net: qmi_wwan: add Olivetti Olicard 500
[linux/fpc-iii.git] / drivers / ata / libata-core.c
blobc19734d96d7e6a029a1adf9667ce5a897708b58c
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Tejun Heo <tj@kernel.org>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi.h>
63 #include <scsi/scsi_cmnd.h>
64 #include <scsi/scsi_host.h>
65 #include <linux/libata.h>
66 #include <asm/byteorder.h>
67 #include <linux/cdrom.h>
68 #include <linux/ratelimit.h>
69 #include <linux/pm_runtime.h>
70 #include <linux/platform_device.h>
72 #include "libata.h"
73 #include "libata-transport.h"
75 /* debounce timing parameters in msecs { interval, duration, timeout } */
76 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
77 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
78 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
80 const struct ata_port_operations ata_base_port_ops = {
81 .prereset = ata_std_prereset,
82 .postreset = ata_std_postreset,
83 .error_handler = ata_std_error_handler,
84 .sched_eh = ata_std_sched_eh,
85 .end_eh = ata_std_end_eh,
88 const struct ata_port_operations sata_port_ops = {
89 .inherits = &ata_base_port_ops,
91 .qc_defer = ata_std_qc_defer,
92 .hardreset = sata_std_hardreset,
95 static unsigned int ata_dev_init_params(struct ata_device *dev,
96 u16 heads, u16 sectors);
97 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
98 static void ata_dev_xfermask(struct ata_device *dev);
99 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
101 atomic_t ata_print_id = ATOMIC_INIT(0);
103 struct ata_force_param {
104 const char *name;
105 unsigned int cbl;
106 int spd_limit;
107 unsigned long xfer_mask;
108 unsigned int horkage_on;
109 unsigned int horkage_off;
110 unsigned int lflags;
113 struct ata_force_ent {
114 int port;
115 int device;
116 struct ata_force_param param;
119 static struct ata_force_ent *ata_force_tbl;
120 static int ata_force_tbl_size;
122 static char ata_force_param_buf[PAGE_SIZE] __initdata;
123 /* param_buf is thrown away after initialization, disallow read */
124 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
125 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
127 static int atapi_enabled = 1;
128 module_param(atapi_enabled, int, 0444);
129 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
131 static int atapi_dmadir = 0;
132 module_param(atapi_dmadir, int, 0444);
133 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
135 int atapi_passthru16 = 1;
136 module_param(atapi_passthru16, int, 0444);
137 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 int libata_fua = 0;
140 module_param_named(fua, libata_fua, int, 0444);
141 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
143 static int ata_ignore_hpa;
144 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
145 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
147 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
148 module_param_named(dma, libata_dma_mask, int, 0444);
149 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
151 static int ata_probe_timeout;
152 module_param(ata_probe_timeout, int, 0444);
153 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
155 int libata_noacpi = 0;
156 module_param_named(noacpi, libata_noacpi, int, 0444);
157 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
159 int libata_allow_tpm = 0;
160 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
161 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
163 static int atapi_an;
164 module_param(atapi_an, int, 0444);
165 MODULE_PARM_DESC(atapi_an, "Enable ATAPI AN media presence notification (0=0ff [default], 1=on)");
167 MODULE_AUTHOR("Jeff Garzik");
168 MODULE_DESCRIPTION("Library module for ATA devices");
169 MODULE_LICENSE("GPL");
170 MODULE_VERSION(DRV_VERSION);
173 static bool ata_sstatus_online(u32 sstatus)
175 return (sstatus & 0xf) == 0x3;
179 * ata_link_next - link iteration helper
180 * @link: the previous link, NULL to start
181 * @ap: ATA port containing links to iterate
182 * @mode: iteration mode, one of ATA_LITER_*
184 * LOCKING:
185 * Host lock or EH context.
187 * RETURNS:
188 * Pointer to the next link.
190 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
191 enum ata_link_iter_mode mode)
193 BUG_ON(mode != ATA_LITER_EDGE &&
194 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
196 /* NULL link indicates start of iteration */
197 if (!link)
198 switch (mode) {
199 case ATA_LITER_EDGE:
200 case ATA_LITER_PMP_FIRST:
201 if (sata_pmp_attached(ap))
202 return ap->pmp_link;
203 /* fall through */
204 case ATA_LITER_HOST_FIRST:
205 return &ap->link;
208 /* we just iterated over the host link, what's next? */
209 if (link == &ap->link)
210 switch (mode) {
211 case ATA_LITER_HOST_FIRST:
212 if (sata_pmp_attached(ap))
213 return ap->pmp_link;
214 /* fall through */
215 case ATA_LITER_PMP_FIRST:
216 if (unlikely(ap->slave_link))
217 return ap->slave_link;
218 /* fall through */
219 case ATA_LITER_EDGE:
220 return NULL;
223 /* slave_link excludes PMP */
224 if (unlikely(link == ap->slave_link))
225 return NULL;
227 /* we were over a PMP link */
228 if (++link < ap->pmp_link + ap->nr_pmp_links)
229 return link;
231 if (mode == ATA_LITER_PMP_FIRST)
232 return &ap->link;
234 return NULL;
238 * ata_dev_next - device iteration helper
239 * @dev: the previous device, NULL to start
240 * @link: ATA link containing devices to iterate
241 * @mode: iteration mode, one of ATA_DITER_*
243 * LOCKING:
244 * Host lock or EH context.
246 * RETURNS:
247 * Pointer to the next device.
249 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
250 enum ata_dev_iter_mode mode)
252 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
253 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
255 /* NULL dev indicates start of iteration */
256 if (!dev)
257 switch (mode) {
258 case ATA_DITER_ENABLED:
259 case ATA_DITER_ALL:
260 dev = link->device;
261 goto check;
262 case ATA_DITER_ENABLED_REVERSE:
263 case ATA_DITER_ALL_REVERSE:
264 dev = link->device + ata_link_max_devices(link) - 1;
265 goto check;
268 next:
269 /* move to the next one */
270 switch (mode) {
271 case ATA_DITER_ENABLED:
272 case ATA_DITER_ALL:
273 if (++dev < link->device + ata_link_max_devices(link))
274 goto check;
275 return NULL;
276 case ATA_DITER_ENABLED_REVERSE:
277 case ATA_DITER_ALL_REVERSE:
278 if (--dev >= link->device)
279 goto check;
280 return NULL;
283 check:
284 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
285 !ata_dev_enabled(dev))
286 goto next;
287 return dev;
291 * ata_dev_phys_link - find physical link for a device
292 * @dev: ATA device to look up physical link for
294 * Look up physical link which @dev is attached to. Note that
295 * this is different from @dev->link only when @dev is on slave
296 * link. For all other cases, it's the same as @dev->link.
298 * LOCKING:
299 * Don't care.
301 * RETURNS:
302 * Pointer to the found physical link.
304 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
306 struct ata_port *ap = dev->link->ap;
308 if (!ap->slave_link)
309 return dev->link;
310 if (!dev->devno)
311 return &ap->link;
312 return ap->slave_link;
316 * ata_force_cbl - force cable type according to libata.force
317 * @ap: ATA port of interest
319 * Force cable type according to libata.force and whine about it.
320 * The last entry which has matching port number is used, so it
321 * can be specified as part of device force parameters. For
322 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 * same effect.
325 * LOCKING:
326 * EH context.
328 void ata_force_cbl(struct ata_port *ap)
330 int i;
332 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
333 const struct ata_force_ent *fe = &ata_force_tbl[i];
335 if (fe->port != -1 && fe->port != ap->print_id)
336 continue;
338 if (fe->param.cbl == ATA_CBL_NONE)
339 continue;
341 ap->cbl = fe->param.cbl;
342 ata_port_notice(ap, "FORCE: cable set to %s\n", fe->param.name);
343 return;
348 * ata_force_link_limits - force link limits according to libata.force
349 * @link: ATA link of interest
351 * Force link flags and SATA spd limit according to libata.force
352 * and whine about it. When only the port part is specified
353 * (e.g. 1:), the limit applies to all links connected to both
354 * the host link and all fan-out ports connected via PMP. If the
355 * device part is specified as 0 (e.g. 1.00:), it specifies the
356 * first fan-out link not the host link. Device number 15 always
357 * points to the host link whether PMP is attached or not. If the
358 * controller has slave link, device number 16 points to it.
360 * LOCKING:
361 * EH context.
363 static void ata_force_link_limits(struct ata_link *link)
365 bool did_spd = false;
366 int linkno = link->pmp;
367 int i;
369 if (ata_is_host_link(link))
370 linkno += 15;
372 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
373 const struct ata_force_ent *fe = &ata_force_tbl[i];
375 if (fe->port != -1 && fe->port != link->ap->print_id)
376 continue;
378 if (fe->device != -1 && fe->device != linkno)
379 continue;
381 /* only honor the first spd limit */
382 if (!did_spd && fe->param.spd_limit) {
383 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
384 ata_link_notice(link, "FORCE: PHY spd limit set to %s\n",
385 fe->param.name);
386 did_spd = true;
389 /* let lflags stack */
390 if (fe->param.lflags) {
391 link->flags |= fe->param.lflags;
392 ata_link_notice(link,
393 "FORCE: link flag 0x%x forced -> 0x%x\n",
394 fe->param.lflags, link->flags);
400 * ata_force_xfermask - force xfermask according to libata.force
401 * @dev: ATA device of interest
403 * Force xfer_mask according to libata.force and whine about it.
404 * For consistency with link selection, device number 15 selects
405 * the first device connected to the host link.
407 * LOCKING:
408 * EH context.
410 static void ata_force_xfermask(struct ata_device *dev)
412 int devno = dev->link->pmp + dev->devno;
413 int alt_devno = devno;
414 int i;
416 /* allow n.15/16 for devices attached to host port */
417 if (ata_is_host_link(dev->link))
418 alt_devno += 15;
420 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
421 const struct ata_force_ent *fe = &ata_force_tbl[i];
422 unsigned long pio_mask, mwdma_mask, udma_mask;
424 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
425 continue;
427 if (fe->device != -1 && fe->device != devno &&
428 fe->device != alt_devno)
429 continue;
431 if (!fe->param.xfer_mask)
432 continue;
434 ata_unpack_xfermask(fe->param.xfer_mask,
435 &pio_mask, &mwdma_mask, &udma_mask);
436 if (udma_mask)
437 dev->udma_mask = udma_mask;
438 else if (mwdma_mask) {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = mwdma_mask;
441 } else {
442 dev->udma_mask = 0;
443 dev->mwdma_mask = 0;
444 dev->pio_mask = pio_mask;
447 ata_dev_notice(dev, "FORCE: xfer_mask set to %s\n",
448 fe->param.name);
449 return;
454 * ata_force_horkage - force horkage according to libata.force
455 * @dev: ATA device of interest
457 * Force horkage according to libata.force and whine about it.
458 * For consistency with link selection, device number 15 selects
459 * the first device connected to the host link.
461 * LOCKING:
462 * EH context.
464 static void ata_force_horkage(struct ata_device *dev)
466 int devno = dev->link->pmp + dev->devno;
467 int alt_devno = devno;
468 int i;
470 /* allow n.15/16 for devices attached to host port */
471 if (ata_is_host_link(dev->link))
472 alt_devno += 15;
474 for (i = 0; i < ata_force_tbl_size; i++) {
475 const struct ata_force_ent *fe = &ata_force_tbl[i];
477 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
478 continue;
480 if (fe->device != -1 && fe->device != devno &&
481 fe->device != alt_devno)
482 continue;
484 if (!(~dev->horkage & fe->param.horkage_on) &&
485 !(dev->horkage & fe->param.horkage_off))
486 continue;
488 dev->horkage |= fe->param.horkage_on;
489 dev->horkage &= ~fe->param.horkage_off;
491 ata_dev_notice(dev, "FORCE: horkage modified (%s)\n",
492 fe->param.name);
497 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
498 * @opcode: SCSI opcode
500 * Determine ATAPI command type from @opcode.
502 * LOCKING:
503 * None.
505 * RETURNS:
506 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
508 int atapi_cmd_type(u8 opcode)
510 switch (opcode) {
511 case GPCMD_READ_10:
512 case GPCMD_READ_12:
513 return ATAPI_READ;
515 case GPCMD_WRITE_10:
516 case GPCMD_WRITE_12:
517 case GPCMD_WRITE_AND_VERIFY_10:
518 return ATAPI_WRITE;
520 case GPCMD_READ_CD:
521 case GPCMD_READ_CD_MSF:
522 return ATAPI_READ_CD;
524 case ATA_16:
525 case ATA_12:
526 if (atapi_passthru16)
527 return ATAPI_PASS_THRU;
528 /* fall thru */
529 default:
530 return ATAPI_MISC;
535 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
536 * @tf: Taskfile to convert
537 * @pmp: Port multiplier port
538 * @is_cmd: This FIS is for command
539 * @fis: Buffer into which data will output
541 * Converts a standard ATA taskfile to a Serial ATA
542 * FIS structure (Register - Host to Device).
544 * LOCKING:
545 * Inherited from caller.
547 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
549 fis[0] = 0x27; /* Register - Host to Device FIS */
550 fis[1] = pmp & 0xf; /* Port multiplier number*/
551 if (is_cmd)
552 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
554 fis[2] = tf->command;
555 fis[3] = tf->feature;
557 fis[4] = tf->lbal;
558 fis[5] = tf->lbam;
559 fis[6] = tf->lbah;
560 fis[7] = tf->device;
562 fis[8] = tf->hob_lbal;
563 fis[9] = tf->hob_lbam;
564 fis[10] = tf->hob_lbah;
565 fis[11] = tf->hob_feature;
567 fis[12] = tf->nsect;
568 fis[13] = tf->hob_nsect;
569 fis[14] = 0;
570 fis[15] = tf->ctl;
572 fis[16] = tf->auxiliary & 0xff;
573 fis[17] = (tf->auxiliary >> 8) & 0xff;
574 fis[18] = (tf->auxiliary >> 16) & 0xff;
575 fis[19] = (tf->auxiliary >> 24) & 0xff;
579 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
580 * @fis: Buffer from which data will be input
581 * @tf: Taskfile to output
583 * Converts a serial ATA FIS structure to a standard ATA taskfile.
585 * LOCKING:
586 * Inherited from caller.
589 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
591 tf->command = fis[2]; /* status */
592 tf->feature = fis[3]; /* error */
594 tf->lbal = fis[4];
595 tf->lbam = fis[5];
596 tf->lbah = fis[6];
597 tf->device = fis[7];
599 tf->hob_lbal = fis[8];
600 tf->hob_lbam = fis[9];
601 tf->hob_lbah = fis[10];
603 tf->nsect = fis[12];
604 tf->hob_nsect = fis[13];
607 static const u8 ata_rw_cmds[] = {
608 /* pio multi */
609 ATA_CMD_READ_MULTI,
610 ATA_CMD_WRITE_MULTI,
611 ATA_CMD_READ_MULTI_EXT,
612 ATA_CMD_WRITE_MULTI_EXT,
616 ATA_CMD_WRITE_MULTI_FUA_EXT,
617 /* pio */
618 ATA_CMD_PIO_READ,
619 ATA_CMD_PIO_WRITE,
620 ATA_CMD_PIO_READ_EXT,
621 ATA_CMD_PIO_WRITE_EXT,
626 /* dma */
627 ATA_CMD_READ,
628 ATA_CMD_WRITE,
629 ATA_CMD_READ_EXT,
630 ATA_CMD_WRITE_EXT,
634 ATA_CMD_WRITE_FUA_EXT
638 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
639 * @tf: command to examine and configure
640 * @dev: device tf belongs to
642 * Examine the device configuration and tf->flags to calculate
643 * the proper read/write commands and protocol to use.
645 * LOCKING:
646 * caller.
648 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
650 u8 cmd;
652 int index, fua, lba48, write;
654 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
655 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
656 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
658 if (dev->flags & ATA_DFLAG_PIO) {
659 tf->protocol = ATA_PROT_PIO;
660 index = dev->multi_count ? 0 : 8;
661 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
662 /* Unable to use DMA due to host limitation */
663 tf->protocol = ATA_PROT_PIO;
664 index = dev->multi_count ? 0 : 8;
665 } else {
666 tf->protocol = ATA_PROT_DMA;
667 index = 16;
670 cmd = ata_rw_cmds[index + fua + lba48 + write];
671 if (cmd) {
672 tf->command = cmd;
673 return 0;
675 return -1;
679 * ata_tf_read_block - Read block address from ATA taskfile
680 * @tf: ATA taskfile of interest
681 * @dev: ATA device @tf belongs to
683 * LOCKING:
684 * None.
686 * Read block address from @tf. This function can handle all
687 * three address formats - LBA, LBA48 and CHS. tf->protocol and
688 * flags select the address format to use.
690 * RETURNS:
691 * Block address read from @tf.
693 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
695 u64 block = 0;
697 if (tf->flags & ATA_TFLAG_LBA) {
698 if (tf->flags & ATA_TFLAG_LBA48) {
699 block |= (u64)tf->hob_lbah << 40;
700 block |= (u64)tf->hob_lbam << 32;
701 block |= (u64)tf->hob_lbal << 24;
702 } else
703 block |= (tf->device & 0xf) << 24;
705 block |= tf->lbah << 16;
706 block |= tf->lbam << 8;
707 block |= tf->lbal;
708 } else {
709 u32 cyl, head, sect;
711 cyl = tf->lbam | (tf->lbah << 8);
712 head = tf->device & 0xf;
713 sect = tf->lbal;
715 if (!sect) {
716 ata_dev_warn(dev,
717 "device reported invalid CHS sector 0\n");
718 sect = 1; /* oh well */
721 block = (cyl * dev->heads + head) * dev->sectors + sect - 1;
724 return block;
728 * ata_build_rw_tf - Build ATA taskfile for given read/write request
729 * @tf: Target ATA taskfile
730 * @dev: ATA device @tf belongs to
731 * @block: Block address
732 * @n_block: Number of blocks
733 * @tf_flags: RW/FUA etc...
734 * @tag: tag
736 * LOCKING:
737 * None.
739 * Build ATA taskfile @tf for read/write request described by
740 * @block, @n_block, @tf_flags and @tag on @dev.
742 * RETURNS:
744 * 0 on success, -ERANGE if the request is too large for @dev,
745 * -EINVAL if the request is invalid.
747 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
748 u64 block, u32 n_block, unsigned int tf_flags,
749 unsigned int tag)
751 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
752 tf->flags |= tf_flags;
754 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
755 /* yay, NCQ */
756 if (!lba_48_ok(block, n_block))
757 return -ERANGE;
759 tf->protocol = ATA_PROT_NCQ;
760 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
762 if (tf->flags & ATA_TFLAG_WRITE)
763 tf->command = ATA_CMD_FPDMA_WRITE;
764 else
765 tf->command = ATA_CMD_FPDMA_READ;
767 tf->nsect = tag << 3;
768 tf->hob_feature = (n_block >> 8) & 0xff;
769 tf->feature = n_block & 0xff;
771 tf->hob_lbah = (block >> 40) & 0xff;
772 tf->hob_lbam = (block >> 32) & 0xff;
773 tf->hob_lbal = (block >> 24) & 0xff;
774 tf->lbah = (block >> 16) & 0xff;
775 tf->lbam = (block >> 8) & 0xff;
776 tf->lbal = block & 0xff;
778 tf->device = ATA_LBA;
779 if (tf->flags & ATA_TFLAG_FUA)
780 tf->device |= 1 << 7;
781 } else if (dev->flags & ATA_DFLAG_LBA) {
782 tf->flags |= ATA_TFLAG_LBA;
784 if (lba_28_ok(block, n_block)) {
785 /* use LBA28 */
786 tf->device |= (block >> 24) & 0xf;
787 } else if (lba_48_ok(block, n_block)) {
788 if (!(dev->flags & ATA_DFLAG_LBA48))
789 return -ERANGE;
791 /* use LBA48 */
792 tf->flags |= ATA_TFLAG_LBA48;
794 tf->hob_nsect = (n_block >> 8) & 0xff;
796 tf->hob_lbah = (block >> 40) & 0xff;
797 tf->hob_lbam = (block >> 32) & 0xff;
798 tf->hob_lbal = (block >> 24) & 0xff;
799 } else
800 /* request too large even for LBA48 */
801 return -ERANGE;
803 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
804 return -EINVAL;
806 tf->nsect = n_block & 0xff;
808 tf->lbah = (block >> 16) & 0xff;
809 tf->lbam = (block >> 8) & 0xff;
810 tf->lbal = block & 0xff;
812 tf->device |= ATA_LBA;
813 } else {
814 /* CHS */
815 u32 sect, head, cyl, track;
817 /* The request -may- be too large for CHS addressing. */
818 if (!lba_28_ok(block, n_block))
819 return -ERANGE;
821 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
822 return -EINVAL;
824 /* Convert LBA to CHS */
825 track = (u32)block / dev->sectors;
826 cyl = track / dev->heads;
827 head = track % dev->heads;
828 sect = (u32)block % dev->sectors + 1;
830 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
831 (u32)block, track, cyl, head, sect);
833 /* Check whether the converted CHS can fit.
834 Cylinder: 0-65535
835 Head: 0-15
836 Sector: 1-255*/
837 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
838 return -ERANGE;
840 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
841 tf->lbal = sect;
842 tf->lbam = cyl;
843 tf->lbah = cyl >> 8;
844 tf->device |= head;
847 return 0;
851 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
852 * @pio_mask: pio_mask
853 * @mwdma_mask: mwdma_mask
854 * @udma_mask: udma_mask
856 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
857 * unsigned int xfer_mask.
859 * LOCKING:
860 * None.
862 * RETURNS:
863 * Packed xfer_mask.
865 unsigned long ata_pack_xfermask(unsigned long pio_mask,
866 unsigned long mwdma_mask,
867 unsigned long udma_mask)
869 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
870 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
871 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
875 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
876 * @xfer_mask: xfer_mask to unpack
877 * @pio_mask: resulting pio_mask
878 * @mwdma_mask: resulting mwdma_mask
879 * @udma_mask: resulting udma_mask
881 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
882 * Any NULL distination masks will be ignored.
884 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
885 unsigned long *mwdma_mask, unsigned long *udma_mask)
887 if (pio_mask)
888 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
889 if (mwdma_mask)
890 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
891 if (udma_mask)
892 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
895 static const struct ata_xfer_ent {
896 int shift, bits;
897 u8 base;
898 } ata_xfer_tbl[] = {
899 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
900 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
901 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
902 { -1, },
906 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
907 * @xfer_mask: xfer_mask of interest
909 * Return matching XFER_* value for @xfer_mask. Only the highest
910 * bit of @xfer_mask is considered.
912 * LOCKING:
913 * None.
915 * RETURNS:
916 * Matching XFER_* value, 0xff if no match found.
918 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
920 int highbit = fls(xfer_mask) - 1;
921 const struct ata_xfer_ent *ent;
923 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
924 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
925 return ent->base + highbit - ent->shift;
926 return 0xff;
930 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
931 * @xfer_mode: XFER_* of interest
933 * Return matching xfer_mask for @xfer_mode.
935 * LOCKING:
936 * None.
938 * RETURNS:
939 * Matching xfer_mask, 0 if no match found.
941 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
943 const struct ata_xfer_ent *ent;
945 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
946 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
947 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
948 & ~((1 << ent->shift) - 1);
949 return 0;
953 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
954 * @xfer_mode: XFER_* of interest
956 * Return matching xfer_shift for @xfer_mode.
958 * LOCKING:
959 * None.
961 * RETURNS:
962 * Matching xfer_shift, -1 if no match found.
964 int ata_xfer_mode2shift(unsigned long xfer_mode)
966 const struct ata_xfer_ent *ent;
968 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
969 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
970 return ent->shift;
971 return -1;
975 * ata_mode_string - convert xfer_mask to string
976 * @xfer_mask: mask of bits supported; only highest bit counts.
978 * Determine string which represents the highest speed
979 * (highest bit in @modemask).
981 * LOCKING:
982 * None.
984 * RETURNS:
985 * Constant C string representing highest speed listed in
986 * @mode_mask, or the constant C string "<n/a>".
988 const char *ata_mode_string(unsigned long xfer_mask)
990 static const char * const xfer_mode_str[] = {
991 "PIO0",
992 "PIO1",
993 "PIO2",
994 "PIO3",
995 "PIO4",
996 "PIO5",
997 "PIO6",
998 "MWDMA0",
999 "MWDMA1",
1000 "MWDMA2",
1001 "MWDMA3",
1002 "MWDMA4",
1003 "UDMA/16",
1004 "UDMA/25",
1005 "UDMA/33",
1006 "UDMA/44",
1007 "UDMA/66",
1008 "UDMA/100",
1009 "UDMA/133",
1010 "UDMA7",
1012 int highbit;
1014 highbit = fls(xfer_mask) - 1;
1015 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1016 return xfer_mode_str[highbit];
1017 return "<n/a>";
1020 const char *sata_spd_string(unsigned int spd)
1022 static const char * const spd_str[] = {
1023 "1.5 Gbps",
1024 "3.0 Gbps",
1025 "6.0 Gbps",
1028 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1029 return "<unknown>";
1030 return spd_str[spd - 1];
1034 * ata_dev_classify - determine device type based on ATA-spec signature
1035 * @tf: ATA taskfile register set for device to be identified
1037 * Determine from taskfile register contents whether a device is
1038 * ATA or ATAPI, as per "Signature and persistence" section
1039 * of ATA/PI spec (volume 1, sect 5.14).
1041 * LOCKING:
1042 * None.
1044 * RETURNS:
1045 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1046 * %ATA_DEV_UNKNOWN the event of failure.
1048 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1050 /* Apple's open source Darwin code hints that some devices only
1051 * put a proper signature into the LBA mid/high registers,
1052 * So, we only check those. It's sufficient for uniqueness.
1054 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1055 * signatures for ATA and ATAPI devices attached on SerialATA,
1056 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1057 * spec has never mentioned about using different signatures
1058 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1059 * Multiplier specification began to use 0x69/0x96 to identify
1060 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1061 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1062 * 0x69/0x96 shortly and described them as reserved for
1063 * SerialATA.
1065 * We follow the current spec and consider that 0x69/0x96
1066 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1067 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1068 * SEMB signature. This is worked around in
1069 * ata_dev_read_id().
1071 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1072 DPRINTK("found ATA device by sig\n");
1073 return ATA_DEV_ATA;
1076 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1077 DPRINTK("found ATAPI device by sig\n");
1078 return ATA_DEV_ATAPI;
1081 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1082 DPRINTK("found PMP device by sig\n");
1083 return ATA_DEV_PMP;
1086 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1087 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1088 return ATA_DEV_SEMB;
1091 DPRINTK("unknown device\n");
1092 return ATA_DEV_UNKNOWN;
1096 * ata_id_string - Convert IDENTIFY DEVICE page into string
1097 * @id: IDENTIFY DEVICE results we will examine
1098 * @s: string into which data is output
1099 * @ofs: offset into identify device page
1100 * @len: length of string to return. must be an even number.
1102 * The strings in the IDENTIFY DEVICE page are broken up into
1103 * 16-bit chunks. Run through the string, and output each
1104 * 8-bit chunk linearly, regardless of platform.
1106 * LOCKING:
1107 * caller.
1110 void ata_id_string(const u16 *id, unsigned char *s,
1111 unsigned int ofs, unsigned int len)
1113 unsigned int c;
1115 BUG_ON(len & 1);
1117 while (len > 0) {
1118 c = id[ofs] >> 8;
1119 *s = c;
1120 s++;
1122 c = id[ofs] & 0xff;
1123 *s = c;
1124 s++;
1126 ofs++;
1127 len -= 2;
1132 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1133 * @id: IDENTIFY DEVICE results we will examine
1134 * @s: string into which data is output
1135 * @ofs: offset into identify device page
1136 * @len: length of string to return. must be an odd number.
1138 * This function is identical to ata_id_string except that it
1139 * trims trailing spaces and terminates the resulting string with
1140 * null. @len must be actual maximum length (even number) + 1.
1142 * LOCKING:
1143 * caller.
1145 void ata_id_c_string(const u16 *id, unsigned char *s,
1146 unsigned int ofs, unsigned int len)
1148 unsigned char *p;
1150 ata_id_string(id, s, ofs, len - 1);
1152 p = s + strnlen(s, len - 1);
1153 while (p > s && p[-1] == ' ')
1154 p--;
1155 *p = '\0';
1158 static u64 ata_id_n_sectors(const u16 *id)
1160 if (ata_id_has_lba(id)) {
1161 if (ata_id_has_lba48(id))
1162 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1163 else
1164 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1165 } else {
1166 if (ata_id_current_chs_valid(id))
1167 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1168 id[ATA_ID_CUR_SECTORS];
1169 else
1170 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1171 id[ATA_ID_SECTORS];
1175 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1177 u64 sectors = 0;
1179 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1180 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1181 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1182 sectors |= (tf->lbah & 0xff) << 16;
1183 sectors |= (tf->lbam & 0xff) << 8;
1184 sectors |= (tf->lbal & 0xff);
1186 return sectors;
1189 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1191 u64 sectors = 0;
1193 sectors |= (tf->device & 0x0f) << 24;
1194 sectors |= (tf->lbah & 0xff) << 16;
1195 sectors |= (tf->lbam & 0xff) << 8;
1196 sectors |= (tf->lbal & 0xff);
1198 return sectors;
1202 * ata_read_native_max_address - Read native max address
1203 * @dev: target device
1204 * @max_sectors: out parameter for the result native max address
1206 * Perform an LBA48 or LBA28 native size query upon the device in
1207 * question.
1209 * RETURNS:
1210 * 0 on success, -EACCES if command is aborted by the drive.
1211 * -EIO on other errors.
1213 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1215 unsigned int err_mask;
1216 struct ata_taskfile tf;
1217 int lba48 = ata_id_has_lba48(dev->id);
1219 ata_tf_init(dev, &tf);
1221 /* always clear all address registers */
1222 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1224 if (lba48) {
1225 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1226 tf.flags |= ATA_TFLAG_LBA48;
1227 } else
1228 tf.command = ATA_CMD_READ_NATIVE_MAX;
1230 tf.protocol |= ATA_PROT_NODATA;
1231 tf.device |= ATA_LBA;
1233 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1234 if (err_mask) {
1235 ata_dev_warn(dev,
1236 "failed to read native max address (err_mask=0x%x)\n",
1237 err_mask);
1238 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1239 return -EACCES;
1240 return -EIO;
1243 if (lba48)
1244 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1245 else
1246 *max_sectors = ata_tf_to_lba(&tf) + 1;
1247 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1248 (*max_sectors)--;
1249 return 0;
1253 * ata_set_max_sectors - Set max sectors
1254 * @dev: target device
1255 * @new_sectors: new max sectors value to set for the device
1257 * Set max sectors of @dev to @new_sectors.
1259 * RETURNS:
1260 * 0 on success, -EACCES if command is aborted or denied (due to
1261 * previous non-volatile SET_MAX) by the drive. -EIO on other
1262 * errors.
1264 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1266 unsigned int err_mask;
1267 struct ata_taskfile tf;
1268 int lba48 = ata_id_has_lba48(dev->id);
1270 new_sectors--;
1272 ata_tf_init(dev, &tf);
1274 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1276 if (lba48) {
1277 tf.command = ATA_CMD_SET_MAX_EXT;
1278 tf.flags |= ATA_TFLAG_LBA48;
1280 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1281 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1282 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1283 } else {
1284 tf.command = ATA_CMD_SET_MAX;
1286 tf.device |= (new_sectors >> 24) & 0xf;
1289 tf.protocol |= ATA_PROT_NODATA;
1290 tf.device |= ATA_LBA;
1292 tf.lbal = (new_sectors >> 0) & 0xff;
1293 tf.lbam = (new_sectors >> 8) & 0xff;
1294 tf.lbah = (new_sectors >> 16) & 0xff;
1296 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1297 if (err_mask) {
1298 ata_dev_warn(dev,
1299 "failed to set max address (err_mask=0x%x)\n",
1300 err_mask);
1301 if (err_mask == AC_ERR_DEV &&
1302 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1303 return -EACCES;
1304 return -EIO;
1307 return 0;
1311 * ata_hpa_resize - Resize a device with an HPA set
1312 * @dev: Device to resize
1314 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1315 * it if required to the full size of the media. The caller must check
1316 * the drive has the HPA feature set enabled.
1318 * RETURNS:
1319 * 0 on success, -errno on failure.
1321 static int ata_hpa_resize(struct ata_device *dev)
1323 struct ata_eh_context *ehc = &dev->link->eh_context;
1324 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1325 bool unlock_hpa = ata_ignore_hpa || dev->flags & ATA_DFLAG_UNLOCK_HPA;
1326 u64 sectors = ata_id_n_sectors(dev->id);
1327 u64 native_sectors;
1328 int rc;
1330 /* do we need to do it? */
1331 if (dev->class != ATA_DEV_ATA ||
1332 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1333 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1334 return 0;
1336 /* read native max address */
1337 rc = ata_read_native_max_address(dev, &native_sectors);
1338 if (rc) {
1339 /* If device aborted the command or HPA isn't going to
1340 * be unlocked, skip HPA resizing.
1342 if (rc == -EACCES || !unlock_hpa) {
1343 ata_dev_warn(dev,
1344 "HPA support seems broken, skipping HPA handling\n");
1345 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1347 /* we can continue if device aborted the command */
1348 if (rc == -EACCES)
1349 rc = 0;
1352 return rc;
1354 dev->n_native_sectors = native_sectors;
1356 /* nothing to do? */
1357 if (native_sectors <= sectors || !unlock_hpa) {
1358 if (!print_info || native_sectors == sectors)
1359 return 0;
1361 if (native_sectors > sectors)
1362 ata_dev_info(dev,
1363 "HPA detected: current %llu, native %llu\n",
1364 (unsigned long long)sectors,
1365 (unsigned long long)native_sectors);
1366 else if (native_sectors < sectors)
1367 ata_dev_warn(dev,
1368 "native sectors (%llu) is smaller than sectors (%llu)\n",
1369 (unsigned long long)native_sectors,
1370 (unsigned long long)sectors);
1371 return 0;
1374 /* let's unlock HPA */
1375 rc = ata_set_max_sectors(dev, native_sectors);
1376 if (rc == -EACCES) {
1377 /* if device aborted the command, skip HPA resizing */
1378 ata_dev_warn(dev,
1379 "device aborted resize (%llu -> %llu), skipping HPA handling\n",
1380 (unsigned long long)sectors,
1381 (unsigned long long)native_sectors);
1382 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1383 return 0;
1384 } else if (rc)
1385 return rc;
1387 /* re-read IDENTIFY data */
1388 rc = ata_dev_reread_id(dev, 0);
1389 if (rc) {
1390 ata_dev_err(dev,
1391 "failed to re-read IDENTIFY data after HPA resizing\n");
1392 return rc;
1395 if (print_info) {
1396 u64 new_sectors = ata_id_n_sectors(dev->id);
1397 ata_dev_info(dev,
1398 "HPA unlocked: %llu -> %llu, native %llu\n",
1399 (unsigned long long)sectors,
1400 (unsigned long long)new_sectors,
1401 (unsigned long long)native_sectors);
1404 return 0;
1408 * ata_dump_id - IDENTIFY DEVICE info debugging output
1409 * @id: IDENTIFY DEVICE page to dump
1411 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1412 * page.
1414 * LOCKING:
1415 * caller.
1418 static inline void ata_dump_id(const u16 *id)
1420 DPRINTK("49==0x%04x "
1421 "53==0x%04x "
1422 "63==0x%04x "
1423 "64==0x%04x "
1424 "75==0x%04x \n",
1425 id[49],
1426 id[53],
1427 id[63],
1428 id[64],
1429 id[75]);
1430 DPRINTK("80==0x%04x "
1431 "81==0x%04x "
1432 "82==0x%04x "
1433 "83==0x%04x "
1434 "84==0x%04x \n",
1435 id[80],
1436 id[81],
1437 id[82],
1438 id[83],
1439 id[84]);
1440 DPRINTK("88==0x%04x "
1441 "93==0x%04x\n",
1442 id[88],
1443 id[93]);
1447 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1448 * @id: IDENTIFY data to compute xfer mask from
1450 * Compute the xfermask for this device. This is not as trivial
1451 * as it seems if we must consider early devices correctly.
1453 * FIXME: pre IDE drive timing (do we care ?).
1455 * LOCKING:
1456 * None.
1458 * RETURNS:
1459 * Computed xfermask
1461 unsigned long ata_id_xfermask(const u16 *id)
1463 unsigned long pio_mask, mwdma_mask, udma_mask;
1465 /* Usual case. Word 53 indicates word 64 is valid */
1466 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1467 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1468 pio_mask <<= 3;
1469 pio_mask |= 0x7;
1470 } else {
1471 /* If word 64 isn't valid then Word 51 high byte holds
1472 * the PIO timing number for the maximum. Turn it into
1473 * a mask.
1475 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1476 if (mode < 5) /* Valid PIO range */
1477 pio_mask = (2 << mode) - 1;
1478 else
1479 pio_mask = 1;
1481 /* But wait.. there's more. Design your standards by
1482 * committee and you too can get a free iordy field to
1483 * process. However its the speeds not the modes that
1484 * are supported... Note drivers using the timing API
1485 * will get this right anyway
1489 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1491 if (ata_id_is_cfa(id)) {
1493 * Process compact flash extended modes
1495 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1496 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1498 if (pio)
1499 pio_mask |= (1 << 5);
1500 if (pio > 1)
1501 pio_mask |= (1 << 6);
1502 if (dma)
1503 mwdma_mask |= (1 << 3);
1504 if (dma > 1)
1505 mwdma_mask |= (1 << 4);
1508 udma_mask = 0;
1509 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1510 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1512 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1515 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1517 struct completion *waiting = qc->private_data;
1519 complete(waiting);
1523 * ata_exec_internal_sg - execute libata internal command
1524 * @dev: Device to which the command is sent
1525 * @tf: Taskfile registers for the command and the result
1526 * @cdb: CDB for packet command
1527 * @dma_dir: Data transfer direction of the command
1528 * @sgl: sg list for the data buffer of the command
1529 * @n_elem: Number of sg entries
1530 * @timeout: Timeout in msecs (0 for default)
1532 * Executes libata internal command with timeout. @tf contains
1533 * command on entry and result on return. Timeout and error
1534 * conditions are reported via return value. No recovery action
1535 * is taken after a command times out. It's caller's duty to
1536 * clean up after timeout.
1538 * LOCKING:
1539 * None. Should be called with kernel context, might sleep.
1541 * RETURNS:
1542 * Zero on success, AC_ERR_* mask on failure
1544 unsigned ata_exec_internal_sg(struct ata_device *dev,
1545 struct ata_taskfile *tf, const u8 *cdb,
1546 int dma_dir, struct scatterlist *sgl,
1547 unsigned int n_elem, unsigned long timeout)
1549 struct ata_link *link = dev->link;
1550 struct ata_port *ap = link->ap;
1551 u8 command = tf->command;
1552 int auto_timeout = 0;
1553 struct ata_queued_cmd *qc;
1554 unsigned int tag, preempted_tag;
1555 u32 preempted_sactive, preempted_qc_active;
1556 int preempted_nr_active_links;
1557 DECLARE_COMPLETION_ONSTACK(wait);
1558 unsigned long flags;
1559 unsigned int err_mask;
1560 int rc;
1562 spin_lock_irqsave(ap->lock, flags);
1564 /* no internal command while frozen */
1565 if (ap->pflags & ATA_PFLAG_FROZEN) {
1566 spin_unlock_irqrestore(ap->lock, flags);
1567 return AC_ERR_SYSTEM;
1570 /* initialize internal qc */
1572 /* XXX: Tag 0 is used for drivers with legacy EH as some
1573 * drivers choke if any other tag is given. This breaks
1574 * ata_tag_internal() test for those drivers. Don't use new
1575 * EH stuff without converting to it.
1577 if (ap->ops->error_handler)
1578 tag = ATA_TAG_INTERNAL;
1579 else
1580 tag = 0;
1582 if (test_and_set_bit(tag, &ap->qc_allocated))
1583 BUG();
1584 qc = __ata_qc_from_tag(ap, tag);
1586 qc->tag = tag;
1587 qc->scsicmd = NULL;
1588 qc->ap = ap;
1589 qc->dev = dev;
1590 ata_qc_reinit(qc);
1592 preempted_tag = link->active_tag;
1593 preempted_sactive = link->sactive;
1594 preempted_qc_active = ap->qc_active;
1595 preempted_nr_active_links = ap->nr_active_links;
1596 link->active_tag = ATA_TAG_POISON;
1597 link->sactive = 0;
1598 ap->qc_active = 0;
1599 ap->nr_active_links = 0;
1601 /* prepare & issue qc */
1602 qc->tf = *tf;
1603 if (cdb)
1604 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1606 /* some SATA bridges need us to indicate data xfer direction */
1607 if (tf->protocol == ATAPI_PROT_DMA && (dev->flags & ATA_DFLAG_DMADIR) &&
1608 dma_dir == DMA_FROM_DEVICE)
1609 qc->tf.feature |= ATAPI_DMADIR;
1611 qc->flags |= ATA_QCFLAG_RESULT_TF;
1612 qc->dma_dir = dma_dir;
1613 if (dma_dir != DMA_NONE) {
1614 unsigned int i, buflen = 0;
1615 struct scatterlist *sg;
1617 for_each_sg(sgl, sg, n_elem, i)
1618 buflen += sg->length;
1620 ata_sg_init(qc, sgl, n_elem);
1621 qc->nbytes = buflen;
1624 qc->private_data = &wait;
1625 qc->complete_fn = ata_qc_complete_internal;
1627 ata_qc_issue(qc);
1629 spin_unlock_irqrestore(ap->lock, flags);
1631 if (!timeout) {
1632 if (ata_probe_timeout)
1633 timeout = ata_probe_timeout * 1000;
1634 else {
1635 timeout = ata_internal_cmd_timeout(dev, command);
1636 auto_timeout = 1;
1640 if (ap->ops->error_handler)
1641 ata_eh_release(ap);
1643 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1645 if (ap->ops->error_handler)
1646 ata_eh_acquire(ap);
1648 ata_sff_flush_pio_task(ap);
1650 if (!rc) {
1651 spin_lock_irqsave(ap->lock, flags);
1653 /* We're racing with irq here. If we lose, the
1654 * following test prevents us from completing the qc
1655 * twice. If we win, the port is frozen and will be
1656 * cleaned up by ->post_internal_cmd().
1658 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1659 qc->err_mask |= AC_ERR_TIMEOUT;
1661 if (ap->ops->error_handler)
1662 ata_port_freeze(ap);
1663 else
1664 ata_qc_complete(qc);
1666 if (ata_msg_warn(ap))
1667 ata_dev_warn(dev, "qc timeout (cmd 0x%x)\n",
1668 command);
1671 spin_unlock_irqrestore(ap->lock, flags);
1674 /* do post_internal_cmd */
1675 if (ap->ops->post_internal_cmd)
1676 ap->ops->post_internal_cmd(qc);
1678 /* perform minimal error analysis */
1679 if (qc->flags & ATA_QCFLAG_FAILED) {
1680 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1681 qc->err_mask |= AC_ERR_DEV;
1683 if (!qc->err_mask)
1684 qc->err_mask |= AC_ERR_OTHER;
1686 if (qc->err_mask & ~AC_ERR_OTHER)
1687 qc->err_mask &= ~AC_ERR_OTHER;
1690 /* finish up */
1691 spin_lock_irqsave(ap->lock, flags);
1693 *tf = qc->result_tf;
1694 err_mask = qc->err_mask;
1696 ata_qc_free(qc);
1697 link->active_tag = preempted_tag;
1698 link->sactive = preempted_sactive;
1699 ap->qc_active = preempted_qc_active;
1700 ap->nr_active_links = preempted_nr_active_links;
1702 spin_unlock_irqrestore(ap->lock, flags);
1704 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1705 ata_internal_cmd_timed_out(dev, command);
1707 return err_mask;
1711 * ata_exec_internal - execute libata internal command
1712 * @dev: Device to which the command is sent
1713 * @tf: Taskfile registers for the command and the result
1714 * @cdb: CDB for packet command
1715 * @dma_dir: Data transfer direction of the command
1716 * @buf: Data buffer of the command
1717 * @buflen: Length of data buffer
1718 * @timeout: Timeout in msecs (0 for default)
1720 * Wrapper around ata_exec_internal_sg() which takes simple
1721 * buffer instead of sg list.
1723 * LOCKING:
1724 * None. Should be called with kernel context, might sleep.
1726 * RETURNS:
1727 * Zero on success, AC_ERR_* mask on failure
1729 unsigned ata_exec_internal(struct ata_device *dev,
1730 struct ata_taskfile *tf, const u8 *cdb,
1731 int dma_dir, void *buf, unsigned int buflen,
1732 unsigned long timeout)
1734 struct scatterlist *psg = NULL, sg;
1735 unsigned int n_elem = 0;
1737 if (dma_dir != DMA_NONE) {
1738 WARN_ON(!buf);
1739 sg_init_one(&sg, buf, buflen);
1740 psg = &sg;
1741 n_elem++;
1744 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1745 timeout);
1749 * ata_do_simple_cmd - execute simple internal command
1750 * @dev: Device to which the command is sent
1751 * @cmd: Opcode to execute
1753 * Execute a 'simple' command, that only consists of the opcode
1754 * 'cmd' itself, without filling any other registers
1756 * LOCKING:
1757 * Kernel thread context (may sleep).
1759 * RETURNS:
1760 * Zero on success, AC_ERR_* mask on failure
1762 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1764 struct ata_taskfile tf;
1766 ata_tf_init(dev, &tf);
1768 tf.command = cmd;
1769 tf.flags |= ATA_TFLAG_DEVICE;
1770 tf.protocol = ATA_PROT_NODATA;
1772 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1776 * ata_pio_need_iordy - check if iordy needed
1777 * @adev: ATA device
1779 * Check if the current speed of the device requires IORDY. Used
1780 * by various controllers for chip configuration.
1782 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1784 /* Don't set IORDY if we're preparing for reset. IORDY may
1785 * lead to controller lock up on certain controllers if the
1786 * port is not occupied. See bko#11703 for details.
1788 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
1789 return 0;
1790 /* Controller doesn't support IORDY. Probably a pointless
1791 * check as the caller should know this.
1793 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
1794 return 0;
1795 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
1796 if (ata_id_is_cfa(adev->id)
1797 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
1798 return 0;
1799 /* PIO3 and higher it is mandatory */
1800 if (adev->pio_mode > XFER_PIO_2)
1801 return 1;
1802 /* We turn it on when possible */
1803 if (ata_id_has_iordy(adev->id))
1804 return 1;
1805 return 0;
1809 * ata_pio_mask_no_iordy - Return the non IORDY mask
1810 * @adev: ATA device
1812 * Compute the highest mode possible if we are not using iordy. Return
1813 * -1 if no iordy mode is available.
1815 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
1817 /* If we have no drive specific rule, then PIO 2 is non IORDY */
1818 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
1819 u16 pio = adev->id[ATA_ID_EIDE_PIO];
1820 /* Is the speed faster than the drive allows non IORDY ? */
1821 if (pio) {
1822 /* This is cycle times not frequency - watch the logic! */
1823 if (pio > 240) /* PIO2 is 240nS per cycle */
1824 return 3 << ATA_SHIFT_PIO;
1825 return 7 << ATA_SHIFT_PIO;
1828 return 3 << ATA_SHIFT_PIO;
1832 * ata_do_dev_read_id - default ID read method
1833 * @dev: device
1834 * @tf: proposed taskfile
1835 * @id: data buffer
1837 * Issue the identify taskfile and hand back the buffer containing
1838 * identify data. For some RAID controllers and for pre ATA devices
1839 * this function is wrapped or replaced by the driver
1841 unsigned int ata_do_dev_read_id(struct ata_device *dev,
1842 struct ata_taskfile *tf, u16 *id)
1844 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
1845 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
1849 * ata_dev_read_id - Read ID data from the specified device
1850 * @dev: target device
1851 * @p_class: pointer to class of the target device (may be changed)
1852 * @flags: ATA_READID_* flags
1853 * @id: buffer to read IDENTIFY data into
1855 * Read ID data from the specified device. ATA_CMD_ID_ATA is
1856 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
1857 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
1858 * for pre-ATA4 drives.
1860 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
1861 * now we abort if we hit that case.
1863 * LOCKING:
1864 * Kernel thread context (may sleep)
1866 * RETURNS:
1867 * 0 on success, -errno otherwise.
1869 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
1870 unsigned int flags, u16 *id)
1872 struct ata_port *ap = dev->link->ap;
1873 unsigned int class = *p_class;
1874 struct ata_taskfile tf;
1875 unsigned int err_mask = 0;
1876 const char *reason;
1877 bool is_semb = class == ATA_DEV_SEMB;
1878 int may_fallback = 1, tried_spinup = 0;
1879 int rc;
1881 if (ata_msg_ctl(ap))
1882 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
1884 retry:
1885 ata_tf_init(dev, &tf);
1887 switch (class) {
1888 case ATA_DEV_SEMB:
1889 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
1890 case ATA_DEV_ATA:
1891 tf.command = ATA_CMD_ID_ATA;
1892 break;
1893 case ATA_DEV_ATAPI:
1894 tf.command = ATA_CMD_ID_ATAPI;
1895 break;
1896 default:
1897 rc = -ENODEV;
1898 reason = "unsupported class";
1899 goto err_out;
1902 tf.protocol = ATA_PROT_PIO;
1904 /* Some devices choke if TF registers contain garbage. Make
1905 * sure those are properly initialized.
1907 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
1909 /* Device presence detection is unreliable on some
1910 * controllers. Always poll IDENTIFY if available.
1912 tf.flags |= ATA_TFLAG_POLLING;
1914 if (ap->ops->read_id)
1915 err_mask = ap->ops->read_id(dev, &tf, id);
1916 else
1917 err_mask = ata_do_dev_read_id(dev, &tf, id);
1919 if (err_mask) {
1920 if (err_mask & AC_ERR_NODEV_HINT) {
1921 ata_dev_dbg(dev, "NODEV after polling detection\n");
1922 return -ENOENT;
1925 if (is_semb) {
1926 ata_dev_info(dev,
1927 "IDENTIFY failed on device w/ SEMB sig, disabled\n");
1928 /* SEMB is not supported yet */
1929 *p_class = ATA_DEV_SEMB_UNSUP;
1930 return 0;
1933 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
1934 /* Device or controller might have reported
1935 * the wrong device class. Give a shot at the
1936 * other IDENTIFY if the current one is
1937 * aborted by the device.
1939 if (may_fallback) {
1940 may_fallback = 0;
1942 if (class == ATA_DEV_ATA)
1943 class = ATA_DEV_ATAPI;
1944 else
1945 class = ATA_DEV_ATA;
1946 goto retry;
1949 /* Control reaches here iff the device aborted
1950 * both flavors of IDENTIFYs which happens
1951 * sometimes with phantom devices.
1953 ata_dev_dbg(dev,
1954 "both IDENTIFYs aborted, assuming NODEV\n");
1955 return -ENOENT;
1958 rc = -EIO;
1959 reason = "I/O error";
1960 goto err_out;
1963 if (dev->horkage & ATA_HORKAGE_DUMP_ID) {
1964 ata_dev_dbg(dev, "dumping IDENTIFY data, "
1965 "class=%d may_fallback=%d tried_spinup=%d\n",
1966 class, may_fallback, tried_spinup);
1967 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET,
1968 16, 2, id, ATA_ID_WORDS * sizeof(*id), true);
1971 /* Falling back doesn't make sense if ID data was read
1972 * successfully at least once.
1974 may_fallback = 0;
1976 swap_buf_le16(id, ATA_ID_WORDS);
1978 /* sanity check */
1979 rc = -EINVAL;
1980 reason = "device reports invalid type";
1982 if (class == ATA_DEV_ATA) {
1983 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
1984 goto err_out;
1985 if (ap->host->flags & ATA_HOST_IGNORE_ATA &&
1986 ata_id_is_ata(id)) {
1987 ata_dev_dbg(dev,
1988 "host indicates ignore ATA devices, ignored\n");
1989 return -ENOENT;
1991 } else {
1992 if (ata_id_is_ata(id))
1993 goto err_out;
1996 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
1997 tried_spinup = 1;
1999 * Drive powered-up in standby mode, and requires a specific
2000 * SET_FEATURES spin-up subcommand before it will accept
2001 * anything other than the original IDENTIFY command.
2003 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2004 if (err_mask && id[2] != 0x738c) {
2005 rc = -EIO;
2006 reason = "SPINUP failed";
2007 goto err_out;
2010 * If the drive initially returned incomplete IDENTIFY info,
2011 * we now must reissue the IDENTIFY command.
2013 if (id[2] == 0x37c8)
2014 goto retry;
2017 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2019 * The exact sequence expected by certain pre-ATA4 drives is:
2020 * SRST RESET
2021 * IDENTIFY (optional in early ATA)
2022 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2023 * anything else..
2024 * Some drives were very specific about that exact sequence.
2026 * Note that ATA4 says lba is mandatory so the second check
2027 * should never trigger.
2029 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2030 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2031 if (err_mask) {
2032 rc = -EIO;
2033 reason = "INIT_DEV_PARAMS failed";
2034 goto err_out;
2037 /* current CHS translation info (id[53-58]) might be
2038 * changed. reread the identify device info.
2040 flags &= ~ATA_READID_POSTRESET;
2041 goto retry;
2045 *p_class = class;
2047 return 0;
2049 err_out:
2050 if (ata_msg_warn(ap))
2051 ata_dev_warn(dev, "failed to IDENTIFY (%s, err_mask=0x%x)\n",
2052 reason, err_mask);
2053 return rc;
2056 static int ata_do_link_spd_horkage(struct ata_device *dev)
2058 struct ata_link *plink = ata_dev_phys_link(dev);
2059 u32 target, target_limit;
2061 if (!sata_scr_valid(plink))
2062 return 0;
2064 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2065 target = 1;
2066 else
2067 return 0;
2069 target_limit = (1 << target) - 1;
2071 /* if already on stricter limit, no need to push further */
2072 if (plink->sata_spd_limit <= target_limit)
2073 return 0;
2075 plink->sata_spd_limit = target_limit;
2077 /* Request another EH round by returning -EAGAIN if link is
2078 * going faster than the target speed. Forward progress is
2079 * guaranteed by setting sata_spd_limit to target_limit above.
2081 if (plink->sata_spd > target) {
2082 ata_dev_info(dev, "applying link speed limit horkage to %s\n",
2083 sata_spd_string(target));
2084 return -EAGAIN;
2086 return 0;
2089 static inline u8 ata_dev_knobble(struct ata_device *dev)
2091 struct ata_port *ap = dev->link->ap;
2093 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2094 return 0;
2096 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2099 static int ata_dev_config_ncq(struct ata_device *dev,
2100 char *desc, size_t desc_sz)
2102 struct ata_port *ap = dev->link->ap;
2103 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2104 unsigned int err_mask;
2105 char *aa_desc = "";
2107 if (!ata_id_has_ncq(dev->id)) {
2108 desc[0] = '\0';
2109 return 0;
2111 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2112 snprintf(desc, desc_sz, "NCQ (not used)");
2113 return 0;
2115 if (ap->flags & ATA_FLAG_NCQ) {
2116 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2117 dev->flags |= ATA_DFLAG_NCQ;
2120 if (!(dev->horkage & ATA_HORKAGE_BROKEN_FPDMA_AA) &&
2121 (ap->flags & ATA_FLAG_FPDMA_AA) &&
2122 ata_id_has_fpdma_aa(dev->id)) {
2123 err_mask = ata_dev_set_feature(dev, SETFEATURES_SATA_ENABLE,
2124 SATA_FPDMA_AA);
2125 if (err_mask) {
2126 ata_dev_err(dev,
2127 "failed to enable AA (error_mask=0x%x)\n",
2128 err_mask);
2129 if (err_mask != AC_ERR_DEV) {
2130 dev->horkage |= ATA_HORKAGE_BROKEN_FPDMA_AA;
2131 return -EIO;
2133 } else
2134 aa_desc = ", AA";
2137 if (hdepth >= ddepth)
2138 snprintf(desc, desc_sz, "NCQ (depth %d)%s", ddepth, aa_desc);
2139 else
2140 snprintf(desc, desc_sz, "NCQ (depth %d/%d)%s", hdepth,
2141 ddepth, aa_desc);
2143 if ((ap->flags & ATA_FLAG_FPDMA_AUX) &&
2144 ata_id_has_ncq_send_and_recv(dev->id)) {
2145 err_mask = ata_read_log_page(dev, ATA_LOG_NCQ_SEND_RECV,
2146 0, ap->sector_buf, 1);
2147 if (err_mask) {
2148 ata_dev_dbg(dev,
2149 "failed to get NCQ Send/Recv Log Emask 0x%x\n",
2150 err_mask);
2151 } else {
2152 u8 *cmds = dev->ncq_send_recv_cmds;
2154 dev->flags |= ATA_DFLAG_NCQ_SEND_RECV;
2155 memcpy(cmds, ap->sector_buf, ATA_LOG_NCQ_SEND_RECV_SIZE);
2157 if (dev->horkage & ATA_HORKAGE_NO_NCQ_TRIM) {
2158 ata_dev_dbg(dev, "disabling queued TRIM support\n");
2159 cmds[ATA_LOG_NCQ_SEND_RECV_DSM_OFFSET] &=
2160 ~ATA_LOG_NCQ_SEND_RECV_DSM_TRIM;
2165 return 0;
2169 * ata_dev_configure - Configure the specified ATA/ATAPI device
2170 * @dev: Target device to configure
2172 * Configure @dev according to @dev->id. Generic and low-level
2173 * driver specific fixups are also applied.
2175 * LOCKING:
2176 * Kernel thread context (may sleep)
2178 * RETURNS:
2179 * 0 on success, -errno otherwise
2181 int ata_dev_configure(struct ata_device *dev)
2183 struct ata_port *ap = dev->link->ap;
2184 struct ata_eh_context *ehc = &dev->link->eh_context;
2185 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2186 const u16 *id = dev->id;
2187 unsigned long xfer_mask;
2188 unsigned int err_mask;
2189 char revbuf[7]; /* XYZ-99\0 */
2190 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2191 char modelbuf[ATA_ID_PROD_LEN+1];
2192 int rc;
2194 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2195 ata_dev_info(dev, "%s: ENTER/EXIT -- nodev\n", __func__);
2196 return 0;
2199 if (ata_msg_probe(ap))
2200 ata_dev_dbg(dev, "%s: ENTER\n", __func__);
2202 /* set horkage */
2203 dev->horkage |= ata_dev_blacklisted(dev);
2204 ata_force_horkage(dev);
2206 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2207 ata_dev_info(dev, "unsupported device, disabling\n");
2208 ata_dev_disable(dev);
2209 return 0;
2212 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2213 dev->class == ATA_DEV_ATAPI) {
2214 ata_dev_warn(dev, "WARNING: ATAPI is %s, device ignored\n",
2215 atapi_enabled ? "not supported with this driver"
2216 : "disabled");
2217 ata_dev_disable(dev);
2218 return 0;
2221 rc = ata_do_link_spd_horkage(dev);
2222 if (rc)
2223 return rc;
2225 /* some WD SATA-1 drives have issues with LPM, turn on NOLPM for them */
2226 if ((dev->horkage & ATA_HORKAGE_WD_BROKEN_LPM) &&
2227 (id[ATA_ID_SATA_CAPABILITY] & 0xe) == 0x2)
2228 dev->horkage |= ATA_HORKAGE_NOLPM;
2230 if (dev->horkage & ATA_HORKAGE_NOLPM) {
2231 ata_dev_warn(dev, "LPM support broken, forcing max_power\n");
2232 dev->link->ap->target_lpm_policy = ATA_LPM_MAX_POWER;
2235 /* let ACPI work its magic */
2236 rc = ata_acpi_on_devcfg(dev);
2237 if (rc)
2238 return rc;
2240 /* massage HPA, do it early as it might change IDENTIFY data */
2241 rc = ata_hpa_resize(dev);
2242 if (rc)
2243 return rc;
2245 /* print device capabilities */
2246 if (ata_msg_probe(ap))
2247 ata_dev_dbg(dev,
2248 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2249 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2250 __func__,
2251 id[49], id[82], id[83], id[84],
2252 id[85], id[86], id[87], id[88]);
2254 /* initialize to-be-configured parameters */
2255 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2256 dev->max_sectors = 0;
2257 dev->cdb_len = 0;
2258 dev->n_sectors = 0;
2259 dev->cylinders = 0;
2260 dev->heads = 0;
2261 dev->sectors = 0;
2262 dev->multi_count = 0;
2265 * common ATA, ATAPI feature tests
2268 /* find max transfer mode; for printk only */
2269 xfer_mask = ata_id_xfermask(id);
2271 if (ata_msg_probe(ap))
2272 ata_dump_id(id);
2274 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2275 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2276 sizeof(fwrevbuf));
2278 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2279 sizeof(modelbuf));
2281 /* ATA-specific feature tests */
2282 if (dev->class == ATA_DEV_ATA) {
2283 if (ata_id_is_cfa(id)) {
2284 /* CPRM may make this media unusable */
2285 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2286 ata_dev_warn(dev,
2287 "supports DRM functions and may not be fully accessible\n");
2288 snprintf(revbuf, 7, "CFA");
2289 } else {
2290 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2291 /* Warn the user if the device has TPM extensions */
2292 if (ata_id_has_tpm(id))
2293 ata_dev_warn(dev,
2294 "supports DRM functions and may not be fully accessible\n");
2297 dev->n_sectors = ata_id_n_sectors(id);
2299 /* get current R/W Multiple count setting */
2300 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2301 unsigned int max = dev->id[47] & 0xff;
2302 unsigned int cnt = dev->id[59] & 0xff;
2303 /* only recognize/allow powers of two here */
2304 if (is_power_of_2(max) && is_power_of_2(cnt))
2305 if (cnt <= max)
2306 dev->multi_count = cnt;
2309 if (ata_id_has_lba(id)) {
2310 const char *lba_desc;
2311 char ncq_desc[24];
2313 lba_desc = "LBA";
2314 dev->flags |= ATA_DFLAG_LBA;
2315 if (ata_id_has_lba48(id)) {
2316 dev->flags |= ATA_DFLAG_LBA48;
2317 lba_desc = "LBA48";
2319 if (dev->n_sectors >= (1UL << 28) &&
2320 ata_id_has_flush_ext(id))
2321 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2324 /* config NCQ */
2325 rc = ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2326 if (rc)
2327 return rc;
2329 /* print device info to dmesg */
2330 if (ata_msg_drv(ap) && print_info) {
2331 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2332 revbuf, modelbuf, fwrevbuf,
2333 ata_mode_string(xfer_mask));
2334 ata_dev_info(dev,
2335 "%llu sectors, multi %u: %s %s\n",
2336 (unsigned long long)dev->n_sectors,
2337 dev->multi_count, lba_desc, ncq_desc);
2339 } else {
2340 /* CHS */
2342 /* Default translation */
2343 dev->cylinders = id[1];
2344 dev->heads = id[3];
2345 dev->sectors = id[6];
2347 if (ata_id_current_chs_valid(id)) {
2348 /* Current CHS translation is valid. */
2349 dev->cylinders = id[54];
2350 dev->heads = id[55];
2351 dev->sectors = id[56];
2354 /* print device info to dmesg */
2355 if (ata_msg_drv(ap) && print_info) {
2356 ata_dev_info(dev, "%s: %s, %s, max %s\n",
2357 revbuf, modelbuf, fwrevbuf,
2358 ata_mode_string(xfer_mask));
2359 ata_dev_info(dev,
2360 "%llu sectors, multi %u, CHS %u/%u/%u\n",
2361 (unsigned long long)dev->n_sectors,
2362 dev->multi_count, dev->cylinders,
2363 dev->heads, dev->sectors);
2367 /* Check and mark DevSlp capability. Get DevSlp timing variables
2368 * from SATA Settings page of Identify Device Data Log.
2370 if (ata_id_has_devslp(dev->id)) {
2371 u8 *sata_setting = ap->sector_buf;
2372 int i, j;
2374 dev->flags |= ATA_DFLAG_DEVSLP;
2375 err_mask = ata_read_log_page(dev,
2376 ATA_LOG_SATA_ID_DEV_DATA,
2377 ATA_LOG_SATA_SETTINGS,
2378 sata_setting,
2380 if (err_mask)
2381 ata_dev_dbg(dev,
2382 "failed to get Identify Device Data, Emask 0x%x\n",
2383 err_mask);
2384 else
2385 for (i = 0; i < ATA_LOG_DEVSLP_SIZE; i++) {
2386 j = ATA_LOG_DEVSLP_OFFSET + i;
2387 dev->devslp_timing[i] = sata_setting[j];
2391 dev->cdb_len = 16;
2394 /* ATAPI-specific feature tests */
2395 else if (dev->class == ATA_DEV_ATAPI) {
2396 const char *cdb_intr_string = "";
2397 const char *atapi_an_string = "";
2398 const char *dma_dir_string = "";
2399 u32 sntf;
2401 rc = atapi_cdb_len(id);
2402 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2403 if (ata_msg_warn(ap))
2404 ata_dev_warn(dev, "unsupported CDB len\n");
2405 rc = -EINVAL;
2406 goto err_out_nosup;
2408 dev->cdb_len = (unsigned int) rc;
2410 /* Enable ATAPI AN if both the host and device have
2411 * the support. If PMP is attached, SNTF is required
2412 * to enable ATAPI AN to discern between PHY status
2413 * changed notifications and ATAPI ANs.
2415 if (atapi_an &&
2416 (ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2417 (!sata_pmp_attached(ap) ||
2418 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2419 /* issue SET feature command to turn this on */
2420 err_mask = ata_dev_set_feature(dev,
2421 SETFEATURES_SATA_ENABLE, SATA_AN);
2422 if (err_mask)
2423 ata_dev_err(dev,
2424 "failed to enable ATAPI AN (err_mask=0x%x)\n",
2425 err_mask);
2426 else {
2427 dev->flags |= ATA_DFLAG_AN;
2428 atapi_an_string = ", ATAPI AN";
2432 if (ata_id_cdb_intr(dev->id)) {
2433 dev->flags |= ATA_DFLAG_CDB_INTR;
2434 cdb_intr_string = ", CDB intr";
2437 if (atapi_dmadir || (dev->horkage & ATA_HORKAGE_ATAPI_DMADIR) || atapi_id_dmadir(dev->id)) {
2438 dev->flags |= ATA_DFLAG_DMADIR;
2439 dma_dir_string = ", DMADIR";
2442 if (ata_id_has_da(dev->id)) {
2443 dev->flags |= ATA_DFLAG_DA;
2444 zpodd_init(dev);
2447 /* print device info to dmesg */
2448 if (ata_msg_drv(ap) && print_info)
2449 ata_dev_info(dev,
2450 "ATAPI: %s, %s, max %s%s%s%s\n",
2451 modelbuf, fwrevbuf,
2452 ata_mode_string(xfer_mask),
2453 cdb_intr_string, atapi_an_string,
2454 dma_dir_string);
2457 /* determine max_sectors */
2458 dev->max_sectors = ATA_MAX_SECTORS;
2459 if (dev->flags & ATA_DFLAG_LBA48)
2460 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2462 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2463 200 sectors */
2464 if (ata_dev_knobble(dev)) {
2465 if (ata_msg_drv(ap) && print_info)
2466 ata_dev_info(dev, "applying bridge limits\n");
2467 dev->udma_mask &= ATA_UDMA5;
2468 dev->max_sectors = ATA_MAX_SECTORS;
2471 if ((dev->class == ATA_DEV_ATAPI) &&
2472 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2473 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2474 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2477 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2478 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2479 dev->max_sectors);
2481 if (dev->horkage & ATA_HORKAGE_MAX_SEC_LBA48)
2482 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2484 if (ap->ops->dev_config)
2485 ap->ops->dev_config(dev);
2487 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2488 /* Let the user know. We don't want to disallow opens for
2489 rescue purposes, or in case the vendor is just a blithering
2490 idiot. Do this after the dev_config call as some controllers
2491 with buggy firmware may want to avoid reporting false device
2492 bugs */
2494 if (print_info) {
2495 ata_dev_warn(dev,
2496 "Drive reports diagnostics failure. This may indicate a drive\n");
2497 ata_dev_warn(dev,
2498 "fault or invalid emulation. Contact drive vendor for information.\n");
2502 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2503 ata_dev_warn(dev, "WARNING: device requires firmware update to be fully functional\n");
2504 ata_dev_warn(dev, " contact the vendor or visit http://ata.wiki.kernel.org\n");
2507 return 0;
2509 err_out_nosup:
2510 if (ata_msg_probe(ap))
2511 ata_dev_dbg(dev, "%s: EXIT, err\n", __func__);
2512 return rc;
2516 * ata_cable_40wire - return 40 wire cable type
2517 * @ap: port
2519 * Helper method for drivers which want to hardwire 40 wire cable
2520 * detection.
2523 int ata_cable_40wire(struct ata_port *ap)
2525 return ATA_CBL_PATA40;
2529 * ata_cable_80wire - return 80 wire cable type
2530 * @ap: port
2532 * Helper method for drivers which want to hardwire 80 wire cable
2533 * detection.
2536 int ata_cable_80wire(struct ata_port *ap)
2538 return ATA_CBL_PATA80;
2542 * ata_cable_unknown - return unknown PATA cable.
2543 * @ap: port
2545 * Helper method for drivers which have no PATA cable detection.
2548 int ata_cable_unknown(struct ata_port *ap)
2550 return ATA_CBL_PATA_UNK;
2554 * ata_cable_ignore - return ignored PATA cable.
2555 * @ap: port
2557 * Helper method for drivers which don't use cable type to limit
2558 * transfer mode.
2560 int ata_cable_ignore(struct ata_port *ap)
2562 return ATA_CBL_PATA_IGN;
2566 * ata_cable_sata - return SATA cable type
2567 * @ap: port
2569 * Helper method for drivers which have SATA cables
2572 int ata_cable_sata(struct ata_port *ap)
2574 return ATA_CBL_SATA;
2578 * ata_bus_probe - Reset and probe ATA bus
2579 * @ap: Bus to probe
2581 * Master ATA bus probing function. Initiates a hardware-dependent
2582 * bus reset, then attempts to identify any devices found on
2583 * the bus.
2585 * LOCKING:
2586 * PCI/etc. bus probe sem.
2588 * RETURNS:
2589 * Zero on success, negative errno otherwise.
2592 int ata_bus_probe(struct ata_port *ap)
2594 unsigned int classes[ATA_MAX_DEVICES];
2595 int tries[ATA_MAX_DEVICES];
2596 int rc;
2597 struct ata_device *dev;
2599 ata_for_each_dev(dev, &ap->link, ALL)
2600 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2602 retry:
2603 ata_for_each_dev(dev, &ap->link, ALL) {
2604 /* If we issue an SRST then an ATA drive (not ATAPI)
2605 * may change configuration and be in PIO0 timing. If
2606 * we do a hard reset (or are coming from power on)
2607 * this is true for ATA or ATAPI. Until we've set a
2608 * suitable controller mode we should not touch the
2609 * bus as we may be talking too fast.
2611 dev->pio_mode = XFER_PIO_0;
2612 dev->dma_mode = 0xff;
2614 /* If the controller has a pio mode setup function
2615 * then use it to set the chipset to rights. Don't
2616 * touch the DMA setup as that will be dealt with when
2617 * configuring devices.
2619 if (ap->ops->set_piomode)
2620 ap->ops->set_piomode(ap, dev);
2623 /* reset and determine device classes */
2624 ap->ops->phy_reset(ap);
2626 ata_for_each_dev(dev, &ap->link, ALL) {
2627 if (dev->class != ATA_DEV_UNKNOWN)
2628 classes[dev->devno] = dev->class;
2629 else
2630 classes[dev->devno] = ATA_DEV_NONE;
2632 dev->class = ATA_DEV_UNKNOWN;
2635 /* read IDENTIFY page and configure devices. We have to do the identify
2636 specific sequence bass-ackwards so that PDIAG- is released by
2637 the slave device */
2639 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2640 if (tries[dev->devno])
2641 dev->class = classes[dev->devno];
2643 if (!ata_dev_enabled(dev))
2644 continue;
2646 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2647 dev->id);
2648 if (rc)
2649 goto fail;
2652 /* Now ask for the cable type as PDIAG- should have been released */
2653 if (ap->ops->cable_detect)
2654 ap->cbl = ap->ops->cable_detect(ap);
2656 /* We may have SATA bridge glue hiding here irrespective of
2657 * the reported cable types and sensed types. When SATA
2658 * drives indicate we have a bridge, we don't know which end
2659 * of the link the bridge is which is a problem.
2661 ata_for_each_dev(dev, &ap->link, ENABLED)
2662 if (ata_id_is_sata(dev->id))
2663 ap->cbl = ATA_CBL_SATA;
2665 /* After the identify sequence we can now set up the devices. We do
2666 this in the normal order so that the user doesn't get confused */
2668 ata_for_each_dev(dev, &ap->link, ENABLED) {
2669 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2670 rc = ata_dev_configure(dev);
2671 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2672 if (rc)
2673 goto fail;
2676 /* configure transfer mode */
2677 rc = ata_set_mode(&ap->link, &dev);
2678 if (rc)
2679 goto fail;
2681 ata_for_each_dev(dev, &ap->link, ENABLED)
2682 return 0;
2684 return -ENODEV;
2686 fail:
2687 tries[dev->devno]--;
2689 switch (rc) {
2690 case -EINVAL:
2691 /* eeek, something went very wrong, give up */
2692 tries[dev->devno] = 0;
2693 break;
2695 case -ENODEV:
2696 /* give it just one more chance */
2697 tries[dev->devno] = min(tries[dev->devno], 1);
2698 case -EIO:
2699 if (tries[dev->devno] == 1) {
2700 /* This is the last chance, better to slow
2701 * down than lose it.
2703 sata_down_spd_limit(&ap->link, 0);
2704 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2708 if (!tries[dev->devno])
2709 ata_dev_disable(dev);
2711 goto retry;
2715 * sata_print_link_status - Print SATA link status
2716 * @link: SATA link to printk link status about
2718 * This function prints link speed and status of a SATA link.
2720 * LOCKING:
2721 * None.
2723 static void sata_print_link_status(struct ata_link *link)
2725 u32 sstatus, scontrol, tmp;
2727 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2728 return;
2729 sata_scr_read(link, SCR_CONTROL, &scontrol);
2731 if (ata_phys_link_online(link)) {
2732 tmp = (sstatus >> 4) & 0xf;
2733 ata_link_info(link, "SATA link up %s (SStatus %X SControl %X)\n",
2734 sata_spd_string(tmp), sstatus, scontrol);
2735 } else {
2736 ata_link_info(link, "SATA link down (SStatus %X SControl %X)\n",
2737 sstatus, scontrol);
2742 * ata_dev_pair - return other device on cable
2743 * @adev: device
2745 * Obtain the other device on the same cable, or if none is
2746 * present NULL is returned
2749 struct ata_device *ata_dev_pair(struct ata_device *adev)
2751 struct ata_link *link = adev->link;
2752 struct ata_device *pair = &link->device[1 - adev->devno];
2753 if (!ata_dev_enabled(pair))
2754 return NULL;
2755 return pair;
2759 * sata_down_spd_limit - adjust SATA spd limit downward
2760 * @link: Link to adjust SATA spd limit for
2761 * @spd_limit: Additional limit
2763 * Adjust SATA spd limit of @link downward. Note that this
2764 * function only adjusts the limit. The change must be applied
2765 * using sata_set_spd().
2767 * If @spd_limit is non-zero, the speed is limited to equal to or
2768 * lower than @spd_limit if such speed is supported. If
2769 * @spd_limit is slower than any supported speed, only the lowest
2770 * supported speed is allowed.
2772 * LOCKING:
2773 * Inherited from caller.
2775 * RETURNS:
2776 * 0 on success, negative errno on failure
2778 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2780 u32 sstatus, spd, mask;
2781 int rc, bit;
2783 if (!sata_scr_valid(link))
2784 return -EOPNOTSUPP;
2786 /* If SCR can be read, use it to determine the current SPD.
2787 * If not, use cached value in link->sata_spd.
2789 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2790 if (rc == 0 && ata_sstatus_online(sstatus))
2791 spd = (sstatus >> 4) & 0xf;
2792 else
2793 spd = link->sata_spd;
2795 mask = link->sata_spd_limit;
2796 if (mask <= 1)
2797 return -EINVAL;
2799 /* unconditionally mask off the highest bit */
2800 bit = fls(mask) - 1;
2801 mask &= ~(1 << bit);
2803 /* Mask off all speeds higher than or equal to the current
2804 * one. Force 1.5Gbps if current SPD is not available.
2806 if (spd > 1)
2807 mask &= (1 << (spd - 1)) - 1;
2808 else
2809 mask &= 1;
2811 /* were we already at the bottom? */
2812 if (!mask)
2813 return -EINVAL;
2815 if (spd_limit) {
2816 if (mask & ((1 << spd_limit) - 1))
2817 mask &= (1 << spd_limit) - 1;
2818 else {
2819 bit = ffs(mask) - 1;
2820 mask = 1 << bit;
2824 link->sata_spd_limit = mask;
2826 ata_link_warn(link, "limiting SATA link speed to %s\n",
2827 sata_spd_string(fls(mask)));
2829 return 0;
2832 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
2834 struct ata_link *host_link = &link->ap->link;
2835 u32 limit, target, spd;
2837 limit = link->sata_spd_limit;
2839 /* Don't configure downstream link faster than upstream link.
2840 * It doesn't speed up anything and some PMPs choke on such
2841 * configuration.
2843 if (!ata_is_host_link(link) && host_link->sata_spd)
2844 limit &= (1 << host_link->sata_spd) - 1;
2846 if (limit == UINT_MAX)
2847 target = 0;
2848 else
2849 target = fls(limit);
2851 spd = (*scontrol >> 4) & 0xf;
2852 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
2854 return spd != target;
2858 * sata_set_spd_needed - is SATA spd configuration needed
2859 * @link: Link in question
2861 * Test whether the spd limit in SControl matches
2862 * @link->sata_spd_limit. This function is used to determine
2863 * whether hardreset is necessary to apply SATA spd
2864 * configuration.
2866 * LOCKING:
2867 * Inherited from caller.
2869 * RETURNS:
2870 * 1 if SATA spd configuration is needed, 0 otherwise.
2872 static int sata_set_spd_needed(struct ata_link *link)
2874 u32 scontrol;
2876 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
2877 return 1;
2879 return __sata_set_spd_needed(link, &scontrol);
2883 * sata_set_spd - set SATA spd according to spd limit
2884 * @link: Link to set SATA spd for
2886 * Set SATA spd of @link according to sata_spd_limit.
2888 * LOCKING:
2889 * Inherited from caller.
2891 * RETURNS:
2892 * 0 if spd doesn't need to be changed, 1 if spd has been
2893 * changed. Negative errno if SCR registers are inaccessible.
2895 int sata_set_spd(struct ata_link *link)
2897 u32 scontrol;
2898 int rc;
2900 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
2901 return rc;
2903 if (!__sata_set_spd_needed(link, &scontrol))
2904 return 0;
2906 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
2907 return rc;
2909 return 1;
2913 * This mode timing computation functionality is ported over from
2914 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
2917 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
2918 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
2919 * for UDMA6, which is currently supported only by Maxtor drives.
2921 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
2924 static const struct ata_timing ata_timing[] = {
2925 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
2926 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
2927 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
2928 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
2929 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
2930 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
2931 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
2932 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
2934 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
2935 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
2936 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
2938 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
2939 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
2940 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
2941 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
2942 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
2944 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
2945 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
2946 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
2947 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
2948 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
2949 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
2950 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
2951 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
2953 { 0xFF }
2956 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
2957 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
2959 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
2961 q->setup = EZ(t->setup * 1000, T);
2962 q->act8b = EZ(t->act8b * 1000, T);
2963 q->rec8b = EZ(t->rec8b * 1000, T);
2964 q->cyc8b = EZ(t->cyc8b * 1000, T);
2965 q->active = EZ(t->active * 1000, T);
2966 q->recover = EZ(t->recover * 1000, T);
2967 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
2968 q->cycle = EZ(t->cycle * 1000, T);
2969 q->udma = EZ(t->udma * 1000, UT);
2972 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
2973 struct ata_timing *m, unsigned int what)
2975 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
2976 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
2977 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
2978 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
2979 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
2980 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
2981 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
2982 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
2983 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
2986 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
2988 const struct ata_timing *t = ata_timing;
2990 while (xfer_mode > t->mode)
2991 t++;
2993 if (xfer_mode == t->mode)
2994 return t;
2996 WARN_ONCE(true, "%s: unable to find timing for xfer_mode 0x%x\n",
2997 __func__, xfer_mode);
2999 return NULL;
3002 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3003 struct ata_timing *t, int T, int UT)
3005 const u16 *id = adev->id;
3006 const struct ata_timing *s;
3007 struct ata_timing p;
3010 * Find the mode.
3013 if (!(s = ata_timing_find_mode(speed)))
3014 return -EINVAL;
3016 memcpy(t, s, sizeof(*s));
3019 * If the drive is an EIDE drive, it can tell us it needs extended
3020 * PIO/MW_DMA cycle timing.
3023 if (id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3024 memset(&p, 0, sizeof(p));
3026 if (speed >= XFER_PIO_0 && speed < XFER_SW_DMA_0) {
3027 if (speed <= XFER_PIO_2)
3028 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO];
3029 else if ((speed <= XFER_PIO_4) ||
3030 (speed == XFER_PIO_5 && !ata_id_is_cfa(id)))
3031 p.cycle = p.cyc8b = id[ATA_ID_EIDE_PIO_IORDY];
3032 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2)
3033 p.cycle = id[ATA_ID_EIDE_DMA_MIN];
3035 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3039 * Convert the timing to bus clock counts.
3042 ata_timing_quantize(t, t, T, UT);
3045 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3046 * S.M.A.R.T * and some other commands. We have to ensure that the
3047 * DMA cycle timing is slower/equal than the fastest PIO timing.
3050 if (speed > XFER_PIO_6) {
3051 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3052 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3056 * Lengthen active & recovery time so that cycle time is correct.
3059 if (t->act8b + t->rec8b < t->cyc8b) {
3060 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3061 t->rec8b = t->cyc8b - t->act8b;
3064 if (t->active + t->recover < t->cycle) {
3065 t->active += (t->cycle - (t->active + t->recover)) / 2;
3066 t->recover = t->cycle - t->active;
3069 /* In a few cases quantisation may produce enough errors to
3070 leave t->cycle too low for the sum of active and recovery
3071 if so we must correct this */
3072 if (t->active + t->recover > t->cycle)
3073 t->cycle = t->active + t->recover;
3075 return 0;
3079 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3080 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3081 * @cycle: cycle duration in ns
3083 * Return matching xfer mode for @cycle. The returned mode is of
3084 * the transfer type specified by @xfer_shift. If @cycle is too
3085 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3086 * than the fastest known mode, the fasted mode is returned.
3088 * LOCKING:
3089 * None.
3091 * RETURNS:
3092 * Matching xfer_mode, 0xff if no match found.
3094 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3096 u8 base_mode = 0xff, last_mode = 0xff;
3097 const struct ata_xfer_ent *ent;
3098 const struct ata_timing *t;
3100 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3101 if (ent->shift == xfer_shift)
3102 base_mode = ent->base;
3104 for (t = ata_timing_find_mode(base_mode);
3105 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3106 unsigned short this_cycle;
3108 switch (xfer_shift) {
3109 case ATA_SHIFT_PIO:
3110 case ATA_SHIFT_MWDMA:
3111 this_cycle = t->cycle;
3112 break;
3113 case ATA_SHIFT_UDMA:
3114 this_cycle = t->udma;
3115 break;
3116 default:
3117 return 0xff;
3120 if (cycle > this_cycle)
3121 break;
3123 last_mode = t->mode;
3126 return last_mode;
3130 * ata_down_xfermask_limit - adjust dev xfer masks downward
3131 * @dev: Device to adjust xfer masks
3132 * @sel: ATA_DNXFER_* selector
3134 * Adjust xfer masks of @dev downward. Note that this function
3135 * does not apply the change. Invoking ata_set_mode() afterwards
3136 * will apply the limit.
3138 * LOCKING:
3139 * Inherited from caller.
3141 * RETURNS:
3142 * 0 on success, negative errno on failure
3144 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3146 char buf[32];
3147 unsigned long orig_mask, xfer_mask;
3148 unsigned long pio_mask, mwdma_mask, udma_mask;
3149 int quiet, highbit;
3151 quiet = !!(sel & ATA_DNXFER_QUIET);
3152 sel &= ~ATA_DNXFER_QUIET;
3154 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3155 dev->mwdma_mask,
3156 dev->udma_mask);
3157 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3159 switch (sel) {
3160 case ATA_DNXFER_PIO:
3161 highbit = fls(pio_mask) - 1;
3162 pio_mask &= ~(1 << highbit);
3163 break;
3165 case ATA_DNXFER_DMA:
3166 if (udma_mask) {
3167 highbit = fls(udma_mask) - 1;
3168 udma_mask &= ~(1 << highbit);
3169 if (!udma_mask)
3170 return -ENOENT;
3171 } else if (mwdma_mask) {
3172 highbit = fls(mwdma_mask) - 1;
3173 mwdma_mask &= ~(1 << highbit);
3174 if (!mwdma_mask)
3175 return -ENOENT;
3177 break;
3179 case ATA_DNXFER_40C:
3180 udma_mask &= ATA_UDMA_MASK_40C;
3181 break;
3183 case ATA_DNXFER_FORCE_PIO0:
3184 pio_mask &= 1;
3185 case ATA_DNXFER_FORCE_PIO:
3186 mwdma_mask = 0;
3187 udma_mask = 0;
3188 break;
3190 default:
3191 BUG();
3194 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3196 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3197 return -ENOENT;
3199 if (!quiet) {
3200 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3201 snprintf(buf, sizeof(buf), "%s:%s",
3202 ata_mode_string(xfer_mask),
3203 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3204 else
3205 snprintf(buf, sizeof(buf), "%s",
3206 ata_mode_string(xfer_mask));
3208 ata_dev_warn(dev, "limiting speed to %s\n", buf);
3211 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3212 &dev->udma_mask);
3214 return 0;
3217 static int ata_dev_set_mode(struct ata_device *dev)
3219 struct ata_port *ap = dev->link->ap;
3220 struct ata_eh_context *ehc = &dev->link->eh_context;
3221 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3222 const char *dev_err_whine = "";
3223 int ign_dev_err = 0;
3224 unsigned int err_mask = 0;
3225 int rc;
3227 dev->flags &= ~ATA_DFLAG_PIO;
3228 if (dev->xfer_shift == ATA_SHIFT_PIO)
3229 dev->flags |= ATA_DFLAG_PIO;
3231 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3232 dev_err_whine = " (SET_XFERMODE skipped)";
3233 else {
3234 if (nosetxfer)
3235 ata_dev_warn(dev,
3236 "NOSETXFER but PATA detected - can't "
3237 "skip SETXFER, might malfunction\n");
3238 err_mask = ata_dev_set_xfermode(dev);
3241 if (err_mask & ~AC_ERR_DEV)
3242 goto fail;
3244 /* revalidate */
3245 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3246 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3247 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3248 if (rc)
3249 return rc;
3251 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3252 /* Old CFA may refuse this command, which is just fine */
3253 if (ata_id_is_cfa(dev->id))
3254 ign_dev_err = 1;
3255 /* Catch several broken garbage emulations plus some pre
3256 ATA devices */
3257 if (ata_id_major_version(dev->id) == 0 &&
3258 dev->pio_mode <= XFER_PIO_2)
3259 ign_dev_err = 1;
3260 /* Some very old devices and some bad newer ones fail
3261 any kind of SET_XFERMODE request but support PIO0-2
3262 timings and no IORDY */
3263 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3264 ign_dev_err = 1;
3266 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3267 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3268 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3269 dev->dma_mode == XFER_MW_DMA_0 &&
3270 (dev->id[63] >> 8) & 1)
3271 ign_dev_err = 1;
3273 /* if the device is actually configured correctly, ignore dev err */
3274 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3275 ign_dev_err = 1;
3277 if (err_mask & AC_ERR_DEV) {
3278 if (!ign_dev_err)
3279 goto fail;
3280 else
3281 dev_err_whine = " (device error ignored)";
3284 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3285 dev->xfer_shift, (int)dev->xfer_mode);
3287 ata_dev_info(dev, "configured for %s%s\n",
3288 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3289 dev_err_whine);
3291 return 0;
3293 fail:
3294 ata_dev_err(dev, "failed to set xfermode (err_mask=0x%x)\n", err_mask);
3295 return -EIO;
3299 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3300 * @link: link on which timings will be programmed
3301 * @r_failed_dev: out parameter for failed device
3303 * Standard implementation of the function used to tune and set
3304 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3305 * ata_dev_set_mode() fails, pointer to the failing device is
3306 * returned in @r_failed_dev.
3308 * LOCKING:
3309 * PCI/etc. bus probe sem.
3311 * RETURNS:
3312 * 0 on success, negative errno otherwise
3315 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3317 struct ata_port *ap = link->ap;
3318 struct ata_device *dev;
3319 int rc = 0, used_dma = 0, found = 0;
3321 /* step 1: calculate xfer_mask */
3322 ata_for_each_dev(dev, link, ENABLED) {
3323 unsigned long pio_mask, dma_mask;
3324 unsigned int mode_mask;
3326 mode_mask = ATA_DMA_MASK_ATA;
3327 if (dev->class == ATA_DEV_ATAPI)
3328 mode_mask = ATA_DMA_MASK_ATAPI;
3329 else if (ata_id_is_cfa(dev->id))
3330 mode_mask = ATA_DMA_MASK_CFA;
3332 ata_dev_xfermask(dev);
3333 ata_force_xfermask(dev);
3335 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3337 if (libata_dma_mask & mode_mask)
3338 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask,
3339 dev->udma_mask);
3340 else
3341 dma_mask = 0;
3343 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3344 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3346 found = 1;
3347 if (ata_dma_enabled(dev))
3348 used_dma = 1;
3350 if (!found)
3351 goto out;
3353 /* step 2: always set host PIO timings */
3354 ata_for_each_dev(dev, link, ENABLED) {
3355 if (dev->pio_mode == 0xff) {
3356 ata_dev_warn(dev, "no PIO support\n");
3357 rc = -EINVAL;
3358 goto out;
3361 dev->xfer_mode = dev->pio_mode;
3362 dev->xfer_shift = ATA_SHIFT_PIO;
3363 if (ap->ops->set_piomode)
3364 ap->ops->set_piomode(ap, dev);
3367 /* step 3: set host DMA timings */
3368 ata_for_each_dev(dev, link, ENABLED) {
3369 if (!ata_dma_enabled(dev))
3370 continue;
3372 dev->xfer_mode = dev->dma_mode;
3373 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3374 if (ap->ops->set_dmamode)
3375 ap->ops->set_dmamode(ap, dev);
3378 /* step 4: update devices' xfer mode */
3379 ata_for_each_dev(dev, link, ENABLED) {
3380 rc = ata_dev_set_mode(dev);
3381 if (rc)
3382 goto out;
3385 /* Record simplex status. If we selected DMA then the other
3386 * host channels are not permitted to do so.
3388 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3389 ap->host->simplex_claimed = ap;
3391 out:
3392 if (rc)
3393 *r_failed_dev = dev;
3394 return rc;
3398 * ata_wait_ready - wait for link to become ready
3399 * @link: link to be waited on
3400 * @deadline: deadline jiffies for the operation
3401 * @check_ready: callback to check link readiness
3403 * Wait for @link to become ready. @check_ready should return
3404 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3405 * link doesn't seem to be occupied, other errno for other error
3406 * conditions.
3408 * Transient -ENODEV conditions are allowed for
3409 * ATA_TMOUT_FF_WAIT.
3411 * LOCKING:
3412 * EH context.
3414 * RETURNS:
3415 * 0 if @linke is ready before @deadline; otherwise, -errno.
3417 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3418 int (*check_ready)(struct ata_link *link))
3420 unsigned long start = jiffies;
3421 unsigned long nodev_deadline;
3422 int warned = 0;
3424 /* choose which 0xff timeout to use, read comment in libata.h */
3425 if (link->ap->host->flags & ATA_HOST_PARALLEL_SCAN)
3426 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT_LONG);
3427 else
3428 nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3430 /* Slave readiness can't be tested separately from master. On
3431 * M/S emulation configuration, this function should be called
3432 * only on the master and it will handle both master and slave.
3434 WARN_ON(link == link->ap->slave_link);
3436 if (time_after(nodev_deadline, deadline))
3437 nodev_deadline = deadline;
3439 while (1) {
3440 unsigned long now = jiffies;
3441 int ready, tmp;
3443 ready = tmp = check_ready(link);
3444 if (ready > 0)
3445 return 0;
3448 * -ENODEV could be transient. Ignore -ENODEV if link
3449 * is online. Also, some SATA devices take a long
3450 * time to clear 0xff after reset. Wait for
3451 * ATA_TMOUT_FF_WAIT[_LONG] on -ENODEV if link isn't
3452 * offline.
3454 * Note that some PATA controllers (pata_ali) explode
3455 * if status register is read more than once when
3456 * there's no device attached.
3458 if (ready == -ENODEV) {
3459 if (ata_link_online(link))
3460 ready = 0;
3461 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3462 !ata_link_offline(link) &&
3463 time_before(now, nodev_deadline))
3464 ready = 0;
3467 if (ready)
3468 return ready;
3469 if (time_after(now, deadline))
3470 return -EBUSY;
3472 if (!warned && time_after(now, start + 5 * HZ) &&
3473 (deadline - now > 3 * HZ)) {
3474 ata_link_warn(link,
3475 "link is slow to respond, please be patient "
3476 "(ready=%d)\n", tmp);
3477 warned = 1;
3480 ata_msleep(link->ap, 50);
3485 * ata_wait_after_reset - wait for link to become ready after reset
3486 * @link: link to be waited on
3487 * @deadline: deadline jiffies for the operation
3488 * @check_ready: callback to check link readiness
3490 * Wait for @link to become ready after reset.
3492 * LOCKING:
3493 * EH context.
3495 * RETURNS:
3496 * 0 if @linke is ready before @deadline; otherwise, -errno.
3498 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3499 int (*check_ready)(struct ata_link *link))
3501 ata_msleep(link->ap, ATA_WAIT_AFTER_RESET);
3503 return ata_wait_ready(link, deadline, check_ready);
3507 * sata_link_debounce - debounce SATA phy status
3508 * @link: ATA link to debounce SATA phy status for
3509 * @params: timing parameters { interval, duratinon, timeout } in msec
3510 * @deadline: deadline jiffies for the operation
3512 * Make sure SStatus of @link reaches stable state, determined by
3513 * holding the same value where DET is not 1 for @duration polled
3514 * every @interval, before @timeout. Timeout constraints the
3515 * beginning of the stable state. Because DET gets stuck at 1 on
3516 * some controllers after hot unplugging, this functions waits
3517 * until timeout then returns 0 if DET is stable at 1.
3519 * @timeout is further limited by @deadline. The sooner of the
3520 * two is used.
3522 * LOCKING:
3523 * Kernel thread context (may sleep)
3525 * RETURNS:
3526 * 0 on success, -errno on failure.
3528 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3529 unsigned long deadline)
3531 unsigned long interval = params[0];
3532 unsigned long duration = params[1];
3533 unsigned long last_jiffies, t;
3534 u32 last, cur;
3535 int rc;
3537 t = ata_deadline(jiffies, params[2]);
3538 if (time_before(t, deadline))
3539 deadline = t;
3541 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3542 return rc;
3543 cur &= 0xf;
3545 last = cur;
3546 last_jiffies = jiffies;
3548 while (1) {
3549 ata_msleep(link->ap, interval);
3550 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3551 return rc;
3552 cur &= 0xf;
3554 /* DET stable? */
3555 if (cur == last) {
3556 if (cur == 1 && time_before(jiffies, deadline))
3557 continue;
3558 if (time_after(jiffies,
3559 ata_deadline(last_jiffies, duration)))
3560 return 0;
3561 continue;
3564 /* unstable, start over */
3565 last = cur;
3566 last_jiffies = jiffies;
3568 /* Check deadline. If debouncing failed, return
3569 * -EPIPE to tell upper layer to lower link speed.
3571 if (time_after(jiffies, deadline))
3572 return -EPIPE;
3577 * sata_link_resume - resume SATA link
3578 * @link: ATA link to resume SATA
3579 * @params: timing parameters { interval, duratinon, timeout } in msec
3580 * @deadline: deadline jiffies for the operation
3582 * Resume SATA phy @link and debounce it.
3584 * LOCKING:
3585 * Kernel thread context (may sleep)
3587 * RETURNS:
3588 * 0 on success, -errno on failure.
3590 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3591 unsigned long deadline)
3593 int tries = ATA_LINK_RESUME_TRIES;
3594 u32 scontrol, serror;
3595 int rc;
3597 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3598 return rc;
3601 * Writes to SControl sometimes get ignored under certain
3602 * controllers (ata_piix SIDPR). Make sure DET actually is
3603 * cleared.
3605 do {
3606 scontrol = (scontrol & 0x0f0) | 0x300;
3607 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3608 return rc;
3610 * Some PHYs react badly if SStatus is pounded
3611 * immediately after resuming. Delay 200ms before
3612 * debouncing.
3614 ata_msleep(link->ap, 200);
3616 /* is SControl restored correctly? */
3617 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3618 return rc;
3619 } while ((scontrol & 0xf0f) != 0x300 && --tries);
3621 if ((scontrol & 0xf0f) != 0x300) {
3622 ata_link_warn(link, "failed to resume link (SControl %X)\n",
3623 scontrol);
3624 return 0;
3627 if (tries < ATA_LINK_RESUME_TRIES)
3628 ata_link_warn(link, "link resume succeeded after %d retries\n",
3629 ATA_LINK_RESUME_TRIES - tries);
3631 if ((rc = sata_link_debounce(link, params, deadline)))
3632 return rc;
3634 /* clear SError, some PHYs require this even for SRST to work */
3635 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3636 rc = sata_scr_write(link, SCR_ERROR, serror);
3638 return rc != -EINVAL ? rc : 0;
3642 * sata_link_scr_lpm - manipulate SControl IPM and SPM fields
3643 * @link: ATA link to manipulate SControl for
3644 * @policy: LPM policy to configure
3645 * @spm_wakeup: initiate LPM transition to active state
3647 * Manipulate the IPM field of the SControl register of @link
3648 * according to @policy. If @policy is ATA_LPM_MAX_POWER and
3649 * @spm_wakeup is %true, the SPM field is manipulated to wake up
3650 * the link. This function also clears PHYRDY_CHG before
3651 * returning.
3653 * LOCKING:
3654 * EH context.
3656 * RETURNS:
3657 * 0 on succes, -errno otherwise.
3659 int sata_link_scr_lpm(struct ata_link *link, enum ata_lpm_policy policy,
3660 bool spm_wakeup)
3662 struct ata_eh_context *ehc = &link->eh_context;
3663 bool woken_up = false;
3664 u32 scontrol;
3665 int rc;
3667 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
3668 if (rc)
3669 return rc;
3671 switch (policy) {
3672 case ATA_LPM_MAX_POWER:
3673 /* disable all LPM transitions */
3674 scontrol |= (0x7 << 8);
3675 /* initiate transition to active state */
3676 if (spm_wakeup) {
3677 scontrol |= (0x4 << 12);
3678 woken_up = true;
3680 break;
3681 case ATA_LPM_MED_POWER:
3682 /* allow LPM to PARTIAL */
3683 scontrol &= ~(0x1 << 8);
3684 scontrol |= (0x6 << 8);
3685 break;
3686 case ATA_LPM_MIN_POWER:
3687 if (ata_link_nr_enabled(link) > 0)
3688 /* no restrictions on LPM transitions */
3689 scontrol &= ~(0x7 << 8);
3690 else {
3691 /* empty port, power off */
3692 scontrol &= ~0xf;
3693 scontrol |= (0x1 << 2);
3695 break;
3696 default:
3697 WARN_ON(1);
3700 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
3701 if (rc)
3702 return rc;
3704 /* give the link time to transit out of LPM state */
3705 if (woken_up)
3706 msleep(10);
3708 /* clear PHYRDY_CHG from SError */
3709 ehc->i.serror &= ~SERR_PHYRDY_CHG;
3710 return sata_scr_write(link, SCR_ERROR, SERR_PHYRDY_CHG);
3714 * ata_std_prereset - prepare for reset
3715 * @link: ATA link to be reset
3716 * @deadline: deadline jiffies for the operation
3718 * @link is about to be reset. Initialize it. Failure from
3719 * prereset makes libata abort whole reset sequence and give up
3720 * that port, so prereset should be best-effort. It does its
3721 * best to prepare for reset sequence but if things go wrong, it
3722 * should just whine, not fail.
3724 * LOCKING:
3725 * Kernel thread context (may sleep)
3727 * RETURNS:
3728 * 0 on success, -errno otherwise.
3730 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3732 struct ata_port *ap = link->ap;
3733 struct ata_eh_context *ehc = &link->eh_context;
3734 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3735 int rc;
3737 /* if we're about to do hardreset, nothing more to do */
3738 if (ehc->i.action & ATA_EH_HARDRESET)
3739 return 0;
3741 /* if SATA, resume link */
3742 if (ap->flags & ATA_FLAG_SATA) {
3743 rc = sata_link_resume(link, timing, deadline);
3744 /* whine about phy resume failure but proceed */
3745 if (rc && rc != -EOPNOTSUPP)
3746 ata_link_warn(link,
3747 "failed to resume link for reset (errno=%d)\n",
3748 rc);
3751 /* no point in trying softreset on offline link */
3752 if (ata_phys_link_offline(link))
3753 ehc->i.action &= ~ATA_EH_SOFTRESET;
3755 return 0;
3759 * sata_link_hardreset - reset link via SATA phy reset
3760 * @link: link to reset
3761 * @timing: timing parameters { interval, duratinon, timeout } in msec
3762 * @deadline: deadline jiffies for the operation
3763 * @online: optional out parameter indicating link onlineness
3764 * @check_ready: optional callback to check link readiness
3766 * SATA phy-reset @link using DET bits of SControl register.
3767 * After hardreset, link readiness is waited upon using
3768 * ata_wait_ready() if @check_ready is specified. LLDs are
3769 * allowed to not specify @check_ready and wait itself after this
3770 * function returns. Device classification is LLD's
3771 * responsibility.
3773 * *@online is set to one iff reset succeeded and @link is online
3774 * after reset.
3776 * LOCKING:
3777 * Kernel thread context (may sleep)
3779 * RETURNS:
3780 * 0 on success, -errno otherwise.
3782 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3783 unsigned long deadline,
3784 bool *online, int (*check_ready)(struct ata_link *))
3786 u32 scontrol;
3787 int rc;
3789 DPRINTK("ENTER\n");
3791 if (online)
3792 *online = false;
3794 if (sata_set_spd_needed(link)) {
3795 /* SATA spec says nothing about how to reconfigure
3796 * spd. To be on the safe side, turn off phy during
3797 * reconfiguration. This works for at least ICH7 AHCI
3798 * and Sil3124.
3800 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3801 goto out;
3803 scontrol = (scontrol & 0x0f0) | 0x304;
3805 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3806 goto out;
3808 sata_set_spd(link);
3811 /* issue phy wake/reset */
3812 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3813 goto out;
3815 scontrol = (scontrol & 0x0f0) | 0x301;
3817 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3818 goto out;
3820 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3821 * 10.4.2 says at least 1 ms.
3823 ata_msleep(link->ap, 1);
3825 /* bring link back */
3826 rc = sata_link_resume(link, timing, deadline);
3827 if (rc)
3828 goto out;
3829 /* if link is offline nothing more to do */
3830 if (ata_phys_link_offline(link))
3831 goto out;
3833 /* Link is online. From this point, -ENODEV too is an error. */
3834 if (online)
3835 *online = true;
3837 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3838 /* If PMP is supported, we have to do follow-up SRST.
3839 * Some PMPs don't send D2H Reg FIS after hardreset if
3840 * the first port is empty. Wait only for
3841 * ATA_TMOUT_PMP_SRST_WAIT.
3843 if (check_ready) {
3844 unsigned long pmp_deadline;
3846 pmp_deadline = ata_deadline(jiffies,
3847 ATA_TMOUT_PMP_SRST_WAIT);
3848 if (time_after(pmp_deadline, deadline))
3849 pmp_deadline = deadline;
3850 ata_wait_ready(link, pmp_deadline, check_ready);
3852 rc = -EAGAIN;
3853 goto out;
3856 rc = 0;
3857 if (check_ready)
3858 rc = ata_wait_ready(link, deadline, check_ready);
3859 out:
3860 if (rc && rc != -EAGAIN) {
3861 /* online is set iff link is online && reset succeeded */
3862 if (online)
3863 *online = false;
3864 ata_link_err(link, "COMRESET failed (errno=%d)\n", rc);
3866 DPRINTK("EXIT, rc=%d\n", rc);
3867 return rc;
3871 * sata_std_hardreset - COMRESET w/o waiting or classification
3872 * @link: link to reset
3873 * @class: resulting class of attached device
3874 * @deadline: deadline jiffies for the operation
3876 * Standard SATA COMRESET w/o waiting or classification.
3878 * LOCKING:
3879 * Kernel thread context (may sleep)
3881 * RETURNS:
3882 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3884 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3885 unsigned long deadline)
3887 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3888 bool online;
3889 int rc;
3891 /* do hardreset */
3892 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3893 return online ? -EAGAIN : rc;
3897 * ata_std_postreset - standard postreset callback
3898 * @link: the target ata_link
3899 * @classes: classes of attached devices
3901 * This function is invoked after a successful reset. Note that
3902 * the device might have been reset more than once using
3903 * different reset methods before postreset is invoked.
3905 * LOCKING:
3906 * Kernel thread context (may sleep)
3908 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3910 u32 serror;
3912 DPRINTK("ENTER\n");
3914 /* reset complete, clear SError */
3915 if (!sata_scr_read(link, SCR_ERROR, &serror))
3916 sata_scr_write(link, SCR_ERROR, serror);
3918 /* print link status */
3919 sata_print_link_status(link);
3921 DPRINTK("EXIT\n");
3925 * ata_dev_same_device - Determine whether new ID matches configured device
3926 * @dev: device to compare against
3927 * @new_class: class of the new device
3928 * @new_id: IDENTIFY page of the new device
3930 * Compare @new_class and @new_id against @dev and determine
3931 * whether @dev is the device indicated by @new_class and
3932 * @new_id.
3934 * LOCKING:
3935 * None.
3937 * RETURNS:
3938 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
3940 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
3941 const u16 *new_id)
3943 const u16 *old_id = dev->id;
3944 unsigned char model[2][ATA_ID_PROD_LEN + 1];
3945 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
3947 if (dev->class != new_class) {
3948 ata_dev_info(dev, "class mismatch %d != %d\n",
3949 dev->class, new_class);
3950 return 0;
3953 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
3954 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
3955 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
3956 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
3958 if (strcmp(model[0], model[1])) {
3959 ata_dev_info(dev, "model number mismatch '%s' != '%s'\n",
3960 model[0], model[1]);
3961 return 0;
3964 if (strcmp(serial[0], serial[1])) {
3965 ata_dev_info(dev, "serial number mismatch '%s' != '%s'\n",
3966 serial[0], serial[1]);
3967 return 0;
3970 return 1;
3974 * ata_dev_reread_id - Re-read IDENTIFY data
3975 * @dev: target ATA device
3976 * @readid_flags: read ID flags
3978 * Re-read IDENTIFY page and make sure @dev is still attached to
3979 * the port.
3981 * LOCKING:
3982 * Kernel thread context (may sleep)
3984 * RETURNS:
3985 * 0 on success, negative errno otherwise
3987 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
3989 unsigned int class = dev->class;
3990 u16 *id = (void *)dev->link->ap->sector_buf;
3991 int rc;
3993 /* read ID data */
3994 rc = ata_dev_read_id(dev, &class, readid_flags, id);
3995 if (rc)
3996 return rc;
3998 /* is the device still there? */
3999 if (!ata_dev_same_device(dev, class, id))
4000 return -ENODEV;
4002 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4003 return 0;
4007 * ata_dev_revalidate - Revalidate ATA device
4008 * @dev: device to revalidate
4009 * @new_class: new class code
4010 * @readid_flags: read ID flags
4012 * Re-read IDENTIFY page, make sure @dev is still attached to the
4013 * port and reconfigure it according to the new IDENTIFY page.
4015 * LOCKING:
4016 * Kernel thread context (may sleep)
4018 * RETURNS:
4019 * 0 on success, negative errno otherwise
4021 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4022 unsigned int readid_flags)
4024 u64 n_sectors = dev->n_sectors;
4025 u64 n_native_sectors = dev->n_native_sectors;
4026 int rc;
4028 if (!ata_dev_enabled(dev))
4029 return -ENODEV;
4031 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4032 if (ata_class_enabled(new_class) &&
4033 new_class != ATA_DEV_ATA &&
4034 new_class != ATA_DEV_ATAPI &&
4035 new_class != ATA_DEV_SEMB) {
4036 ata_dev_info(dev, "class mismatch %u != %u\n",
4037 dev->class, new_class);
4038 rc = -ENODEV;
4039 goto fail;
4042 /* re-read ID */
4043 rc = ata_dev_reread_id(dev, readid_flags);
4044 if (rc)
4045 goto fail;
4047 /* configure device according to the new ID */
4048 rc = ata_dev_configure(dev);
4049 if (rc)
4050 goto fail;
4052 /* verify n_sectors hasn't changed */
4053 if (dev->class != ATA_DEV_ATA || !n_sectors ||
4054 dev->n_sectors == n_sectors)
4055 return 0;
4057 /* n_sectors has changed */
4058 ata_dev_warn(dev, "n_sectors mismatch %llu != %llu\n",
4059 (unsigned long long)n_sectors,
4060 (unsigned long long)dev->n_sectors);
4063 * Something could have caused HPA to be unlocked
4064 * involuntarily. If n_native_sectors hasn't changed and the
4065 * new size matches it, keep the device.
4067 if (dev->n_native_sectors == n_native_sectors &&
4068 dev->n_sectors > n_sectors && dev->n_sectors == n_native_sectors) {
4069 ata_dev_warn(dev,
4070 "new n_sectors matches native, probably "
4071 "late HPA unlock, n_sectors updated\n");
4072 /* use the larger n_sectors */
4073 return 0;
4077 * Some BIOSes boot w/o HPA but resume w/ HPA locked. Try
4078 * unlocking HPA in those cases.
4080 * https://bugzilla.kernel.org/show_bug.cgi?id=15396
4082 if (dev->n_native_sectors == n_native_sectors &&
4083 dev->n_sectors < n_sectors && n_sectors == n_native_sectors &&
4084 !(dev->horkage & ATA_HORKAGE_BROKEN_HPA)) {
4085 ata_dev_warn(dev,
4086 "old n_sectors matches native, probably "
4087 "late HPA lock, will try to unlock HPA\n");
4088 /* try unlocking HPA */
4089 dev->flags |= ATA_DFLAG_UNLOCK_HPA;
4090 rc = -EIO;
4091 } else
4092 rc = -ENODEV;
4094 /* restore original n_[native_]sectors and fail */
4095 dev->n_native_sectors = n_native_sectors;
4096 dev->n_sectors = n_sectors;
4097 fail:
4098 ata_dev_err(dev, "revalidation failed (errno=%d)\n", rc);
4099 return rc;
4102 struct ata_blacklist_entry {
4103 const char *model_num;
4104 const char *model_rev;
4105 unsigned long horkage;
4108 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4109 /* Devices with DMA related problems under Linux */
4110 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4111 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4112 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4113 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4114 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4115 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4116 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4117 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4118 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4119 { "CRD-848[02]B", NULL, ATA_HORKAGE_NODMA },
4120 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4121 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4122 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4123 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4124 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4125 { "HITACHI CDR-8[34]35",NULL, ATA_HORKAGE_NODMA },
4126 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4127 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4128 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4129 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4130 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4131 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4132 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4133 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4134 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4135 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4136 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4137 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4138 { " 2GB ATA Flash Disk", "ADMA428M", ATA_HORKAGE_NODMA },
4139 /* Odd clown on sil3726/4726 PMPs */
4140 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4142 /* Weird ATAPI devices */
4143 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4144 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4145 { "Slimtype DVD A DS8A8SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4146 { "Slimtype DVD A DS8A9SH", NULL, ATA_HORKAGE_MAX_SEC_LBA48 },
4148 /* Devices we expect to fail diagnostics */
4150 /* Devices where NCQ should be avoided */
4151 /* NCQ is slow */
4152 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4153 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4154 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4155 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4156 /* NCQ is broken */
4157 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4158 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4159 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4160 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4161 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4163 /* Seagate NCQ + FLUSH CACHE firmware bug */
4164 { "ST31500341AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4165 ATA_HORKAGE_FIRMWARE_WARN },
4167 { "ST31000333AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4168 ATA_HORKAGE_FIRMWARE_WARN },
4170 { "ST3640[36]23AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4171 ATA_HORKAGE_FIRMWARE_WARN },
4173 { "ST3320[68]13AS", "SD1[5-9]", ATA_HORKAGE_NONCQ |
4174 ATA_HORKAGE_FIRMWARE_WARN },
4176 /* Seagate Momentus SpinPoint M8 seem to have FPMDA_AA issues */
4177 { "ST1000LM024 HN-M101MBB", "2AR10001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4178 { "ST1000LM024 HN-M101MBB", "2BA30001", ATA_HORKAGE_BROKEN_FPDMA_AA },
4180 /* Blacklist entries taken from Silicon Image 3124/3132
4181 Windows driver .inf file - also several Linux problem reports */
4182 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4183 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4184 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4186 /* https://bugzilla.kernel.org/show_bug.cgi?id=15573 */
4187 { "C300-CTFDDAC128MAG", "0001", ATA_HORKAGE_NONCQ, },
4189 /* devices which puke on READ_NATIVE_MAX */
4190 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4191 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4192 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4193 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4195 /* this one allows HPA unlocking but fails IOs on the area */
4196 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4198 /* Devices which report 1 sector over size HPA */
4199 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4200 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4201 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4203 /* Devices which get the IVB wrong */
4204 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4205 /* Maybe we should just blacklist TSSTcorp... */
4206 { "TSSTcorp CDDVDW SH-S202[HJN]", "SB0[01]", ATA_HORKAGE_IVB, },
4208 /* Devices that do not need bridging limits applied */
4209 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4210 { "BUFFALO HD-QSU2/R5", NULL, ATA_HORKAGE_BRIDGE_OK, },
4212 /* Devices which aren't very happy with higher link speeds */
4213 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4214 { "Seagate FreeAgent GoFlex", NULL, ATA_HORKAGE_1_5_GBPS, },
4217 * Devices which choke on SETXFER. Applies only if both the
4218 * device and controller are SATA.
4220 { "PIONEER DVD-RW DVRTD08", NULL, ATA_HORKAGE_NOSETXFER },
4221 { "PIONEER DVD-RW DVRTD08A", NULL, ATA_HORKAGE_NOSETXFER },
4222 { "PIONEER DVD-RW DVR-215", NULL, ATA_HORKAGE_NOSETXFER },
4223 { "PIONEER DVD-RW DVR-212D", NULL, ATA_HORKAGE_NOSETXFER },
4224 { "PIONEER DVD-RW DVR-216D", NULL, ATA_HORKAGE_NOSETXFER },
4226 /* devices that don't properly handle queued TRIM commands */
4227 { "Micron_M500*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4228 { "Crucial_CT???M500SSD*", NULL, ATA_HORKAGE_NO_NCQ_TRIM, },
4231 * Some WD SATA-I drives spin up and down erratically when the link
4232 * is put into the slumber mode. We don't have full list of the
4233 * affected devices. Disable LPM if the device matches one of the
4234 * known prefixes and is SATA-1. As a side effect LPM partial is
4235 * lost too.
4237 * https://bugzilla.kernel.org/show_bug.cgi?id=57211
4239 { "WDC WD800JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4240 { "WDC WD1200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4241 { "WDC WD1600JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4242 { "WDC WD2000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4243 { "WDC WD2500JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4244 { "WDC WD3000JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4245 { "WDC WD3200JD-*", NULL, ATA_HORKAGE_WD_BROKEN_LPM },
4247 /* End Marker */
4252 * glob_match - match a text string against a glob-style pattern
4253 * @text: the string to be examined
4254 * @pattern: the glob-style pattern to be matched against
4256 * Either/both of text and pattern can be empty strings.
4258 * Match text against a glob-style pattern, with wildcards and simple sets:
4260 * ? matches any single character.
4261 * * matches any run of characters.
4262 * [xyz] matches a single character from the set: x, y, or z.
4263 * [a-d] matches a single character from the range: a, b, c, or d.
4264 * [a-d0-9] matches a single character from either range.
4266 * The special characters ?, [, -, or *, can be matched using a set, eg. [*]
4267 * Behaviour with malformed patterns is undefined, though generally reasonable.
4269 * Sample patterns: "SD1?", "SD1[0-5]", "*R0", "SD*1?[012]*xx"
4271 * This function uses one level of recursion per '*' in pattern.
4272 * Since it calls _nothing_ else, and has _no_ explicit local variables,
4273 * this will not cause stack problems for any reasonable use here.
4275 * RETURNS:
4276 * 0 on match, 1 otherwise.
4278 static int glob_match (const char *text, const char *pattern)
4280 do {
4281 /* Match single character or a '?' wildcard */
4282 if (*text == *pattern || *pattern == '?') {
4283 if (!*pattern++)
4284 return 0; /* End of both strings: match */
4285 } else {
4286 /* Match single char against a '[' bracketed ']' pattern set */
4287 if (!*text || *pattern != '[')
4288 break; /* Not a pattern set */
4289 while (*++pattern && *pattern != ']' && *text != *pattern) {
4290 if (*pattern == '-' && *(pattern - 1) != '[')
4291 if (*text > *(pattern - 1) && *text < *(pattern + 1)) {
4292 ++pattern;
4293 break;
4296 if (!*pattern || *pattern == ']')
4297 return 1; /* No match */
4298 while (*pattern && *pattern++ != ']');
4300 } while (*++text && *pattern);
4302 /* Match any run of chars against a '*' wildcard */
4303 if (*pattern == '*') {
4304 if (!*++pattern)
4305 return 0; /* Match: avoid recursion at end of pattern */
4306 /* Loop to handle additional pattern chars after the wildcard */
4307 while (*text) {
4308 if (glob_match(text, pattern) == 0)
4309 return 0; /* Remainder matched */
4310 ++text; /* Absorb (match) this char and try again */
4313 if (!*text && !*pattern)
4314 return 0; /* End of both strings: match */
4315 return 1; /* No match */
4318 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4320 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4321 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4322 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4324 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4325 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4327 while (ad->model_num) {
4328 if (!glob_match(model_num, ad->model_num)) {
4329 if (ad->model_rev == NULL)
4330 return ad->horkage;
4331 if (!glob_match(model_rev, ad->model_rev))
4332 return ad->horkage;
4334 ad++;
4336 return 0;
4339 static int ata_dma_blacklisted(const struct ata_device *dev)
4341 /* We don't support polling DMA.
4342 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4343 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4345 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4346 (dev->flags & ATA_DFLAG_CDB_INTR))
4347 return 1;
4348 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4352 * ata_is_40wire - check drive side detection
4353 * @dev: device
4355 * Perform drive side detection decoding, allowing for device vendors
4356 * who can't follow the documentation.
4359 static int ata_is_40wire(struct ata_device *dev)
4361 if (dev->horkage & ATA_HORKAGE_IVB)
4362 return ata_drive_40wire_relaxed(dev->id);
4363 return ata_drive_40wire(dev->id);
4367 * cable_is_40wire - 40/80/SATA decider
4368 * @ap: port to consider
4370 * This function encapsulates the policy for speed management
4371 * in one place. At the moment we don't cache the result but
4372 * there is a good case for setting ap->cbl to the result when
4373 * we are called with unknown cables (and figuring out if it
4374 * impacts hotplug at all).
4376 * Return 1 if the cable appears to be 40 wire.
4379 static int cable_is_40wire(struct ata_port *ap)
4381 struct ata_link *link;
4382 struct ata_device *dev;
4384 /* If the controller thinks we are 40 wire, we are. */
4385 if (ap->cbl == ATA_CBL_PATA40)
4386 return 1;
4388 /* If the controller thinks we are 80 wire, we are. */
4389 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4390 return 0;
4392 /* If the system is known to be 40 wire short cable (eg
4393 * laptop), then we allow 80 wire modes even if the drive
4394 * isn't sure.
4396 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4397 return 0;
4399 /* If the controller doesn't know, we scan.
4401 * Note: We look for all 40 wire detects at this point. Any
4402 * 80 wire detect is taken to be 80 wire cable because
4403 * - in many setups only the one drive (slave if present) will
4404 * give a valid detect
4405 * - if you have a non detect capable drive you don't want it
4406 * to colour the choice
4408 ata_for_each_link(link, ap, EDGE) {
4409 ata_for_each_dev(dev, link, ENABLED) {
4410 if (!ata_is_40wire(dev))
4411 return 0;
4414 return 1;
4418 * ata_dev_xfermask - Compute supported xfermask of the given device
4419 * @dev: Device to compute xfermask for
4421 * Compute supported xfermask of @dev and store it in
4422 * dev->*_mask. This function is responsible for applying all
4423 * known limits including host controller limits, device
4424 * blacklist, etc...
4426 * LOCKING:
4427 * None.
4429 static void ata_dev_xfermask(struct ata_device *dev)
4431 struct ata_link *link = dev->link;
4432 struct ata_port *ap = link->ap;
4433 struct ata_host *host = ap->host;
4434 unsigned long xfer_mask;
4436 /* controller modes available */
4437 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4438 ap->mwdma_mask, ap->udma_mask);
4440 /* drive modes available */
4441 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4442 dev->mwdma_mask, dev->udma_mask);
4443 xfer_mask &= ata_id_xfermask(dev->id);
4446 * CFA Advanced TrueIDE timings are not allowed on a shared
4447 * cable
4449 if (ata_dev_pair(dev)) {
4450 /* No PIO5 or PIO6 */
4451 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4452 /* No MWDMA3 or MWDMA 4 */
4453 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4456 if (ata_dma_blacklisted(dev)) {
4457 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4458 ata_dev_warn(dev,
4459 "device is on DMA blacklist, disabling DMA\n");
4462 if ((host->flags & ATA_HOST_SIMPLEX) &&
4463 host->simplex_claimed && host->simplex_claimed != ap) {
4464 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4465 ata_dev_warn(dev,
4466 "simplex DMA is claimed by other device, disabling DMA\n");
4469 if (ap->flags & ATA_FLAG_NO_IORDY)
4470 xfer_mask &= ata_pio_mask_no_iordy(dev);
4472 if (ap->ops->mode_filter)
4473 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4475 /* Apply cable rule here. Don't apply it early because when
4476 * we handle hot plug the cable type can itself change.
4477 * Check this last so that we know if the transfer rate was
4478 * solely limited by the cable.
4479 * Unknown or 80 wire cables reported host side are checked
4480 * drive side as well. Cases where we know a 40wire cable
4481 * is used safely for 80 are not checked here.
4483 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4484 /* UDMA/44 or higher would be available */
4485 if (cable_is_40wire(ap)) {
4486 ata_dev_warn(dev,
4487 "limited to UDMA/33 due to 40-wire cable\n");
4488 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4491 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4492 &dev->mwdma_mask, &dev->udma_mask);
4496 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4497 * @dev: Device to which command will be sent
4499 * Issue SET FEATURES - XFER MODE command to device @dev
4500 * on port @ap.
4502 * LOCKING:
4503 * PCI/etc. bus probe sem.
4505 * RETURNS:
4506 * 0 on success, AC_ERR_* mask otherwise.
4509 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4511 struct ata_taskfile tf;
4512 unsigned int err_mask;
4514 /* set up set-features taskfile */
4515 DPRINTK("set features - xfer mode\n");
4517 /* Some controllers and ATAPI devices show flaky interrupt
4518 * behavior after setting xfer mode. Use polling instead.
4520 ata_tf_init(dev, &tf);
4521 tf.command = ATA_CMD_SET_FEATURES;
4522 tf.feature = SETFEATURES_XFER;
4523 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4524 tf.protocol = ATA_PROT_NODATA;
4525 /* If we are using IORDY we must send the mode setting command */
4526 if (ata_pio_need_iordy(dev))
4527 tf.nsect = dev->xfer_mode;
4528 /* If the device has IORDY and the controller does not - turn it off */
4529 else if (ata_id_has_iordy(dev->id))
4530 tf.nsect = 0x01;
4531 else /* In the ancient relic department - skip all of this */
4532 return 0;
4534 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4536 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4537 return err_mask;
4541 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4542 * @dev: Device to which command will be sent
4543 * @enable: Whether to enable or disable the feature
4544 * @feature: The sector count represents the feature to set
4546 * Issue SET FEATURES - SATA FEATURES command to device @dev
4547 * on port @ap with sector count
4549 * LOCKING:
4550 * PCI/etc. bus probe sem.
4552 * RETURNS:
4553 * 0 on success, AC_ERR_* mask otherwise.
4555 unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable, u8 feature)
4557 struct ata_taskfile tf;
4558 unsigned int err_mask;
4560 /* set up set-features taskfile */
4561 DPRINTK("set features - SATA features\n");
4563 ata_tf_init(dev, &tf);
4564 tf.command = ATA_CMD_SET_FEATURES;
4565 tf.feature = enable;
4566 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4567 tf.protocol = ATA_PROT_NODATA;
4568 tf.nsect = feature;
4570 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4572 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4573 return err_mask;
4575 EXPORT_SYMBOL_GPL(ata_dev_set_feature);
4578 * ata_dev_init_params - Issue INIT DEV PARAMS command
4579 * @dev: Device to which command will be sent
4580 * @heads: Number of heads (taskfile parameter)
4581 * @sectors: Number of sectors (taskfile parameter)
4583 * LOCKING:
4584 * Kernel thread context (may sleep)
4586 * RETURNS:
4587 * 0 on success, AC_ERR_* mask otherwise.
4589 static unsigned int ata_dev_init_params(struct ata_device *dev,
4590 u16 heads, u16 sectors)
4592 struct ata_taskfile tf;
4593 unsigned int err_mask;
4595 /* Number of sectors per track 1-255. Number of heads 1-16 */
4596 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4597 return AC_ERR_INVALID;
4599 /* set up init dev params taskfile */
4600 DPRINTK("init dev params \n");
4602 ata_tf_init(dev, &tf);
4603 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4604 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4605 tf.protocol = ATA_PROT_NODATA;
4606 tf.nsect = sectors;
4607 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4609 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4610 /* A clean abort indicates an original or just out of spec drive
4611 and we should continue as we issue the setup based on the
4612 drive reported working geometry */
4613 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4614 err_mask = 0;
4616 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4617 return err_mask;
4621 * ata_sg_clean - Unmap DMA memory associated with command
4622 * @qc: Command containing DMA memory to be released
4624 * Unmap all mapped DMA memory associated with this command.
4626 * LOCKING:
4627 * spin_lock_irqsave(host lock)
4629 void ata_sg_clean(struct ata_queued_cmd *qc)
4631 struct ata_port *ap = qc->ap;
4632 struct scatterlist *sg = qc->sg;
4633 int dir = qc->dma_dir;
4635 WARN_ON_ONCE(sg == NULL);
4637 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4639 if (qc->n_elem)
4640 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4642 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4643 qc->sg = NULL;
4647 * atapi_check_dma - Check whether ATAPI DMA can be supported
4648 * @qc: Metadata associated with taskfile to check
4650 * Allow low-level driver to filter ATA PACKET commands, returning
4651 * a status indicating whether or not it is OK to use DMA for the
4652 * supplied PACKET command.
4654 * LOCKING:
4655 * spin_lock_irqsave(host lock)
4657 * RETURNS: 0 when ATAPI DMA can be used
4658 * nonzero otherwise
4660 int atapi_check_dma(struct ata_queued_cmd *qc)
4662 struct ata_port *ap = qc->ap;
4664 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4665 * few ATAPI devices choke on such DMA requests.
4667 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4668 unlikely(qc->nbytes & 15))
4669 return 1;
4671 if (ap->ops->check_atapi_dma)
4672 return ap->ops->check_atapi_dma(qc);
4674 return 0;
4678 * ata_std_qc_defer - Check whether a qc needs to be deferred
4679 * @qc: ATA command in question
4681 * Non-NCQ commands cannot run with any other command, NCQ or
4682 * not. As upper layer only knows the queue depth, we are
4683 * responsible for maintaining exclusion. This function checks
4684 * whether a new command @qc can be issued.
4686 * LOCKING:
4687 * spin_lock_irqsave(host lock)
4689 * RETURNS:
4690 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4692 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4694 struct ata_link *link = qc->dev->link;
4696 if (qc->tf.protocol == ATA_PROT_NCQ) {
4697 if (!ata_tag_valid(link->active_tag))
4698 return 0;
4699 } else {
4700 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4701 return 0;
4704 return ATA_DEFER_LINK;
4707 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4710 * ata_sg_init - Associate command with scatter-gather table.
4711 * @qc: Command to be associated
4712 * @sg: Scatter-gather table.
4713 * @n_elem: Number of elements in s/g table.
4715 * Initialize the data-related elements of queued_cmd @qc
4716 * to point to a scatter-gather table @sg, containing @n_elem
4717 * elements.
4719 * LOCKING:
4720 * spin_lock_irqsave(host lock)
4722 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4723 unsigned int n_elem)
4725 qc->sg = sg;
4726 qc->n_elem = n_elem;
4727 qc->cursg = qc->sg;
4731 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4732 * @qc: Command with scatter-gather table to be mapped.
4734 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4736 * LOCKING:
4737 * spin_lock_irqsave(host lock)
4739 * RETURNS:
4740 * Zero on success, negative on error.
4743 static int ata_sg_setup(struct ata_queued_cmd *qc)
4745 struct ata_port *ap = qc->ap;
4746 unsigned int n_elem;
4748 VPRINTK("ENTER, ata%u\n", ap->print_id);
4750 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4751 if (n_elem < 1)
4752 return -1;
4754 DPRINTK("%d sg elements mapped\n", n_elem);
4755 qc->orig_n_elem = qc->n_elem;
4756 qc->n_elem = n_elem;
4757 qc->flags |= ATA_QCFLAG_DMAMAP;
4759 return 0;
4763 * swap_buf_le16 - swap halves of 16-bit words in place
4764 * @buf: Buffer to swap
4765 * @buf_words: Number of 16-bit words in buffer.
4767 * Swap halves of 16-bit words if needed to convert from
4768 * little-endian byte order to native cpu byte order, or
4769 * vice-versa.
4771 * LOCKING:
4772 * Inherited from caller.
4774 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4776 #ifdef __BIG_ENDIAN
4777 unsigned int i;
4779 for (i = 0; i < buf_words; i++)
4780 buf[i] = le16_to_cpu(buf[i]);
4781 #endif /* __BIG_ENDIAN */
4785 * ata_qc_new - Request an available ATA command, for queueing
4786 * @ap: target port
4788 * LOCKING:
4789 * None.
4792 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4794 struct ata_queued_cmd *qc = NULL;
4795 unsigned int i;
4797 /* no command while frozen */
4798 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4799 return NULL;
4801 /* the last tag is reserved for internal command. */
4802 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4803 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4804 qc = __ata_qc_from_tag(ap, i);
4805 break;
4808 if (qc)
4809 qc->tag = i;
4811 return qc;
4815 * ata_qc_new_init - Request an available ATA command, and initialize it
4816 * @dev: Device from whom we request an available command structure
4818 * LOCKING:
4819 * None.
4822 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4824 struct ata_port *ap = dev->link->ap;
4825 struct ata_queued_cmd *qc;
4827 qc = ata_qc_new(ap);
4828 if (qc) {
4829 qc->scsicmd = NULL;
4830 qc->ap = ap;
4831 qc->dev = dev;
4833 ata_qc_reinit(qc);
4836 return qc;
4840 * ata_qc_free - free unused ata_queued_cmd
4841 * @qc: Command to complete
4843 * Designed to free unused ata_queued_cmd object
4844 * in case something prevents using it.
4846 * LOCKING:
4847 * spin_lock_irqsave(host lock)
4849 void ata_qc_free(struct ata_queued_cmd *qc)
4851 struct ata_port *ap;
4852 unsigned int tag;
4854 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4855 ap = qc->ap;
4857 qc->flags = 0;
4858 tag = qc->tag;
4859 if (likely(ata_tag_valid(tag))) {
4860 qc->tag = ATA_TAG_POISON;
4861 clear_bit(tag, &ap->qc_allocated);
4865 void __ata_qc_complete(struct ata_queued_cmd *qc)
4867 struct ata_port *ap;
4868 struct ata_link *link;
4870 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4871 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4872 ap = qc->ap;
4873 link = qc->dev->link;
4875 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4876 ata_sg_clean(qc);
4878 /* command should be marked inactive atomically with qc completion */
4879 if (qc->tf.protocol == ATA_PROT_NCQ) {
4880 link->sactive &= ~(1 << qc->tag);
4881 if (!link->sactive)
4882 ap->nr_active_links--;
4883 } else {
4884 link->active_tag = ATA_TAG_POISON;
4885 ap->nr_active_links--;
4888 /* clear exclusive status */
4889 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4890 ap->excl_link == link))
4891 ap->excl_link = NULL;
4893 /* atapi: mark qc as inactive to prevent the interrupt handler
4894 * from completing the command twice later, before the error handler
4895 * is called. (when rc != 0 and atapi request sense is needed)
4897 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4898 ap->qc_active &= ~(1 << qc->tag);
4900 /* call completion callback */
4901 qc->complete_fn(qc);
4904 static void fill_result_tf(struct ata_queued_cmd *qc)
4906 struct ata_port *ap = qc->ap;
4908 qc->result_tf.flags = qc->tf.flags;
4909 ap->ops->qc_fill_rtf(qc);
4912 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4914 struct ata_device *dev = qc->dev;
4916 if (ata_is_nodata(qc->tf.protocol))
4917 return;
4919 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4920 return;
4922 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4926 * ata_qc_complete - Complete an active ATA command
4927 * @qc: Command to complete
4929 * Indicate to the mid and upper layers that an ATA command has
4930 * completed, with either an ok or not-ok status.
4932 * Refrain from calling this function multiple times when
4933 * successfully completing multiple NCQ commands.
4934 * ata_qc_complete_multiple() should be used instead, which will
4935 * properly update IRQ expect state.
4937 * LOCKING:
4938 * spin_lock_irqsave(host lock)
4940 void ata_qc_complete(struct ata_queued_cmd *qc)
4942 struct ata_port *ap = qc->ap;
4944 /* XXX: New EH and old EH use different mechanisms to
4945 * synchronize EH with regular execution path.
4947 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4948 * Normal execution path is responsible for not accessing a
4949 * failed qc. libata core enforces the rule by returning NULL
4950 * from ata_qc_from_tag() for failed qcs.
4952 * Old EH depends on ata_qc_complete() nullifying completion
4953 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4954 * not synchronize with interrupt handler. Only PIO task is
4955 * taken care of.
4957 if (ap->ops->error_handler) {
4958 struct ata_device *dev = qc->dev;
4959 struct ata_eh_info *ehi = &dev->link->eh_info;
4961 if (unlikely(qc->err_mask))
4962 qc->flags |= ATA_QCFLAG_FAILED;
4965 * Finish internal commands without any further processing
4966 * and always with the result TF filled.
4968 if (unlikely(ata_tag_internal(qc->tag))) {
4969 fill_result_tf(qc);
4970 __ata_qc_complete(qc);
4971 return;
4975 * Non-internal qc has failed. Fill the result TF and
4976 * summon EH.
4978 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
4979 fill_result_tf(qc);
4980 ata_qc_schedule_eh(qc);
4981 return;
4984 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
4986 /* read result TF if requested */
4987 if (qc->flags & ATA_QCFLAG_RESULT_TF)
4988 fill_result_tf(qc);
4990 /* Some commands need post-processing after successful
4991 * completion.
4993 switch (qc->tf.command) {
4994 case ATA_CMD_SET_FEATURES:
4995 if (qc->tf.feature != SETFEATURES_WC_ON &&
4996 qc->tf.feature != SETFEATURES_WC_OFF)
4997 break;
4998 /* fall through */
4999 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5000 case ATA_CMD_SET_MULTI: /* multi_count changed */
5001 /* revalidate device */
5002 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5003 ata_port_schedule_eh(ap);
5004 break;
5006 case ATA_CMD_SLEEP:
5007 dev->flags |= ATA_DFLAG_SLEEPING;
5008 break;
5011 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5012 ata_verify_xfer(qc);
5014 __ata_qc_complete(qc);
5015 } else {
5016 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5017 return;
5019 /* read result TF if failed or requested */
5020 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5021 fill_result_tf(qc);
5023 __ata_qc_complete(qc);
5028 * ata_qc_complete_multiple - Complete multiple qcs successfully
5029 * @ap: port in question
5030 * @qc_active: new qc_active mask
5032 * Complete in-flight commands. This functions is meant to be
5033 * called from low-level driver's interrupt routine to complete
5034 * requests normally. ap->qc_active and @qc_active is compared
5035 * and commands are completed accordingly.
5037 * Always use this function when completing multiple NCQ commands
5038 * from IRQ handlers instead of calling ata_qc_complete()
5039 * multiple times to keep IRQ expect status properly in sync.
5041 * LOCKING:
5042 * spin_lock_irqsave(host lock)
5044 * RETURNS:
5045 * Number of completed commands on success, -errno otherwise.
5047 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5049 int nr_done = 0;
5050 u32 done_mask;
5052 done_mask = ap->qc_active ^ qc_active;
5054 if (unlikely(done_mask & qc_active)) {
5055 ata_port_err(ap, "illegal qc_active transition (%08x->%08x)\n",
5056 ap->qc_active, qc_active);
5057 return -EINVAL;
5060 while (done_mask) {
5061 struct ata_queued_cmd *qc;
5062 unsigned int tag = __ffs(done_mask);
5064 qc = ata_qc_from_tag(ap, tag);
5065 if (qc) {
5066 ata_qc_complete(qc);
5067 nr_done++;
5069 done_mask &= ~(1 << tag);
5072 return nr_done;
5076 * ata_qc_issue - issue taskfile to device
5077 * @qc: command to issue to device
5079 * Prepare an ATA command to submission to device.
5080 * This includes mapping the data into a DMA-able
5081 * area, filling in the S/G table, and finally
5082 * writing the taskfile to hardware, starting the command.
5084 * LOCKING:
5085 * spin_lock_irqsave(host lock)
5087 void ata_qc_issue(struct ata_queued_cmd *qc)
5089 struct ata_port *ap = qc->ap;
5090 struct ata_link *link = qc->dev->link;
5091 u8 prot = qc->tf.protocol;
5093 /* Make sure only one non-NCQ command is outstanding. The
5094 * check is skipped for old EH because it reuses active qc to
5095 * request ATAPI sense.
5097 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5099 if (ata_is_ncq(prot)) {
5100 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5102 if (!link->sactive)
5103 ap->nr_active_links++;
5104 link->sactive |= 1 << qc->tag;
5105 } else {
5106 WARN_ON_ONCE(link->sactive);
5108 ap->nr_active_links++;
5109 link->active_tag = qc->tag;
5112 qc->flags |= ATA_QCFLAG_ACTIVE;
5113 ap->qc_active |= 1 << qc->tag;
5116 * We guarantee to LLDs that they will have at least one
5117 * non-zero sg if the command is a data command.
5119 if (WARN_ON_ONCE(ata_is_data(prot) &&
5120 (!qc->sg || !qc->n_elem || !qc->nbytes)))
5121 goto sys_err;
5123 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5124 (ap->flags & ATA_FLAG_PIO_DMA)))
5125 if (ata_sg_setup(qc))
5126 goto sys_err;
5128 /* if device is sleeping, schedule reset and abort the link */
5129 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5130 link->eh_info.action |= ATA_EH_RESET;
5131 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5132 ata_link_abort(link);
5133 return;
5136 ap->ops->qc_prep(qc);
5138 qc->err_mask |= ap->ops->qc_issue(qc);
5139 if (unlikely(qc->err_mask))
5140 goto err;
5141 return;
5143 sys_err:
5144 qc->err_mask |= AC_ERR_SYSTEM;
5145 err:
5146 ata_qc_complete(qc);
5150 * sata_scr_valid - test whether SCRs are accessible
5151 * @link: ATA link to test SCR accessibility for
5153 * Test whether SCRs are accessible for @link.
5155 * LOCKING:
5156 * None.
5158 * RETURNS:
5159 * 1 if SCRs are accessible, 0 otherwise.
5161 int sata_scr_valid(struct ata_link *link)
5163 struct ata_port *ap = link->ap;
5165 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5169 * sata_scr_read - read SCR register of the specified port
5170 * @link: ATA link to read SCR for
5171 * @reg: SCR to read
5172 * @val: Place to store read value
5174 * Read SCR register @reg of @link into *@val. This function is
5175 * guaranteed to succeed if @link is ap->link, the cable type of
5176 * the port is SATA and the port implements ->scr_read.
5178 * LOCKING:
5179 * None if @link is ap->link. Kernel thread context otherwise.
5181 * RETURNS:
5182 * 0 on success, negative errno on failure.
5184 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5186 if (ata_is_host_link(link)) {
5187 if (sata_scr_valid(link))
5188 return link->ap->ops->scr_read(link, reg, val);
5189 return -EOPNOTSUPP;
5192 return sata_pmp_scr_read(link, reg, val);
5196 * sata_scr_write - write SCR register of the specified port
5197 * @link: ATA link to write SCR for
5198 * @reg: SCR to write
5199 * @val: value to write
5201 * Write @val to SCR register @reg of @link. This function is
5202 * guaranteed to succeed if @link is ap->link, the cable type of
5203 * the port is SATA and the port implements ->scr_read.
5205 * LOCKING:
5206 * None if @link is ap->link. Kernel thread context otherwise.
5208 * RETURNS:
5209 * 0 on success, negative errno on failure.
5211 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5213 if (ata_is_host_link(link)) {
5214 if (sata_scr_valid(link))
5215 return link->ap->ops->scr_write(link, reg, val);
5216 return -EOPNOTSUPP;
5219 return sata_pmp_scr_write(link, reg, val);
5223 * sata_scr_write_flush - write SCR register of the specified port and flush
5224 * @link: ATA link to write SCR for
5225 * @reg: SCR to write
5226 * @val: value to write
5228 * This function is identical to sata_scr_write() except that this
5229 * function performs flush after writing to the register.
5231 * LOCKING:
5232 * None if @link is ap->link. Kernel thread context otherwise.
5234 * RETURNS:
5235 * 0 on success, negative errno on failure.
5237 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5239 if (ata_is_host_link(link)) {
5240 int rc;
5242 if (sata_scr_valid(link)) {
5243 rc = link->ap->ops->scr_write(link, reg, val);
5244 if (rc == 0)
5245 rc = link->ap->ops->scr_read(link, reg, &val);
5246 return rc;
5248 return -EOPNOTSUPP;
5251 return sata_pmp_scr_write(link, reg, val);
5255 * ata_phys_link_online - test whether the given link is online
5256 * @link: ATA link to test
5258 * Test whether @link is online. Note that this function returns
5259 * 0 if online status of @link cannot be obtained, so
5260 * ata_link_online(link) != !ata_link_offline(link).
5262 * LOCKING:
5263 * None.
5265 * RETURNS:
5266 * True if the port online status is available and online.
5268 bool ata_phys_link_online(struct ata_link *link)
5270 u32 sstatus;
5272 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5273 ata_sstatus_online(sstatus))
5274 return true;
5275 return false;
5279 * ata_phys_link_offline - test whether the given link is offline
5280 * @link: ATA link to test
5282 * Test whether @link is offline. Note that this function
5283 * returns 0 if offline status of @link cannot be obtained, so
5284 * ata_link_online(link) != !ata_link_offline(link).
5286 * LOCKING:
5287 * None.
5289 * RETURNS:
5290 * True if the port offline status is available and offline.
5292 bool ata_phys_link_offline(struct ata_link *link)
5294 u32 sstatus;
5296 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5297 !ata_sstatus_online(sstatus))
5298 return true;
5299 return false;
5303 * ata_link_online - test whether the given link is online
5304 * @link: ATA link to test
5306 * Test whether @link is online. This is identical to
5307 * ata_phys_link_online() when there's no slave link. When
5308 * there's a slave link, this function should only be called on
5309 * the master link and will return true if any of M/S links is
5310 * online.
5312 * LOCKING:
5313 * None.
5315 * RETURNS:
5316 * True if the port online status is available and online.
5318 bool ata_link_online(struct ata_link *link)
5320 struct ata_link *slave = link->ap->slave_link;
5322 WARN_ON(link == slave); /* shouldn't be called on slave link */
5324 return ata_phys_link_online(link) ||
5325 (slave && ata_phys_link_online(slave));
5329 * ata_link_offline - test whether the given link is offline
5330 * @link: ATA link to test
5332 * Test whether @link is offline. This is identical to
5333 * ata_phys_link_offline() when there's no slave link. When
5334 * there's a slave link, this function should only be called on
5335 * the master link and will return true if both M/S links are
5336 * offline.
5338 * LOCKING:
5339 * None.
5341 * RETURNS:
5342 * True if the port offline status is available and offline.
5344 bool ata_link_offline(struct ata_link *link)
5346 struct ata_link *slave = link->ap->slave_link;
5348 WARN_ON(link == slave); /* shouldn't be called on slave link */
5350 return ata_phys_link_offline(link) &&
5351 (!slave || ata_phys_link_offline(slave));
5354 #ifdef CONFIG_PM
5355 static void ata_port_request_pm(struct ata_port *ap, pm_message_t mesg,
5356 unsigned int action, unsigned int ehi_flags,
5357 bool async)
5359 struct ata_link *link;
5360 unsigned long flags;
5362 /* Previous resume operation might still be in
5363 * progress. Wait for PM_PENDING to clear.
5365 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5366 ata_port_wait_eh(ap);
5367 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5370 /* request PM ops to EH */
5371 spin_lock_irqsave(ap->lock, flags);
5373 ap->pm_mesg = mesg;
5374 ap->pflags |= ATA_PFLAG_PM_PENDING;
5375 ata_for_each_link(link, ap, HOST_FIRST) {
5376 link->eh_info.action |= action;
5377 link->eh_info.flags |= ehi_flags;
5380 ata_port_schedule_eh(ap);
5382 spin_unlock_irqrestore(ap->lock, flags);
5384 if (!async) {
5385 ata_port_wait_eh(ap);
5386 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5391 * On some hardware, device fails to respond after spun down for suspend. As
5392 * the device won't be used before being resumed, we don't need to touch the
5393 * device. Ask EH to skip the usual stuff and proceed directly to suspend.
5395 * http://thread.gmane.org/gmane.linux.ide/46764
5397 static const unsigned int ata_port_suspend_ehi = ATA_EHI_QUIET
5398 | ATA_EHI_NO_AUTOPSY
5399 | ATA_EHI_NO_RECOVERY;
5401 static void ata_port_suspend(struct ata_port *ap, pm_message_t mesg)
5403 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, false);
5406 static void ata_port_suspend_async(struct ata_port *ap, pm_message_t mesg)
5408 ata_port_request_pm(ap, mesg, 0, ata_port_suspend_ehi, true);
5411 static int ata_port_pm_suspend(struct device *dev)
5413 struct ata_port *ap = to_ata_port(dev);
5415 if (pm_runtime_suspended(dev))
5416 return 0;
5418 ata_port_suspend(ap, PMSG_SUSPEND);
5419 return 0;
5422 static int ata_port_pm_freeze(struct device *dev)
5424 struct ata_port *ap = to_ata_port(dev);
5426 if (pm_runtime_suspended(dev))
5427 return 0;
5429 ata_port_suspend(ap, PMSG_FREEZE);
5430 return 0;
5433 static int ata_port_pm_poweroff(struct device *dev)
5435 ata_port_suspend(to_ata_port(dev), PMSG_HIBERNATE);
5436 return 0;
5439 static const unsigned int ata_port_resume_ehi = ATA_EHI_NO_AUTOPSY
5440 | ATA_EHI_QUIET;
5442 static void ata_port_resume(struct ata_port *ap, pm_message_t mesg)
5444 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, false);
5447 static void ata_port_resume_async(struct ata_port *ap, pm_message_t mesg)
5449 ata_port_request_pm(ap, mesg, ATA_EH_RESET, ata_port_resume_ehi, true);
5452 static int ata_port_pm_resume(struct device *dev)
5454 ata_port_resume_async(to_ata_port(dev), PMSG_RESUME);
5455 pm_runtime_disable(dev);
5456 pm_runtime_set_active(dev);
5457 pm_runtime_enable(dev);
5458 return 0;
5462 * For ODDs, the upper layer will poll for media change every few seconds,
5463 * which will make it enter and leave suspend state every few seconds. And
5464 * as each suspend will cause a hard/soft reset, the gain of runtime suspend
5465 * is very little and the ODD may malfunction after constantly being reset.
5466 * So the idle callback here will not proceed to suspend if a non-ZPODD capable
5467 * ODD is attached to the port.
5469 static int ata_port_runtime_idle(struct device *dev)
5471 struct ata_port *ap = to_ata_port(dev);
5472 struct ata_link *link;
5473 struct ata_device *adev;
5475 ata_for_each_link(link, ap, HOST_FIRST) {
5476 ata_for_each_dev(adev, link, ENABLED)
5477 if (adev->class == ATA_DEV_ATAPI &&
5478 !zpodd_dev_enabled(adev))
5479 return -EBUSY;
5482 return 0;
5485 static int ata_port_runtime_suspend(struct device *dev)
5487 ata_port_suspend(to_ata_port(dev), PMSG_AUTO_SUSPEND);
5488 return 0;
5491 static int ata_port_runtime_resume(struct device *dev)
5493 ata_port_resume(to_ata_port(dev), PMSG_AUTO_RESUME);
5494 return 0;
5497 static const struct dev_pm_ops ata_port_pm_ops = {
5498 .suspend = ata_port_pm_suspend,
5499 .resume = ata_port_pm_resume,
5500 .freeze = ata_port_pm_freeze,
5501 .thaw = ata_port_pm_resume,
5502 .poweroff = ata_port_pm_poweroff,
5503 .restore = ata_port_pm_resume,
5505 .runtime_suspend = ata_port_runtime_suspend,
5506 .runtime_resume = ata_port_runtime_resume,
5507 .runtime_idle = ata_port_runtime_idle,
5510 /* sas ports don't participate in pm runtime management of ata_ports,
5511 * and need to resume ata devices at the domain level, not the per-port
5512 * level. sas suspend/resume is async to allow parallel port recovery
5513 * since sas has multiple ata_port instances per Scsi_Host.
5515 void ata_sas_port_suspend(struct ata_port *ap)
5517 ata_port_suspend_async(ap, PMSG_SUSPEND);
5519 EXPORT_SYMBOL_GPL(ata_sas_port_suspend);
5521 void ata_sas_port_resume(struct ata_port *ap)
5523 ata_port_resume_async(ap, PMSG_RESUME);
5525 EXPORT_SYMBOL_GPL(ata_sas_port_resume);
5528 * ata_host_suspend - suspend host
5529 * @host: host to suspend
5530 * @mesg: PM message
5532 * Suspend @host. Actual operation is performed by port suspend.
5534 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5536 host->dev->power.power_state = mesg;
5537 return 0;
5541 * ata_host_resume - resume host
5542 * @host: host to resume
5544 * Resume @host. Actual operation is performed by port resume.
5546 void ata_host_resume(struct ata_host *host)
5548 host->dev->power.power_state = PMSG_ON;
5550 #endif
5552 struct device_type ata_port_type = {
5553 .name = "ata_port",
5554 #ifdef CONFIG_PM
5555 .pm = &ata_port_pm_ops,
5556 #endif
5560 * ata_dev_init - Initialize an ata_device structure
5561 * @dev: Device structure to initialize
5563 * Initialize @dev in preparation for probing.
5565 * LOCKING:
5566 * Inherited from caller.
5568 void ata_dev_init(struct ata_device *dev)
5570 struct ata_link *link = ata_dev_phys_link(dev);
5571 struct ata_port *ap = link->ap;
5572 unsigned long flags;
5574 /* SATA spd limit is bound to the attached device, reset together */
5575 link->sata_spd_limit = link->hw_sata_spd_limit;
5576 link->sata_spd = 0;
5578 /* High bits of dev->flags are used to record warm plug
5579 * requests which occur asynchronously. Synchronize using
5580 * host lock.
5582 spin_lock_irqsave(ap->lock, flags);
5583 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5584 dev->horkage = 0;
5585 spin_unlock_irqrestore(ap->lock, flags);
5587 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5588 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5589 dev->pio_mask = UINT_MAX;
5590 dev->mwdma_mask = UINT_MAX;
5591 dev->udma_mask = UINT_MAX;
5595 * ata_link_init - Initialize an ata_link structure
5596 * @ap: ATA port link is attached to
5597 * @link: Link structure to initialize
5598 * @pmp: Port multiplier port number
5600 * Initialize @link.
5602 * LOCKING:
5603 * Kernel thread context (may sleep)
5605 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5607 int i;
5609 /* clear everything except for devices */
5610 memset((void *)link + ATA_LINK_CLEAR_BEGIN, 0,
5611 ATA_LINK_CLEAR_END - ATA_LINK_CLEAR_BEGIN);
5613 link->ap = ap;
5614 link->pmp = pmp;
5615 link->active_tag = ATA_TAG_POISON;
5616 link->hw_sata_spd_limit = UINT_MAX;
5618 /* can't use iterator, ap isn't initialized yet */
5619 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5620 struct ata_device *dev = &link->device[i];
5622 dev->link = link;
5623 dev->devno = dev - link->device;
5624 #ifdef CONFIG_ATA_ACPI
5625 dev->gtf_filter = ata_acpi_gtf_filter;
5626 #endif
5627 ata_dev_init(dev);
5632 * sata_link_init_spd - Initialize link->sata_spd_limit
5633 * @link: Link to configure sata_spd_limit for
5635 * Initialize @link->[hw_]sata_spd_limit to the currently
5636 * configured value.
5638 * LOCKING:
5639 * Kernel thread context (may sleep).
5641 * RETURNS:
5642 * 0 on success, -errno on failure.
5644 int sata_link_init_spd(struct ata_link *link)
5646 u8 spd;
5647 int rc;
5649 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5650 if (rc)
5651 return rc;
5653 spd = (link->saved_scontrol >> 4) & 0xf;
5654 if (spd)
5655 link->hw_sata_spd_limit &= (1 << spd) - 1;
5657 ata_force_link_limits(link);
5659 link->sata_spd_limit = link->hw_sata_spd_limit;
5661 return 0;
5665 * ata_port_alloc - allocate and initialize basic ATA port resources
5666 * @host: ATA host this allocated port belongs to
5668 * Allocate and initialize basic ATA port resources.
5670 * RETURNS:
5671 * Allocate ATA port on success, NULL on failure.
5673 * LOCKING:
5674 * Inherited from calling layer (may sleep).
5676 struct ata_port *ata_port_alloc(struct ata_host *host)
5678 struct ata_port *ap;
5680 DPRINTK("ENTER\n");
5682 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5683 if (!ap)
5684 return NULL;
5686 ap->pflags |= ATA_PFLAG_INITIALIZING | ATA_PFLAG_FROZEN;
5687 ap->lock = &host->lock;
5688 ap->print_id = -1;
5689 ap->local_port_no = -1;
5690 ap->host = host;
5691 ap->dev = host->dev;
5693 #if defined(ATA_VERBOSE_DEBUG)
5694 /* turn on all debugging levels */
5695 ap->msg_enable = 0x00FF;
5696 #elif defined(ATA_DEBUG)
5697 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5698 #else
5699 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5700 #endif
5702 mutex_init(&ap->scsi_scan_mutex);
5703 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5704 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5705 INIT_LIST_HEAD(&ap->eh_done_q);
5706 init_waitqueue_head(&ap->eh_wait_q);
5707 init_completion(&ap->park_req_pending);
5708 init_timer_deferrable(&ap->fastdrain_timer);
5709 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5710 ap->fastdrain_timer.data = (unsigned long)ap;
5712 ap->cbl = ATA_CBL_NONE;
5714 ata_link_init(ap, &ap->link, 0);
5716 #ifdef ATA_IRQ_TRAP
5717 ap->stats.unhandled_irq = 1;
5718 ap->stats.idle_irq = 1;
5719 #endif
5720 ata_sff_port_init(ap);
5722 return ap;
5725 static void ata_host_release(struct device *gendev, void *res)
5727 struct ata_host *host = dev_get_drvdata(gendev);
5728 int i;
5730 for (i = 0; i < host->n_ports; i++) {
5731 struct ata_port *ap = host->ports[i];
5733 if (!ap)
5734 continue;
5736 if (ap->scsi_host)
5737 scsi_host_put(ap->scsi_host);
5739 kfree(ap->pmp_link);
5740 kfree(ap->slave_link);
5741 kfree(ap);
5742 host->ports[i] = NULL;
5745 dev_set_drvdata(gendev, NULL);
5749 * ata_host_alloc - allocate and init basic ATA host resources
5750 * @dev: generic device this host is associated with
5751 * @max_ports: maximum number of ATA ports associated with this host
5753 * Allocate and initialize basic ATA host resources. LLD calls
5754 * this function to allocate a host, initializes it fully and
5755 * attaches it using ata_host_register().
5757 * @max_ports ports are allocated and host->n_ports is
5758 * initialized to @max_ports. The caller is allowed to decrease
5759 * host->n_ports before calling ata_host_register(). The unused
5760 * ports will be automatically freed on registration.
5762 * RETURNS:
5763 * Allocate ATA host on success, NULL on failure.
5765 * LOCKING:
5766 * Inherited from calling layer (may sleep).
5768 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5770 struct ata_host *host;
5771 size_t sz;
5772 int i;
5774 DPRINTK("ENTER\n");
5776 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5777 return NULL;
5779 /* alloc a container for our list of ATA ports (buses) */
5780 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5781 /* alloc a container for our list of ATA ports (buses) */
5782 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5783 if (!host)
5784 goto err_out;
5786 devres_add(dev, host);
5787 dev_set_drvdata(dev, host);
5789 spin_lock_init(&host->lock);
5790 mutex_init(&host->eh_mutex);
5791 host->dev = dev;
5792 host->n_ports = max_ports;
5794 /* allocate ports bound to this host */
5795 for (i = 0; i < max_ports; i++) {
5796 struct ata_port *ap;
5798 ap = ata_port_alloc(host);
5799 if (!ap)
5800 goto err_out;
5802 ap->port_no = i;
5803 host->ports[i] = ap;
5806 devres_remove_group(dev, NULL);
5807 return host;
5809 err_out:
5810 devres_release_group(dev, NULL);
5811 return NULL;
5815 * ata_host_alloc_pinfo - alloc host and init with port_info array
5816 * @dev: generic device this host is associated with
5817 * @ppi: array of ATA port_info to initialize host with
5818 * @n_ports: number of ATA ports attached to this host
5820 * Allocate ATA host and initialize with info from @ppi. If NULL
5821 * terminated, @ppi may contain fewer entries than @n_ports. The
5822 * last entry will be used for the remaining ports.
5824 * RETURNS:
5825 * Allocate ATA host on success, NULL on failure.
5827 * LOCKING:
5828 * Inherited from calling layer (may sleep).
5830 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5831 const struct ata_port_info * const * ppi,
5832 int n_ports)
5834 const struct ata_port_info *pi;
5835 struct ata_host *host;
5836 int i, j;
5838 host = ata_host_alloc(dev, n_ports);
5839 if (!host)
5840 return NULL;
5842 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5843 struct ata_port *ap = host->ports[i];
5845 if (ppi[j])
5846 pi = ppi[j++];
5848 ap->pio_mask = pi->pio_mask;
5849 ap->mwdma_mask = pi->mwdma_mask;
5850 ap->udma_mask = pi->udma_mask;
5851 ap->flags |= pi->flags;
5852 ap->link.flags |= pi->link_flags;
5853 ap->ops = pi->port_ops;
5855 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5856 host->ops = pi->port_ops;
5859 return host;
5863 * ata_slave_link_init - initialize slave link
5864 * @ap: port to initialize slave link for
5866 * Create and initialize slave link for @ap. This enables slave
5867 * link handling on the port.
5869 * In libata, a port contains links and a link contains devices.
5870 * There is single host link but if a PMP is attached to it,
5871 * there can be multiple fan-out links. On SATA, there's usually
5872 * a single device connected to a link but PATA and SATA
5873 * controllers emulating TF based interface can have two - master
5874 * and slave.
5876 * However, there are a few controllers which don't fit into this
5877 * abstraction too well - SATA controllers which emulate TF
5878 * interface with both master and slave devices but also have
5879 * separate SCR register sets for each device. These controllers
5880 * need separate links for physical link handling
5881 * (e.g. onlineness, link speed) but should be treated like a
5882 * traditional M/S controller for everything else (e.g. command
5883 * issue, softreset).
5885 * slave_link is libata's way of handling this class of
5886 * controllers without impacting core layer too much. For
5887 * anything other than physical link handling, the default host
5888 * link is used for both master and slave. For physical link
5889 * handling, separate @ap->slave_link is used. All dirty details
5890 * are implemented inside libata core layer. From LLD's POV, the
5891 * only difference is that prereset, hardreset and postreset are
5892 * called once more for the slave link, so the reset sequence
5893 * looks like the following.
5895 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5896 * softreset(M) -> postreset(M) -> postreset(S)
5898 * Note that softreset is called only for the master. Softreset
5899 * resets both M/S by definition, so SRST on master should handle
5900 * both (the standard method will work just fine).
5902 * LOCKING:
5903 * Should be called before host is registered.
5905 * RETURNS:
5906 * 0 on success, -errno on failure.
5908 int ata_slave_link_init(struct ata_port *ap)
5910 struct ata_link *link;
5912 WARN_ON(ap->slave_link);
5913 WARN_ON(ap->flags & ATA_FLAG_PMP);
5915 link = kzalloc(sizeof(*link), GFP_KERNEL);
5916 if (!link)
5917 return -ENOMEM;
5919 ata_link_init(ap, link, 1);
5920 ap->slave_link = link;
5921 return 0;
5924 static void ata_host_stop(struct device *gendev, void *res)
5926 struct ata_host *host = dev_get_drvdata(gendev);
5927 int i;
5929 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5931 for (i = 0; i < host->n_ports; i++) {
5932 struct ata_port *ap = host->ports[i];
5934 if (ap->ops->port_stop)
5935 ap->ops->port_stop(ap);
5938 if (host->ops->host_stop)
5939 host->ops->host_stop(host);
5943 * ata_finalize_port_ops - finalize ata_port_operations
5944 * @ops: ata_port_operations to finalize
5946 * An ata_port_operations can inherit from another ops and that
5947 * ops can again inherit from another. This can go on as many
5948 * times as necessary as long as there is no loop in the
5949 * inheritance chain.
5951 * Ops tables are finalized when the host is started. NULL or
5952 * unspecified entries are inherited from the closet ancestor
5953 * which has the method and the entry is populated with it.
5954 * After finalization, the ops table directly points to all the
5955 * methods and ->inherits is no longer necessary and cleared.
5957 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5959 * LOCKING:
5960 * None.
5962 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5964 static DEFINE_SPINLOCK(lock);
5965 const struct ata_port_operations *cur;
5966 void **begin = (void **)ops;
5967 void **end = (void **)&ops->inherits;
5968 void **pp;
5970 if (!ops || !ops->inherits)
5971 return;
5973 spin_lock(&lock);
5975 for (cur = ops->inherits; cur; cur = cur->inherits) {
5976 void **inherit = (void **)cur;
5978 for (pp = begin; pp < end; pp++, inherit++)
5979 if (!*pp)
5980 *pp = *inherit;
5983 for (pp = begin; pp < end; pp++)
5984 if (IS_ERR(*pp))
5985 *pp = NULL;
5987 ops->inherits = NULL;
5989 spin_unlock(&lock);
5993 * ata_host_start - start and freeze ports of an ATA host
5994 * @host: ATA host to start ports for
5996 * Start and then freeze ports of @host. Started status is
5997 * recorded in host->flags, so this function can be called
5998 * multiple times. Ports are guaranteed to get started only
5999 * once. If host->ops isn't initialized yet, its set to the
6000 * first non-dummy port ops.
6002 * LOCKING:
6003 * Inherited from calling layer (may sleep).
6005 * RETURNS:
6006 * 0 if all ports are started successfully, -errno otherwise.
6008 int ata_host_start(struct ata_host *host)
6010 int have_stop = 0;
6011 void *start_dr = NULL;
6012 int i, rc;
6014 if (host->flags & ATA_HOST_STARTED)
6015 return 0;
6017 ata_finalize_port_ops(host->ops);
6019 for (i = 0; i < host->n_ports; i++) {
6020 struct ata_port *ap = host->ports[i];
6022 ata_finalize_port_ops(ap->ops);
6024 if (!host->ops && !ata_port_is_dummy(ap))
6025 host->ops = ap->ops;
6027 if (ap->ops->port_stop)
6028 have_stop = 1;
6031 if (host->ops->host_stop)
6032 have_stop = 1;
6034 if (have_stop) {
6035 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
6036 if (!start_dr)
6037 return -ENOMEM;
6040 for (i = 0; i < host->n_ports; i++) {
6041 struct ata_port *ap = host->ports[i];
6043 if (ap->ops->port_start) {
6044 rc = ap->ops->port_start(ap);
6045 if (rc) {
6046 if (rc != -ENODEV)
6047 dev_err(host->dev,
6048 "failed to start port %d (errno=%d)\n",
6049 i, rc);
6050 goto err_out;
6053 ata_eh_freeze_port(ap);
6056 if (start_dr)
6057 devres_add(host->dev, start_dr);
6058 host->flags |= ATA_HOST_STARTED;
6059 return 0;
6061 err_out:
6062 while (--i >= 0) {
6063 struct ata_port *ap = host->ports[i];
6065 if (ap->ops->port_stop)
6066 ap->ops->port_stop(ap);
6068 devres_free(start_dr);
6069 return rc;
6073 * ata_sas_host_init - Initialize a host struct for sas (ipr, libsas)
6074 * @host: host to initialize
6075 * @dev: device host is attached to
6076 * @ops: port_ops
6079 void ata_host_init(struct ata_host *host, struct device *dev,
6080 struct ata_port_operations *ops)
6082 spin_lock_init(&host->lock);
6083 mutex_init(&host->eh_mutex);
6084 host->dev = dev;
6085 host->ops = ops;
6088 void __ata_port_probe(struct ata_port *ap)
6090 struct ata_eh_info *ehi = &ap->link.eh_info;
6091 unsigned long flags;
6093 /* kick EH for boot probing */
6094 spin_lock_irqsave(ap->lock, flags);
6096 ehi->probe_mask |= ATA_ALL_DEVICES;
6097 ehi->action |= ATA_EH_RESET;
6098 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6100 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6101 ap->pflags |= ATA_PFLAG_LOADING;
6102 ata_port_schedule_eh(ap);
6104 spin_unlock_irqrestore(ap->lock, flags);
6107 int ata_port_probe(struct ata_port *ap)
6109 int rc = 0;
6111 if (ap->ops->error_handler) {
6112 __ata_port_probe(ap);
6113 ata_port_wait_eh(ap);
6114 } else {
6115 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6116 rc = ata_bus_probe(ap);
6117 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6119 return rc;
6123 static void async_port_probe(void *data, async_cookie_t cookie)
6125 struct ata_port *ap = data;
6128 * If we're not allowed to scan this host in parallel,
6129 * we need to wait until all previous scans have completed
6130 * before going further.
6131 * Jeff Garzik says this is only within a controller, so we
6132 * don't need to wait for port 0, only for later ports.
6134 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6135 async_synchronize_cookie(cookie);
6137 (void)ata_port_probe(ap);
6139 /* in order to keep device order, we need to synchronize at this point */
6140 async_synchronize_cookie(cookie);
6142 ata_scsi_scan_host(ap, 1);
6146 * ata_host_register - register initialized ATA host
6147 * @host: ATA host to register
6148 * @sht: template for SCSI host
6150 * Register initialized ATA host. @host is allocated using
6151 * ata_host_alloc() and fully initialized by LLD. This function
6152 * starts ports, registers @host with ATA and SCSI layers and
6153 * probe registered devices.
6155 * LOCKING:
6156 * Inherited from calling layer (may sleep).
6158 * RETURNS:
6159 * 0 on success, -errno otherwise.
6161 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6163 int i, rc;
6165 /* host must have been started */
6166 if (!(host->flags & ATA_HOST_STARTED)) {
6167 dev_err(host->dev, "BUG: trying to register unstarted host\n");
6168 WARN_ON(1);
6169 return -EINVAL;
6172 /* Blow away unused ports. This happens when LLD can't
6173 * determine the exact number of ports to allocate at
6174 * allocation time.
6176 for (i = host->n_ports; host->ports[i]; i++)
6177 kfree(host->ports[i]);
6179 /* give ports names and add SCSI hosts */
6180 for (i = 0; i < host->n_ports; i++) {
6181 host->ports[i]->print_id = atomic_inc_return(&ata_print_id);
6182 host->ports[i]->local_port_no = i + 1;
6185 /* Create associated sysfs transport objects */
6186 for (i = 0; i < host->n_ports; i++) {
6187 rc = ata_tport_add(host->dev,host->ports[i]);
6188 if (rc) {
6189 goto err_tadd;
6193 rc = ata_scsi_add_hosts(host, sht);
6194 if (rc)
6195 goto err_tadd;
6197 /* set cable, sata_spd_limit and report */
6198 for (i = 0; i < host->n_ports; i++) {
6199 struct ata_port *ap = host->ports[i];
6200 unsigned long xfer_mask;
6202 /* set SATA cable type if still unset */
6203 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6204 ap->cbl = ATA_CBL_SATA;
6206 /* init sata_spd_limit to the current value */
6207 sata_link_init_spd(&ap->link);
6208 if (ap->slave_link)
6209 sata_link_init_spd(ap->slave_link);
6211 /* print per-port info to dmesg */
6212 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6213 ap->udma_mask);
6215 if (!ata_port_is_dummy(ap)) {
6216 ata_port_info(ap, "%cATA max %s %s\n",
6217 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6218 ata_mode_string(xfer_mask),
6219 ap->link.eh_info.desc);
6220 ata_ehi_clear_desc(&ap->link.eh_info);
6221 } else
6222 ata_port_info(ap, "DUMMY\n");
6225 /* perform each probe asynchronously */
6226 for (i = 0; i < host->n_ports; i++) {
6227 struct ata_port *ap = host->ports[i];
6228 async_schedule(async_port_probe, ap);
6231 return 0;
6233 err_tadd:
6234 while (--i >= 0) {
6235 ata_tport_delete(host->ports[i]);
6237 return rc;
6242 * ata_host_activate - start host, request IRQ and register it
6243 * @host: target ATA host
6244 * @irq: IRQ to request
6245 * @irq_handler: irq_handler used when requesting IRQ
6246 * @irq_flags: irq_flags used when requesting IRQ
6247 * @sht: scsi_host_template to use when registering the host
6249 * After allocating an ATA host and initializing it, most libata
6250 * LLDs perform three steps to activate the host - start host,
6251 * request IRQ and register it. This helper takes necessasry
6252 * arguments and performs the three steps in one go.
6254 * An invalid IRQ skips the IRQ registration and expects the host to
6255 * have set polling mode on the port. In this case, @irq_handler
6256 * should be NULL.
6258 * LOCKING:
6259 * Inherited from calling layer (may sleep).
6261 * RETURNS:
6262 * 0 on success, -errno otherwise.
6264 int ata_host_activate(struct ata_host *host, int irq,
6265 irq_handler_t irq_handler, unsigned long irq_flags,
6266 struct scsi_host_template *sht)
6268 int i, rc;
6270 rc = ata_host_start(host);
6271 if (rc)
6272 return rc;
6274 /* Special case for polling mode */
6275 if (!irq) {
6276 WARN_ON(irq_handler);
6277 return ata_host_register(host, sht);
6280 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6281 dev_driver_string(host->dev), host);
6282 if (rc)
6283 return rc;
6285 for (i = 0; i < host->n_ports; i++)
6286 ata_port_desc(host->ports[i], "irq %d", irq);
6288 rc = ata_host_register(host, sht);
6289 /* if failed, just free the IRQ and leave ports alone */
6290 if (rc)
6291 devm_free_irq(host->dev, irq, host);
6293 return rc;
6297 * ata_port_detach - Detach ATA port in prepration of device removal
6298 * @ap: ATA port to be detached
6300 * Detach all ATA devices and the associated SCSI devices of @ap;
6301 * then, remove the associated SCSI host. @ap is guaranteed to
6302 * be quiescent on return from this function.
6304 * LOCKING:
6305 * Kernel thread context (may sleep).
6307 static void ata_port_detach(struct ata_port *ap)
6309 unsigned long flags;
6311 if (!ap->ops->error_handler)
6312 goto skip_eh;
6314 /* tell EH we're leaving & flush EH */
6315 spin_lock_irqsave(ap->lock, flags);
6316 ap->pflags |= ATA_PFLAG_UNLOADING;
6317 ata_port_schedule_eh(ap);
6318 spin_unlock_irqrestore(ap->lock, flags);
6320 /* wait till EH commits suicide */
6321 ata_port_wait_eh(ap);
6323 /* it better be dead now */
6324 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6326 cancel_delayed_work_sync(&ap->hotplug_task);
6328 skip_eh:
6329 if (ap->pmp_link) {
6330 int i;
6331 for (i = 0; i < SATA_PMP_MAX_PORTS; i++)
6332 ata_tlink_delete(&ap->pmp_link[i]);
6334 /* remove the associated SCSI host */
6335 scsi_remove_host(ap->scsi_host);
6336 ata_tport_delete(ap);
6340 * ata_host_detach - Detach all ports of an ATA host
6341 * @host: Host to detach
6343 * Detach all ports of @host.
6345 * LOCKING:
6346 * Kernel thread context (may sleep).
6348 void ata_host_detach(struct ata_host *host)
6350 int i;
6352 for (i = 0; i < host->n_ports; i++)
6353 ata_port_detach(host->ports[i]);
6355 /* the host is dead now, dissociate ACPI */
6356 ata_acpi_dissociate(host);
6359 #ifdef CONFIG_PCI
6362 * ata_pci_remove_one - PCI layer callback for device removal
6363 * @pdev: PCI device that was removed
6365 * PCI layer indicates to libata via this hook that hot-unplug or
6366 * module unload event has occurred. Detach all ports. Resource
6367 * release is handled via devres.
6369 * LOCKING:
6370 * Inherited from PCI layer (may sleep).
6372 void ata_pci_remove_one(struct pci_dev *pdev)
6374 struct ata_host *host = pci_get_drvdata(pdev);
6376 ata_host_detach(host);
6379 /* move to PCI subsystem */
6380 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6382 unsigned long tmp = 0;
6384 switch (bits->width) {
6385 case 1: {
6386 u8 tmp8 = 0;
6387 pci_read_config_byte(pdev, bits->reg, &tmp8);
6388 tmp = tmp8;
6389 break;
6391 case 2: {
6392 u16 tmp16 = 0;
6393 pci_read_config_word(pdev, bits->reg, &tmp16);
6394 tmp = tmp16;
6395 break;
6397 case 4: {
6398 u32 tmp32 = 0;
6399 pci_read_config_dword(pdev, bits->reg, &tmp32);
6400 tmp = tmp32;
6401 break;
6404 default:
6405 return -EINVAL;
6408 tmp &= bits->mask;
6410 return (tmp == bits->val) ? 1 : 0;
6413 #ifdef CONFIG_PM
6414 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6416 pci_save_state(pdev);
6417 pci_disable_device(pdev);
6419 if (mesg.event & PM_EVENT_SLEEP)
6420 pci_set_power_state(pdev, PCI_D3hot);
6423 int ata_pci_device_do_resume(struct pci_dev *pdev)
6425 int rc;
6427 pci_set_power_state(pdev, PCI_D0);
6428 pci_restore_state(pdev);
6430 rc = pcim_enable_device(pdev);
6431 if (rc) {
6432 dev_err(&pdev->dev,
6433 "failed to enable device after resume (%d)\n", rc);
6434 return rc;
6437 pci_set_master(pdev);
6438 return 0;
6441 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6443 struct ata_host *host = pci_get_drvdata(pdev);
6444 int rc = 0;
6446 rc = ata_host_suspend(host, mesg);
6447 if (rc)
6448 return rc;
6450 ata_pci_device_do_suspend(pdev, mesg);
6452 return 0;
6455 int ata_pci_device_resume(struct pci_dev *pdev)
6457 struct ata_host *host = pci_get_drvdata(pdev);
6458 int rc;
6460 rc = ata_pci_device_do_resume(pdev);
6461 if (rc == 0)
6462 ata_host_resume(host);
6463 return rc;
6465 #endif /* CONFIG_PM */
6467 #endif /* CONFIG_PCI */
6470 * ata_platform_remove_one - Platform layer callback for device removal
6471 * @pdev: Platform device that was removed
6473 * Platform layer indicates to libata via this hook that hot-unplug or
6474 * module unload event has occurred. Detach all ports. Resource
6475 * release is handled via devres.
6477 * LOCKING:
6478 * Inherited from platform layer (may sleep).
6480 int ata_platform_remove_one(struct platform_device *pdev)
6482 struct ata_host *host = platform_get_drvdata(pdev);
6484 ata_host_detach(host);
6486 return 0;
6489 static int __init ata_parse_force_one(char **cur,
6490 struct ata_force_ent *force_ent,
6491 const char **reason)
6493 /* FIXME: Currently, there's no way to tag init const data and
6494 * using __initdata causes build failure on some versions of
6495 * gcc. Once __initdataconst is implemented, add const to the
6496 * following structure.
6498 static struct ata_force_param force_tbl[] __initdata = {
6499 { "40c", .cbl = ATA_CBL_PATA40 },
6500 { "80c", .cbl = ATA_CBL_PATA80 },
6501 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6502 { "unk", .cbl = ATA_CBL_PATA_UNK },
6503 { "ign", .cbl = ATA_CBL_PATA_IGN },
6504 { "sata", .cbl = ATA_CBL_SATA },
6505 { "1.5Gbps", .spd_limit = 1 },
6506 { "3.0Gbps", .spd_limit = 2 },
6507 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6508 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6509 { "dump_id", .horkage_on = ATA_HORKAGE_DUMP_ID },
6510 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6511 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6512 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6513 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6514 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6515 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6516 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6517 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6518 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6519 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6520 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6521 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6522 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6523 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6524 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6525 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6526 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6527 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6528 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6529 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6530 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6531 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6532 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6533 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6534 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6535 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6536 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6537 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6538 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6539 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6540 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6541 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6542 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6543 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6544 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6545 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6546 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6547 { "rstonce", .lflags = ATA_LFLAG_RST_ONCE },
6548 { "atapi_dmadir", .horkage_on = ATA_HORKAGE_ATAPI_DMADIR },
6549 { "disable", .horkage_on = ATA_HORKAGE_DISABLE },
6551 char *start = *cur, *p = *cur;
6552 char *id, *val, *endp;
6553 const struct ata_force_param *match_fp = NULL;
6554 int nr_matches = 0, i;
6556 /* find where this param ends and update *cur */
6557 while (*p != '\0' && *p != ',')
6558 p++;
6560 if (*p == '\0')
6561 *cur = p;
6562 else
6563 *cur = p + 1;
6565 *p = '\0';
6567 /* parse */
6568 p = strchr(start, ':');
6569 if (!p) {
6570 val = strstrip(start);
6571 goto parse_val;
6573 *p = '\0';
6575 id = strstrip(start);
6576 val = strstrip(p + 1);
6578 /* parse id */
6579 p = strchr(id, '.');
6580 if (p) {
6581 *p++ = '\0';
6582 force_ent->device = simple_strtoul(p, &endp, 10);
6583 if (p == endp || *endp != '\0') {
6584 *reason = "invalid device";
6585 return -EINVAL;
6589 force_ent->port = simple_strtoul(id, &endp, 10);
6590 if (p == endp || *endp != '\0') {
6591 *reason = "invalid port/link";
6592 return -EINVAL;
6595 parse_val:
6596 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6597 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6598 const struct ata_force_param *fp = &force_tbl[i];
6600 if (strncasecmp(val, fp->name, strlen(val)))
6601 continue;
6603 nr_matches++;
6604 match_fp = fp;
6606 if (strcasecmp(val, fp->name) == 0) {
6607 nr_matches = 1;
6608 break;
6612 if (!nr_matches) {
6613 *reason = "unknown value";
6614 return -EINVAL;
6616 if (nr_matches > 1) {
6617 *reason = "ambigious value";
6618 return -EINVAL;
6621 force_ent->param = *match_fp;
6623 return 0;
6626 static void __init ata_parse_force_param(void)
6628 int idx = 0, size = 1;
6629 int last_port = -1, last_device = -1;
6630 char *p, *cur, *next;
6632 /* calculate maximum number of params and allocate force_tbl */
6633 for (p = ata_force_param_buf; *p; p++)
6634 if (*p == ',')
6635 size++;
6637 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6638 if (!ata_force_tbl) {
6639 printk(KERN_WARNING "ata: failed to extend force table, "
6640 "libata.force ignored\n");
6641 return;
6644 /* parse and populate the table */
6645 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6646 const char *reason = "";
6647 struct ata_force_ent te = { .port = -1, .device = -1 };
6649 next = cur;
6650 if (ata_parse_force_one(&next, &te, &reason)) {
6651 printk(KERN_WARNING "ata: failed to parse force "
6652 "parameter \"%s\" (%s)\n",
6653 cur, reason);
6654 continue;
6657 if (te.port == -1) {
6658 te.port = last_port;
6659 te.device = last_device;
6662 ata_force_tbl[idx++] = te;
6664 last_port = te.port;
6665 last_device = te.device;
6668 ata_force_tbl_size = idx;
6671 static int __init ata_init(void)
6673 int rc;
6675 ata_parse_force_param();
6677 rc = ata_sff_init();
6678 if (rc) {
6679 kfree(ata_force_tbl);
6680 return rc;
6683 libata_transport_init();
6684 ata_scsi_transport_template = ata_attach_transport();
6685 if (!ata_scsi_transport_template) {
6686 ata_sff_exit();
6687 rc = -ENOMEM;
6688 goto err_out;
6691 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6692 return 0;
6694 err_out:
6695 return rc;
6698 static void __exit ata_exit(void)
6700 ata_release_transport(ata_scsi_transport_template);
6701 libata_transport_exit();
6702 ata_sff_exit();
6703 kfree(ata_force_tbl);
6706 subsys_initcall(ata_init);
6707 module_exit(ata_exit);
6709 static DEFINE_RATELIMIT_STATE(ratelimit, HZ / 5, 1);
6711 int ata_ratelimit(void)
6713 return __ratelimit(&ratelimit);
6717 * ata_msleep - ATA EH owner aware msleep
6718 * @ap: ATA port to attribute the sleep to
6719 * @msecs: duration to sleep in milliseconds
6721 * Sleeps @msecs. If the current task is owner of @ap's EH, the
6722 * ownership is released before going to sleep and reacquired
6723 * after the sleep is complete. IOW, other ports sharing the
6724 * @ap->host will be allowed to own the EH while this task is
6725 * sleeping.
6727 * LOCKING:
6728 * Might sleep.
6730 void ata_msleep(struct ata_port *ap, unsigned int msecs)
6732 bool owns_eh = ap && ap->host->eh_owner == current;
6734 if (owns_eh)
6735 ata_eh_release(ap);
6737 msleep(msecs);
6739 if (owns_eh)
6740 ata_eh_acquire(ap);
6744 * ata_wait_register - wait until register value changes
6745 * @ap: ATA port to wait register for, can be NULL
6746 * @reg: IO-mapped register
6747 * @mask: Mask to apply to read register value
6748 * @val: Wait condition
6749 * @interval: polling interval in milliseconds
6750 * @timeout: timeout in milliseconds
6752 * Waiting for some bits of register to change is a common
6753 * operation for ATA controllers. This function reads 32bit LE
6754 * IO-mapped register @reg and tests for the following condition.
6756 * (*@reg & mask) != val
6758 * If the condition is met, it returns; otherwise, the process is
6759 * repeated after @interval_msec until timeout.
6761 * LOCKING:
6762 * Kernel thread context (may sleep)
6764 * RETURNS:
6765 * The final register value.
6767 u32 ata_wait_register(struct ata_port *ap, void __iomem *reg, u32 mask, u32 val,
6768 unsigned long interval, unsigned long timeout)
6770 unsigned long deadline;
6771 u32 tmp;
6773 tmp = ioread32(reg);
6775 /* Calculate timeout _after_ the first read to make sure
6776 * preceding writes reach the controller before starting to
6777 * eat away the timeout.
6779 deadline = ata_deadline(jiffies, timeout);
6781 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6782 ata_msleep(ap, interval);
6783 tmp = ioread32(reg);
6786 return tmp;
6790 * Dummy port_ops
6792 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6794 return AC_ERR_SYSTEM;
6797 static void ata_dummy_error_handler(struct ata_port *ap)
6799 /* truly dummy */
6802 struct ata_port_operations ata_dummy_port_ops = {
6803 .qc_prep = ata_noop_qc_prep,
6804 .qc_issue = ata_dummy_qc_issue,
6805 .error_handler = ata_dummy_error_handler,
6806 .sched_eh = ata_std_sched_eh,
6807 .end_eh = ata_std_end_eh,
6810 const struct ata_port_info ata_dummy_port_info = {
6811 .port_ops = &ata_dummy_port_ops,
6815 * Utility print functions
6817 int ata_port_printk(const struct ata_port *ap, const char *level,
6818 const char *fmt, ...)
6820 struct va_format vaf;
6821 va_list args;
6822 int r;
6824 va_start(args, fmt);
6826 vaf.fmt = fmt;
6827 vaf.va = &args;
6829 r = printk("%sata%u: %pV", level, ap->print_id, &vaf);
6831 va_end(args);
6833 return r;
6835 EXPORT_SYMBOL(ata_port_printk);
6837 int ata_link_printk(const struct ata_link *link, const char *level,
6838 const char *fmt, ...)
6840 struct va_format vaf;
6841 va_list args;
6842 int r;
6844 va_start(args, fmt);
6846 vaf.fmt = fmt;
6847 vaf.va = &args;
6849 if (sata_pmp_attached(link->ap) || link->ap->slave_link)
6850 r = printk("%sata%u.%02u: %pV",
6851 level, link->ap->print_id, link->pmp, &vaf);
6852 else
6853 r = printk("%sata%u: %pV",
6854 level, link->ap->print_id, &vaf);
6856 va_end(args);
6858 return r;
6860 EXPORT_SYMBOL(ata_link_printk);
6862 int ata_dev_printk(const struct ata_device *dev, const char *level,
6863 const char *fmt, ...)
6865 struct va_format vaf;
6866 va_list args;
6867 int r;
6869 va_start(args, fmt);
6871 vaf.fmt = fmt;
6872 vaf.va = &args;
6874 r = printk("%sata%u.%02u: %pV",
6875 level, dev->link->ap->print_id, dev->link->pmp + dev->devno,
6876 &vaf);
6878 va_end(args);
6880 return r;
6882 EXPORT_SYMBOL(ata_dev_printk);
6884 void ata_print_version(const struct device *dev, const char *version)
6886 dev_printk(KERN_DEBUG, dev, "version %s\n", version);
6888 EXPORT_SYMBOL(ata_print_version);
6891 * libata is essentially a library of internal helper functions for
6892 * low-level ATA host controller drivers. As such, the API/ABI is
6893 * likely to change as new drivers are added and updated.
6894 * Do not depend on ABI/API stability.
6896 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6897 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6898 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6899 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6900 EXPORT_SYMBOL_GPL(sata_port_ops);
6901 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6902 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6903 EXPORT_SYMBOL_GPL(ata_link_next);
6904 EXPORT_SYMBOL_GPL(ata_dev_next);
6905 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6906 EXPORT_SYMBOL_GPL(ata_scsi_unlock_native_capacity);
6907 EXPORT_SYMBOL_GPL(ata_host_init);
6908 EXPORT_SYMBOL_GPL(ata_host_alloc);
6909 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6910 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6911 EXPORT_SYMBOL_GPL(ata_host_start);
6912 EXPORT_SYMBOL_GPL(ata_host_register);
6913 EXPORT_SYMBOL_GPL(ata_host_activate);
6914 EXPORT_SYMBOL_GPL(ata_host_detach);
6915 EXPORT_SYMBOL_GPL(ata_sg_init);
6916 EXPORT_SYMBOL_GPL(ata_qc_complete);
6917 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6918 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6919 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6920 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6921 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6922 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6923 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6924 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6925 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6926 EXPORT_SYMBOL_GPL(ata_mode_string);
6927 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6928 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6929 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6930 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6931 EXPORT_SYMBOL_GPL(ata_dev_disable);
6932 EXPORT_SYMBOL_GPL(sata_set_spd);
6933 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6934 EXPORT_SYMBOL_GPL(sata_link_debounce);
6935 EXPORT_SYMBOL_GPL(sata_link_resume);
6936 EXPORT_SYMBOL_GPL(sata_link_scr_lpm);
6937 EXPORT_SYMBOL_GPL(ata_std_prereset);
6938 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6939 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6940 EXPORT_SYMBOL_GPL(ata_std_postreset);
6941 EXPORT_SYMBOL_GPL(ata_dev_classify);
6942 EXPORT_SYMBOL_GPL(ata_dev_pair);
6943 EXPORT_SYMBOL_GPL(ata_ratelimit);
6944 EXPORT_SYMBOL_GPL(ata_msleep);
6945 EXPORT_SYMBOL_GPL(ata_wait_register);
6946 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6947 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6948 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6949 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6950 EXPORT_SYMBOL_GPL(__ata_change_queue_depth);
6951 EXPORT_SYMBOL_GPL(sata_scr_valid);
6952 EXPORT_SYMBOL_GPL(sata_scr_read);
6953 EXPORT_SYMBOL_GPL(sata_scr_write);
6954 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6955 EXPORT_SYMBOL_GPL(ata_link_online);
6956 EXPORT_SYMBOL_GPL(ata_link_offline);
6957 #ifdef CONFIG_PM
6958 EXPORT_SYMBOL_GPL(ata_host_suspend);
6959 EXPORT_SYMBOL_GPL(ata_host_resume);
6960 #endif /* CONFIG_PM */
6961 EXPORT_SYMBOL_GPL(ata_id_string);
6962 EXPORT_SYMBOL_GPL(ata_id_c_string);
6963 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6964 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6966 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6967 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6968 EXPORT_SYMBOL_GPL(ata_timing_compute);
6969 EXPORT_SYMBOL_GPL(ata_timing_merge);
6970 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6972 #ifdef CONFIG_PCI
6973 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6974 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6975 #ifdef CONFIG_PM
6976 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6977 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6978 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6979 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6980 #endif /* CONFIG_PM */
6981 #endif /* CONFIG_PCI */
6983 EXPORT_SYMBOL_GPL(ata_platform_remove_one);
6985 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6986 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6987 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6988 EXPORT_SYMBOL_GPL(ata_port_desc);
6989 #ifdef CONFIG_PCI
6990 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6991 #endif /* CONFIG_PCI */
6992 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6993 EXPORT_SYMBOL_GPL(ata_link_abort);
6994 EXPORT_SYMBOL_GPL(ata_port_abort);
6995 EXPORT_SYMBOL_GPL(ata_port_freeze);
6996 EXPORT_SYMBOL_GPL(sata_async_notification);
6997 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6998 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6999 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
7000 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
7001 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
7002 EXPORT_SYMBOL_GPL(ata_do_eh);
7003 EXPORT_SYMBOL_GPL(ata_std_error_handler);
7005 EXPORT_SYMBOL_GPL(ata_cable_40wire);
7006 EXPORT_SYMBOL_GPL(ata_cable_80wire);
7007 EXPORT_SYMBOL_GPL(ata_cable_unknown);
7008 EXPORT_SYMBOL_GPL(ata_cable_ignore);
7009 EXPORT_SYMBOL_GPL(ata_cable_sata);