fs/ufs: restore s_lock mutex
[linux/fpc-iii.git] / block / blk-mq.c
blobb2e73e1ef8a4ce56e1d6808e80229c90cef35254
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
36 static void blk_mq_run_queues(struct request_queue *q);
39 * Check if any of the ctx's have pending work in this hardware queue
41 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
43 unsigned int i;
45 for (i = 0; i < hctx->ctx_map.map_size; i++)
46 if (hctx->ctx_map.map[i].word)
47 return true;
49 return false;
52 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
53 struct blk_mq_ctx *ctx)
55 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
58 #define CTX_TO_BIT(hctx, ctx) \
59 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
62 * Mark this ctx as having pending work in this hardware queue
64 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
65 struct blk_mq_ctx *ctx)
67 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
69 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
70 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
73 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
74 struct blk_mq_ctx *ctx)
76 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
78 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
81 static int blk_mq_queue_enter(struct request_queue *q)
83 while (true) {
84 int ret;
86 if (percpu_ref_tryget_live(&q->mq_usage_counter))
87 return 0;
89 ret = wait_event_interruptible(q->mq_freeze_wq,
90 !q->mq_freeze_depth || blk_queue_dying(q));
91 if (blk_queue_dying(q))
92 return -ENODEV;
93 if (ret)
94 return ret;
98 static void blk_mq_queue_exit(struct request_queue *q)
100 percpu_ref_put(&q->mq_usage_counter);
103 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
105 struct request_queue *q =
106 container_of(ref, struct request_queue, mq_usage_counter);
108 wake_up_all(&q->mq_freeze_wq);
111 void blk_mq_freeze_queue_start(struct request_queue *q)
113 bool freeze;
115 spin_lock_irq(q->queue_lock);
116 freeze = !q->mq_freeze_depth++;
117 spin_unlock_irq(q->queue_lock);
119 if (freeze) {
120 percpu_ref_kill(&q->mq_usage_counter);
121 blk_mq_run_queues(q);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue *q)
137 blk_mq_freeze_queue_start(q);
138 blk_mq_freeze_queue_wait(q);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142 void blk_mq_unfreeze_queue(struct request_queue *q)
144 bool wake;
146 spin_lock_irq(q->queue_lock);
147 wake = !--q->mq_freeze_depth;
148 WARN_ON_ONCE(q->mq_freeze_depth < 0);
149 spin_unlock_irq(q->queue_lock);
150 if (wake) {
151 percpu_ref_reinit(&q->mq_usage_counter);
152 wake_up_all(&q->mq_freeze_wq);
155 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
157 void blk_mq_wake_waiters(struct request_queue *q)
159 struct blk_mq_hw_ctx *hctx;
160 unsigned int i;
162 queue_for_each_hw_ctx(q, hctx, i)
163 if (blk_mq_hw_queue_mapped(hctx))
164 blk_mq_tag_wakeup_all(hctx->tags, true);
167 * If we are called because the queue has now been marked as
168 * dying, we need to ensure that processes currently waiting on
169 * the queue are notified as well.
171 wake_up_all(&q->mq_freeze_wq);
174 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
176 return blk_mq_has_free_tags(hctx->tags);
178 EXPORT_SYMBOL(blk_mq_can_queue);
180 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
181 struct request *rq, unsigned int rw_flags)
183 if (blk_queue_io_stat(q))
184 rw_flags |= REQ_IO_STAT;
186 INIT_LIST_HEAD(&rq->queuelist);
187 /* csd/requeue_work/fifo_time is initialized before use */
188 rq->q = q;
189 rq->mq_ctx = ctx;
190 rq->cmd_flags |= rw_flags;
191 /* do not touch atomic flags, it needs atomic ops against the timer */
192 rq->cpu = -1;
193 INIT_HLIST_NODE(&rq->hash);
194 RB_CLEAR_NODE(&rq->rb_node);
195 rq->rq_disk = NULL;
196 rq->part = NULL;
197 rq->start_time = jiffies;
198 #ifdef CONFIG_BLK_CGROUP
199 rq->rl = NULL;
200 set_start_time_ns(rq);
201 rq->io_start_time_ns = 0;
202 #endif
203 rq->nr_phys_segments = 0;
204 #if defined(CONFIG_BLK_DEV_INTEGRITY)
205 rq->nr_integrity_segments = 0;
206 #endif
207 rq->special = NULL;
208 /* tag was already set */
209 rq->errors = 0;
211 rq->cmd = rq->__cmd;
213 rq->extra_len = 0;
214 rq->sense_len = 0;
215 rq->resid_len = 0;
216 rq->sense = NULL;
218 INIT_LIST_HEAD(&rq->timeout_list);
219 rq->timeout = 0;
221 rq->end_io = NULL;
222 rq->end_io_data = NULL;
223 rq->next_rq = NULL;
225 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
228 static struct request *
229 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
231 struct request *rq;
232 unsigned int tag;
234 tag = blk_mq_get_tag(data);
235 if (tag != BLK_MQ_TAG_FAIL) {
236 rq = data->hctx->tags->rqs[tag];
238 if (blk_mq_tag_busy(data->hctx)) {
239 rq->cmd_flags = REQ_MQ_INFLIGHT;
240 atomic_inc(&data->hctx->nr_active);
243 rq->tag = tag;
244 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
245 return rq;
248 return NULL;
251 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
252 bool reserved)
254 struct blk_mq_ctx *ctx;
255 struct blk_mq_hw_ctx *hctx;
256 struct request *rq;
257 struct blk_mq_alloc_data alloc_data;
258 int ret;
260 ret = blk_mq_queue_enter(q);
261 if (ret)
262 return ERR_PTR(ret);
264 ctx = blk_mq_get_ctx(q);
265 hctx = q->mq_ops->map_queue(q, ctx->cpu);
266 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
267 reserved, ctx, hctx);
269 rq = __blk_mq_alloc_request(&alloc_data, rw);
270 if (!rq && (gfp & __GFP_WAIT)) {
271 __blk_mq_run_hw_queue(hctx);
272 blk_mq_put_ctx(ctx);
274 ctx = blk_mq_get_ctx(q);
275 hctx = q->mq_ops->map_queue(q, ctx->cpu);
276 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
277 hctx);
278 rq = __blk_mq_alloc_request(&alloc_data, rw);
279 ctx = alloc_data.ctx;
281 blk_mq_put_ctx(ctx);
282 if (!rq) {
283 blk_mq_queue_exit(q);
284 return ERR_PTR(-EWOULDBLOCK);
286 return rq;
288 EXPORT_SYMBOL(blk_mq_alloc_request);
290 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
291 struct blk_mq_ctx *ctx, struct request *rq)
293 const int tag = rq->tag;
294 struct request_queue *q = rq->q;
296 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
297 atomic_dec(&hctx->nr_active);
298 rq->cmd_flags = 0;
300 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
301 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
302 blk_mq_queue_exit(q);
305 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
307 struct blk_mq_ctx *ctx = rq->mq_ctx;
309 ctx->rq_completed[rq_is_sync(rq)]++;
310 __blk_mq_free_request(hctx, ctx, rq);
313 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
315 void blk_mq_free_request(struct request *rq)
317 struct blk_mq_hw_ctx *hctx;
318 struct request_queue *q = rq->q;
320 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
321 blk_mq_free_hctx_request(hctx, rq);
323 EXPORT_SYMBOL_GPL(blk_mq_free_request);
325 inline void __blk_mq_end_request(struct request *rq, int error)
327 blk_account_io_done(rq);
329 if (rq->end_io) {
330 rq->end_io(rq, error);
331 } else {
332 if (unlikely(blk_bidi_rq(rq)))
333 blk_mq_free_request(rq->next_rq);
334 blk_mq_free_request(rq);
337 EXPORT_SYMBOL(__blk_mq_end_request);
339 void blk_mq_end_request(struct request *rq, int error)
341 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
342 BUG();
343 __blk_mq_end_request(rq, error);
345 EXPORT_SYMBOL(blk_mq_end_request);
347 static void __blk_mq_complete_request_remote(void *data)
349 struct request *rq = data;
351 rq->q->softirq_done_fn(rq);
354 static void blk_mq_ipi_complete_request(struct request *rq)
356 struct blk_mq_ctx *ctx = rq->mq_ctx;
357 bool shared = false;
358 int cpu;
360 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
361 rq->q->softirq_done_fn(rq);
362 return;
365 cpu = get_cpu();
366 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
367 shared = cpus_share_cache(cpu, ctx->cpu);
369 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
370 rq->csd.func = __blk_mq_complete_request_remote;
371 rq->csd.info = rq;
372 rq->csd.flags = 0;
373 smp_call_function_single_async(ctx->cpu, &rq->csd);
374 } else {
375 rq->q->softirq_done_fn(rq);
377 put_cpu();
380 void __blk_mq_complete_request(struct request *rq)
382 struct request_queue *q = rq->q;
384 if (!q->softirq_done_fn)
385 blk_mq_end_request(rq, rq->errors);
386 else
387 blk_mq_ipi_complete_request(rq);
391 * blk_mq_complete_request - end I/O on a request
392 * @rq: the request being processed
394 * Description:
395 * Ends all I/O on a request. It does not handle partial completions.
396 * The actual completion happens out-of-order, through a IPI handler.
398 void blk_mq_complete_request(struct request *rq)
400 struct request_queue *q = rq->q;
402 if (unlikely(blk_should_fake_timeout(q)))
403 return;
404 if (!blk_mark_rq_complete(rq))
405 __blk_mq_complete_request(rq);
407 EXPORT_SYMBOL(blk_mq_complete_request);
409 int blk_mq_request_started(struct request *rq)
411 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
413 EXPORT_SYMBOL_GPL(blk_mq_request_started);
415 void blk_mq_start_request(struct request *rq)
417 struct request_queue *q = rq->q;
419 trace_block_rq_issue(q, rq);
421 rq->resid_len = blk_rq_bytes(rq);
422 if (unlikely(blk_bidi_rq(rq)))
423 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
425 blk_add_timer(rq);
428 * Ensure that ->deadline is visible before set the started
429 * flag and clear the completed flag.
431 smp_mb__before_atomic();
434 * Mark us as started and clear complete. Complete might have been
435 * set if requeue raced with timeout, which then marked it as
436 * complete. So be sure to clear complete again when we start
437 * the request, otherwise we'll ignore the completion event.
439 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
440 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
441 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
442 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
444 if (q->dma_drain_size && blk_rq_bytes(rq)) {
446 * Make sure space for the drain appears. We know we can do
447 * this because max_hw_segments has been adjusted to be one
448 * fewer than the device can handle.
450 rq->nr_phys_segments++;
453 EXPORT_SYMBOL(blk_mq_start_request);
455 static void __blk_mq_requeue_request(struct request *rq)
457 struct request_queue *q = rq->q;
459 trace_block_rq_requeue(q, rq);
461 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
462 if (q->dma_drain_size && blk_rq_bytes(rq))
463 rq->nr_phys_segments--;
467 void blk_mq_requeue_request(struct request *rq)
469 __blk_mq_requeue_request(rq);
471 BUG_ON(blk_queued_rq(rq));
472 blk_mq_add_to_requeue_list(rq, true);
474 EXPORT_SYMBOL(blk_mq_requeue_request);
476 static void blk_mq_requeue_work(struct work_struct *work)
478 struct request_queue *q =
479 container_of(work, struct request_queue, requeue_work);
480 LIST_HEAD(rq_list);
481 struct request *rq, *next;
482 unsigned long flags;
484 spin_lock_irqsave(&q->requeue_lock, flags);
485 list_splice_init(&q->requeue_list, &rq_list);
486 spin_unlock_irqrestore(&q->requeue_lock, flags);
488 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
489 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
490 continue;
492 rq->cmd_flags &= ~REQ_SOFTBARRIER;
493 list_del_init(&rq->queuelist);
494 blk_mq_insert_request(rq, true, false, false);
497 while (!list_empty(&rq_list)) {
498 rq = list_entry(rq_list.next, struct request, queuelist);
499 list_del_init(&rq->queuelist);
500 blk_mq_insert_request(rq, false, false, false);
504 * Use the start variant of queue running here, so that running
505 * the requeue work will kick stopped queues.
507 blk_mq_start_hw_queues(q);
510 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
512 struct request_queue *q = rq->q;
513 unsigned long flags;
516 * We abuse this flag that is otherwise used by the I/O scheduler to
517 * request head insertation from the workqueue.
519 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
521 spin_lock_irqsave(&q->requeue_lock, flags);
522 if (at_head) {
523 rq->cmd_flags |= REQ_SOFTBARRIER;
524 list_add(&rq->queuelist, &q->requeue_list);
525 } else {
526 list_add_tail(&rq->queuelist, &q->requeue_list);
528 spin_unlock_irqrestore(&q->requeue_lock, flags);
530 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
532 void blk_mq_cancel_requeue_work(struct request_queue *q)
534 cancel_work_sync(&q->requeue_work);
536 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
538 void blk_mq_kick_requeue_list(struct request_queue *q)
540 kblockd_schedule_work(&q->requeue_work);
542 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
544 void blk_mq_abort_requeue_list(struct request_queue *q)
546 unsigned long flags;
547 LIST_HEAD(rq_list);
549 spin_lock_irqsave(&q->requeue_lock, flags);
550 list_splice_init(&q->requeue_list, &rq_list);
551 spin_unlock_irqrestore(&q->requeue_lock, flags);
553 while (!list_empty(&rq_list)) {
554 struct request *rq;
556 rq = list_first_entry(&rq_list, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 rq->errors = -EIO;
559 blk_mq_end_request(rq, rq->errors);
562 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
564 static inline bool is_flush_request(struct request *rq,
565 struct blk_flush_queue *fq, unsigned int tag)
567 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
568 fq->flush_rq->tag == tag);
571 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
573 struct request *rq = tags->rqs[tag];
574 /* mq_ctx of flush rq is always cloned from the corresponding req */
575 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
577 if (!is_flush_request(rq, fq, tag))
578 return rq;
580 return fq->flush_rq;
582 EXPORT_SYMBOL(blk_mq_tag_to_rq);
584 struct blk_mq_timeout_data {
585 unsigned long next;
586 unsigned int next_set;
589 void blk_mq_rq_timed_out(struct request *req, bool reserved)
591 struct blk_mq_ops *ops = req->q->mq_ops;
592 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
595 * We know that complete is set at this point. If STARTED isn't set
596 * anymore, then the request isn't active and the "timeout" should
597 * just be ignored. This can happen due to the bitflag ordering.
598 * Timeout first checks if STARTED is set, and if it is, assumes
599 * the request is active. But if we race with completion, then
600 * we both flags will get cleared. So check here again, and ignore
601 * a timeout event with a request that isn't active.
603 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
604 return;
606 if (ops->timeout)
607 ret = ops->timeout(req, reserved);
609 switch (ret) {
610 case BLK_EH_HANDLED:
611 __blk_mq_complete_request(req);
612 break;
613 case BLK_EH_RESET_TIMER:
614 blk_add_timer(req);
615 blk_clear_rq_complete(req);
616 break;
617 case BLK_EH_NOT_HANDLED:
618 break;
619 default:
620 printk(KERN_ERR "block: bad eh return: %d\n", ret);
621 break;
625 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
626 struct request *rq, void *priv, bool reserved)
628 struct blk_mq_timeout_data *data = priv;
630 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
632 * If a request wasn't started before the queue was
633 * marked dying, kill it here or it'll go unnoticed.
635 if (unlikely(blk_queue_dying(rq->q))) {
636 rq->errors = -EIO;
637 blk_mq_complete_request(rq);
639 return;
641 if (rq->cmd_flags & REQ_NO_TIMEOUT)
642 return;
644 if (time_after_eq(jiffies, rq->deadline)) {
645 if (!blk_mark_rq_complete(rq))
646 blk_mq_rq_timed_out(rq, reserved);
647 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
648 data->next = rq->deadline;
649 data->next_set = 1;
653 static void blk_mq_rq_timer(unsigned long priv)
655 struct request_queue *q = (struct request_queue *)priv;
656 struct blk_mq_timeout_data data = {
657 .next = 0,
658 .next_set = 0,
660 struct blk_mq_hw_ctx *hctx;
661 int i;
663 queue_for_each_hw_ctx(q, hctx, i) {
665 * If not software queues are currently mapped to this
666 * hardware queue, there's nothing to check
668 if (!blk_mq_hw_queue_mapped(hctx))
669 continue;
671 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
674 if (data.next_set) {
675 data.next = blk_rq_timeout(round_jiffies_up(data.next));
676 mod_timer(&q->timeout, data.next);
677 } else {
678 queue_for_each_hw_ctx(q, hctx, i) {
679 /* the hctx may be unmapped, so check it here */
680 if (blk_mq_hw_queue_mapped(hctx))
681 blk_mq_tag_idle(hctx);
687 * Reverse check our software queue for entries that we could potentially
688 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
689 * too much time checking for merges.
691 static bool blk_mq_attempt_merge(struct request_queue *q,
692 struct blk_mq_ctx *ctx, struct bio *bio)
694 struct request *rq;
695 int checked = 8;
697 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
698 int el_ret;
700 if (!checked--)
701 break;
703 if (!blk_rq_merge_ok(rq, bio))
704 continue;
706 el_ret = blk_try_merge(rq, bio);
707 if (el_ret == ELEVATOR_BACK_MERGE) {
708 if (bio_attempt_back_merge(q, rq, bio)) {
709 ctx->rq_merged++;
710 return true;
712 break;
713 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
714 if (bio_attempt_front_merge(q, rq, bio)) {
715 ctx->rq_merged++;
716 return true;
718 break;
722 return false;
726 * Process software queues that have been marked busy, splicing them
727 * to the for-dispatch
729 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
731 struct blk_mq_ctx *ctx;
732 int i;
734 for (i = 0; i < hctx->ctx_map.map_size; i++) {
735 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
736 unsigned int off, bit;
738 if (!bm->word)
739 continue;
741 bit = 0;
742 off = i * hctx->ctx_map.bits_per_word;
743 do {
744 bit = find_next_bit(&bm->word, bm->depth, bit);
745 if (bit >= bm->depth)
746 break;
748 ctx = hctx->ctxs[bit + off];
749 clear_bit(bit, &bm->word);
750 spin_lock(&ctx->lock);
751 list_splice_tail_init(&ctx->rq_list, list);
752 spin_unlock(&ctx->lock);
754 bit++;
755 } while (1);
760 * Run this hardware queue, pulling any software queues mapped to it in.
761 * Note that this function currently has various problems around ordering
762 * of IO. In particular, we'd like FIFO behaviour on handling existing
763 * items on the hctx->dispatch list. Ignore that for now.
765 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
767 struct request_queue *q = hctx->queue;
768 struct request *rq;
769 LIST_HEAD(rq_list);
770 LIST_HEAD(driver_list);
771 struct list_head *dptr;
772 int queued;
774 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
776 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
777 return;
779 hctx->run++;
782 * Touch any software queue that has pending entries.
784 flush_busy_ctxs(hctx, &rq_list);
787 * If we have previous entries on our dispatch list, grab them
788 * and stuff them at the front for more fair dispatch.
790 if (!list_empty_careful(&hctx->dispatch)) {
791 spin_lock(&hctx->lock);
792 if (!list_empty(&hctx->dispatch))
793 list_splice_init(&hctx->dispatch, &rq_list);
794 spin_unlock(&hctx->lock);
798 * Start off with dptr being NULL, so we start the first request
799 * immediately, even if we have more pending.
801 dptr = NULL;
804 * Now process all the entries, sending them to the driver.
806 queued = 0;
807 while (!list_empty(&rq_list)) {
808 struct blk_mq_queue_data bd;
809 int ret;
811 rq = list_first_entry(&rq_list, struct request, queuelist);
812 list_del_init(&rq->queuelist);
814 bd.rq = rq;
815 bd.list = dptr;
816 bd.last = list_empty(&rq_list);
818 ret = q->mq_ops->queue_rq(hctx, &bd);
819 switch (ret) {
820 case BLK_MQ_RQ_QUEUE_OK:
821 queued++;
822 continue;
823 case BLK_MQ_RQ_QUEUE_BUSY:
824 list_add(&rq->queuelist, &rq_list);
825 __blk_mq_requeue_request(rq);
826 break;
827 default:
828 pr_err("blk-mq: bad return on queue: %d\n", ret);
829 case BLK_MQ_RQ_QUEUE_ERROR:
830 rq->errors = -EIO;
831 blk_mq_end_request(rq, rq->errors);
832 break;
835 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
836 break;
839 * We've done the first request. If we have more than 1
840 * left in the list, set dptr to defer issue.
842 if (!dptr && rq_list.next != rq_list.prev)
843 dptr = &driver_list;
846 if (!queued)
847 hctx->dispatched[0]++;
848 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
849 hctx->dispatched[ilog2(queued) + 1]++;
852 * Any items that need requeuing? Stuff them into hctx->dispatch,
853 * that is where we will continue on next queue run.
855 if (!list_empty(&rq_list)) {
856 spin_lock(&hctx->lock);
857 list_splice(&rq_list, &hctx->dispatch);
858 spin_unlock(&hctx->lock);
863 * It'd be great if the workqueue API had a way to pass
864 * in a mask and had some smarts for more clever placement.
865 * For now we just round-robin here, switching for every
866 * BLK_MQ_CPU_WORK_BATCH queued items.
868 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
870 if (hctx->queue->nr_hw_queues == 1)
871 return WORK_CPU_UNBOUND;
873 if (--hctx->next_cpu_batch <= 0) {
874 int cpu = hctx->next_cpu, next_cpu;
876 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
877 if (next_cpu >= nr_cpu_ids)
878 next_cpu = cpumask_first(hctx->cpumask);
880 hctx->next_cpu = next_cpu;
881 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
883 return cpu;
886 return hctx->next_cpu;
889 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
891 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
892 !blk_mq_hw_queue_mapped(hctx)))
893 return;
895 if (!async) {
896 int cpu = get_cpu();
897 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
898 __blk_mq_run_hw_queue(hctx);
899 put_cpu();
900 return;
903 put_cpu();
906 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
907 &hctx->run_work, 0);
910 static void blk_mq_run_queues(struct request_queue *q)
912 struct blk_mq_hw_ctx *hctx;
913 int i;
915 queue_for_each_hw_ctx(q, hctx, i) {
916 if ((!blk_mq_hctx_has_pending(hctx) &&
917 list_empty_careful(&hctx->dispatch)) ||
918 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
919 continue;
921 blk_mq_run_hw_queue(hctx, false);
925 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
927 cancel_delayed_work(&hctx->run_work);
928 cancel_delayed_work(&hctx->delay_work);
929 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
931 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
933 void blk_mq_stop_hw_queues(struct request_queue *q)
935 struct blk_mq_hw_ctx *hctx;
936 int i;
938 queue_for_each_hw_ctx(q, hctx, i)
939 blk_mq_stop_hw_queue(hctx);
941 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
943 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
945 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
947 blk_mq_run_hw_queue(hctx, false);
949 EXPORT_SYMBOL(blk_mq_start_hw_queue);
951 void blk_mq_start_hw_queues(struct request_queue *q)
953 struct blk_mq_hw_ctx *hctx;
954 int i;
956 queue_for_each_hw_ctx(q, hctx, i)
957 blk_mq_start_hw_queue(hctx);
959 EXPORT_SYMBOL(blk_mq_start_hw_queues);
961 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
963 struct blk_mq_hw_ctx *hctx;
964 int i;
966 queue_for_each_hw_ctx(q, hctx, i) {
967 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
968 continue;
970 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
971 blk_mq_run_hw_queue(hctx, async);
974 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
976 static void blk_mq_run_work_fn(struct work_struct *work)
978 struct blk_mq_hw_ctx *hctx;
980 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
982 __blk_mq_run_hw_queue(hctx);
985 static void blk_mq_delay_work_fn(struct work_struct *work)
987 struct blk_mq_hw_ctx *hctx;
989 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
991 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
992 __blk_mq_run_hw_queue(hctx);
995 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
997 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
998 return;
1000 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1001 &hctx->delay_work, msecs_to_jiffies(msecs));
1003 EXPORT_SYMBOL(blk_mq_delay_queue);
1005 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1006 struct request *rq, bool at_head)
1008 struct blk_mq_ctx *ctx = rq->mq_ctx;
1010 trace_block_rq_insert(hctx->queue, rq);
1012 if (at_head)
1013 list_add(&rq->queuelist, &ctx->rq_list);
1014 else
1015 list_add_tail(&rq->queuelist, &ctx->rq_list);
1017 blk_mq_hctx_mark_pending(hctx, ctx);
1020 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1021 bool async)
1023 struct request_queue *q = rq->q;
1024 struct blk_mq_hw_ctx *hctx;
1025 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1027 current_ctx = blk_mq_get_ctx(q);
1028 if (!cpu_online(ctx->cpu))
1029 rq->mq_ctx = ctx = current_ctx;
1031 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1033 spin_lock(&ctx->lock);
1034 __blk_mq_insert_request(hctx, rq, at_head);
1035 spin_unlock(&ctx->lock);
1037 if (run_queue)
1038 blk_mq_run_hw_queue(hctx, async);
1040 blk_mq_put_ctx(current_ctx);
1043 static void blk_mq_insert_requests(struct request_queue *q,
1044 struct blk_mq_ctx *ctx,
1045 struct list_head *list,
1046 int depth,
1047 bool from_schedule)
1050 struct blk_mq_hw_ctx *hctx;
1051 struct blk_mq_ctx *current_ctx;
1053 trace_block_unplug(q, depth, !from_schedule);
1055 current_ctx = blk_mq_get_ctx(q);
1057 if (!cpu_online(ctx->cpu))
1058 ctx = current_ctx;
1059 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1062 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1063 * offline now
1065 spin_lock(&ctx->lock);
1066 while (!list_empty(list)) {
1067 struct request *rq;
1069 rq = list_first_entry(list, struct request, queuelist);
1070 list_del_init(&rq->queuelist);
1071 rq->mq_ctx = ctx;
1072 __blk_mq_insert_request(hctx, rq, false);
1074 spin_unlock(&ctx->lock);
1076 blk_mq_run_hw_queue(hctx, from_schedule);
1077 blk_mq_put_ctx(current_ctx);
1080 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1082 struct request *rqa = container_of(a, struct request, queuelist);
1083 struct request *rqb = container_of(b, struct request, queuelist);
1085 return !(rqa->mq_ctx < rqb->mq_ctx ||
1086 (rqa->mq_ctx == rqb->mq_ctx &&
1087 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1090 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1092 struct blk_mq_ctx *this_ctx;
1093 struct request_queue *this_q;
1094 struct request *rq;
1095 LIST_HEAD(list);
1096 LIST_HEAD(ctx_list);
1097 unsigned int depth;
1099 list_splice_init(&plug->mq_list, &list);
1101 list_sort(NULL, &list, plug_ctx_cmp);
1103 this_q = NULL;
1104 this_ctx = NULL;
1105 depth = 0;
1107 while (!list_empty(&list)) {
1108 rq = list_entry_rq(list.next);
1109 list_del_init(&rq->queuelist);
1110 BUG_ON(!rq->q);
1111 if (rq->mq_ctx != this_ctx) {
1112 if (this_ctx) {
1113 blk_mq_insert_requests(this_q, this_ctx,
1114 &ctx_list, depth,
1115 from_schedule);
1118 this_ctx = rq->mq_ctx;
1119 this_q = rq->q;
1120 depth = 0;
1123 depth++;
1124 list_add_tail(&rq->queuelist, &ctx_list);
1128 * If 'this_ctx' is set, we know we have entries to complete
1129 * on 'ctx_list'. Do those.
1131 if (this_ctx) {
1132 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1133 from_schedule);
1137 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1139 init_request_from_bio(rq, bio);
1141 if (blk_do_io_stat(rq))
1142 blk_account_io_start(rq, 1);
1145 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1147 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1148 !blk_queue_nomerges(hctx->queue);
1151 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1152 struct blk_mq_ctx *ctx,
1153 struct request *rq, struct bio *bio)
1155 if (!hctx_allow_merges(hctx)) {
1156 blk_mq_bio_to_request(rq, bio);
1157 spin_lock(&ctx->lock);
1158 insert_rq:
1159 __blk_mq_insert_request(hctx, rq, false);
1160 spin_unlock(&ctx->lock);
1161 return false;
1162 } else {
1163 struct request_queue *q = hctx->queue;
1165 spin_lock(&ctx->lock);
1166 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1167 blk_mq_bio_to_request(rq, bio);
1168 goto insert_rq;
1171 spin_unlock(&ctx->lock);
1172 __blk_mq_free_request(hctx, ctx, rq);
1173 return true;
1177 struct blk_map_ctx {
1178 struct blk_mq_hw_ctx *hctx;
1179 struct blk_mq_ctx *ctx;
1182 static struct request *blk_mq_map_request(struct request_queue *q,
1183 struct bio *bio,
1184 struct blk_map_ctx *data)
1186 struct blk_mq_hw_ctx *hctx;
1187 struct blk_mq_ctx *ctx;
1188 struct request *rq;
1189 int rw = bio_data_dir(bio);
1190 struct blk_mq_alloc_data alloc_data;
1192 if (unlikely(blk_mq_queue_enter(q))) {
1193 bio_endio(bio, -EIO);
1194 return NULL;
1197 ctx = blk_mq_get_ctx(q);
1198 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1200 if (rw_is_sync(bio->bi_rw))
1201 rw |= REQ_SYNC;
1203 trace_block_getrq(q, bio, rw);
1204 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1205 hctx);
1206 rq = __blk_mq_alloc_request(&alloc_data, rw);
1207 if (unlikely(!rq)) {
1208 __blk_mq_run_hw_queue(hctx);
1209 blk_mq_put_ctx(ctx);
1210 trace_block_sleeprq(q, bio, rw);
1212 ctx = blk_mq_get_ctx(q);
1213 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1214 blk_mq_set_alloc_data(&alloc_data, q,
1215 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1216 rq = __blk_mq_alloc_request(&alloc_data, rw);
1217 ctx = alloc_data.ctx;
1218 hctx = alloc_data.hctx;
1221 hctx->queued++;
1222 data->hctx = hctx;
1223 data->ctx = ctx;
1224 return rq;
1228 * Multiple hardware queue variant. This will not use per-process plugs,
1229 * but will attempt to bypass the hctx queueing if we can go straight to
1230 * hardware for SYNC IO.
1232 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1234 const int is_sync = rw_is_sync(bio->bi_rw);
1235 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1236 struct blk_map_ctx data;
1237 struct request *rq;
1239 blk_queue_bounce(q, &bio);
1241 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1242 bio_endio(bio, -EIO);
1243 return;
1246 rq = blk_mq_map_request(q, bio, &data);
1247 if (unlikely(!rq))
1248 return;
1250 if (unlikely(is_flush_fua)) {
1251 blk_mq_bio_to_request(rq, bio);
1252 blk_insert_flush(rq);
1253 goto run_queue;
1257 * If the driver supports defer issued based on 'last', then
1258 * queue it up like normal since we can potentially save some
1259 * CPU this way.
1261 if (is_sync && !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1262 struct blk_mq_queue_data bd = {
1263 .rq = rq,
1264 .list = NULL,
1265 .last = 1
1267 int ret;
1269 blk_mq_bio_to_request(rq, bio);
1272 * For OK queue, we are done. For error, kill it. Any other
1273 * error (busy), just add it to our list as we previously
1274 * would have done
1276 ret = q->mq_ops->queue_rq(data.hctx, &bd);
1277 if (ret == BLK_MQ_RQ_QUEUE_OK)
1278 goto done;
1279 else {
1280 __blk_mq_requeue_request(rq);
1282 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1283 rq->errors = -EIO;
1284 blk_mq_end_request(rq, rq->errors);
1285 goto done;
1290 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1292 * For a SYNC request, send it to the hardware immediately. For
1293 * an ASYNC request, just ensure that we run it later on. The
1294 * latter allows for merging opportunities and more efficient
1295 * dispatching.
1297 run_queue:
1298 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1300 done:
1301 blk_mq_put_ctx(data.ctx);
1305 * Single hardware queue variant. This will attempt to use any per-process
1306 * plug for merging and IO deferral.
1308 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1310 const int is_sync = rw_is_sync(bio->bi_rw);
1311 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1312 unsigned int use_plug, request_count = 0;
1313 struct blk_map_ctx data;
1314 struct request *rq;
1317 * If we have multiple hardware queues, just go directly to
1318 * one of those for sync IO.
1320 use_plug = !is_flush_fua && !is_sync;
1322 blk_queue_bounce(q, &bio);
1324 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1325 bio_endio(bio, -EIO);
1326 return;
1329 if (use_plug && !blk_queue_nomerges(q) &&
1330 blk_attempt_plug_merge(q, bio, &request_count))
1331 return;
1333 rq = blk_mq_map_request(q, bio, &data);
1334 if (unlikely(!rq))
1335 return;
1337 if (unlikely(is_flush_fua)) {
1338 blk_mq_bio_to_request(rq, bio);
1339 blk_insert_flush(rq);
1340 goto run_queue;
1344 * A task plug currently exists. Since this is completely lockless,
1345 * utilize that to temporarily store requests until the task is
1346 * either done or scheduled away.
1348 if (use_plug) {
1349 struct blk_plug *plug = current->plug;
1351 if (plug) {
1352 blk_mq_bio_to_request(rq, bio);
1353 if (list_empty(&plug->mq_list))
1354 trace_block_plug(q);
1355 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1356 blk_flush_plug_list(plug, false);
1357 trace_block_plug(q);
1359 list_add_tail(&rq->queuelist, &plug->mq_list);
1360 blk_mq_put_ctx(data.ctx);
1361 return;
1365 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1367 * For a SYNC request, send it to the hardware immediately. For
1368 * an ASYNC request, just ensure that we run it later on. The
1369 * latter allows for merging opportunities and more efficient
1370 * dispatching.
1372 run_queue:
1373 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1376 blk_mq_put_ctx(data.ctx);
1380 * Default mapping to a software queue, since we use one per CPU.
1382 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1384 return q->queue_hw_ctx[q->mq_map[cpu]];
1386 EXPORT_SYMBOL(blk_mq_map_queue);
1388 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1389 struct blk_mq_tags *tags, unsigned int hctx_idx)
1391 struct page *page;
1393 if (tags->rqs && set->ops->exit_request) {
1394 int i;
1396 for (i = 0; i < tags->nr_tags; i++) {
1397 if (!tags->rqs[i])
1398 continue;
1399 set->ops->exit_request(set->driver_data, tags->rqs[i],
1400 hctx_idx, i);
1401 tags->rqs[i] = NULL;
1405 while (!list_empty(&tags->page_list)) {
1406 page = list_first_entry(&tags->page_list, struct page, lru);
1407 list_del_init(&page->lru);
1408 __free_pages(page, page->private);
1411 kfree(tags->rqs);
1413 blk_mq_free_tags(tags);
1416 static size_t order_to_size(unsigned int order)
1418 return (size_t)PAGE_SIZE << order;
1421 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1422 unsigned int hctx_idx)
1424 struct blk_mq_tags *tags;
1425 unsigned int i, j, entries_per_page, max_order = 4;
1426 size_t rq_size, left;
1428 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1429 set->numa_node,
1430 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1431 if (!tags)
1432 return NULL;
1434 INIT_LIST_HEAD(&tags->page_list);
1436 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1437 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1438 set->numa_node);
1439 if (!tags->rqs) {
1440 blk_mq_free_tags(tags);
1441 return NULL;
1445 * rq_size is the size of the request plus driver payload, rounded
1446 * to the cacheline size
1448 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1449 cache_line_size());
1450 left = rq_size * set->queue_depth;
1452 for (i = 0; i < set->queue_depth; ) {
1453 int this_order = max_order;
1454 struct page *page;
1455 int to_do;
1456 void *p;
1458 while (left < order_to_size(this_order - 1) && this_order)
1459 this_order--;
1461 do {
1462 page = alloc_pages_node(set->numa_node,
1463 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1464 this_order);
1465 if (page)
1466 break;
1467 if (!this_order--)
1468 break;
1469 if (order_to_size(this_order) < rq_size)
1470 break;
1471 } while (1);
1473 if (!page)
1474 goto fail;
1476 page->private = this_order;
1477 list_add_tail(&page->lru, &tags->page_list);
1479 p = page_address(page);
1480 entries_per_page = order_to_size(this_order) / rq_size;
1481 to_do = min(entries_per_page, set->queue_depth - i);
1482 left -= to_do * rq_size;
1483 for (j = 0; j < to_do; j++) {
1484 tags->rqs[i] = p;
1485 if (set->ops->init_request) {
1486 if (set->ops->init_request(set->driver_data,
1487 tags->rqs[i], hctx_idx, i,
1488 set->numa_node)) {
1489 tags->rqs[i] = NULL;
1490 goto fail;
1494 p += rq_size;
1495 i++;
1499 return tags;
1501 fail:
1502 blk_mq_free_rq_map(set, tags, hctx_idx);
1503 return NULL;
1506 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1508 kfree(bitmap->map);
1511 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1513 unsigned int bpw = 8, total, num_maps, i;
1515 bitmap->bits_per_word = bpw;
1517 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1518 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1519 GFP_KERNEL, node);
1520 if (!bitmap->map)
1521 return -ENOMEM;
1523 bitmap->map_size = num_maps;
1525 total = nr_cpu_ids;
1526 for (i = 0; i < num_maps; i++) {
1527 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1528 total -= bitmap->map[i].depth;
1531 return 0;
1534 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1536 struct request_queue *q = hctx->queue;
1537 struct blk_mq_ctx *ctx;
1538 LIST_HEAD(tmp);
1541 * Move ctx entries to new CPU, if this one is going away.
1543 ctx = __blk_mq_get_ctx(q, cpu);
1545 spin_lock(&ctx->lock);
1546 if (!list_empty(&ctx->rq_list)) {
1547 list_splice_init(&ctx->rq_list, &tmp);
1548 blk_mq_hctx_clear_pending(hctx, ctx);
1550 spin_unlock(&ctx->lock);
1552 if (list_empty(&tmp))
1553 return NOTIFY_OK;
1555 ctx = blk_mq_get_ctx(q);
1556 spin_lock(&ctx->lock);
1558 while (!list_empty(&tmp)) {
1559 struct request *rq;
1561 rq = list_first_entry(&tmp, struct request, queuelist);
1562 rq->mq_ctx = ctx;
1563 list_move_tail(&rq->queuelist, &ctx->rq_list);
1566 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1567 blk_mq_hctx_mark_pending(hctx, ctx);
1569 spin_unlock(&ctx->lock);
1571 blk_mq_run_hw_queue(hctx, true);
1572 blk_mq_put_ctx(ctx);
1573 return NOTIFY_OK;
1576 static int blk_mq_hctx_notify(void *data, unsigned long action,
1577 unsigned int cpu)
1579 struct blk_mq_hw_ctx *hctx = data;
1581 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1582 return blk_mq_hctx_cpu_offline(hctx, cpu);
1585 * In case of CPU online, tags may be reallocated
1586 * in blk_mq_map_swqueue() after mapping is updated.
1589 return NOTIFY_OK;
1592 /* hctx->ctxs will be freed in queue's release handler */
1593 static void blk_mq_exit_hctx(struct request_queue *q,
1594 struct blk_mq_tag_set *set,
1595 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1597 unsigned flush_start_tag = set->queue_depth;
1599 blk_mq_tag_idle(hctx);
1601 if (set->ops->exit_request)
1602 set->ops->exit_request(set->driver_data,
1603 hctx->fq->flush_rq, hctx_idx,
1604 flush_start_tag + hctx_idx);
1606 if (set->ops->exit_hctx)
1607 set->ops->exit_hctx(hctx, hctx_idx);
1609 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1610 blk_free_flush_queue(hctx->fq);
1611 blk_mq_free_bitmap(&hctx->ctx_map);
1614 static void blk_mq_exit_hw_queues(struct request_queue *q,
1615 struct blk_mq_tag_set *set, int nr_queue)
1617 struct blk_mq_hw_ctx *hctx;
1618 unsigned int i;
1620 queue_for_each_hw_ctx(q, hctx, i) {
1621 if (i == nr_queue)
1622 break;
1623 blk_mq_exit_hctx(q, set, hctx, i);
1627 static void blk_mq_free_hw_queues(struct request_queue *q,
1628 struct blk_mq_tag_set *set)
1630 struct blk_mq_hw_ctx *hctx;
1631 unsigned int i;
1633 queue_for_each_hw_ctx(q, hctx, i)
1634 free_cpumask_var(hctx->cpumask);
1637 static int blk_mq_init_hctx(struct request_queue *q,
1638 struct blk_mq_tag_set *set,
1639 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1641 int node;
1642 unsigned flush_start_tag = set->queue_depth;
1644 node = hctx->numa_node;
1645 if (node == NUMA_NO_NODE)
1646 node = hctx->numa_node = set->numa_node;
1648 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1649 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1650 spin_lock_init(&hctx->lock);
1651 INIT_LIST_HEAD(&hctx->dispatch);
1652 hctx->queue = q;
1653 hctx->queue_num = hctx_idx;
1654 hctx->flags = set->flags;
1656 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1657 blk_mq_hctx_notify, hctx);
1658 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1660 hctx->tags = set->tags[hctx_idx];
1663 * Allocate space for all possible cpus to avoid allocation at
1664 * runtime
1666 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1667 GFP_KERNEL, node);
1668 if (!hctx->ctxs)
1669 goto unregister_cpu_notifier;
1671 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1672 goto free_ctxs;
1674 hctx->nr_ctx = 0;
1676 if (set->ops->init_hctx &&
1677 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1678 goto free_bitmap;
1680 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1681 if (!hctx->fq)
1682 goto exit_hctx;
1684 if (set->ops->init_request &&
1685 set->ops->init_request(set->driver_data,
1686 hctx->fq->flush_rq, hctx_idx,
1687 flush_start_tag + hctx_idx, node))
1688 goto free_fq;
1690 return 0;
1692 free_fq:
1693 kfree(hctx->fq);
1694 exit_hctx:
1695 if (set->ops->exit_hctx)
1696 set->ops->exit_hctx(hctx, hctx_idx);
1697 free_bitmap:
1698 blk_mq_free_bitmap(&hctx->ctx_map);
1699 free_ctxs:
1700 kfree(hctx->ctxs);
1701 unregister_cpu_notifier:
1702 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1704 return -1;
1707 static int blk_mq_init_hw_queues(struct request_queue *q,
1708 struct blk_mq_tag_set *set)
1710 struct blk_mq_hw_ctx *hctx;
1711 unsigned int i;
1714 * Initialize hardware queues
1716 queue_for_each_hw_ctx(q, hctx, i) {
1717 if (blk_mq_init_hctx(q, set, hctx, i))
1718 break;
1721 if (i == q->nr_hw_queues)
1722 return 0;
1725 * Init failed
1727 blk_mq_exit_hw_queues(q, set, i);
1729 return 1;
1732 static void blk_mq_init_cpu_queues(struct request_queue *q,
1733 unsigned int nr_hw_queues)
1735 unsigned int i;
1737 for_each_possible_cpu(i) {
1738 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1739 struct blk_mq_hw_ctx *hctx;
1741 memset(__ctx, 0, sizeof(*__ctx));
1742 __ctx->cpu = i;
1743 spin_lock_init(&__ctx->lock);
1744 INIT_LIST_HEAD(&__ctx->rq_list);
1745 __ctx->queue = q;
1747 /* If the cpu isn't online, the cpu is mapped to first hctx */
1748 if (!cpu_online(i))
1749 continue;
1751 hctx = q->mq_ops->map_queue(q, i);
1752 cpumask_set_cpu(i, hctx->cpumask);
1753 hctx->nr_ctx++;
1756 * Set local node, IFF we have more than one hw queue. If
1757 * not, we remain on the home node of the device
1759 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1760 hctx->numa_node = cpu_to_node(i);
1764 static void blk_mq_map_swqueue(struct request_queue *q)
1766 unsigned int i;
1767 struct blk_mq_hw_ctx *hctx;
1768 struct blk_mq_ctx *ctx;
1769 struct blk_mq_tag_set *set = q->tag_set;
1771 queue_for_each_hw_ctx(q, hctx, i) {
1772 cpumask_clear(hctx->cpumask);
1773 hctx->nr_ctx = 0;
1777 * Map software to hardware queues
1779 queue_for_each_ctx(q, ctx, i) {
1780 /* If the cpu isn't online, the cpu is mapped to first hctx */
1781 if (!cpu_online(i))
1782 continue;
1784 hctx = q->mq_ops->map_queue(q, i);
1785 cpumask_set_cpu(i, hctx->cpumask);
1786 ctx->index_hw = hctx->nr_ctx;
1787 hctx->ctxs[hctx->nr_ctx++] = ctx;
1790 queue_for_each_hw_ctx(q, hctx, i) {
1792 * If no software queues are mapped to this hardware queue,
1793 * disable it and free the request entries.
1795 if (!hctx->nr_ctx) {
1796 if (set->tags[i]) {
1797 blk_mq_free_rq_map(set, set->tags[i], i);
1798 set->tags[i] = NULL;
1800 hctx->tags = NULL;
1801 continue;
1804 /* unmapped hw queue can be remapped after CPU topo changed */
1805 if (!set->tags[i])
1806 set->tags[i] = blk_mq_init_rq_map(set, i);
1807 hctx->tags = set->tags[i];
1808 WARN_ON(!hctx->tags);
1811 * Initialize batch roundrobin counts
1813 hctx->next_cpu = cpumask_first(hctx->cpumask);
1814 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1818 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1820 struct blk_mq_hw_ctx *hctx;
1821 struct request_queue *q;
1822 bool shared;
1823 int i;
1825 if (set->tag_list.next == set->tag_list.prev)
1826 shared = false;
1827 else
1828 shared = true;
1830 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1831 blk_mq_freeze_queue(q);
1833 queue_for_each_hw_ctx(q, hctx, i) {
1834 if (shared)
1835 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1836 else
1837 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1839 blk_mq_unfreeze_queue(q);
1843 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1845 struct blk_mq_tag_set *set = q->tag_set;
1847 mutex_lock(&set->tag_list_lock);
1848 list_del_init(&q->tag_set_list);
1849 blk_mq_update_tag_set_depth(set);
1850 mutex_unlock(&set->tag_list_lock);
1853 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1854 struct request_queue *q)
1856 q->tag_set = set;
1858 mutex_lock(&set->tag_list_lock);
1859 list_add_tail(&q->tag_set_list, &set->tag_list);
1860 blk_mq_update_tag_set_depth(set);
1861 mutex_unlock(&set->tag_list_lock);
1865 * It is the actual release handler for mq, but we do it from
1866 * request queue's release handler for avoiding use-after-free
1867 * and headache because q->mq_kobj shouldn't have been introduced,
1868 * but we can't group ctx/kctx kobj without it.
1870 void blk_mq_release(struct request_queue *q)
1872 struct blk_mq_hw_ctx *hctx;
1873 unsigned int i;
1875 /* hctx kobj stays in hctx */
1876 queue_for_each_hw_ctx(q, hctx, i) {
1877 if (!hctx)
1878 continue;
1879 kfree(hctx->ctxs);
1880 kfree(hctx);
1883 kfree(q->queue_hw_ctx);
1885 /* ctx kobj stays in queue_ctx */
1886 free_percpu(q->queue_ctx);
1889 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1891 struct blk_mq_hw_ctx **hctxs;
1892 struct blk_mq_ctx __percpu *ctx;
1893 struct request_queue *q;
1894 unsigned int *map;
1895 int i;
1897 ctx = alloc_percpu(struct blk_mq_ctx);
1898 if (!ctx)
1899 return ERR_PTR(-ENOMEM);
1901 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1902 set->numa_node);
1904 if (!hctxs)
1905 goto err_percpu;
1907 map = blk_mq_make_queue_map(set);
1908 if (!map)
1909 goto err_map;
1911 for (i = 0; i < set->nr_hw_queues; i++) {
1912 int node = blk_mq_hw_queue_to_node(map, i);
1914 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1915 GFP_KERNEL, node);
1916 if (!hctxs[i])
1917 goto err_hctxs;
1919 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1920 node))
1921 goto err_hctxs;
1923 atomic_set(&hctxs[i]->nr_active, 0);
1924 hctxs[i]->numa_node = node;
1925 hctxs[i]->queue_num = i;
1928 q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1929 if (!q)
1930 goto err_hctxs;
1933 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1934 * See blk_register_queue() for details.
1936 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1937 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1938 goto err_mq_usage;
1940 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1941 blk_queue_rq_timeout(q, 30000);
1943 q->nr_queues = nr_cpu_ids;
1944 q->nr_hw_queues = set->nr_hw_queues;
1945 q->mq_map = map;
1947 q->queue_ctx = ctx;
1948 q->queue_hw_ctx = hctxs;
1950 q->mq_ops = set->ops;
1951 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1953 if (!(set->flags & BLK_MQ_F_SG_MERGE))
1954 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
1956 q->sg_reserved_size = INT_MAX;
1958 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
1959 INIT_LIST_HEAD(&q->requeue_list);
1960 spin_lock_init(&q->requeue_lock);
1962 if (q->nr_hw_queues > 1)
1963 blk_queue_make_request(q, blk_mq_make_request);
1964 else
1965 blk_queue_make_request(q, blk_sq_make_request);
1967 if (set->timeout)
1968 blk_queue_rq_timeout(q, set->timeout);
1971 * Do this after blk_queue_make_request() overrides it...
1973 q->nr_requests = set->queue_depth;
1975 if (set->ops->complete)
1976 blk_queue_softirq_done(q, set->ops->complete);
1978 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
1980 if (blk_mq_init_hw_queues(q, set))
1981 goto err_mq_usage;
1983 mutex_lock(&all_q_mutex);
1984 list_add_tail(&q->all_q_node, &all_q_list);
1985 mutex_unlock(&all_q_mutex);
1987 blk_mq_add_queue_tag_set(set, q);
1989 blk_mq_map_swqueue(q);
1991 return q;
1993 err_mq_usage:
1994 blk_cleanup_queue(q);
1995 err_hctxs:
1996 kfree(map);
1997 for (i = 0; i < set->nr_hw_queues; i++) {
1998 if (!hctxs[i])
1999 break;
2000 free_cpumask_var(hctxs[i]->cpumask);
2001 kfree(hctxs[i]);
2003 err_map:
2004 kfree(hctxs);
2005 err_percpu:
2006 free_percpu(ctx);
2007 return ERR_PTR(-ENOMEM);
2009 EXPORT_SYMBOL(blk_mq_init_queue);
2011 void blk_mq_free_queue(struct request_queue *q)
2013 struct blk_mq_tag_set *set = q->tag_set;
2015 blk_mq_del_queue_tag_set(q);
2017 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2018 blk_mq_free_hw_queues(q, set);
2020 percpu_ref_exit(&q->mq_usage_counter);
2022 kfree(q->mq_map);
2024 q->mq_map = NULL;
2026 mutex_lock(&all_q_mutex);
2027 list_del_init(&q->all_q_node);
2028 mutex_unlock(&all_q_mutex);
2031 /* Basically redo blk_mq_init_queue with queue frozen */
2032 static void blk_mq_queue_reinit(struct request_queue *q)
2034 WARN_ON_ONCE(!q->mq_freeze_depth);
2036 blk_mq_sysfs_unregister(q);
2038 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2041 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2042 * we should change hctx numa_node according to new topology (this
2043 * involves free and re-allocate memory, worthy doing?)
2046 blk_mq_map_swqueue(q);
2048 blk_mq_sysfs_register(q);
2051 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2052 unsigned long action, void *hcpu)
2054 struct request_queue *q;
2057 * Before new mappings are established, hotadded cpu might already
2058 * start handling requests. This doesn't break anything as we map
2059 * offline CPUs to first hardware queue. We will re-init the queue
2060 * below to get optimal settings.
2062 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2063 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2064 return NOTIFY_OK;
2066 mutex_lock(&all_q_mutex);
2069 * We need to freeze and reinit all existing queues. Freezing
2070 * involves synchronous wait for an RCU grace period and doing it
2071 * one by one may take a long time. Start freezing all queues in
2072 * one swoop and then wait for the completions so that freezing can
2073 * take place in parallel.
2075 list_for_each_entry(q, &all_q_list, all_q_node)
2076 blk_mq_freeze_queue_start(q);
2077 list_for_each_entry(q, &all_q_list, all_q_node) {
2078 blk_mq_freeze_queue_wait(q);
2081 * timeout handler can't touch hw queue during the
2082 * reinitialization
2084 del_timer_sync(&q->timeout);
2087 list_for_each_entry(q, &all_q_list, all_q_node)
2088 blk_mq_queue_reinit(q);
2090 list_for_each_entry(q, &all_q_list, all_q_node)
2091 blk_mq_unfreeze_queue(q);
2093 mutex_unlock(&all_q_mutex);
2094 return NOTIFY_OK;
2097 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2099 int i;
2101 for (i = 0; i < set->nr_hw_queues; i++) {
2102 set->tags[i] = blk_mq_init_rq_map(set, i);
2103 if (!set->tags[i])
2104 goto out_unwind;
2107 return 0;
2109 out_unwind:
2110 while (--i >= 0)
2111 blk_mq_free_rq_map(set, set->tags[i], i);
2113 return -ENOMEM;
2117 * Allocate the request maps associated with this tag_set. Note that this
2118 * may reduce the depth asked for, if memory is tight. set->queue_depth
2119 * will be updated to reflect the allocated depth.
2121 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2123 unsigned int depth;
2124 int err;
2126 depth = set->queue_depth;
2127 do {
2128 err = __blk_mq_alloc_rq_maps(set);
2129 if (!err)
2130 break;
2132 set->queue_depth >>= 1;
2133 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2134 err = -ENOMEM;
2135 break;
2137 } while (set->queue_depth);
2139 if (!set->queue_depth || err) {
2140 pr_err("blk-mq: failed to allocate request map\n");
2141 return -ENOMEM;
2144 if (depth != set->queue_depth)
2145 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2146 depth, set->queue_depth);
2148 return 0;
2152 * Alloc a tag set to be associated with one or more request queues.
2153 * May fail with EINVAL for various error conditions. May adjust the
2154 * requested depth down, if if it too large. In that case, the set
2155 * value will be stored in set->queue_depth.
2157 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2159 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2161 if (!set->nr_hw_queues)
2162 return -EINVAL;
2163 if (!set->queue_depth)
2164 return -EINVAL;
2165 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2166 return -EINVAL;
2168 if (!set->nr_hw_queues || !set->ops->queue_rq || !set->ops->map_queue)
2169 return -EINVAL;
2171 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2172 pr_info("blk-mq: reduced tag depth to %u\n",
2173 BLK_MQ_MAX_DEPTH);
2174 set->queue_depth = BLK_MQ_MAX_DEPTH;
2178 * If a crashdump is active, then we are potentially in a very
2179 * memory constrained environment. Limit us to 1 queue and
2180 * 64 tags to prevent using too much memory.
2182 if (is_kdump_kernel()) {
2183 set->nr_hw_queues = 1;
2184 set->queue_depth = min(64U, set->queue_depth);
2187 set->tags = kmalloc_node(set->nr_hw_queues *
2188 sizeof(struct blk_mq_tags *),
2189 GFP_KERNEL, set->numa_node);
2190 if (!set->tags)
2191 return -ENOMEM;
2193 if (blk_mq_alloc_rq_maps(set))
2194 goto enomem;
2196 mutex_init(&set->tag_list_lock);
2197 INIT_LIST_HEAD(&set->tag_list);
2199 return 0;
2200 enomem:
2201 kfree(set->tags);
2202 set->tags = NULL;
2203 return -ENOMEM;
2205 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2207 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2209 int i;
2211 for (i = 0; i < set->nr_hw_queues; i++) {
2212 if (set->tags[i])
2213 blk_mq_free_rq_map(set, set->tags[i], i);
2216 kfree(set->tags);
2217 set->tags = NULL;
2219 EXPORT_SYMBOL(blk_mq_free_tag_set);
2221 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2223 struct blk_mq_tag_set *set = q->tag_set;
2224 struct blk_mq_hw_ctx *hctx;
2225 int i, ret;
2227 if (!set || nr > set->queue_depth)
2228 return -EINVAL;
2230 ret = 0;
2231 queue_for_each_hw_ctx(q, hctx, i) {
2232 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2233 if (ret)
2234 break;
2237 if (!ret)
2238 q->nr_requests = nr;
2240 return ret;
2243 void blk_mq_disable_hotplug(void)
2245 mutex_lock(&all_q_mutex);
2248 void blk_mq_enable_hotplug(void)
2250 mutex_unlock(&all_q_mutex);
2253 static int __init blk_mq_init(void)
2255 blk_mq_cpu_init();
2257 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2259 return 0;
2261 subsys_initcall(blk_mq_init);