2 * uvc_video.c -- USB Video Class driver - Video handling
4 * Copyright (C) 2005-2010
5 * Laurent Pinchart (laurent.pinchart@ideasonboard.com)
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 #include <linux/kernel.h>
15 #include <linux/list.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/usb.h>
19 #include <linux/videodev2.h>
20 #include <linux/vmalloc.h>
21 #include <linux/wait.h>
22 #include <linux/atomic.h>
23 #include <asm/unaligned.h>
25 #include <media/v4l2-common.h>
29 /* ------------------------------------------------------------------------
33 static int __uvc_query_ctrl(struct uvc_device
*dev
, __u8 query
, __u8 unit
,
34 __u8 intfnum
, __u8 cs
, void *data
, __u16 size
,
37 __u8 type
= USB_TYPE_CLASS
| USB_RECIP_INTERFACE
;
40 pipe
= (query
& 0x80) ? usb_rcvctrlpipe(dev
->udev
, 0)
41 : usb_sndctrlpipe(dev
->udev
, 0);
42 type
|= (query
& 0x80) ? USB_DIR_IN
: USB_DIR_OUT
;
44 return usb_control_msg(dev
->udev
, pipe
, query
, type
, cs
<< 8,
45 unit
<< 8 | intfnum
, data
, size
, timeout
);
48 static const char *uvc_query_name(__u8 query
)
72 int uvc_query_ctrl(struct uvc_device
*dev
, __u8 query
, __u8 unit
,
73 __u8 intfnum
, __u8 cs
, void *data
, __u16 size
)
77 ret
= __uvc_query_ctrl(dev
, query
, unit
, intfnum
, cs
, data
, size
,
78 UVC_CTRL_CONTROL_TIMEOUT
);
80 uvc_printk(KERN_ERR
, "Failed to query (%s) UVC control %u on "
81 "unit %u: %d (exp. %u).\n", uvc_query_name(query
), cs
,
89 static void uvc_fixup_video_ctrl(struct uvc_streaming
*stream
,
90 struct uvc_streaming_control
*ctrl
)
92 struct uvc_format
*format
= NULL
;
93 struct uvc_frame
*frame
= NULL
;
96 for (i
= 0; i
< stream
->nformats
; ++i
) {
97 if (stream
->format
[i
].index
== ctrl
->bFormatIndex
) {
98 format
= &stream
->format
[i
];
106 for (i
= 0; i
< format
->nframes
; ++i
) {
107 if (format
->frame
[i
].bFrameIndex
== ctrl
->bFrameIndex
) {
108 frame
= &format
->frame
[i
];
116 if (!(format
->flags
& UVC_FMT_FLAG_COMPRESSED
) ||
117 (ctrl
->dwMaxVideoFrameSize
== 0 &&
118 stream
->dev
->uvc_version
< 0x0110))
119 ctrl
->dwMaxVideoFrameSize
=
120 frame
->dwMaxVideoFrameBufferSize
;
122 if (!(format
->flags
& UVC_FMT_FLAG_COMPRESSED
) &&
123 stream
->dev
->quirks
& UVC_QUIRK_FIX_BANDWIDTH
&&
124 stream
->intf
->num_altsetting
> 1) {
128 interval
= (ctrl
->dwFrameInterval
> 100000)
129 ? ctrl
->dwFrameInterval
130 : frame
->dwFrameInterval
[0];
132 /* Compute a bandwidth estimation by multiplying the frame
133 * size by the number of video frames per second, divide the
134 * result by the number of USB frames (or micro-frames for
135 * high-speed devices) per second and add the UVC header size
136 * (assumed to be 12 bytes long).
138 bandwidth
= frame
->wWidth
* frame
->wHeight
/ 8 * format
->bpp
;
139 bandwidth
*= 10000000 / interval
+ 1;
141 if (stream
->dev
->udev
->speed
== USB_SPEED_HIGH
)
145 /* The bandwidth estimate is too low for many cameras. Don't use
146 * maximum packet sizes lower than 1024 bytes to try and work
147 * around the problem. According to measurements done on two
148 * different camera models, the value is high enough to get most
149 * resolutions working while not preventing two simultaneous
150 * VGA streams at 15 fps.
152 bandwidth
= max_t(u32
, bandwidth
, 1024);
154 ctrl
->dwMaxPayloadTransferSize
= bandwidth
;
158 static int uvc_get_video_ctrl(struct uvc_streaming
*stream
,
159 struct uvc_streaming_control
*ctrl
, int probe
, __u8 query
)
165 size
= stream
->dev
->uvc_version
>= 0x0110 ? 34 : 26;
166 if ((stream
->dev
->quirks
& UVC_QUIRK_PROBE_DEF
) &&
167 query
== UVC_GET_DEF
)
170 data
= kmalloc(size
, GFP_KERNEL
);
174 ret
= __uvc_query_ctrl(stream
->dev
, query
, 0, stream
->intfnum
,
175 probe
? UVC_VS_PROBE_CONTROL
: UVC_VS_COMMIT_CONTROL
, data
,
176 size
, uvc_timeout_param
);
178 if ((query
== UVC_GET_MIN
|| query
== UVC_GET_MAX
) && ret
== 2) {
179 /* Some cameras, mostly based on Bison Electronics chipsets,
180 * answer a GET_MIN or GET_MAX request with the wCompQuality
183 uvc_warn_once(stream
->dev
, UVC_WARN_MINMAX
, "UVC non "
184 "compliance - GET_MIN/MAX(PROBE) incorrectly "
185 "supported. Enabling workaround.\n");
186 memset(ctrl
, 0, sizeof *ctrl
);
187 ctrl
->wCompQuality
= le16_to_cpup((__le16
*)data
);
190 } else if (query
== UVC_GET_DEF
&& probe
== 1 && ret
!= size
) {
191 /* Many cameras don't support the GET_DEF request on their
192 * video probe control. Warn once and return, the caller will
193 * fall back to GET_CUR.
195 uvc_warn_once(stream
->dev
, UVC_WARN_PROBE_DEF
, "UVC non "
196 "compliance - GET_DEF(PROBE) not supported. "
197 "Enabling workaround.\n");
200 } else if (ret
!= size
) {
201 uvc_printk(KERN_ERR
, "Failed to query (%u) UVC %s control : "
202 "%d (exp. %u).\n", query
, probe
? "probe" : "commit",
208 ctrl
->bmHint
= le16_to_cpup((__le16
*)&data
[0]);
209 ctrl
->bFormatIndex
= data
[2];
210 ctrl
->bFrameIndex
= data
[3];
211 ctrl
->dwFrameInterval
= le32_to_cpup((__le32
*)&data
[4]);
212 ctrl
->wKeyFrameRate
= le16_to_cpup((__le16
*)&data
[8]);
213 ctrl
->wPFrameRate
= le16_to_cpup((__le16
*)&data
[10]);
214 ctrl
->wCompQuality
= le16_to_cpup((__le16
*)&data
[12]);
215 ctrl
->wCompWindowSize
= le16_to_cpup((__le16
*)&data
[14]);
216 ctrl
->wDelay
= le16_to_cpup((__le16
*)&data
[16]);
217 ctrl
->dwMaxVideoFrameSize
= get_unaligned_le32(&data
[18]);
218 ctrl
->dwMaxPayloadTransferSize
= get_unaligned_le32(&data
[22]);
221 ctrl
->dwClockFrequency
= get_unaligned_le32(&data
[26]);
222 ctrl
->bmFramingInfo
= data
[30];
223 ctrl
->bPreferedVersion
= data
[31];
224 ctrl
->bMinVersion
= data
[32];
225 ctrl
->bMaxVersion
= data
[33];
227 ctrl
->dwClockFrequency
= stream
->dev
->clock_frequency
;
228 ctrl
->bmFramingInfo
= 0;
229 ctrl
->bPreferedVersion
= 0;
230 ctrl
->bMinVersion
= 0;
231 ctrl
->bMaxVersion
= 0;
234 /* Some broken devices return null or wrong dwMaxVideoFrameSize and
235 * dwMaxPayloadTransferSize fields. Try to get the value from the
236 * format and frame descriptors.
238 uvc_fixup_video_ctrl(stream
, ctrl
);
246 static int uvc_set_video_ctrl(struct uvc_streaming
*stream
,
247 struct uvc_streaming_control
*ctrl
, int probe
)
253 size
= stream
->dev
->uvc_version
>= 0x0110 ? 34 : 26;
254 data
= kzalloc(size
, GFP_KERNEL
);
258 *(__le16
*)&data
[0] = cpu_to_le16(ctrl
->bmHint
);
259 data
[2] = ctrl
->bFormatIndex
;
260 data
[3] = ctrl
->bFrameIndex
;
261 *(__le32
*)&data
[4] = cpu_to_le32(ctrl
->dwFrameInterval
);
262 *(__le16
*)&data
[8] = cpu_to_le16(ctrl
->wKeyFrameRate
);
263 *(__le16
*)&data
[10] = cpu_to_le16(ctrl
->wPFrameRate
);
264 *(__le16
*)&data
[12] = cpu_to_le16(ctrl
->wCompQuality
);
265 *(__le16
*)&data
[14] = cpu_to_le16(ctrl
->wCompWindowSize
);
266 *(__le16
*)&data
[16] = cpu_to_le16(ctrl
->wDelay
);
267 put_unaligned_le32(ctrl
->dwMaxVideoFrameSize
, &data
[18]);
268 put_unaligned_le32(ctrl
->dwMaxPayloadTransferSize
, &data
[22]);
271 put_unaligned_le32(ctrl
->dwClockFrequency
, &data
[26]);
272 data
[30] = ctrl
->bmFramingInfo
;
273 data
[31] = ctrl
->bPreferedVersion
;
274 data
[32] = ctrl
->bMinVersion
;
275 data
[33] = ctrl
->bMaxVersion
;
278 ret
= __uvc_query_ctrl(stream
->dev
, UVC_SET_CUR
, 0, stream
->intfnum
,
279 probe
? UVC_VS_PROBE_CONTROL
: UVC_VS_COMMIT_CONTROL
, data
,
280 size
, uvc_timeout_param
);
282 uvc_printk(KERN_ERR
, "Failed to set UVC %s control : "
283 "%d (exp. %u).\n", probe
? "probe" : "commit",
292 int uvc_probe_video(struct uvc_streaming
*stream
,
293 struct uvc_streaming_control
*probe
)
295 struct uvc_streaming_control probe_min
, probe_max
;
300 /* Perform probing. The device should adjust the requested values
301 * according to its capabilities. However, some devices, namely the
302 * first generation UVC Logitech webcams, don't implement the Video
303 * Probe control properly, and just return the needed bandwidth. For
304 * that reason, if the needed bandwidth exceeds the maximum available
305 * bandwidth, try to lower the quality.
307 ret
= uvc_set_video_ctrl(stream
, probe
, 1);
311 /* Get the minimum and maximum values for compression settings. */
312 if (!(stream
->dev
->quirks
& UVC_QUIRK_PROBE_MINMAX
)) {
313 ret
= uvc_get_video_ctrl(stream
, &probe_min
, 1, UVC_GET_MIN
);
316 ret
= uvc_get_video_ctrl(stream
, &probe_max
, 1, UVC_GET_MAX
);
320 probe
->wCompQuality
= probe_max
.wCompQuality
;
323 for (i
= 0; i
< 2; ++i
) {
324 ret
= uvc_set_video_ctrl(stream
, probe
, 1);
327 ret
= uvc_get_video_ctrl(stream
, probe
, 1, UVC_GET_CUR
);
331 if (stream
->intf
->num_altsetting
== 1)
334 bandwidth
= probe
->dwMaxPayloadTransferSize
;
335 if (bandwidth
<= stream
->maxpsize
)
338 if (stream
->dev
->quirks
& UVC_QUIRK_PROBE_MINMAX
) {
343 /* TODO: negotiate compression parameters */
344 probe
->wKeyFrameRate
= probe_min
.wKeyFrameRate
;
345 probe
->wPFrameRate
= probe_min
.wPFrameRate
;
346 probe
->wCompQuality
= probe_max
.wCompQuality
;
347 probe
->wCompWindowSize
= probe_min
.wCompWindowSize
;
354 static int uvc_commit_video(struct uvc_streaming
*stream
,
355 struct uvc_streaming_control
*probe
)
357 return uvc_set_video_ctrl(stream
, probe
, 0);
360 /* -----------------------------------------------------------------------------
361 * Clocks and timestamps
365 uvc_video_clock_decode(struct uvc_streaming
*stream
, struct uvc_buffer
*buf
,
366 const __u8
*data
, int len
)
368 struct uvc_clock_sample
*sample
;
369 unsigned int header_size
;
370 bool has_pts
= false;
371 bool has_scr
= false;
377 switch (data
[1] & (UVC_STREAM_PTS
| UVC_STREAM_SCR
)) {
378 case UVC_STREAM_PTS
| UVC_STREAM_SCR
:
396 /* Check for invalid headers. */
397 if (len
< header_size
)
400 /* Extract the timestamps:
402 * - store the frame PTS in the buffer structure
403 * - if the SCR field is present, retrieve the host SOF counter and
404 * kernel timestamps and store them with the SCR STC and SOF fields
407 if (has_pts
&& buf
!= NULL
)
408 buf
->pts
= get_unaligned_le32(&data
[2]);
413 /* To limit the amount of data, drop SCRs with an SOF identical to the
416 dev_sof
= get_unaligned_le16(&data
[header_size
- 2]);
417 if (dev_sof
== stream
->clock
.last_sof
)
420 stream
->clock
.last_sof
= dev_sof
;
422 host_sof
= usb_get_current_frame_number(stream
->dev
->udev
);
425 /* The UVC specification allows device implementations that can't obtain
426 * the USB frame number to keep their own frame counters as long as they
427 * match the size and frequency of the frame number associated with USB
428 * SOF tokens. The SOF values sent by such devices differ from the USB
429 * SOF tokens by a fixed offset that needs to be estimated and accounted
430 * for to make timestamp recovery as accurate as possible.
432 * The offset is estimated the first time a device SOF value is received
433 * as the difference between the host and device SOF values. As the two
434 * SOF values can differ slightly due to transmission delays, consider
435 * that the offset is null if the difference is not higher than 10 ms
436 * (negative differences can not happen and are thus considered as an
437 * offset). The video commit control wDelay field should be used to
438 * compute a dynamic threshold instead of using a fixed 10 ms value, but
439 * devices don't report reliable wDelay values.
441 * See uvc_video_clock_host_sof() for an explanation regarding why only
442 * the 8 LSBs of the delta are kept.
444 if (stream
->clock
.sof_offset
== (u16
)-1) {
445 u16 delta_sof
= (host_sof
- dev_sof
) & 255;
447 stream
->clock
.sof_offset
= delta_sof
;
449 stream
->clock
.sof_offset
= 0;
452 dev_sof
= (dev_sof
+ stream
->clock
.sof_offset
) & 2047;
454 spin_lock_irqsave(&stream
->clock
.lock
, flags
);
456 sample
= &stream
->clock
.samples
[stream
->clock
.head
];
457 sample
->dev_stc
= get_unaligned_le32(&data
[header_size
- 6]);
458 sample
->dev_sof
= dev_sof
;
459 sample
->host_sof
= host_sof
;
460 sample
->host_ts
= ts
;
462 /* Update the sliding window head and count. */
463 stream
->clock
.head
= (stream
->clock
.head
+ 1) % stream
->clock
.size
;
465 if (stream
->clock
.count
< stream
->clock
.size
)
466 stream
->clock
.count
++;
468 spin_unlock_irqrestore(&stream
->clock
.lock
, flags
);
471 static void uvc_video_clock_reset(struct uvc_streaming
*stream
)
473 struct uvc_clock
*clock
= &stream
->clock
;
477 clock
->last_sof
= -1;
478 clock
->sof_offset
= -1;
481 static int uvc_video_clock_init(struct uvc_streaming
*stream
)
483 struct uvc_clock
*clock
= &stream
->clock
;
485 spin_lock_init(&clock
->lock
);
488 clock
->samples
= kmalloc(clock
->size
* sizeof(*clock
->samples
),
490 if (clock
->samples
== NULL
)
493 uvc_video_clock_reset(stream
);
498 static void uvc_video_clock_cleanup(struct uvc_streaming
*stream
)
500 kfree(stream
->clock
.samples
);
501 stream
->clock
.samples
= NULL
;
505 * uvc_video_clock_host_sof - Return the host SOF value for a clock sample
507 * Host SOF counters reported by usb_get_current_frame_number() usually don't
508 * cover the whole 11-bits SOF range (0-2047) but are limited to the HCI frame
509 * schedule window. They can be limited to 8, 9 or 10 bits depending on the host
510 * controller and its configuration.
512 * We thus need to recover the SOF value corresponding to the host frame number.
513 * As the device and host frame numbers are sampled in a short interval, the
514 * difference between their values should be equal to a small delta plus an
515 * integer multiple of 256 caused by the host frame number limited precision.
517 * To obtain the recovered host SOF value, compute the small delta by masking
518 * the high bits of the host frame counter and device SOF difference and add it
519 * to the device SOF value.
521 static u16
uvc_video_clock_host_sof(const struct uvc_clock_sample
*sample
)
523 /* The delta value can be negative. */
526 delta_sof
= (sample
->host_sof
- sample
->dev_sof
) & 255;
528 return (sample
->dev_sof
+ delta_sof
) & 2047;
532 * uvc_video_clock_update - Update the buffer timestamp
534 * This function converts the buffer PTS timestamp to the host clock domain by
535 * going through the USB SOF clock domain and stores the result in the V4L2
536 * buffer timestamp field.
538 * The relationship between the device clock and the host clock isn't known.
539 * However, the device and the host share the common USB SOF clock which can be
540 * used to recover that relationship.
542 * The relationship between the device clock and the USB SOF clock is considered
543 * to be linear over the clock samples sliding window and is given by
547 * Several methods to compute the slope (m) and intercept (p) can be used. As
548 * the clock drift should be small compared to the sliding window size, we
549 * assume that the line that goes through the points at both ends of the window
550 * is a good approximation. Naming those points P1 and P2, we get
552 * SOF = (SOF2 - SOF1) / (STC2 - STC1) * PTS
553 * + (SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1)
557 * SOF = ((SOF2 - SOF1) * PTS + SOF1 * STC2 - SOF2 * STC1) / (STC2 - STC1) (1)
559 * to avoid losing precision in the division. Similarly, the host timestamp is
562 * TS = ((TS2 - TS1) * PTS + TS1 * SOF2 - TS2 * SOF1) / (SOF2 - SOF1) (2)
564 * SOF values are coded on 11 bits by USB. We extend their precision with 16
565 * decimal bits, leading to a 11.16 coding.
567 * TODO: To avoid surprises with device clock values, PTS/STC timestamps should
568 * be normalized using the nominal device clock frequency reported through the
571 * Both the PTS/STC and SOF counters roll over, after a fixed but device
572 * specific amount of time for PTS/STC and after 2048ms for SOF. As long as the
573 * sliding window size is smaller than the rollover period, differences computed
574 * on unsigned integers will produce the correct result. However, the p term in
575 * the linear relations will be miscomputed.
577 * To fix the issue, we subtract a constant from the PTS and STC values to bring
578 * PTS to half the 32 bit STC range. The sliding window STC values then fit into
579 * the 32 bit range without any rollover.
581 * Similarly, we add 2048 to the device SOF values to make sure that the SOF
582 * computed by (1) will never be smaller than 0. This offset is then compensated
583 * by adding 2048 to the SOF values used in (2). However, this doesn't prevent
584 * rollovers between (1) and (2): the SOF value computed by (1) can be slightly
585 * lower than 4096, and the host SOF counters can have rolled over to 2048. This
586 * case is handled by subtracting 2048 from the SOF value if it exceeds the host
587 * SOF value at the end of the sliding window.
589 * Finally we subtract a constant from the host timestamps to bring the first
590 * timestamp of the sliding window to 1s.
592 void uvc_video_clock_update(struct uvc_streaming
*stream
,
593 struct v4l2_buffer
*v4l2_buf
,
594 struct uvc_buffer
*buf
)
596 struct uvc_clock
*clock
= &stream
->clock
;
597 struct uvc_clock_sample
*first
;
598 struct uvc_clock_sample
*last
;
610 spin_lock_irqsave(&clock
->lock
, flags
);
612 if (clock
->count
< clock
->size
)
615 first
= &clock
->samples
[clock
->head
];
616 last
= &clock
->samples
[(clock
->head
- 1) % clock
->size
];
618 /* First step, PTS to SOF conversion. */
619 delta_stc
= buf
->pts
- (1UL << 31);
620 x1
= first
->dev_stc
- delta_stc
;
621 x2
= last
->dev_stc
- delta_stc
;
625 y1
= (first
->dev_sof
+ 2048) << 16;
626 y2
= (last
->dev_sof
+ 2048) << 16;
630 y
= (u64
)(y2
- y1
) * (1ULL << 31) + (u64
)y1
* (u64
)x2
632 y
= div_u64(y
, x2
- x1
);
636 uvc_trace(UVC_TRACE_CLOCK
, "%s: PTS %u y %llu.%06llu SOF %u.%06llu "
637 "(x1 %u x2 %u y1 %u y2 %u SOF offset %u)\n",
638 stream
->dev
->name
, buf
->pts
,
639 y
>> 16, div_u64((y
& 0xffff) * 1000000, 65536),
640 sof
>> 16, div_u64(((u64
)sof
& 0xffff) * 1000000LLU, 65536),
641 x1
, x2
, y1
, y2
, clock
->sof_offset
);
643 /* Second step, SOF to host clock conversion. */
644 x1
= (uvc_video_clock_host_sof(first
) + 2048) << 16;
645 x2
= (uvc_video_clock_host_sof(last
) + 2048) << 16;
651 ts
= timespec_sub(last
->host_ts
, first
->host_ts
);
653 y2
= (ts
.tv_sec
+ 1) * NSEC_PER_SEC
+ ts
.tv_nsec
;
655 /* Interpolated and host SOF timestamps can wrap around at slightly
656 * different times. Handle this by adding or removing 2048 to or from
657 * the computed SOF value to keep it close to the SOF samples mean
660 mean
= (x1
+ x2
) / 2;
661 if (mean
- (1024 << 16) > sof
)
663 else if (sof
> mean
+ (1024 << 16))
666 y
= (u64
)(y2
- y1
) * (u64
)sof
+ (u64
)y1
* (u64
)x2
668 y
= div_u64(y
, x2
- x1
);
670 div
= div_u64_rem(y
, NSEC_PER_SEC
, &rem
);
671 ts
.tv_sec
= first
->host_ts
.tv_sec
- 1 + div
;
672 ts
.tv_nsec
= first
->host_ts
.tv_nsec
+ rem
;
673 if (ts
.tv_nsec
>= NSEC_PER_SEC
) {
675 ts
.tv_nsec
-= NSEC_PER_SEC
;
678 uvc_trace(UVC_TRACE_CLOCK
, "%s: SOF %u.%06llu y %llu ts %lu.%06lu "
679 "buf ts %lu.%06lu (x1 %u/%u/%u x2 %u/%u/%u y1 %u y2 %u)\n",
681 sof
>> 16, div_u64(((u64
)sof
& 0xffff) * 1000000LLU, 65536),
682 y
, ts
.tv_sec
, ts
.tv_nsec
/ NSEC_PER_USEC
,
683 v4l2_buf
->timestamp
.tv_sec
,
684 (unsigned long)v4l2_buf
->timestamp
.tv_usec
,
685 x1
, first
->host_sof
, first
->dev_sof
,
686 x2
, last
->host_sof
, last
->dev_sof
, y1
, y2
);
688 /* Update the V4L2 buffer. */
689 v4l2_buf
->timestamp
.tv_sec
= ts
.tv_sec
;
690 v4l2_buf
->timestamp
.tv_usec
= ts
.tv_nsec
/ NSEC_PER_USEC
;
693 spin_unlock_irqrestore(&stream
->clock
.lock
, flags
);
696 /* ------------------------------------------------------------------------
700 static void uvc_video_stats_decode(struct uvc_streaming
*stream
,
701 const __u8
*data
, int len
)
703 unsigned int header_size
;
704 bool has_pts
= false;
705 bool has_scr
= false;
706 u16
uninitialized_var(scr_sof
);
707 u32
uninitialized_var(scr_stc
);
708 u32
uninitialized_var(pts
);
710 if (stream
->stats
.stream
.nb_frames
== 0 &&
711 stream
->stats
.frame
.nb_packets
== 0)
712 ktime_get_ts(&stream
->stats
.stream
.start_ts
);
714 switch (data
[1] & (UVC_STREAM_PTS
| UVC_STREAM_SCR
)) {
715 case UVC_STREAM_PTS
| UVC_STREAM_SCR
:
733 /* Check for invalid headers. */
734 if (len
< header_size
|| data
[0] < header_size
) {
735 stream
->stats
.frame
.nb_invalid
++;
739 /* Extract the timestamps. */
741 pts
= get_unaligned_le32(&data
[2]);
744 scr_stc
= get_unaligned_le32(&data
[header_size
- 6]);
745 scr_sof
= get_unaligned_le16(&data
[header_size
- 2]);
748 /* Is PTS constant through the whole frame ? */
749 if (has_pts
&& stream
->stats
.frame
.nb_pts
) {
750 if (stream
->stats
.frame
.pts
!= pts
) {
751 stream
->stats
.frame
.nb_pts_diffs
++;
752 stream
->stats
.frame
.last_pts_diff
=
753 stream
->stats
.frame
.nb_packets
;
758 stream
->stats
.frame
.nb_pts
++;
759 stream
->stats
.frame
.pts
= pts
;
762 /* Do all frames have a PTS in their first non-empty packet, or before
763 * their first empty packet ?
765 if (stream
->stats
.frame
.size
== 0) {
766 if (len
> header_size
)
767 stream
->stats
.frame
.has_initial_pts
= has_pts
;
768 if (len
== header_size
&& has_pts
)
769 stream
->stats
.frame
.has_early_pts
= true;
772 /* Do the SCR.STC and SCR.SOF fields vary through the frame ? */
773 if (has_scr
&& stream
->stats
.frame
.nb_scr
) {
774 if (stream
->stats
.frame
.scr_stc
!= scr_stc
)
775 stream
->stats
.frame
.nb_scr_diffs
++;
779 /* Expand the SOF counter to 32 bits and store its value. */
780 if (stream
->stats
.stream
.nb_frames
> 0 ||
781 stream
->stats
.frame
.nb_scr
> 0)
782 stream
->stats
.stream
.scr_sof_count
+=
783 (scr_sof
- stream
->stats
.stream
.scr_sof
) % 2048;
784 stream
->stats
.stream
.scr_sof
= scr_sof
;
786 stream
->stats
.frame
.nb_scr
++;
787 stream
->stats
.frame
.scr_stc
= scr_stc
;
788 stream
->stats
.frame
.scr_sof
= scr_sof
;
790 if (scr_sof
< stream
->stats
.stream
.min_sof
)
791 stream
->stats
.stream
.min_sof
= scr_sof
;
792 if (scr_sof
> stream
->stats
.stream
.max_sof
)
793 stream
->stats
.stream
.max_sof
= scr_sof
;
796 /* Record the first non-empty packet number. */
797 if (stream
->stats
.frame
.size
== 0 && len
> header_size
)
798 stream
->stats
.frame
.first_data
= stream
->stats
.frame
.nb_packets
;
800 /* Update the frame size. */
801 stream
->stats
.frame
.size
+= len
- header_size
;
803 /* Update the packets counters. */
804 stream
->stats
.frame
.nb_packets
++;
805 if (len
> header_size
)
806 stream
->stats
.frame
.nb_empty
++;
808 if (data
[1] & UVC_STREAM_ERR
)
809 stream
->stats
.frame
.nb_errors
++;
812 static void uvc_video_stats_update(struct uvc_streaming
*stream
)
814 struct uvc_stats_frame
*frame
= &stream
->stats
.frame
;
816 uvc_trace(UVC_TRACE_STATS
, "frame %u stats: %u/%u/%u packets, "
817 "%u/%u/%u pts (%searly %sinitial), %u/%u scr, "
818 "last pts/stc/sof %u/%u/%u\n",
819 stream
->sequence
, frame
->first_data
,
820 frame
->nb_packets
- frame
->nb_empty
, frame
->nb_packets
,
821 frame
->nb_pts_diffs
, frame
->last_pts_diff
, frame
->nb_pts
,
822 frame
->has_early_pts
? "" : "!",
823 frame
->has_initial_pts
? "" : "!",
824 frame
->nb_scr_diffs
, frame
->nb_scr
,
825 frame
->pts
, frame
->scr_stc
, frame
->scr_sof
);
827 stream
->stats
.stream
.nb_frames
++;
828 stream
->stats
.stream
.nb_packets
+= stream
->stats
.frame
.nb_packets
;
829 stream
->stats
.stream
.nb_empty
+= stream
->stats
.frame
.nb_empty
;
830 stream
->stats
.stream
.nb_errors
+= stream
->stats
.frame
.nb_errors
;
831 stream
->stats
.stream
.nb_invalid
+= stream
->stats
.frame
.nb_invalid
;
833 if (frame
->has_early_pts
)
834 stream
->stats
.stream
.nb_pts_early
++;
835 if (frame
->has_initial_pts
)
836 stream
->stats
.stream
.nb_pts_initial
++;
837 if (frame
->last_pts_diff
<= frame
->first_data
)
838 stream
->stats
.stream
.nb_pts_constant
++;
839 if (frame
->nb_scr
>= frame
->nb_packets
- frame
->nb_empty
)
840 stream
->stats
.stream
.nb_scr_count_ok
++;
841 if (frame
->nb_scr_diffs
+ 1 == frame
->nb_scr
)
842 stream
->stats
.stream
.nb_scr_diffs_ok
++;
844 memset(&stream
->stats
.frame
, 0, sizeof(stream
->stats
.frame
));
847 size_t uvc_video_stats_dump(struct uvc_streaming
*stream
, char *buf
,
850 unsigned int scr_sof_freq
;
851 unsigned int duration
;
855 ts
.tv_sec
= stream
->stats
.stream
.stop_ts
.tv_sec
856 - stream
->stats
.stream
.start_ts
.tv_sec
;
857 ts
.tv_nsec
= stream
->stats
.stream
.stop_ts
.tv_nsec
858 - stream
->stats
.stream
.start_ts
.tv_nsec
;
859 if (ts
.tv_nsec
< 0) {
861 ts
.tv_nsec
+= 1000000000;
864 /* Compute the SCR.SOF frequency estimate. At the nominal 1kHz SOF
865 * frequency this will not overflow before more than 1h.
867 duration
= ts
.tv_sec
* 1000 + ts
.tv_nsec
/ 1000000;
869 scr_sof_freq
= stream
->stats
.stream
.scr_sof_count
* 1000
874 count
+= scnprintf(buf
+ count
, size
- count
,
875 "frames: %u\npackets: %u\nempty: %u\n"
876 "errors: %u\ninvalid: %u\n",
877 stream
->stats
.stream
.nb_frames
,
878 stream
->stats
.stream
.nb_packets
,
879 stream
->stats
.stream
.nb_empty
,
880 stream
->stats
.stream
.nb_errors
,
881 stream
->stats
.stream
.nb_invalid
);
882 count
+= scnprintf(buf
+ count
, size
- count
,
883 "pts: %u early, %u initial, %u ok\n",
884 stream
->stats
.stream
.nb_pts_early
,
885 stream
->stats
.stream
.nb_pts_initial
,
886 stream
->stats
.stream
.nb_pts_constant
);
887 count
+= scnprintf(buf
+ count
, size
- count
,
888 "scr: %u count ok, %u diff ok\n",
889 stream
->stats
.stream
.nb_scr_count_ok
,
890 stream
->stats
.stream
.nb_scr_diffs_ok
);
891 count
+= scnprintf(buf
+ count
, size
- count
,
892 "sof: %u <= sof <= %u, freq %u.%03u kHz\n",
893 stream
->stats
.stream
.min_sof
,
894 stream
->stats
.stream
.max_sof
,
895 scr_sof_freq
/ 1000, scr_sof_freq
% 1000);
900 static void uvc_video_stats_start(struct uvc_streaming
*stream
)
902 memset(&stream
->stats
, 0, sizeof(stream
->stats
));
903 stream
->stats
.stream
.min_sof
= 2048;
906 static void uvc_video_stats_stop(struct uvc_streaming
*stream
)
908 ktime_get_ts(&stream
->stats
.stream
.stop_ts
);
911 /* ------------------------------------------------------------------------
915 /* Video payload decoding is handled by uvc_video_decode_start(),
916 * uvc_video_decode_data() and uvc_video_decode_end().
918 * uvc_video_decode_start is called with URB data at the start of a bulk or
919 * isochronous payload. It processes header data and returns the header size
920 * in bytes if successful. If an error occurs, it returns a negative error
921 * code. The following error codes have special meanings.
923 * - EAGAIN informs the caller that the current video buffer should be marked
924 * as done, and that the function should be called again with the same data
925 * and a new video buffer. This is used when end of frame conditions can be
926 * reliably detected at the beginning of the next frame only.
928 * If an error other than -EAGAIN is returned, the caller will drop the current
929 * payload. No call to uvc_video_decode_data and uvc_video_decode_end will be
930 * made until the next payload. -ENODATA can be used to drop the current
931 * payload if no other error code is appropriate.
933 * uvc_video_decode_data is called for every URB with URB data. It copies the
934 * data to the video buffer.
936 * uvc_video_decode_end is called with header data at the end of a bulk or
937 * isochronous payload. It performs any additional header data processing and
938 * returns 0 or a negative error code if an error occurred. As header data have
939 * already been processed by uvc_video_decode_start, this functions isn't
940 * required to perform sanity checks a second time.
942 * For isochronous transfers where a payload is always transferred in a single
943 * URB, the three functions will be called in a row.
945 * To let the decoder process header data and update its internal state even
946 * when no video buffer is available, uvc_video_decode_start must be prepared
947 * to be called with a NULL buf parameter. uvc_video_decode_data and
948 * uvc_video_decode_end will never be called with a NULL buffer.
950 static int uvc_video_decode_start(struct uvc_streaming
*stream
,
951 struct uvc_buffer
*buf
, const __u8
*data
, int len
)
956 * - packet must be at least 2 bytes long
957 * - bHeaderLength value must be at least 2 bytes (see above)
958 * - bHeaderLength value can't be larger than the packet size.
960 if (len
< 2 || data
[0] < 2 || data
[0] > len
) {
961 stream
->stats
.frame
.nb_invalid
++;
965 fid
= data
[1] & UVC_STREAM_FID
;
967 /* Increase the sequence number regardless of any buffer states, so
968 * that discontinuous sequence numbers always indicate lost frames.
970 if (stream
->last_fid
!= fid
) {
972 if (stream
->sequence
)
973 uvc_video_stats_update(stream
);
976 uvc_video_clock_decode(stream
, buf
, data
, len
);
977 uvc_video_stats_decode(stream
, data
, len
);
979 /* Store the payload FID bit and return immediately when the buffer is
983 stream
->last_fid
= fid
;
987 /* Mark the buffer as bad if the error bit is set. */
988 if (data
[1] & UVC_STREAM_ERR
) {
989 uvc_trace(UVC_TRACE_FRAME
, "Marking buffer as bad (error bit "
994 /* Synchronize to the input stream by waiting for the FID bit to be
995 * toggled when the the buffer state is not UVC_BUF_STATE_ACTIVE.
996 * stream->last_fid is initialized to -1, so the first isochronous
997 * frame will always be in sync.
999 * If the device doesn't toggle the FID bit, invert stream->last_fid
1000 * when the EOF bit is set to force synchronisation on the next packet.
1002 if (buf
->state
!= UVC_BUF_STATE_ACTIVE
) {
1005 if (fid
== stream
->last_fid
) {
1006 uvc_trace(UVC_TRACE_FRAME
, "Dropping payload (out of "
1008 if ((stream
->dev
->quirks
& UVC_QUIRK_STREAM_NO_FID
) &&
1009 (data
[1] & UVC_STREAM_EOF
))
1010 stream
->last_fid
^= UVC_STREAM_FID
;
1014 if (uvc_clock_param
== CLOCK_MONOTONIC
)
1017 ktime_get_real_ts(&ts
);
1019 buf
->buf
.v4l2_buf
.sequence
= stream
->sequence
;
1020 buf
->buf
.v4l2_buf
.timestamp
.tv_sec
= ts
.tv_sec
;
1021 buf
->buf
.v4l2_buf
.timestamp
.tv_usec
=
1022 ts
.tv_nsec
/ NSEC_PER_USEC
;
1024 /* TODO: Handle PTS and SCR. */
1025 buf
->state
= UVC_BUF_STATE_ACTIVE
;
1028 /* Mark the buffer as done if we're at the beginning of a new frame.
1029 * End of frame detection is better implemented by checking the EOF
1030 * bit (FID bit toggling is delayed by one frame compared to the EOF
1031 * bit), but some devices don't set the bit at end of frame (and the
1032 * last payload can be lost anyway). We thus must check if the FID has
1035 * stream->last_fid is initialized to -1, so the first isochronous
1036 * frame will never trigger an end of frame detection.
1038 * Empty buffers (bytesused == 0) don't trigger end of frame detection
1039 * as it doesn't make sense to return an empty buffer. This also
1040 * avoids detecting end of frame conditions at FID toggling if the
1041 * previous payload had the EOF bit set.
1043 if (fid
!= stream
->last_fid
&& buf
->bytesused
!= 0) {
1044 uvc_trace(UVC_TRACE_FRAME
, "Frame complete (FID bit "
1046 buf
->state
= UVC_BUF_STATE_READY
;
1050 stream
->last_fid
= fid
;
1055 static void uvc_video_decode_data(struct uvc_streaming
*stream
,
1056 struct uvc_buffer
*buf
, const __u8
*data
, int len
)
1058 unsigned int maxlen
, nbytes
;
1064 /* Copy the video data to the buffer. */
1065 maxlen
= buf
->length
- buf
->bytesused
;
1066 mem
= buf
->mem
+ buf
->bytesused
;
1067 nbytes
= min((unsigned int)len
, maxlen
);
1068 memcpy(mem
, data
, nbytes
);
1069 buf
->bytesused
+= nbytes
;
1071 /* Complete the current frame if the buffer size was exceeded. */
1073 uvc_trace(UVC_TRACE_FRAME
, "Frame complete (overflow).\n");
1074 buf
->state
= UVC_BUF_STATE_READY
;
1078 static void uvc_video_decode_end(struct uvc_streaming
*stream
,
1079 struct uvc_buffer
*buf
, const __u8
*data
, int len
)
1081 /* Mark the buffer as done if the EOF marker is set. */
1082 if (data
[1] & UVC_STREAM_EOF
&& buf
->bytesused
!= 0) {
1083 uvc_trace(UVC_TRACE_FRAME
, "Frame complete (EOF found).\n");
1085 uvc_trace(UVC_TRACE_FRAME
, "EOF in empty payload.\n");
1086 buf
->state
= UVC_BUF_STATE_READY
;
1087 if (stream
->dev
->quirks
& UVC_QUIRK_STREAM_NO_FID
)
1088 stream
->last_fid
^= UVC_STREAM_FID
;
1092 /* Video payload encoding is handled by uvc_video_encode_header() and
1093 * uvc_video_encode_data(). Only bulk transfers are currently supported.
1095 * uvc_video_encode_header is called at the start of a payload. It adds header
1096 * data to the transfer buffer and returns the header size. As the only known
1097 * UVC output device transfers a whole frame in a single payload, the EOF bit
1098 * is always set in the header.
1100 * uvc_video_encode_data is called for every URB and copies the data from the
1101 * video buffer to the transfer buffer.
1103 static int uvc_video_encode_header(struct uvc_streaming
*stream
,
1104 struct uvc_buffer
*buf
, __u8
*data
, int len
)
1106 data
[0] = 2; /* Header length */
1107 data
[1] = UVC_STREAM_EOH
| UVC_STREAM_EOF
1108 | (stream
->last_fid
& UVC_STREAM_FID
);
1112 static int uvc_video_encode_data(struct uvc_streaming
*stream
,
1113 struct uvc_buffer
*buf
, __u8
*data
, int len
)
1115 struct uvc_video_queue
*queue
= &stream
->queue
;
1116 unsigned int nbytes
;
1119 /* Copy video data to the URB buffer. */
1120 mem
= buf
->mem
+ queue
->buf_used
;
1121 nbytes
= min((unsigned int)len
, buf
->bytesused
- queue
->buf_used
);
1122 nbytes
= min(stream
->bulk
.max_payload_size
- stream
->bulk
.payload_size
,
1124 memcpy(data
, mem
, nbytes
);
1126 queue
->buf_used
+= nbytes
;
1131 /* ------------------------------------------------------------------------
1136 * Completion handler for video URBs.
1138 static void uvc_video_decode_isoc(struct urb
*urb
, struct uvc_streaming
*stream
,
1139 struct uvc_buffer
*buf
)
1144 for (i
= 0; i
< urb
->number_of_packets
; ++i
) {
1145 if (urb
->iso_frame_desc
[i
].status
< 0) {
1146 uvc_trace(UVC_TRACE_FRAME
, "USB isochronous frame "
1147 "lost (%d).\n", urb
->iso_frame_desc
[i
].status
);
1148 /* Mark the buffer as faulty. */
1154 /* Decode the payload header. */
1155 mem
= urb
->transfer_buffer
+ urb
->iso_frame_desc
[i
].offset
;
1157 ret
= uvc_video_decode_start(stream
, buf
, mem
,
1158 urb
->iso_frame_desc
[i
].actual_length
);
1160 buf
= uvc_queue_next_buffer(&stream
->queue
,
1162 } while (ret
== -EAGAIN
);
1167 /* Decode the payload data. */
1168 uvc_video_decode_data(stream
, buf
, mem
+ ret
,
1169 urb
->iso_frame_desc
[i
].actual_length
- ret
);
1171 /* Process the header again. */
1172 uvc_video_decode_end(stream
, buf
, mem
,
1173 urb
->iso_frame_desc
[i
].actual_length
);
1175 if (buf
->state
== UVC_BUF_STATE_READY
) {
1176 if (buf
->length
!= buf
->bytesused
&&
1177 !(stream
->cur_format
->flags
&
1178 UVC_FMT_FLAG_COMPRESSED
))
1181 buf
= uvc_queue_next_buffer(&stream
->queue
, buf
);
1186 static void uvc_video_decode_bulk(struct urb
*urb
, struct uvc_streaming
*stream
,
1187 struct uvc_buffer
*buf
)
1193 * Ignore ZLPs if they're not part of a frame, otherwise process them
1194 * to trigger the end of payload detection.
1196 if (urb
->actual_length
== 0 && stream
->bulk
.header_size
== 0)
1199 mem
= urb
->transfer_buffer
;
1200 len
= urb
->actual_length
;
1201 stream
->bulk
.payload_size
+= len
;
1203 /* If the URB is the first of its payload, decode and save the
1206 if (stream
->bulk
.header_size
== 0 && !stream
->bulk
.skip_payload
) {
1208 ret
= uvc_video_decode_start(stream
, buf
, mem
, len
);
1210 buf
= uvc_queue_next_buffer(&stream
->queue
,
1212 } while (ret
== -EAGAIN
);
1214 /* If an error occurred skip the rest of the payload. */
1215 if (ret
< 0 || buf
== NULL
) {
1216 stream
->bulk
.skip_payload
= 1;
1218 memcpy(stream
->bulk
.header
, mem
, ret
);
1219 stream
->bulk
.header_size
= ret
;
1226 /* The buffer queue might have been cancelled while a bulk transfer
1227 * was in progress, so we can reach here with buf equal to NULL. Make
1228 * sure buf is never dereferenced if NULL.
1231 /* Process video data. */
1232 if (!stream
->bulk
.skip_payload
&& buf
!= NULL
)
1233 uvc_video_decode_data(stream
, buf
, mem
, len
);
1235 /* Detect the payload end by a URB smaller than the maximum size (or
1236 * a payload size equal to the maximum) and process the header again.
1238 if (urb
->actual_length
< urb
->transfer_buffer_length
||
1239 stream
->bulk
.payload_size
>= stream
->bulk
.max_payload_size
) {
1240 if (!stream
->bulk
.skip_payload
&& buf
!= NULL
) {
1241 uvc_video_decode_end(stream
, buf
, stream
->bulk
.header
,
1242 stream
->bulk
.payload_size
);
1243 if (buf
->state
== UVC_BUF_STATE_READY
)
1244 buf
= uvc_queue_next_buffer(&stream
->queue
,
1248 stream
->bulk
.header_size
= 0;
1249 stream
->bulk
.skip_payload
= 0;
1250 stream
->bulk
.payload_size
= 0;
1254 static void uvc_video_encode_bulk(struct urb
*urb
, struct uvc_streaming
*stream
,
1255 struct uvc_buffer
*buf
)
1257 u8
*mem
= urb
->transfer_buffer
;
1258 int len
= stream
->urb_size
, ret
;
1261 urb
->transfer_buffer_length
= 0;
1265 /* If the URB is the first of its payload, add the header. */
1266 if (stream
->bulk
.header_size
== 0) {
1267 ret
= uvc_video_encode_header(stream
, buf
, mem
, len
);
1268 stream
->bulk
.header_size
= ret
;
1269 stream
->bulk
.payload_size
+= ret
;
1274 /* Process video data. */
1275 ret
= uvc_video_encode_data(stream
, buf
, mem
, len
);
1277 stream
->bulk
.payload_size
+= ret
;
1280 if (buf
->bytesused
== stream
->queue
.buf_used
||
1281 stream
->bulk
.payload_size
== stream
->bulk
.max_payload_size
) {
1282 if (buf
->bytesused
== stream
->queue
.buf_used
) {
1283 stream
->queue
.buf_used
= 0;
1284 buf
->state
= UVC_BUF_STATE_READY
;
1285 buf
->buf
.v4l2_buf
.sequence
= ++stream
->sequence
;
1286 uvc_queue_next_buffer(&stream
->queue
, buf
);
1287 stream
->last_fid
^= UVC_STREAM_FID
;
1290 stream
->bulk
.header_size
= 0;
1291 stream
->bulk
.payload_size
= 0;
1294 urb
->transfer_buffer_length
= stream
->urb_size
- len
;
1297 static void uvc_video_complete(struct urb
*urb
)
1299 struct uvc_streaming
*stream
= urb
->context
;
1300 struct uvc_video_queue
*queue
= &stream
->queue
;
1301 struct uvc_buffer
*buf
= NULL
;
1302 unsigned long flags
;
1305 switch (urb
->status
) {
1310 uvc_printk(KERN_WARNING
, "Non-zero status (%d) in video "
1311 "completion handler.\n", urb
->status
);
1313 case -ENOENT
: /* usb_kill_urb() called. */
1317 case -ECONNRESET
: /* usb_unlink_urb() called. */
1318 case -ESHUTDOWN
: /* The endpoint is being disabled. */
1319 uvc_queue_cancel(queue
, urb
->status
== -ESHUTDOWN
);
1323 spin_lock_irqsave(&queue
->irqlock
, flags
);
1324 if (!list_empty(&queue
->irqqueue
))
1325 buf
= list_first_entry(&queue
->irqqueue
, struct uvc_buffer
,
1327 spin_unlock_irqrestore(&queue
->irqlock
, flags
);
1329 stream
->decode(urb
, stream
, buf
);
1331 if ((ret
= usb_submit_urb(urb
, GFP_ATOMIC
)) < 0) {
1332 uvc_printk(KERN_ERR
, "Failed to resubmit video URB (%d).\n",
1338 * Free transfer buffers.
1340 static void uvc_free_urb_buffers(struct uvc_streaming
*stream
)
1344 for (i
= 0; i
< UVC_URBS
; ++i
) {
1345 if (stream
->urb_buffer
[i
]) {
1346 #ifndef CONFIG_DMA_NONCOHERENT
1347 usb_free_coherent(stream
->dev
->udev
, stream
->urb_size
,
1348 stream
->urb_buffer
[i
], stream
->urb_dma
[i
]);
1350 kfree(stream
->urb_buffer
[i
]);
1352 stream
->urb_buffer
[i
] = NULL
;
1356 stream
->urb_size
= 0;
1360 * Allocate transfer buffers. This function can be called with buffers
1361 * already allocated when resuming from suspend, in which case it will
1362 * return without touching the buffers.
1364 * Limit the buffer size to UVC_MAX_PACKETS bulk/isochronous packets. If the
1365 * system is too low on memory try successively smaller numbers of packets
1366 * until allocation succeeds.
1368 * Return the number of allocated packets on success or 0 when out of memory.
1370 static int uvc_alloc_urb_buffers(struct uvc_streaming
*stream
,
1371 unsigned int size
, unsigned int psize
, gfp_t gfp_flags
)
1373 unsigned int npackets
;
1376 /* Buffers are already allocated, bail out. */
1377 if (stream
->urb_size
)
1378 return stream
->urb_size
/ psize
;
1380 /* Compute the number of packets. Bulk endpoints might transfer UVC
1381 * payloads across multiple URBs.
1383 npackets
= DIV_ROUND_UP(size
, psize
);
1384 if (npackets
> UVC_MAX_PACKETS
)
1385 npackets
= UVC_MAX_PACKETS
;
1387 /* Retry allocations until one succeed. */
1388 for (; npackets
> 1; npackets
/= 2) {
1389 for (i
= 0; i
< UVC_URBS
; ++i
) {
1390 stream
->urb_size
= psize
* npackets
;
1391 #ifndef CONFIG_DMA_NONCOHERENT
1392 stream
->urb_buffer
[i
] = usb_alloc_coherent(
1393 stream
->dev
->udev
, stream
->urb_size
,
1394 gfp_flags
| __GFP_NOWARN
, &stream
->urb_dma
[i
]);
1396 stream
->urb_buffer
[i
] =
1397 kmalloc(stream
->urb_size
, gfp_flags
| __GFP_NOWARN
);
1399 if (!stream
->urb_buffer
[i
]) {
1400 uvc_free_urb_buffers(stream
);
1405 if (i
== UVC_URBS
) {
1406 uvc_trace(UVC_TRACE_VIDEO
, "Allocated %u URB buffers "
1407 "of %ux%u bytes each.\n", UVC_URBS
, npackets
,
1413 uvc_trace(UVC_TRACE_VIDEO
, "Failed to allocate URB buffers (%u bytes "
1414 "per packet).\n", psize
);
1419 * Uninitialize isochronous/bulk URBs and free transfer buffers.
1421 static void uvc_uninit_video(struct uvc_streaming
*stream
, int free_buffers
)
1426 uvc_video_stats_stop(stream
);
1428 for (i
= 0; i
< UVC_URBS
; ++i
) {
1429 urb
= stream
->urb
[i
];
1435 stream
->urb
[i
] = NULL
;
1439 uvc_free_urb_buffers(stream
);
1443 * Compute the maximum number of bytes per interval for an endpoint.
1445 static unsigned int uvc_endpoint_max_bpi(struct usb_device
*dev
,
1446 struct usb_host_endpoint
*ep
)
1450 switch (dev
->speed
) {
1451 case USB_SPEED_SUPER
:
1452 return ep
->ss_ep_comp
.wBytesPerInterval
;
1453 case USB_SPEED_HIGH
:
1454 psize
= usb_endpoint_maxp(&ep
->desc
);
1455 return (psize
& 0x07ff) * (1 + ((psize
>> 11) & 3));
1456 case USB_SPEED_WIRELESS
:
1457 psize
= usb_endpoint_maxp(&ep
->desc
);
1460 psize
= usb_endpoint_maxp(&ep
->desc
);
1461 return psize
& 0x07ff;
1466 * Initialize isochronous URBs and allocate transfer buffers. The packet size
1467 * is given by the endpoint.
1469 static int uvc_init_video_isoc(struct uvc_streaming
*stream
,
1470 struct usb_host_endpoint
*ep
, gfp_t gfp_flags
)
1473 unsigned int npackets
, i
, j
;
1477 psize
= uvc_endpoint_max_bpi(stream
->dev
->udev
, ep
);
1478 size
= stream
->ctrl
.dwMaxVideoFrameSize
;
1480 npackets
= uvc_alloc_urb_buffers(stream
, size
, psize
, gfp_flags
);
1484 size
= npackets
* psize
;
1486 for (i
= 0; i
< UVC_URBS
; ++i
) {
1487 urb
= usb_alloc_urb(npackets
, gfp_flags
);
1489 uvc_uninit_video(stream
, 1);
1493 urb
->dev
= stream
->dev
->udev
;
1494 urb
->context
= stream
;
1495 urb
->pipe
= usb_rcvisocpipe(stream
->dev
->udev
,
1496 ep
->desc
.bEndpointAddress
);
1497 #ifndef CONFIG_DMA_NONCOHERENT
1498 urb
->transfer_flags
= URB_ISO_ASAP
| URB_NO_TRANSFER_DMA_MAP
;
1499 urb
->transfer_dma
= stream
->urb_dma
[i
];
1501 urb
->transfer_flags
= URB_ISO_ASAP
;
1503 urb
->interval
= ep
->desc
.bInterval
;
1504 urb
->transfer_buffer
= stream
->urb_buffer
[i
];
1505 urb
->complete
= uvc_video_complete
;
1506 urb
->number_of_packets
= npackets
;
1507 urb
->transfer_buffer_length
= size
;
1509 for (j
= 0; j
< npackets
; ++j
) {
1510 urb
->iso_frame_desc
[j
].offset
= j
* psize
;
1511 urb
->iso_frame_desc
[j
].length
= psize
;
1514 stream
->urb
[i
] = urb
;
1521 * Initialize bulk URBs and allocate transfer buffers. The packet size is
1522 * given by the endpoint.
1524 static int uvc_init_video_bulk(struct uvc_streaming
*stream
,
1525 struct usb_host_endpoint
*ep
, gfp_t gfp_flags
)
1528 unsigned int npackets
, pipe
, i
;
1532 psize
= usb_endpoint_maxp(&ep
->desc
) & 0x7ff;
1533 size
= stream
->ctrl
.dwMaxPayloadTransferSize
;
1534 stream
->bulk
.max_payload_size
= size
;
1536 npackets
= uvc_alloc_urb_buffers(stream
, size
, psize
, gfp_flags
);
1540 size
= npackets
* psize
;
1542 if (usb_endpoint_dir_in(&ep
->desc
))
1543 pipe
= usb_rcvbulkpipe(stream
->dev
->udev
,
1544 ep
->desc
.bEndpointAddress
);
1546 pipe
= usb_sndbulkpipe(stream
->dev
->udev
,
1547 ep
->desc
.bEndpointAddress
);
1549 if (stream
->type
== V4L2_BUF_TYPE_VIDEO_OUTPUT
)
1552 for (i
= 0; i
< UVC_URBS
; ++i
) {
1553 urb
= usb_alloc_urb(0, gfp_flags
);
1555 uvc_uninit_video(stream
, 1);
1559 usb_fill_bulk_urb(urb
, stream
->dev
->udev
, pipe
,
1560 stream
->urb_buffer
[i
], size
, uvc_video_complete
,
1562 #ifndef CONFIG_DMA_NONCOHERENT
1563 urb
->transfer_flags
= URB_NO_TRANSFER_DMA_MAP
;
1564 urb
->transfer_dma
= stream
->urb_dma
[i
];
1567 stream
->urb
[i
] = urb
;
1574 * Initialize isochronous/bulk URBs and allocate transfer buffers.
1576 static int uvc_init_video(struct uvc_streaming
*stream
, gfp_t gfp_flags
)
1578 struct usb_interface
*intf
= stream
->intf
;
1579 struct usb_host_endpoint
*ep
;
1583 stream
->sequence
= -1;
1584 stream
->last_fid
= -1;
1585 stream
->bulk
.header_size
= 0;
1586 stream
->bulk
.skip_payload
= 0;
1587 stream
->bulk
.payload_size
= 0;
1589 uvc_video_stats_start(stream
);
1591 if (intf
->num_altsetting
> 1) {
1592 struct usb_host_endpoint
*best_ep
= NULL
;
1593 unsigned int best_psize
= UINT_MAX
;
1594 unsigned int bandwidth
;
1595 unsigned int uninitialized_var(altsetting
);
1596 int intfnum
= stream
->intfnum
;
1598 /* Isochronous endpoint, select the alternate setting. */
1599 bandwidth
= stream
->ctrl
.dwMaxPayloadTransferSize
;
1601 if (bandwidth
== 0) {
1602 uvc_trace(UVC_TRACE_VIDEO
, "Device requested null "
1603 "bandwidth, defaulting to lowest.\n");
1606 uvc_trace(UVC_TRACE_VIDEO
, "Device requested %u "
1607 "B/frame bandwidth.\n", bandwidth
);
1610 for (i
= 0; i
< intf
->num_altsetting
; ++i
) {
1611 struct usb_host_interface
*alts
;
1614 alts
= &intf
->altsetting
[i
];
1615 ep
= uvc_find_endpoint(alts
,
1616 stream
->header
.bEndpointAddress
);
1620 /* Check if the bandwidth is high enough. */
1621 psize
= uvc_endpoint_max_bpi(stream
->dev
->udev
, ep
);
1622 if (psize
>= bandwidth
&& psize
<= best_psize
) {
1623 altsetting
= alts
->desc
.bAlternateSetting
;
1629 if (best_ep
== NULL
) {
1630 uvc_trace(UVC_TRACE_VIDEO
, "No fast enough alt setting "
1631 "for requested bandwidth.\n");
1635 uvc_trace(UVC_TRACE_VIDEO
, "Selecting alternate setting %u "
1636 "(%u B/frame bandwidth).\n", altsetting
, best_psize
);
1638 ret
= usb_set_interface(stream
->dev
->udev
, intfnum
, altsetting
);
1642 ret
= uvc_init_video_isoc(stream
, best_ep
, gfp_flags
);
1644 /* Bulk endpoint, proceed to URB initialization. */
1645 ep
= uvc_find_endpoint(&intf
->altsetting
[0],
1646 stream
->header
.bEndpointAddress
);
1650 ret
= uvc_init_video_bulk(stream
, ep
, gfp_flags
);
1656 /* Submit the URBs. */
1657 for (i
= 0; i
< UVC_URBS
; ++i
) {
1658 ret
= usb_submit_urb(stream
->urb
[i
], gfp_flags
);
1660 uvc_printk(KERN_ERR
, "Failed to submit URB %u "
1662 uvc_uninit_video(stream
, 1);
1670 /* --------------------------------------------------------------------------
1675 * Stop streaming without disabling the video queue.
1677 * To let userspace applications resume without trouble, we must not touch the
1678 * video buffers in any way. We mark the device as frozen to make sure the URB
1679 * completion handler won't try to cancel the queue when we kill the URBs.
1681 int uvc_video_suspend(struct uvc_streaming
*stream
)
1683 if (!uvc_queue_streaming(&stream
->queue
))
1687 uvc_uninit_video(stream
, 0);
1688 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
1693 * Reconfigure the video interface and restart streaming if it was enabled
1696 * If an error occurs, disable the video queue. This will wake all pending
1697 * buffers, making sure userspace applications are notified of the problem
1698 * instead of waiting forever.
1700 int uvc_video_resume(struct uvc_streaming
*stream
, int reset
)
1704 /* If the bus has been reset on resume, set the alternate setting to 0.
1705 * This should be the default value, but some devices crash or otherwise
1706 * misbehave if they don't receive a SET_INTERFACE request before any
1707 * other video control request.
1710 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
1714 uvc_video_clock_reset(stream
);
1716 ret
= uvc_commit_video(stream
, &stream
->ctrl
);
1718 uvc_queue_enable(&stream
->queue
, 0);
1722 if (!uvc_queue_streaming(&stream
->queue
))
1725 ret
= uvc_init_video(stream
, GFP_NOIO
);
1727 uvc_queue_enable(&stream
->queue
, 0);
1732 /* ------------------------------------------------------------------------
1737 * Initialize the UVC video device by switching to alternate setting 0 and
1738 * retrieve the default format.
1740 * Some cameras (namely the Fuji Finepix) set the format and frame
1741 * indexes to zero. The UVC standard doesn't clearly make this a spec
1742 * violation, so try to silently fix the values if possible.
1744 * This function is called before registering the device with V4L.
1746 int uvc_video_init(struct uvc_streaming
*stream
)
1748 struct uvc_streaming_control
*probe
= &stream
->ctrl
;
1749 struct uvc_format
*format
= NULL
;
1750 struct uvc_frame
*frame
= NULL
;
1754 if (stream
->nformats
== 0) {
1755 uvc_printk(KERN_INFO
, "No supported video formats found.\n");
1759 atomic_set(&stream
->active
, 0);
1761 /* Initialize the video buffers queue. */
1762 ret
= uvc_queue_init(&stream
->queue
, stream
->type
, !uvc_no_drop_param
);
1766 /* Alternate setting 0 should be the default, yet the XBox Live Vision
1767 * Cam (and possibly other devices) crash or otherwise misbehave if
1768 * they don't receive a SET_INTERFACE request before any other video
1771 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
1773 /* Set the streaming probe control with default streaming parameters
1774 * retrieved from the device. Webcams that don't suport GET_DEF
1775 * requests on the probe control will just keep their current streaming
1778 if (uvc_get_video_ctrl(stream
, probe
, 1, UVC_GET_DEF
) == 0)
1779 uvc_set_video_ctrl(stream
, probe
, 1);
1781 /* Initialize the streaming parameters with the probe control current
1782 * value. This makes sure SET_CUR requests on the streaming commit
1783 * control will always use values retrieved from a successful GET_CUR
1784 * request on the probe control, as required by the UVC specification.
1786 ret
= uvc_get_video_ctrl(stream
, probe
, 1, UVC_GET_CUR
);
1790 /* Check if the default format descriptor exists. Use the first
1791 * available format otherwise.
1793 for (i
= stream
->nformats
; i
> 0; --i
) {
1794 format
= &stream
->format
[i
-1];
1795 if (format
->index
== probe
->bFormatIndex
)
1799 if (format
->nframes
== 0) {
1800 uvc_printk(KERN_INFO
, "No frame descriptor found for the "
1801 "default format.\n");
1805 /* Zero bFrameIndex might be correct. Stream-based formats (including
1806 * MPEG-2 TS and DV) do not support frames but have a dummy frame
1807 * descriptor with bFrameIndex set to zero. If the default frame
1808 * descriptor is not found, use the first available frame.
1810 for (i
= format
->nframes
; i
> 0; --i
) {
1811 frame
= &format
->frame
[i
-1];
1812 if (frame
->bFrameIndex
== probe
->bFrameIndex
)
1816 probe
->bFormatIndex
= format
->index
;
1817 probe
->bFrameIndex
= frame
->bFrameIndex
;
1819 stream
->def_format
= format
;
1820 stream
->cur_format
= format
;
1821 stream
->cur_frame
= frame
;
1823 /* Select the video decoding function */
1824 if (stream
->type
== V4L2_BUF_TYPE_VIDEO_CAPTURE
) {
1825 if (stream
->dev
->quirks
& UVC_QUIRK_BUILTIN_ISIGHT
)
1826 stream
->decode
= uvc_video_decode_isight
;
1827 else if (stream
->intf
->num_altsetting
> 1)
1828 stream
->decode
= uvc_video_decode_isoc
;
1830 stream
->decode
= uvc_video_decode_bulk
;
1832 if (stream
->intf
->num_altsetting
== 1)
1833 stream
->decode
= uvc_video_encode_bulk
;
1835 uvc_printk(KERN_INFO
, "Isochronous endpoints are not "
1836 "supported for video output devices.\n");
1845 * Enable or disable the video stream.
1847 int uvc_video_enable(struct uvc_streaming
*stream
, int enable
)
1852 uvc_uninit_video(stream
, 1);
1853 if (stream
->intf
->num_altsetting
> 1) {
1854 usb_set_interface(stream
->dev
->udev
,
1855 stream
->intfnum
, 0);
1857 /* UVC doesn't specify how to inform a bulk-based device
1858 * when the video stream is stopped. Windows sends a
1859 * CLEAR_FEATURE(HALT) request to the video streaming
1860 * bulk endpoint, mimic the same behaviour.
1862 unsigned int epnum
= stream
->header
.bEndpointAddress
1863 & USB_ENDPOINT_NUMBER_MASK
;
1864 unsigned int dir
= stream
->header
.bEndpointAddress
1865 & USB_ENDPOINT_DIR_MASK
;
1868 pipe
= usb_sndbulkpipe(stream
->dev
->udev
, epnum
) | dir
;
1869 usb_clear_halt(stream
->dev
->udev
, pipe
);
1872 uvc_queue_enable(&stream
->queue
, 0);
1873 uvc_video_clock_cleanup(stream
);
1877 ret
= uvc_video_clock_init(stream
);
1881 ret
= uvc_queue_enable(&stream
->queue
, 1);
1885 /* Commit the streaming parameters. */
1886 ret
= uvc_commit_video(stream
, &stream
->ctrl
);
1890 ret
= uvc_init_video(stream
, GFP_KERNEL
);
1897 usb_set_interface(stream
->dev
->udev
, stream
->intfnum
, 0);
1899 uvc_queue_enable(&stream
->queue
, 0);
1901 uvc_video_clock_cleanup(stream
);