2 * Aptina Sensor PLL Configuration
4 * Copyright (C) 2012 Laurent Pinchart <laurent.pinchart@ideasonboard.com>
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * version 2 as published by the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but
11 * WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
13 * General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
21 #include <linux/device.h>
22 #include <linux/gcd.h>
23 #include <linux/kernel.h>
24 #include <linux/lcm.h>
25 #include <linux/module.h>
27 #include "aptina-pll.h"
29 int aptina_pll_calculate(struct device
*dev
,
30 const struct aptina_pll_limits
*limits
,
31 struct aptina_pll
*pll
)
40 dev_dbg(dev
, "PLL: ext clock %u pix clock %u\n",
41 pll
->ext_clock
, pll
->pix_clock
);
43 if (pll
->ext_clock
< limits
->ext_clock_min
||
44 pll
->ext_clock
> limits
->ext_clock_max
) {
45 dev_err(dev
, "pll: invalid external clock frequency.\n");
49 if (pll
->pix_clock
== 0 || pll
->pix_clock
> limits
->pix_clock_max
) {
50 dev_err(dev
, "pll: invalid pixel clock frequency.\n");
54 /* Compute the multiplier M and combined N*P1 divisor. */
55 div
= gcd(pll
->pix_clock
, pll
->ext_clock
);
56 pll
->m
= pll
->pix_clock
/ div
;
57 div
= pll
->ext_clock
/ div
;
59 /* We now have the smallest M and N*P1 values that will result in the
60 * desired pixel clock frequency, but they might be out of the valid
61 * range. Compute the factor by which we should multiply them given the
62 * following constraints:
64 * - minimum/maximum multiplier
65 * - minimum/maximum multiplier output clock frequency assuming the
66 * minimum/maximum N value
67 * - minimum/maximum combined N*P1 divisor
69 mf_min
= DIV_ROUND_UP(limits
->m_min
, pll
->m
);
70 mf_min
= max(mf_min
, limits
->out_clock_min
/
71 (pll
->ext_clock
/ limits
->n_min
* pll
->m
));
72 mf_min
= max(mf_min
, limits
->n_min
* limits
->p1_min
/ div
);
73 mf_max
= limits
->m_max
/ pll
->m
;
74 mf_max
= min(mf_max
, limits
->out_clock_max
/
75 (pll
->ext_clock
/ limits
->n_max
* pll
->m
));
76 mf_max
= min(mf_max
, DIV_ROUND_UP(limits
->n_max
* limits
->p1_max
, div
));
78 dev_dbg(dev
, "pll: mf min %u max %u\n", mf_min
, mf_max
);
79 if (mf_min
> mf_max
) {
80 dev_err(dev
, "pll: no valid combined N*P1 divisor.\n");
85 * We're looking for the highest acceptable P1 value for which a
86 * multiplier factor MF exists that fulfills the following conditions:
88 * 1. p1 is in the [p1_min, p1_max] range given by the limits and is
90 * 2. mf is in the [mf_min, mf_max] range computed above
91 * 3. div * mf is a multiple of p1, in order to compute
94 * 4. the internal clock frequency, given by ext_clock / n, is in the
95 * [int_clock_min, int_clock_max] range given by the limits
96 * 5. the output clock frequency, given by ext_clock / n * m, is in the
97 * [out_clock_min, out_clock_max] range given by the limits
99 * The first naive approach is to iterate over all p1 values acceptable
100 * according to (1) and all mf values acceptable according to (2), and
101 * stop at the first combination that fulfills (3), (4) and (5). This
102 * has a O(n^2) complexity.
104 * Instead of iterating over all mf values in the [mf_min, mf_max] range
105 * we can compute the mf increment between two acceptable values
106 * according to (3) with
108 * mf_inc = p1 / gcd(div, p1) (6)
110 * and round the minimum up to the nearest multiple of mf_inc. This will
111 * restrict the number of mf values to be checked.
113 * Furthermore, conditions (4) and (5) only restrict the range of
114 * acceptable p1 and mf values by modifying the minimum and maximum
115 * limits. (5) can be expressed as
117 * ext_clock / (div * mf / p1) * m * mf >= out_clock_min
118 * ext_clock / (div * mf / p1) * m * mf <= out_clock_max
122 * p1 >= out_clock_min * div / (ext_clock * m) (7)
123 * p1 <= out_clock_max * div / (ext_clock * m)
125 * Similarly, (4) can be expressed as
127 * mf >= ext_clock * p1 / (int_clock_max * div) (8)
128 * mf <= ext_clock * p1 / (int_clock_min * div)
130 * We can thus iterate over the restricted p1 range defined by the
131 * combination of (1) and (7), and then compute the restricted mf range
132 * defined by the combination of (2), (6) and (8). If the resulting mf
133 * range is not empty, any value in the mf range is acceptable. We thus
134 * select the mf lwoer bound and the corresponding p1 value.
136 if (limits
->p1_min
== 0) {
137 dev_err(dev
, "pll: P1 minimum value must be >0.\n");
141 p1_min
= max(limits
->p1_min
, DIV_ROUND_UP(limits
->out_clock_min
* div
,
142 pll
->ext_clock
* pll
->m
));
143 p1_max
= min(limits
->p1_max
, limits
->out_clock_max
* div
/
144 (pll
->ext_clock
* pll
->m
));
146 for (p1
= p1_max
& ~1; p1
>= p1_min
; p1
-= 2) {
147 unsigned int mf_inc
= p1
/ gcd(div
, p1
);
148 unsigned int mf_high
;
151 mf_low
= roundup(max(mf_min
, DIV_ROUND_UP(pll
->ext_clock
* p1
,
152 limits
->int_clock_max
* div
)), mf_inc
);
153 mf_high
= min(mf_max
, pll
->ext_clock
* p1
/
154 (limits
->int_clock_min
* div
));
156 if (mf_low
> mf_high
)
159 pll
->n
= div
* mf_low
/ p1
;
162 dev_dbg(dev
, "PLL: N %u M %u P1 %u\n", pll
->n
, pll
->m
, pll
->p1
);
166 dev_err(dev
, "pll: no valid N and P1 divisors found.\n");
169 EXPORT_SYMBOL_GPL(aptina_pll_calculate
);
171 MODULE_DESCRIPTION("Aptina PLL Helpers");
172 MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
173 MODULE_LICENSE("GPL v2");