565 struct blk_flush_queue
*fq
, unsigned int tag
)
567 return ((rq
->cmd_flags
& REQ_FLUSH_SEQ
) &&
568 fq
->flush_rq
->tag
== tag
);
571 struct request
*blk_mq_tag_to_rq(struct blk_mq_tags
*tags
, unsigned int tag
)
573 struct request
*rq
= tags
->rqs
[tag
];
574 /* mq_ctx of flush rq is always cloned from the corresponding req */
575 struct blk_flush_queue
*fq
= blk_get_flush_queue(rq
->q
, rq
->mq_ctx
);
577 if (!is_flush_request(rq
, fq
, tag
))
582 EXPORT_SYMBOL(blk_mq_tag_to_rq
);
584 struct blk_mq_timeout_data
{
586 unsigned int next_set
;
589 void blk_mq_rq_timed_out(struct request
*req
, bool reserved
)
591 struct blk_mq_ops
*ops
= req
->q
->mq_ops
;
592 enum blk_eh_timer_return ret
= BLK_EH_RESET_TIMER
;
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
603 if (!test_bit(REQ_ATOM_STARTED
, &req
->atomic_flags
))
607 ret
= ops
->timeout(req
, reserved
);
611 __blk_mq_complete_request(req
);
613 case BLK_EH_RESET_TIMER
:
615 blk_clear_rq_complete(req
);
617 case BLK_EH_NOT_HANDLED
:
620 printk(KERN_ERR
"block: bad eh return: %d\n", ret
);
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx
*hctx
,
626 struct request
*rq
, void *priv
, bool reserved
)
628 struct blk_mq_timeout_data
*data
= priv
;
630 if (!test_bit(REQ_ATOM_STARTED
, &rq
->atomic_flags
)) {
632 * If a request wasn't started before the queue was
633 * marked dying, kill it here or it'll go unnoticed.
635 if (unlikely(blk_queue_dying(rq
->q
))) {
637 blk_mq_complete_request(rq
);
641 if (rq
->cmd_flags
& REQ_NO_TIMEOUT
)
644 if (time_after_eq(jiffies
, rq
->deadline
)) {
645 if (!blk_mark_rq_complete(rq
))
646 blk_mq_rq_timed_out(rq
, reserved
);
647 } else if (!data
->next_set
|| time_after(data
->next
, rq
->deadline
)) {
648 data
->next
= rq
->deadline
;
653 static void blk_mq_rq_timer(unsigned long priv
)
655 struct request_queue
*q
= (struct request_queue
*)priv
;
656 struct blk_mq_timeout_data data
= {
660 struct blk_mq_hw_ctx
*hctx
;
663 queue_for_each_hw_ctx(q
, hctx
, i
) {
665 * If not software queues are currently mapped to this
666 * hardware queue, there's nothing to check
668 if (!blk_mq_hw_queue_mapped(hctx
))
671 blk_mq_tag_busy_iter(hctx
, blk_mq_check_expired
, &data
);
675 data
.next
= blk_rq_timeout(round_jiffies_up(data
.next
));
676 mod_timer(&q
->timeout
, data
.next
);
678 queue_for_each_hw_ctx(q
, hctx
, i
) {
679 /* the hctx may be unmapped, so check it here */
680 if (blk_mq_hw_queue_mapped(hctx
))
681 blk_mq_tag_idle(hctx
);
687 * Reverse check our software queue for entries that we could potentially
688 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
689 * too much time checking for merges.
691 static bool blk_mq_attempt_merge(struct request_queue
*q
,
692 struct blk_mq_ctx
*ctx
, struct bio
*bio
)
697 list_for_each_entry_reverse(rq
, &ctx
->rq_list
, queuelist
) {
703 if (!blk_rq_merge_ok(rq
, bio
))
706 el_ret
= blk_try_merge(rq
, bio
);
707 if (el_ret
== ELEVATOR_BACK_MERGE
) {
708 if (bio_attempt_back_merge(q
, rq
, bio
)) {
713 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
714 if (bio_attempt_front_merge(q
, rq
, bio
)) {
726 * Process software queues that have been marked busy, splicing them
727 * to the for-dispatch
729 static void flush_busy_ctxs(struct blk_mq_hw_ctx
*hctx
, struct list_head
*list
)
731 struct blk_mq_ctx
*ctx
;
734 for (i
= 0; i
< hctx
->ctx_map
.map_size
; i
++) {
735 struct blk_align_bitmap
*bm
= &hctx
->ctx_map
.map
[i
];
736 unsigned int off
, bit
;
742 off
= i
* hctx
->ctx_map
.bits_per_word
;
744 bit
= find_next_bit(&bm
->word
, bm
->depth
, bit
);
745 if (bit
>= bm
->depth
)
748 ctx
= hctx
->ctxs
[bit
+ off
];
749 clear_bit(bit
, &bm
->word
);
750 spin_lock(&ctx
->lock
);
751 list_splice_tail_init(&ctx
->rq_list
, list
);
752 spin_unlock(&ctx
->lock
);
760 * Run this hardware queue, pulling any software queues mapped to it in.
761 * Note that this function currently has various problems around ordering
762 * of IO. In particular, we'd like FIFO behaviour on handling existing
763 * items on the hctx->dispatch list. Ignore that for now.
765 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
)
767 struct request_queue
*q
= hctx
->queue
;
770 LIST_HEAD(driver_list
);
771 struct list_head
*dptr
;
774 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx
->cpumask
));
776 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
)))
782 * Touch any software queue that has pending entries.
784 flush_busy_ctxs(hctx
, &rq_list
);
787 * If we have previous entries on our dispatch list, grab them
788 * and stuff them at the front for more fair dispatch.
790 if (!list_empty_careful(&hctx
->dispatch
)) {
791 spin_lock(&hctx
->lock
);
792 if (!list_empty(&hctx
->dispatch
))
793 list_splice_init(&hctx
->dispatch
, &rq_list
);
794 spin_unlock(&hctx
->lock
);
798 * Start off with dptr being NULL, so we start the first request
799 * immediately, even if we have more pending.
804 * Now process all the entries, sending them to the driver.
807 while (!list_empty(&rq_list
)) {
808 struct blk_mq_queue_data bd
;
811 rq
= list_first_entry(&rq_list
, struct request
, queuelist
);
812 list_del_init(&rq
->queuelist
);
816 bd
.last
= list_empty(&rq_list
);
818 ret
= q
->mq_ops
->queue_rq(hctx
, &bd
);
820 case BLK_MQ_RQ_QUEUE_OK
:
823 case BLK_MQ_RQ_QUEUE_BUSY
:
824 list_add(&rq
->queuelist
, &rq_list
);
825 __blk_mq_requeue_request(rq
);
828 pr_err("blk-mq: bad return on queue: %d\n", ret
);
829 case BLK_MQ_RQ_QUEUE_ERROR
:
831 blk_mq_end_request(rq
, rq
->errors
);
835 if (ret
== BLK_MQ_RQ_QUEUE_BUSY
)
839 * We've done the first request. If we have more than 1
840 * left in the list, set dptr to defer issue.
842 if (!dptr
&& rq_list
.next
!= rq_list
.prev
)
847 hctx
->dispatched
[0]++;
848 else if (queued
< (1 << (BLK_MQ_MAX_DISPATCH_ORDER
- 1)))
849 hctx
->dispatched
[ilog2(queued
) + 1]++;
852 * Any items that need requeuing? Stuff them into hctx->dispatch,
853 * that is where we will continue on next queue run.
855 if (!list_empty(&rq_list
)) {
856 spin_lock(&hctx
->lock
);
857 list_splice(&rq_list
, &hctx
->dispatch
);
858 spin_unlock(&hctx
->lock
);
863 * It'd be great if the workqueue API had a way to pass
864 * in a mask and had some smarts for more clever placement.
865 * For now we just round-robin here, switching for every
866 * BLK_MQ_CPU_WORK_BATCH queued items.
868 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx
*hctx
)
870 if (hctx
->queue
->nr_hw_queues
== 1)
871 return WORK_CPU_UNBOUND
;
873 if (--hctx
->next_cpu_batch
<= 0) {
874 int cpu
= hctx
->next_cpu
, next_cpu
;
876 next_cpu
= cpumask_next(hctx
->next_cpu
, hctx
->cpumask
);
877 if (next_cpu
>= nr_cpu_ids
)
878 next_cpu
= cpumask_first(hctx
->cpumask
);
880 hctx
->next_cpu
= next_cpu
;
881 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
886 return hctx
->next_cpu
;
889 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx
*hctx
, bool async
)
891 if (unlikely(test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
) ||
892 !blk_mq_hw_queue_mapped(hctx
)))
897 if (cpumask_test_cpu(cpu
, hctx
->cpumask
)) {
898 __blk_mq_run_hw_queue(hctx
);
906 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
910 static void blk_mq_run_queues(struct request_queue
*q
)
912 struct blk_mq_hw_ctx
*hctx
;
915 queue_for_each_hw_ctx(q
, hctx
, i
) {
916 if ((!blk_mq_hctx_has_pending(hctx
) &&
917 list_empty_careful(&hctx
->dispatch
)) ||
918 test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
921 blk_mq_run_hw_queue(hctx
, false);
925 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx
*hctx
)
927 cancel_delayed_work(&hctx
->run_work
);
928 cancel_delayed_work(&hctx
->delay_work
);
929 set_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
931 EXPORT_SYMBOL(blk_mq_stop_hw_queue
);
933 void blk_mq_stop_hw_queues(struct request_queue
*q
)
935 struct blk_mq_hw_ctx
*hctx
;
938 queue_for_each_hw_ctx(q
, hctx
, i
)
939 blk_mq_stop_hw_queue(hctx
);
941 EXPORT_SYMBOL(blk_mq_stop_hw_queues
);
943 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx
*hctx
)
945 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
947 blk_mq_run_hw_queue(hctx
, false);
949 EXPORT_SYMBOL(blk_mq_start_hw_queue
);
951 void blk_mq_start_hw_queues(struct request_queue
*q
)
953 struct blk_mq_hw_ctx
*hctx
;
956 queue_for_each_hw_ctx(q
, hctx
, i
)
957 blk_mq_start_hw_queue(hctx
);
959 EXPORT_SYMBOL(blk_mq_start_hw_queues
);
961 void blk_mq_start_stopped_hw_queues(struct request_queue
*q
, bool async
)
963 struct blk_mq_hw_ctx
*hctx
;
966 queue_for_each_hw_ctx(q
, hctx
, i
) {
967 if (!test_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
970 clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
);
971 blk_mq_run_hw_queue(hctx
, async
);
974 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues
);
976 static void blk_mq_run_work_fn(struct work_struct
*work
)
978 struct blk_mq_hw_ctx
*hctx
;
980 hctx
= container_of(work
, struct blk_mq_hw_ctx
, run_work
.work
);
982 __blk_mq_run_hw_queue(hctx
);
985 static void blk_mq_delay_work_fn(struct work_struct
*work
)
987 struct blk_mq_hw_ctx
*hctx
;
989 hctx
= container_of(work
, struct blk_mq_hw_ctx
, delay_work
.work
);
991 if (test_and_clear_bit(BLK_MQ_S_STOPPED
, &hctx
->state
))
992 __blk_mq_run_hw_queue(hctx
);
995 void blk_mq_delay_queue(struct blk_mq_hw_ctx
*hctx
, unsigned long msecs
)
997 if (unlikely(!blk_mq_hw_queue_mapped(hctx
)))
1000 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx
),
1001 &hctx
->delay_work
, msecs_to_jiffies(msecs
));
1003 EXPORT_SYMBOL(blk_mq_delay_queue
);
1005 static void __blk_mq_insert_request(struct blk_mq_hw_ctx
*hctx
,
1006 struct request
*rq
, bool at_head
)
1008 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
;
1010 trace_block_rq_insert(hctx
->queue
, rq
);
1013 list_add(&rq
->queuelist
, &ctx
->rq_list
);
1015 list_add_tail(&rq
->queuelist
, &ctx
->rq_list
);
1017 blk_mq_hctx_mark_pending(hctx
, ctx
);
1020 void blk_mq_insert_request(struct request
*rq
, bool at_head
, bool run_queue
,
1023 struct request_queue
*q
= rq
->q
;
1024 struct blk_mq_hw_ctx
*hctx
;
1025 struct blk_mq_ctx
*ctx
= rq
->mq_ctx
, *current_ctx
;
1027 current_ctx
= blk_mq_get_ctx(q
);
1028 if (!cpu_online(ctx
->cpu
))
1029 rq
->mq_ctx
= ctx
= current_ctx
;
1031 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1033 spin_lock(&ctx
->lock
);
1034 __blk_mq_insert_request(hctx
, rq
, at_head
);
1035 spin_unlock(&ctx
->lock
);
1038 blk_mq_run_hw_queue(hctx
, async
);
1040 blk_mq_put_ctx(current_ctx
);
1043 static void blk_mq_insert_requests(struct request_queue
*q
,
1044 struct blk_mq_ctx
*ctx
,
1045 struct list_head
*list
,
1050 struct blk_mq_hw_ctx
*hctx
;
1051 struct blk_mq_ctx
*current_ctx
;
1053 trace_block_unplug(q
, depth
, !from_schedule
);
1055 current_ctx
= blk_mq_get_ctx(q
);
1057 if (!cpu_online(ctx
->cpu
))
1059 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1062 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1065 spin_lock(&ctx
->lock
);
1066 while (!list_empty(list
)) {
1069 rq
= list_first_entry(list
, struct request
, queuelist
);
1070 list_del_init(&rq
->queuelist
);
1072 __blk_mq_insert_request(hctx
, rq
, false);
1074 spin_unlock(&ctx
->lock
);
1076 blk_mq_run_hw_queue(hctx
, from_schedule
);
1077 blk_mq_put_ctx(current_ctx
);
1080 static int plug_ctx_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1082 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
1083 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
1085 return !(rqa
->mq_ctx
< rqb
->mq_ctx
||
1086 (rqa
->mq_ctx
== rqb
->mq_ctx
&&
1087 blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
1090 void blk_mq_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
1092 struct blk_mq_ctx
*this_ctx
;
1093 struct request_queue
*this_q
;
1096 LIST_HEAD(ctx_list
);
1099 list_splice_init(&plug
->mq_list
, &list
);
1101 list_sort(NULL
, &list
, plug_ctx_cmp
);
1107 while (!list_empty(&list
)) {
1108 rq
= list_entry_rq(list
.next
);
1109 list_del_init(&rq
->queuelist
);
1111 if (rq
->mq_ctx
!= this_ctx
) {
1113 blk_mq_insert_requests(this_q
, this_ctx
,
1118 this_ctx
= rq
->mq_ctx
;
1124 list_add_tail(&rq
->queuelist
, &ctx_list
);
1128 * If 'this_ctx' is set, we know we have entries to complete
1129 * on 'ctx_list'. Do those.
1132 blk_mq_insert_requests(this_q
, this_ctx
, &ctx_list
, depth
,
1137 static void blk_mq_bio_to_request(struct request
*rq
, struct bio
*bio
)
1139 init_request_from_bio(rq
, bio
);
1141 if (blk_do_io_stat(rq
))
1142 blk_account_io_start(rq
, 1);
1145 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx
*hctx
)
1147 return (hctx
->flags
& BLK_MQ_F_SHOULD_MERGE
) &&
1148 !blk_queue_nomerges(hctx
->queue
);
1151 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx
*hctx
,
1152 struct blk_mq_ctx
*ctx
,
1153 struct request
*rq
, struct bio
*bio
)
1155 if (!hctx_allow_merges(hctx
)) {
1156 blk_mq_bio_to_request(rq
, bio
);
1157 spin_lock(&ctx
->lock
);
1159 __blk_mq_insert_request(hctx
, rq
, false);
1160 spin_unlock(&ctx
->lock
);
1163 struct request_queue
*q
= hctx
->queue
;
1165 spin_lock(&ctx
->lock
);
1166 if (!blk_mq_attempt_merge(q
, ctx
, bio
)) {
1167 blk_mq_bio_to_request(rq
, bio
);
1171 spin_unlock(&ctx
->lock
);
1172 __blk_mq_free_request(hctx
, ctx
, rq
);
1177 struct blk_map_ctx
{
1178 struct blk_mq_hw_ctx
*hctx
;
1179 struct blk_mq_ctx
*ctx
;
1182 static struct request
*blk_mq_map_request(struct request_queue
*q
,
1184 struct blk_map_ctx
*data
)
1186 struct blk_mq_hw_ctx
*hctx
;
1187 struct blk_mq_ctx
*ctx
;
1189 int rw
= bio_data_dir(bio
);
1190 struct blk_mq_alloc_data alloc_data
;
1192 if (unlikely(blk_mq_queue_enter(q
))) {
1193 bio_endio(bio
, -EIO
);
1197 ctx
= blk_mq_get_ctx(q
);
1198 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1200 if (rw_is_sync(bio
->bi_rw
))
1203 trace_block_getrq(q
, bio
, rw
);
1204 blk_mq_set_alloc_data(&alloc_data
, q
, GFP_ATOMIC
, false, ctx
,
1206 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1207 if (unlikely(!rq
)) {
1208 __blk_mq_run_hw_queue(hctx
);
1209 blk_mq_put_ctx(ctx
);
1210 trace_block_sleeprq(q
, bio
, rw
);
1212 ctx
= blk_mq_get_ctx(q
);
1213 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1214 blk_mq_set_alloc_data(&alloc_data
, q
,
1215 __GFP_WAIT
|GFP_ATOMIC
, false, ctx
, hctx
);
1216 rq
= __blk_mq_alloc_request(&alloc_data
, rw
);
1217 ctx
= alloc_data
.ctx
;
1218 hctx
= alloc_data
.hctx
;
1228 * Multiple hardware queue variant. This will not use per-process plugs,
1229 * but will attempt to bypass the hctx queueing if we can go straight to
1230 * hardware for SYNC IO.
1232 static void blk_mq_make_request(struct request_queue
*q
, struct bio
*bio
)
1234 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1235 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1236 struct blk_map_ctx data
;
1239 blk_queue_bounce(q
, &bio
);
1241 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1242 bio_endio(bio
, -EIO
);
1246 rq
= blk_mq_map_request(q
, bio
, &data
);
1250 if (unlikely(is_flush_fua
)) {
1251 blk_mq_bio_to_request(rq
, bio
);
1252 blk_insert_flush(rq
);
1257 * If the driver supports defer issued based on 'last', then
1258 * queue it up like normal since we can potentially save some
1261 if (is_sync
&& !(data
.hctx
->flags
& BLK_MQ_F_DEFER_ISSUE
)) {
1262 struct blk_mq_queue_data bd
= {
1269 blk_mq_bio_to_request(rq
, bio
);
1272 * For OK queue, we are done. For error, kill it. Any other
1273 * error (busy), just add it to our list as we previously
1276 ret
= q
->mq_ops
->queue_rq(data
.hctx
, &bd
);
1277 if (ret
== BLK_MQ_RQ_QUEUE_OK
)
1280 __blk_mq_requeue_request(rq
);
1282 if (ret
== BLK_MQ_RQ_QUEUE_ERROR
) {
1284 blk_mq_end_request(rq
, rq
->errors
);
1290 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1292 * For a SYNC request, send it to the hardware immediately. For
1293 * an ASYNC request, just ensure that we run it later on. The
1294 * latter allows for merging opportunities and more efficient
1298 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1301 blk_mq_put_ctx(data
.ctx
);
1305 * Single hardware queue variant. This will attempt to use any per-process
1306 * plug for merging and IO deferral.
1308 static void blk_sq_make_request(struct request_queue
*q
, struct bio
*bio
)
1310 const int is_sync
= rw_is_sync(bio
->bi_rw
);
1311 const int is_flush_fua
= bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
);
1312 unsigned int use_plug
, request_count
= 0;
1313 struct blk_map_ctx data
;
1317 * If we have multiple hardware queues, just go directly to
1318 * one of those for sync IO.
1320 use_plug
= !is_flush_fua
&& !is_sync
;
1322 blk_queue_bounce(q
, &bio
);
1324 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
)) {
1325 bio_endio(bio
, -EIO
);
1329 if (use_plug
&& !blk_queue_nomerges(q
) &&
1330 blk_attempt_plug_merge(q
, bio
, &request_count
))
1333 rq
= blk_mq_map_request(q
, bio
, &data
);
1337 if (unlikely(is_flush_fua
)) {
1338 blk_mq_bio_to_request(rq
, bio
);
1339 blk_insert_flush(rq
);
1344 * A task plug currently exists. Since this is completely lockless,
1345 * utilize that to temporarily store requests until the task is
1346 * either done or scheduled away.
1349 struct blk_plug
*plug
= current
->plug
;
1352 blk_mq_bio_to_request(rq
, bio
);
1353 if (list_empty(&plug
->mq_list
))
1354 trace_block_plug(q
);
1355 else if (request_count
>= BLK_MAX_REQUEST_COUNT
) {
1356 blk_flush_plug_list(plug
, false);
1357 trace_block_plug(q
);
1359 list_add_tail(&rq
->queuelist
, &plug
->mq_list
);
1360 blk_mq_put_ctx(data
.ctx
);
1365 if (!blk_mq_merge_queue_io(data
.hctx
, data
.ctx
, rq
, bio
)) {
1367 * For a SYNC request, send it to the hardware immediately. For
1368 * an ASYNC request, just ensure that we run it later on. The
1369 * latter allows for merging opportunities and more efficient
1373 blk_mq_run_hw_queue(data
.hctx
, !is_sync
|| is_flush_fua
);
1376 blk_mq_put_ctx(data
.ctx
);
1380 * Default mapping to a software queue, since we use one per CPU.
1382 struct blk_mq_hw_ctx
*blk_mq_map_queue(struct request_queue
*q
, const int cpu
)
1384 return q
->queue_hw_ctx
[q
->mq_map
[cpu
]];
1386 EXPORT_SYMBOL(blk_mq_map_queue
);
1388 static void blk_mq_free_rq_map(struct blk_mq_tag_set
*set
,
1389 struct blk_mq_tags
*tags
, unsigned int hctx_idx
)
1393 if (tags
->rqs
&& set
->ops
->exit_request
) {
1396 for (i
= 0; i
< tags
->nr_tags
; i
++) {
1399 set
->ops
->exit_request(set
->driver_data
, tags
->rqs
[i
],
1401 tags
->rqs
[i
] = NULL
;
1405 while (!list_empty(&tags
->page_list
)) {
1406 page
= list_first_entry(&tags
->page_list
, struct page
, lru
);
1407 list_del_init(&page
->lru
);
1408 __free_pages(page
, page
->private);
1413 blk_mq_free_tags(tags
);
1416 static size_t order_to_size(unsigned int order
)
1418 return (size_t)PAGE_SIZE
<< order
;
1421 static struct blk_mq_tags
*blk_mq_init_rq_map(struct blk_mq_tag_set
*set
,
1422 unsigned int hctx_idx
)
1424 struct blk_mq_tags
*tags
;
1425 unsigned int i
, j
, entries_per_page
, max_order
= 4;
1426 size_t rq_size
, left
;
1428 tags
= blk_mq_init_tags(set
->queue_depth
, set
->reserved_tags
,
1430 BLK_MQ_FLAG_TO_ALLOC_POLICY(set
->flags
));
1434 INIT_LIST_HEAD(&tags
->page_list
);
1436 tags
->rqs
= kzalloc_node(set
->queue_depth
* sizeof(struct request
*),
1437 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
,
1440 blk_mq_free_tags(tags
);
1445 * rq_size is the size of the request plus driver payload, rounded
1446 * to the cacheline size
1448 rq_size
= round_up(sizeof(struct request
) + set
->cmd_size
,
1450 left
= rq_size
* set
->queue_depth
;
1452 for (i
= 0; i
< set
->queue_depth
; ) {
1453 int this_order
= max_order
;
1458 while (left
< order_to_size(this_order
- 1) && this_order
)
1462 page
= alloc_pages_node(set
->numa_node
,
1463 GFP_KERNEL
| __GFP_NOWARN
| __GFP_NORETRY
| __GFP_ZERO
,
1469 if (order_to_size(this_order
) < rq_size
)
1476 page
->private = this_order
;
1477 list_add_tail(&page
->lru
, &tags
->page_list
);
1479 p
= page_address(page
);
1480 entries_per_page
= order_to_size(this_order
) / rq_size
;
1481 to_do
= min(entries_per_page
, set
->queue_depth
- i
);
1482 left
-= to_do
* rq_size
;
1483 for (j
= 0; j
< to_do
; j
++) {
1485 if (set
->ops
->init_request
) {
1486 if (set
->ops
->init_request(set
->driver_data
,
1487 tags
->rqs
[i
], hctx_idx
, i
,
1489 tags
->rqs
[i
] = NULL
;
1502 blk_mq_free_rq_map(set
, tags
, hctx_idx
);
1506 static void blk_mq_free_bitmap(struct blk_mq_ctxmap
*bitmap
)
1511 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap
*bitmap
, int node
)
1513 unsigned int bpw
= 8, total
, num_maps
, i
;
1515 bitmap
->bits_per_word
= bpw
;
1517 num_maps
= ALIGN(nr_cpu_ids
, bpw
) / bpw
;
1518 bitmap
->map
= kzalloc_node(num_maps
* sizeof(struct blk_align_bitmap
),
1523 bitmap
->map_size
= num_maps
;
1526 for (i
= 0; i
< num_maps
; i
++) {
1527 bitmap
->map
[i
].depth
= min(total
, bitmap
->bits_per_word
);
1528 total
-= bitmap
->map
[i
].depth
;
1534 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx
*hctx
, int cpu
)
1536 struct request_queue
*q
= hctx
->queue
;
1537 struct blk_mq_ctx
*ctx
;
1541 * Move ctx entries to new CPU, if this one is going away.
1543 ctx
= __blk_mq_get_ctx(q
, cpu
);
1545 spin_lock(&ctx
->lock
);
1546 if (!list_empty(&ctx
->rq_list
)) {
1547 list_splice_init(&ctx
->rq_list
, &tmp
);
1548 blk_mq_hctx_clear_pending(hctx
, ctx
);
1550 spin_unlock(&ctx
->lock
);
1552 if (list_empty(&tmp
))
1555 ctx
= blk_mq_get_ctx(q
);
1556 spin_lock(&ctx
->lock
);
1558 while (!list_empty(&tmp
)) {
1561 rq
= list_first_entry(&tmp
, struct request
, queuelist
);
1563 list_move_tail(&rq
->queuelist
, &ctx
->rq_list
);
1566 hctx
= q
->mq_ops
->map_queue(q
, ctx
->cpu
);
1567 blk_mq_hctx_mark_pending(hctx
, ctx
);
1569 spin_unlock(&ctx
->lock
);
1571 blk_mq_run_hw_queue(hctx
, true);
1572 blk_mq_put_ctx(ctx
);
1576 static int blk_mq_hctx_notify(void *data
, unsigned long action
,
1579 struct blk_mq_hw_ctx
*hctx
= data
;
1581 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
1582 return blk_mq_hctx_cpu_offline(hctx
, cpu
);
1585 * In case of CPU online, tags may be reallocated
1586 * in blk_mq_map_swqueue() after mapping is updated.
1592 /* hctx->ctxs will be freed in queue's release handler */
1593 static void blk_mq_exit_hctx(struct request_queue
*q
,
1594 struct blk_mq_tag_set
*set
,
1595 struct blk_mq_hw_ctx
*hctx
, unsigned int hctx_idx
)
1597 unsigned flush_start_tag
= set
->queue_depth
;
1599 blk_mq_tag_idle(hctx
);
1601 if (set
->ops
->exit_request
)
1602 set
->ops
->exit_request(set
->driver_data
,
1603 hctx
->fq
->flush_rq
, hctx_idx
,
1604 flush_start_tag
+ hctx_idx
);
1606 if (set
->ops
->exit_hctx
)
1607 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1609 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1610 blk_free_flush_queue(hctx
->fq
);
1611 blk_mq_free_bitmap(&hctx
->ctx_map
);
1614 static void blk_mq_exit_hw_queues(struct request_queue
*q
,
1615 struct blk_mq_tag_set
*set
, int nr_queue
)
1617 struct blk_mq_hw_ctx
*hctx
;
1620 queue_for_each_hw_ctx(q
, hctx
, i
) {
1623 blk_mq_exit_hctx(q
, set
, hctx
, i
);
1627 static void blk_mq_free_hw_queues(struct request_queue
*q
,
1628 struct blk_mq_tag_set
*set
)
1630 struct blk_mq_hw_ctx
*hctx
;
1633 queue_for_each_hw_ctx(q
, hctx
, i
)
1634 free_cpumask_var(hctx
->cpumask
);
1637 static int blk_mq_init_hctx(struct request_queue
*q
,
1638 struct blk_mq_tag_set
*set
,
1639 struct blk_mq_hw_ctx
*hctx
, unsigned hctx_idx
)
1642 unsigned flush_start_tag
= set
->queue_depth
;
1644 node
= hctx
->numa_node
;
1645 if (node
== NUMA_NO_NODE
)
1646 node
= hctx
->numa_node
= set
->numa_node
;
1648 INIT_DELAYED_WORK(&hctx
->run_work
, blk_mq_run_work_fn
);
1649 INIT_DELAYED_WORK(&hctx
->delay_work
, blk_mq_delay_work_fn
);
1650 spin_lock_init(&hctx
->lock
);
1651 INIT_LIST_HEAD(&hctx
->dispatch
);
1653 hctx
->queue_num
= hctx_idx
;
1654 hctx
->flags
= set
->flags
;
1656 blk_mq_init_cpu_notifier(&hctx
->cpu_notifier
,
1657 blk_mq_hctx_notify
, hctx
);
1658 blk_mq_register_cpu_notifier(&hctx
->cpu_notifier
);
1660 hctx
->tags
= set
->tags
[hctx_idx
];
1663 * Allocate space for all possible cpus to avoid allocation at
1666 hctx
->ctxs
= kmalloc_node(nr_cpu_ids
* sizeof(void *),
1669 goto unregister_cpu_notifier
;
1671 if (blk_mq_alloc_bitmap(&hctx
->ctx_map
, node
))
1676 if (set
->ops
->init_hctx
&&
1677 set
->ops
->init_hctx(hctx
, set
->driver_data
, hctx_idx
))
1680 hctx
->fq
= blk_alloc_flush_queue(q
, hctx
->numa_node
, set
->cmd_size
);
1684 if (set
->ops
->init_request
&&
1685 set
->ops
->init_request(set
->driver_data
,
1686 hctx
->fq
->flush_rq
, hctx_idx
,
1687 flush_start_tag
+ hctx_idx
, node
))
1695 if (set
->ops
->exit_hctx
)
1696 set
->ops
->exit_hctx(hctx
, hctx_idx
);
1698 blk_mq_free_bitmap(&hctx
->ctx_map
);
1701 unregister_cpu_notifier
:
1702 blk_mq_unregister_cpu_notifier(&hctx
->cpu_notifier
);
1707 static int blk_mq_init_hw_queues(struct request_queue
*q
,
1708 struct blk_mq_tag_set
*set
)
1710 struct blk_mq_hw_ctx
*hctx
;
1714 * Initialize hardware queues
1716 queue_for_each_hw_ctx(q
, hctx
, i
) {
1717 if (blk_mq_init_hctx(q
, set
, hctx
, i
))
1721 if (i
== q
->nr_hw_queues
)
1727 blk_mq_exit_hw_queues(q
, set
, i
);
1732 static void blk_mq_init_cpu_queues(struct request_queue
*q
,
1733 unsigned int nr_hw_queues
)
1737 for_each_possible_cpu(i
) {
1738 struct blk_mq_ctx
*__ctx
= per_cpu_ptr(q
->queue_ctx
, i
);
1739 struct blk_mq_hw_ctx
*hctx
;
1741 memset(__ctx
, 0, sizeof(*__ctx
));
1743 spin_lock_init(&__ctx
->lock
);
1744 INIT_LIST_HEAD(&__ctx
->rq_list
);
1747 /* If the cpu isn't online, the cpu is mapped to first hctx */
1751 hctx
= q
->mq_ops
->map_queue(q
, i
);
1752 cpumask_set_cpu(i
, hctx
->cpumask
);
1756 * Set local node, IFF we have more than one hw queue. If
1757 * not, we remain on the home node of the device
1759 if (nr_hw_queues
> 1 && hctx
->numa_node
== NUMA_NO_NODE
)
1760 hctx
->numa_node
= cpu_to_node(i
);
1764 static void blk_mq_map_swqueue(struct request_queue
*q
)
1767 struct blk_mq_hw_ctx
*hctx
;
1768 struct blk_mq_ctx
*ctx
;
1769 struct blk_mq_tag_set
*set
= q
->tag_set
;
1771 queue_for_each_hw_ctx(q
, hctx
, i
) {
1772 cpumask_clear(hctx
->cpumask
);
1777 * Map software to hardware queues
1779 queue_for_each_ctx(q
, ctx
, i
) {
1780 /* If the cpu isn't online, the cpu is mapped to first hctx */
1784 hctx
= q
->mq_ops
->map_queue(q
, i
);
1785 cpumask_set_cpu(i
, hctx
->cpumask
);
1786 ctx
->index_hw
= hctx
->nr_ctx
;
1787 hctx
->ctxs
[hctx
->nr_ctx
++] = ctx
;
1790 queue_for_each_hw_ctx(q
, hctx
, i
) {
1792 * If no software queues are mapped to this hardware queue,
1793 * disable it and free the request entries.
1795 if (!hctx
->nr_ctx
) {
1797 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
1798 set
->tags
[i
] = NULL
;
1804 /* unmapped hw queue can be remapped after CPU topo changed */
1806 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
1807 hctx
->tags
= set
->tags
[i
];
1808 WARN_ON(!hctx
->tags
);
1811 * Initialize batch roundrobin counts
1813 hctx
->next_cpu
= cpumask_first(hctx
->cpumask
);
1814 hctx
->next_cpu_batch
= BLK_MQ_CPU_WORK_BATCH
;
1818 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set
*set
)
1820 struct blk_mq_hw_ctx
*hctx
;
1821 struct request_queue
*q
;
1825 if (set
->tag_list
.next
== set
->tag_list
.prev
)
1830 list_for_each_entry(q
, &set
->tag_list
, tag_set_list
) {
1831 blk_mq_freeze_queue(q
);
1833 queue_for_each_hw_ctx(q
, hctx
, i
) {
1835 hctx
->flags
|= BLK_MQ_F_TAG_SHARED
;
1837 hctx
->flags
&= ~BLK_MQ_F_TAG_SHARED
;
1839 blk_mq_unfreeze_queue(q
);
1843 static void blk_mq_del_queue_tag_set(struct request_queue
*q
)
1845 struct blk_mq_tag_set
*set
= q
->tag_set
;
1847 mutex_lock(&set
->tag_list_lock
);
1848 list_del_init(&q
->tag_set_list
);
1849 blk_mq_update_tag_set_depth(set
);
1850 mutex_unlock(&set
->tag_list_lock
);
1853 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set
*set
,
1854 struct request_queue
*q
)
1858 mutex_lock(&set
->tag_list_lock
);
1859 list_add_tail(&q
->tag_set_list
, &set
->tag_list
);
1860 blk_mq_update_tag_set_depth(set
);
1861 mutex_unlock(&set
->tag_list_lock
);
1865 * It is the actual release handler for mq, but we do it from
1866 * request queue's release handler for avoiding use-after-free
1867 * and headache because q->mq_kobj shouldn't have been introduced,
1868 * but we can't group ctx/kctx kobj without it.
1870 void blk_mq_release(struct request_queue
*q
)
1872 struct blk_mq_hw_ctx
*hctx
;
1875 /* hctx kobj stays in hctx */
1876 queue_for_each_hw_ctx(q
, hctx
, i
) {
1883 kfree(q
->queue_hw_ctx
);
1885 /* ctx kobj stays in queue_ctx */
1886 free_percpu(q
->queue_ctx
);
1889 struct request_queue
*blk_mq_init_queue(struct blk_mq_tag_set
*set
)
1891 struct blk_mq_hw_ctx
**hctxs
;
1892 struct blk_mq_ctx __percpu
*ctx
;
1893 struct request_queue
*q
;
1897 ctx
= alloc_percpu(struct blk_mq_ctx
);
1899 return ERR_PTR(-ENOMEM
);
1901 hctxs
= kmalloc_node(set
->nr_hw_queues
* sizeof(*hctxs
), GFP_KERNEL
,
1907 map
= blk_mq_make_queue_map(set
);
1911 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
1912 int node
= blk_mq_hw_queue_to_node(map
, i
);
1914 hctxs
[i
] = kzalloc_node(sizeof(struct blk_mq_hw_ctx
),
1919 if (!zalloc_cpumask_var_node(&hctxs
[i
]->cpumask
, GFP_KERNEL
,
1923 atomic_set(&hctxs
[i
]->nr_active
, 0);
1924 hctxs
[i
]->numa_node
= node
;
1925 hctxs
[i
]->queue_num
= i
;
1928 q
= blk_alloc_queue_node(GFP_KERNEL
, set
->numa_node
);
1933 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1934 * See blk_register_queue() for details.
1936 if (percpu_ref_init(&q
->mq_usage_counter
, blk_mq_usage_counter_release
,
1937 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
1940 setup_timer(&q
->timeout
, blk_mq_rq_timer
, (unsigned long) q
);
1941 blk_queue_rq_timeout(q
, 30000);
1943 q
->nr_queues
= nr_cpu_ids
;
1944 q
->nr_hw_queues
= set
->nr_hw_queues
;
1948 q
->queue_hw_ctx
= hctxs
;
1950 q
->mq_ops
= set
->ops
;
1951 q
->queue_flags
|= QUEUE_FLAG_MQ_DEFAULT
;
1953 if (!(set
->flags
& BLK_MQ_F_SG_MERGE
))
1954 q
->queue_flags
|= 1 << QUEUE_FLAG_NO_SG_MERGE
;
1956 q
->sg_reserved_size
= INT_MAX
;
1958 INIT_WORK(&q
->requeue_work
, blk_mq_requeue_work
);
1959 INIT_LIST_HEAD(&q
->requeue_list
);
1960 spin_lock_init(&q
->requeue_lock
);
1962 if (q
->nr_hw_queues
> 1)
1963 blk_queue_make_request(q
, blk_mq_make_request
);
1965 blk_queue_make_request(q
, blk_sq_make_request
);
1968 blk_queue_rq_timeout(q
, set
->timeout
);
1971 * Do this after blk_queue_make_request() overrides it...
1973 q
->nr_requests
= set
->queue_depth
;
1975 if (set
->ops
->complete
)
1976 blk_queue_softirq_done(q
, set
->ops
->complete
);
1978 blk_mq_init_cpu_queues(q
, set
->nr_hw_queues
);
1980 if (blk_mq_init_hw_queues(q
, set
))
1983 mutex_lock(&all_q_mutex
);
1984 list_add_tail(&q
->all_q_node
, &all_q_list
);
1985 mutex_unlock(&all_q_mutex
);
1987 blk_mq_add_queue_tag_set(set
, q
);
1989 blk_mq_map_swqueue(q
);
1994 blk_cleanup_queue(q
);
1997 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2000 free_cpumask_var(hctxs
[i
]->cpumask
);
2007 return ERR_PTR(-ENOMEM
);
2009 EXPORT_SYMBOL(blk_mq_init_queue
);
2011 void blk_mq_free_queue(struct request_queue
*q
)
2013 struct blk_mq_tag_set
*set
= q
->tag_set
;
2015 blk_mq_del_queue_tag_set(q
);
2017 blk_mq_exit_hw_queues(q
, set
, set
->nr_hw_queues
);
2018 blk_mq_free_hw_queues(q
, set
);
2020 percpu_ref_exit(&q
->mq_usage_counter
);
2026 mutex_lock(&all_q_mutex
);
2027 list_del_init(&q
->all_q_node
);
2028 mutex_unlock(&all_q_mutex
);
2031 /* Basically redo blk_mq_init_queue with queue frozen */
2032 static void blk_mq_queue_reinit(struct request_queue
*q
)
2034 WARN_ON_ONCE(!q
->mq_freeze_depth
);
2036 blk_mq_sysfs_unregister(q
);
2038 blk_mq_update_queue_map(q
->mq_map
, q
->nr_hw_queues
);
2041 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2042 * we should change hctx numa_node according to new topology (this
2043 * involves free and re-allocate memory, worthy doing?)
2046 blk_mq_map_swqueue(q
);
2048 blk_mq_sysfs_register(q
);
2051 static int blk_mq_queue_reinit_notify(struct notifier_block
*nb
,
2052 unsigned long action
, void *hcpu
)
2054 struct request_queue
*q
;
2057 * Before new mappings are established, hotadded cpu might already
2058 * start handling requests. This doesn't break anything as we map
2059 * offline CPUs to first hardware queue. We will re-init the queue
2060 * below to get optimal settings.
2062 if (action
!= CPU_DEAD
&& action
!= CPU_DEAD_FROZEN
&&
2063 action
!= CPU_ONLINE
&& action
!= CPU_ONLINE_FROZEN
)
2066 mutex_lock(&all_q_mutex
);
2069 * We need to freeze and reinit all existing queues. Freezing
2070 * involves synchronous wait for an RCU grace period and doing it
2071 * one by one may take a long time. Start freezing all queues in
2072 * one swoop and then wait for the completions so that freezing can
2073 * take place in parallel.
2075 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2076 blk_mq_freeze_queue_start(q
);
2077 list_for_each_entry(q
, &all_q_list
, all_q_node
) {
2078 blk_mq_freeze_queue_wait(q
);
2081 * timeout handler can't touch hw queue during the
2084 del_timer_sync(&q
->timeout
);
2087 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2088 blk_mq_queue_reinit(q
);
2090 list_for_each_entry(q
, &all_q_list
, all_q_node
)
2091 blk_mq_unfreeze_queue(q
);
2093 mutex_unlock(&all_q_mutex
);
2097 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2101 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2102 set
->tags
[i
] = blk_mq_init_rq_map(set
, i
);
2111 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2117 * Allocate the request maps associated with this tag_set. Note that this
2118 * may reduce the depth asked for, if memory is tight. set->queue_depth
2119 * will be updated to reflect the allocated depth.
2121 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set
*set
)
2126 depth
= set
->queue_depth
;
2128 err
= __blk_mq_alloc_rq_maps(set
);
2132 set
->queue_depth
>>= 1;
2133 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
) {
2137 } while (set
->queue_depth
);
2139 if (!set
->queue_depth
|| err
) {
2140 pr_err("blk-mq: failed to allocate request map\n");
2144 if (depth
!= set
->queue_depth
)
2145 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2146 depth
, set
->queue_depth
);
2152 * Alloc a tag set to be associated with one or more request queues.
2153 * May fail with EINVAL for various error conditions. May adjust the
2154 * requested depth down, if if it too large. In that case, the set
2155 * value will be stored in set->queue_depth.
2157 int blk_mq_alloc_tag_set(struct blk_mq_tag_set
*set
)
2159 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH
> 1 << BLK_MQ_UNIQUE_TAG_BITS
);
2161 if (!set
->nr_hw_queues
)
2163 if (!set
->queue_depth
)
2165 if (set
->queue_depth
< set
->reserved_tags
+ BLK_MQ_TAG_MIN
)
2168 if (!set
->nr_hw_queues
|| !set
->ops
->queue_rq
|| !set
->ops
->map_queue
)
2171 if (set
->queue_depth
> BLK_MQ_MAX_DEPTH
) {
2172 pr_info("blk-mq: reduced tag depth to %u\n",
2174 set
->queue_depth
= BLK_MQ_MAX_DEPTH
;
2178 * If a crashdump is active, then we are potentially in a very
2179 * memory constrained environment. Limit us to 1 queue and
2180 * 64 tags to prevent using too much memory.
2182 if (is_kdump_kernel()) {
2183 set
->nr_hw_queues
= 1;
2184 set
->queue_depth
= min(64U, set
->queue_depth
);
2187 set
->tags
= kmalloc_node(set
->nr_hw_queues
*
2188 sizeof(struct blk_mq_tags
*),
2189 GFP_KERNEL
, set
->numa_node
);
2193 if (blk_mq_alloc_rq_maps(set
))
2196 mutex_init(&set
->tag_list_lock
);
2197 INIT_LIST_HEAD(&set
->tag_list
);
2205 EXPORT_SYMBOL(blk_mq_alloc_tag_set
);
2207 void blk_mq_free_tag_set(struct blk_mq_tag_set
*set
)
2211 for (i
= 0; i
< set
->nr_hw_queues
; i
++) {
2213 blk_mq_free_rq_map(set
, set
->tags
[i
], i
);
2219 EXPORT_SYMBOL(blk_mq_free_tag_set
);
2221 int blk_mq_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
2223 struct blk_mq_tag_set
*set
= q
->tag_set
;
2224 struct blk_mq_hw_ctx
*hctx
;
2227 if (!set
|| nr
> set
->queue_depth
)
2231 queue_for_each_hw_ctx(q
, hctx
, i
) {
2232 ret
= blk_mq_tag_update_depth(hctx
->tags
, nr
);
2238 q
->nr_requests
= nr
;
2243 void blk_mq_disable_hotplug(void)
2245 mutex_lock(&all_q_mutex
);
2248 void blk_mq_enable_hotplug(void)
2250 mutex_unlock(&all_q_mutex
);
2253 static int __init
blk_mq_init(void)
2257 hotcpu_notifier(blk_mq_queue_reinit_notify
, 0);
2261 subsys_initcall(blk_mq_init
);