ARM: dts: omap5: Add bus_dma_limit for L3 bus
[linux/fpc-iii.git] / fs / fuse / file.c
blob3dd37a998ea93a1b92722612d00860e9347d66bd
1 /*
2 FUSE: Filesystem in Userspace
3 Copyright (C) 2001-2008 Miklos Szeredi <miklos@szeredi.hu>
5 This program can be distributed under the terms of the GNU GPL.
6 See the file COPYING.
7 */
9 #include "fuse_i.h"
11 #include <linux/pagemap.h>
12 #include <linux/slab.h>
13 #include <linux/kernel.h>
14 #include <linux/sched.h>
15 #include <linux/sched/signal.h>
16 #include <linux/module.h>
17 #include <linux/compat.h>
18 #include <linux/swap.h>
19 #include <linux/falloc.h>
20 #include <linux/uio.h>
22 static struct page **fuse_pages_alloc(unsigned int npages, gfp_t flags,
23 struct fuse_page_desc **desc)
25 struct page **pages;
27 pages = kzalloc(npages * (sizeof(struct page *) +
28 sizeof(struct fuse_page_desc)), flags);
29 *desc = (void *) (pages + npages);
31 return pages;
34 static int fuse_send_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
35 int opcode, struct fuse_open_out *outargp)
37 struct fuse_open_in inarg;
38 FUSE_ARGS(args);
40 memset(&inarg, 0, sizeof(inarg));
41 inarg.flags = file->f_flags & ~(O_CREAT | O_EXCL | O_NOCTTY);
42 if (!fc->atomic_o_trunc)
43 inarg.flags &= ~O_TRUNC;
44 args.opcode = opcode;
45 args.nodeid = nodeid;
46 args.in_numargs = 1;
47 args.in_args[0].size = sizeof(inarg);
48 args.in_args[0].value = &inarg;
49 args.out_numargs = 1;
50 args.out_args[0].size = sizeof(*outargp);
51 args.out_args[0].value = outargp;
53 return fuse_simple_request(fc, &args);
56 struct fuse_release_args {
57 struct fuse_args args;
58 struct fuse_release_in inarg;
59 struct inode *inode;
62 struct fuse_file *fuse_file_alloc(struct fuse_conn *fc)
64 struct fuse_file *ff;
66 ff = kzalloc(sizeof(struct fuse_file), GFP_KERNEL_ACCOUNT);
67 if (unlikely(!ff))
68 return NULL;
70 ff->fc = fc;
71 ff->release_args = kzalloc(sizeof(*ff->release_args),
72 GFP_KERNEL_ACCOUNT);
73 if (!ff->release_args) {
74 kfree(ff);
75 return NULL;
78 INIT_LIST_HEAD(&ff->write_entry);
79 mutex_init(&ff->readdir.lock);
80 refcount_set(&ff->count, 1);
81 RB_CLEAR_NODE(&ff->polled_node);
82 init_waitqueue_head(&ff->poll_wait);
84 ff->kh = atomic64_inc_return(&fc->khctr);
86 return ff;
89 void fuse_file_free(struct fuse_file *ff)
91 kfree(ff->release_args);
92 mutex_destroy(&ff->readdir.lock);
93 kfree(ff);
96 static struct fuse_file *fuse_file_get(struct fuse_file *ff)
98 refcount_inc(&ff->count);
99 return ff;
102 static void fuse_release_end(struct fuse_conn *fc, struct fuse_args *args,
103 int error)
105 struct fuse_release_args *ra = container_of(args, typeof(*ra), args);
107 iput(ra->inode);
108 kfree(ra);
111 static void fuse_file_put(struct fuse_file *ff, bool sync, bool isdir)
113 if (refcount_dec_and_test(&ff->count)) {
114 struct fuse_args *args = &ff->release_args->args;
116 if (isdir ? ff->fc->no_opendir : ff->fc->no_open) {
117 /* Do nothing when client does not implement 'open' */
118 fuse_release_end(ff->fc, args, 0);
119 } else if (sync) {
120 fuse_simple_request(ff->fc, args);
121 fuse_release_end(ff->fc, args, 0);
122 } else {
123 args->end = fuse_release_end;
124 if (fuse_simple_background(ff->fc, args,
125 GFP_KERNEL | __GFP_NOFAIL))
126 fuse_release_end(ff->fc, args, -ENOTCONN);
128 kfree(ff);
132 int fuse_do_open(struct fuse_conn *fc, u64 nodeid, struct file *file,
133 bool isdir)
135 struct fuse_file *ff;
136 int opcode = isdir ? FUSE_OPENDIR : FUSE_OPEN;
138 ff = fuse_file_alloc(fc);
139 if (!ff)
140 return -ENOMEM;
142 ff->fh = 0;
143 /* Default for no-open */
144 ff->open_flags = FOPEN_KEEP_CACHE | (isdir ? FOPEN_CACHE_DIR : 0);
145 if (isdir ? !fc->no_opendir : !fc->no_open) {
146 struct fuse_open_out outarg;
147 int err;
149 err = fuse_send_open(fc, nodeid, file, opcode, &outarg);
150 if (!err) {
151 ff->fh = outarg.fh;
152 ff->open_flags = outarg.open_flags;
154 } else if (err != -ENOSYS) {
155 fuse_file_free(ff);
156 return err;
157 } else {
158 if (isdir)
159 fc->no_opendir = 1;
160 else
161 fc->no_open = 1;
165 if (isdir)
166 ff->open_flags &= ~FOPEN_DIRECT_IO;
168 ff->nodeid = nodeid;
169 file->private_data = ff;
171 return 0;
173 EXPORT_SYMBOL_GPL(fuse_do_open);
175 static void fuse_link_write_file(struct file *file)
177 struct inode *inode = file_inode(file);
178 struct fuse_inode *fi = get_fuse_inode(inode);
179 struct fuse_file *ff = file->private_data;
181 * file may be written through mmap, so chain it onto the
182 * inodes's write_file list
184 spin_lock(&fi->lock);
185 if (list_empty(&ff->write_entry))
186 list_add(&ff->write_entry, &fi->write_files);
187 spin_unlock(&fi->lock);
190 void fuse_finish_open(struct inode *inode, struct file *file)
192 struct fuse_file *ff = file->private_data;
193 struct fuse_conn *fc = get_fuse_conn(inode);
195 if (!(ff->open_flags & FOPEN_KEEP_CACHE))
196 invalidate_inode_pages2(inode->i_mapping);
197 if (ff->open_flags & FOPEN_STREAM)
198 stream_open(inode, file);
199 else if (ff->open_flags & FOPEN_NONSEEKABLE)
200 nonseekable_open(inode, file);
201 if (fc->atomic_o_trunc && (file->f_flags & O_TRUNC)) {
202 struct fuse_inode *fi = get_fuse_inode(inode);
204 spin_lock(&fi->lock);
205 fi->attr_version = atomic64_inc_return(&fc->attr_version);
206 i_size_write(inode, 0);
207 spin_unlock(&fi->lock);
208 fuse_invalidate_attr(inode);
209 if (fc->writeback_cache)
210 file_update_time(file);
212 if ((file->f_mode & FMODE_WRITE) && fc->writeback_cache)
213 fuse_link_write_file(file);
216 int fuse_open_common(struct inode *inode, struct file *file, bool isdir)
218 struct fuse_conn *fc = get_fuse_conn(inode);
219 int err;
220 bool is_wb_truncate = (file->f_flags & O_TRUNC) &&
221 fc->atomic_o_trunc &&
222 fc->writeback_cache;
224 err = generic_file_open(inode, file);
225 if (err)
226 return err;
228 if (is_wb_truncate) {
229 inode_lock(inode);
230 fuse_set_nowrite(inode);
233 err = fuse_do_open(fc, get_node_id(inode), file, isdir);
235 if (!err)
236 fuse_finish_open(inode, file);
238 if (is_wb_truncate) {
239 fuse_release_nowrite(inode);
240 inode_unlock(inode);
243 return err;
246 static void fuse_prepare_release(struct fuse_inode *fi, struct fuse_file *ff,
247 int flags, int opcode)
249 struct fuse_conn *fc = ff->fc;
250 struct fuse_release_args *ra = ff->release_args;
252 /* Inode is NULL on error path of fuse_create_open() */
253 if (likely(fi)) {
254 spin_lock(&fi->lock);
255 list_del(&ff->write_entry);
256 spin_unlock(&fi->lock);
258 spin_lock(&fc->lock);
259 if (!RB_EMPTY_NODE(&ff->polled_node))
260 rb_erase(&ff->polled_node, &fc->polled_files);
261 spin_unlock(&fc->lock);
263 wake_up_interruptible_all(&ff->poll_wait);
265 ra->inarg.fh = ff->fh;
266 ra->inarg.flags = flags;
267 ra->args.in_numargs = 1;
268 ra->args.in_args[0].size = sizeof(struct fuse_release_in);
269 ra->args.in_args[0].value = &ra->inarg;
270 ra->args.opcode = opcode;
271 ra->args.nodeid = ff->nodeid;
272 ra->args.force = true;
273 ra->args.nocreds = true;
276 void fuse_release_common(struct file *file, bool isdir)
278 struct fuse_inode *fi = get_fuse_inode(file_inode(file));
279 struct fuse_file *ff = file->private_data;
280 struct fuse_release_args *ra = ff->release_args;
281 int opcode = isdir ? FUSE_RELEASEDIR : FUSE_RELEASE;
283 fuse_prepare_release(fi, ff, file->f_flags, opcode);
285 if (ff->flock) {
286 ra->inarg.release_flags |= FUSE_RELEASE_FLOCK_UNLOCK;
287 ra->inarg.lock_owner = fuse_lock_owner_id(ff->fc,
288 (fl_owner_t) file);
290 /* Hold inode until release is finished */
291 ra->inode = igrab(file_inode(file));
294 * Normally this will send the RELEASE request, however if
295 * some asynchronous READ or WRITE requests are outstanding,
296 * the sending will be delayed.
298 * Make the release synchronous if this is a fuseblk mount,
299 * synchronous RELEASE is allowed (and desirable) in this case
300 * because the server can be trusted not to screw up.
302 fuse_file_put(ff, ff->fc->destroy, isdir);
305 static int fuse_open(struct inode *inode, struct file *file)
307 return fuse_open_common(inode, file, false);
310 static int fuse_release(struct inode *inode, struct file *file)
312 struct fuse_conn *fc = get_fuse_conn(inode);
314 /* see fuse_vma_close() for !writeback_cache case */
315 if (fc->writeback_cache)
316 write_inode_now(inode, 1);
318 fuse_release_common(file, false);
320 /* return value is ignored by VFS */
321 return 0;
324 void fuse_sync_release(struct fuse_inode *fi, struct fuse_file *ff, int flags)
326 WARN_ON(refcount_read(&ff->count) > 1);
327 fuse_prepare_release(fi, ff, flags, FUSE_RELEASE);
329 * iput(NULL) is a no-op and since the refcount is 1 and everything's
330 * synchronous, we are fine with not doing igrab() here"
332 fuse_file_put(ff, true, false);
334 EXPORT_SYMBOL_GPL(fuse_sync_release);
337 * Scramble the ID space with XTEA, so that the value of the files_struct
338 * pointer is not exposed to userspace.
340 u64 fuse_lock_owner_id(struct fuse_conn *fc, fl_owner_t id)
342 u32 *k = fc->scramble_key;
343 u64 v = (unsigned long) id;
344 u32 v0 = v;
345 u32 v1 = v >> 32;
346 u32 sum = 0;
347 int i;
349 for (i = 0; i < 32; i++) {
350 v0 += ((v1 << 4 ^ v1 >> 5) + v1) ^ (sum + k[sum & 3]);
351 sum += 0x9E3779B9;
352 v1 += ((v0 << 4 ^ v0 >> 5) + v0) ^ (sum + k[sum>>11 & 3]);
355 return (u64) v0 + ((u64) v1 << 32);
358 struct fuse_writepage_args {
359 struct fuse_io_args ia;
360 struct list_head writepages_entry;
361 struct list_head queue_entry;
362 struct fuse_writepage_args *next;
363 struct inode *inode;
366 static struct fuse_writepage_args *fuse_find_writeback(struct fuse_inode *fi,
367 pgoff_t idx_from, pgoff_t idx_to)
369 struct fuse_writepage_args *wpa;
371 list_for_each_entry(wpa, &fi->writepages, writepages_entry) {
372 pgoff_t curr_index;
374 WARN_ON(get_fuse_inode(wpa->inode) != fi);
375 curr_index = wpa->ia.write.in.offset >> PAGE_SHIFT;
376 if (idx_from < curr_index + wpa->ia.ap.num_pages &&
377 curr_index <= idx_to) {
378 return wpa;
381 return NULL;
385 * Check if any page in a range is under writeback
387 * This is currently done by walking the list of writepage requests
388 * for the inode, which can be pretty inefficient.
390 static bool fuse_range_is_writeback(struct inode *inode, pgoff_t idx_from,
391 pgoff_t idx_to)
393 struct fuse_inode *fi = get_fuse_inode(inode);
394 bool found;
396 spin_lock(&fi->lock);
397 found = fuse_find_writeback(fi, idx_from, idx_to);
398 spin_unlock(&fi->lock);
400 return found;
403 static inline bool fuse_page_is_writeback(struct inode *inode, pgoff_t index)
405 return fuse_range_is_writeback(inode, index, index);
409 * Wait for page writeback to be completed.
411 * Since fuse doesn't rely on the VM writeback tracking, this has to
412 * use some other means.
414 static void fuse_wait_on_page_writeback(struct inode *inode, pgoff_t index)
416 struct fuse_inode *fi = get_fuse_inode(inode);
418 wait_event(fi->page_waitq, !fuse_page_is_writeback(inode, index));
422 * Wait for all pending writepages on the inode to finish.
424 * This is currently done by blocking further writes with FUSE_NOWRITE
425 * and waiting for all sent writes to complete.
427 * This must be called under i_mutex, otherwise the FUSE_NOWRITE usage
428 * could conflict with truncation.
430 static void fuse_sync_writes(struct inode *inode)
432 fuse_set_nowrite(inode);
433 fuse_release_nowrite(inode);
436 static int fuse_flush(struct file *file, fl_owner_t id)
438 struct inode *inode = file_inode(file);
439 struct fuse_conn *fc = get_fuse_conn(inode);
440 struct fuse_file *ff = file->private_data;
441 struct fuse_flush_in inarg;
442 FUSE_ARGS(args);
443 int err;
445 if (is_bad_inode(inode))
446 return -EIO;
448 if (fc->no_flush)
449 return 0;
451 err = write_inode_now(inode, 1);
452 if (err)
453 return err;
455 inode_lock(inode);
456 fuse_sync_writes(inode);
457 inode_unlock(inode);
459 err = filemap_check_errors(file->f_mapping);
460 if (err)
461 return err;
463 memset(&inarg, 0, sizeof(inarg));
464 inarg.fh = ff->fh;
465 inarg.lock_owner = fuse_lock_owner_id(fc, id);
466 args.opcode = FUSE_FLUSH;
467 args.nodeid = get_node_id(inode);
468 args.in_numargs = 1;
469 args.in_args[0].size = sizeof(inarg);
470 args.in_args[0].value = &inarg;
471 args.force = true;
473 err = fuse_simple_request(fc, &args);
474 if (err == -ENOSYS) {
475 fc->no_flush = 1;
476 err = 0;
478 return err;
481 int fuse_fsync_common(struct file *file, loff_t start, loff_t end,
482 int datasync, int opcode)
484 struct inode *inode = file->f_mapping->host;
485 struct fuse_conn *fc = get_fuse_conn(inode);
486 struct fuse_file *ff = file->private_data;
487 FUSE_ARGS(args);
488 struct fuse_fsync_in inarg;
490 memset(&inarg, 0, sizeof(inarg));
491 inarg.fh = ff->fh;
492 inarg.fsync_flags = datasync ? FUSE_FSYNC_FDATASYNC : 0;
493 args.opcode = opcode;
494 args.nodeid = get_node_id(inode);
495 args.in_numargs = 1;
496 args.in_args[0].size = sizeof(inarg);
497 args.in_args[0].value = &inarg;
498 return fuse_simple_request(fc, &args);
501 static int fuse_fsync(struct file *file, loff_t start, loff_t end,
502 int datasync)
504 struct inode *inode = file->f_mapping->host;
505 struct fuse_conn *fc = get_fuse_conn(inode);
506 int err;
508 if (is_bad_inode(inode))
509 return -EIO;
511 inode_lock(inode);
514 * Start writeback against all dirty pages of the inode, then
515 * wait for all outstanding writes, before sending the FSYNC
516 * request.
518 err = file_write_and_wait_range(file, start, end);
519 if (err)
520 goto out;
522 fuse_sync_writes(inode);
525 * Due to implementation of fuse writeback
526 * file_write_and_wait_range() does not catch errors.
527 * We have to do this directly after fuse_sync_writes()
529 err = file_check_and_advance_wb_err(file);
530 if (err)
531 goto out;
533 err = sync_inode_metadata(inode, 1);
534 if (err)
535 goto out;
537 if (fc->no_fsync)
538 goto out;
540 err = fuse_fsync_common(file, start, end, datasync, FUSE_FSYNC);
541 if (err == -ENOSYS) {
542 fc->no_fsync = 1;
543 err = 0;
545 out:
546 inode_unlock(inode);
548 return err;
551 void fuse_read_args_fill(struct fuse_io_args *ia, struct file *file, loff_t pos,
552 size_t count, int opcode)
554 struct fuse_file *ff = file->private_data;
555 struct fuse_args *args = &ia->ap.args;
557 ia->read.in.fh = ff->fh;
558 ia->read.in.offset = pos;
559 ia->read.in.size = count;
560 ia->read.in.flags = file->f_flags;
561 args->opcode = opcode;
562 args->nodeid = ff->nodeid;
563 args->in_numargs = 1;
564 args->in_args[0].size = sizeof(ia->read.in);
565 args->in_args[0].value = &ia->read.in;
566 args->out_argvar = true;
567 args->out_numargs = 1;
568 args->out_args[0].size = count;
571 static void fuse_release_user_pages(struct fuse_args_pages *ap,
572 bool should_dirty)
574 unsigned int i;
576 for (i = 0; i < ap->num_pages; i++) {
577 if (should_dirty)
578 set_page_dirty_lock(ap->pages[i]);
579 put_page(ap->pages[i]);
583 static void fuse_io_release(struct kref *kref)
585 kfree(container_of(kref, struct fuse_io_priv, refcnt));
588 static ssize_t fuse_get_res_by_io(struct fuse_io_priv *io)
590 if (io->err)
591 return io->err;
593 if (io->bytes >= 0 && io->write)
594 return -EIO;
596 return io->bytes < 0 ? io->size : io->bytes;
600 * In case of short read, the caller sets 'pos' to the position of
601 * actual end of fuse request in IO request. Otherwise, if bytes_requested
602 * == bytes_transferred or rw == WRITE, the caller sets 'pos' to -1.
604 * An example:
605 * User requested DIO read of 64K. It was splitted into two 32K fuse requests,
606 * both submitted asynchronously. The first of them was ACKed by userspace as
607 * fully completed (req->out.args[0].size == 32K) resulting in pos == -1. The
608 * second request was ACKed as short, e.g. only 1K was read, resulting in
609 * pos == 33K.
611 * Thus, when all fuse requests are completed, the minimal non-negative 'pos'
612 * will be equal to the length of the longest contiguous fragment of
613 * transferred data starting from the beginning of IO request.
615 static void fuse_aio_complete(struct fuse_io_priv *io, int err, ssize_t pos)
617 int left;
619 spin_lock(&io->lock);
620 if (err)
621 io->err = io->err ? : err;
622 else if (pos >= 0 && (io->bytes < 0 || pos < io->bytes))
623 io->bytes = pos;
625 left = --io->reqs;
626 if (!left && io->blocking)
627 complete(io->done);
628 spin_unlock(&io->lock);
630 if (!left && !io->blocking) {
631 ssize_t res = fuse_get_res_by_io(io);
633 if (res >= 0) {
634 struct inode *inode = file_inode(io->iocb->ki_filp);
635 struct fuse_conn *fc = get_fuse_conn(inode);
636 struct fuse_inode *fi = get_fuse_inode(inode);
638 spin_lock(&fi->lock);
639 fi->attr_version = atomic64_inc_return(&fc->attr_version);
640 spin_unlock(&fi->lock);
643 io->iocb->ki_complete(io->iocb, res, 0);
646 kref_put(&io->refcnt, fuse_io_release);
649 static struct fuse_io_args *fuse_io_alloc(struct fuse_io_priv *io,
650 unsigned int npages)
652 struct fuse_io_args *ia;
654 ia = kzalloc(sizeof(*ia), GFP_KERNEL);
655 if (ia) {
656 ia->io = io;
657 ia->ap.pages = fuse_pages_alloc(npages, GFP_KERNEL,
658 &ia->ap.descs);
659 if (!ia->ap.pages) {
660 kfree(ia);
661 ia = NULL;
664 return ia;
667 static void fuse_io_free(struct fuse_io_args *ia)
669 kfree(ia->ap.pages);
670 kfree(ia);
673 static void fuse_aio_complete_req(struct fuse_conn *fc, struct fuse_args *args,
674 int err)
676 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
677 struct fuse_io_priv *io = ia->io;
678 ssize_t pos = -1;
680 fuse_release_user_pages(&ia->ap, io->should_dirty);
682 if (err) {
683 /* Nothing */
684 } else if (io->write) {
685 if (ia->write.out.size > ia->write.in.size) {
686 err = -EIO;
687 } else if (ia->write.in.size != ia->write.out.size) {
688 pos = ia->write.in.offset - io->offset +
689 ia->write.out.size;
691 } else {
692 u32 outsize = args->out_args[0].size;
694 if (ia->read.in.size != outsize)
695 pos = ia->read.in.offset - io->offset + outsize;
698 fuse_aio_complete(io, err, pos);
699 fuse_io_free(ia);
702 static ssize_t fuse_async_req_send(struct fuse_conn *fc,
703 struct fuse_io_args *ia, size_t num_bytes)
705 ssize_t err;
706 struct fuse_io_priv *io = ia->io;
708 spin_lock(&io->lock);
709 kref_get(&io->refcnt);
710 io->size += num_bytes;
711 io->reqs++;
712 spin_unlock(&io->lock);
714 ia->ap.args.end = fuse_aio_complete_req;
715 err = fuse_simple_background(fc, &ia->ap.args, GFP_KERNEL);
716 if (err)
717 fuse_aio_complete_req(fc, &ia->ap.args, err);
719 return num_bytes;
722 static ssize_t fuse_send_read(struct fuse_io_args *ia, loff_t pos, size_t count,
723 fl_owner_t owner)
725 struct file *file = ia->io->iocb->ki_filp;
726 struct fuse_file *ff = file->private_data;
727 struct fuse_conn *fc = ff->fc;
729 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
730 if (owner != NULL) {
731 ia->read.in.read_flags |= FUSE_READ_LOCKOWNER;
732 ia->read.in.lock_owner = fuse_lock_owner_id(fc, owner);
735 if (ia->io->async)
736 return fuse_async_req_send(fc, ia, count);
738 return fuse_simple_request(fc, &ia->ap.args);
741 static void fuse_read_update_size(struct inode *inode, loff_t size,
742 u64 attr_ver)
744 struct fuse_conn *fc = get_fuse_conn(inode);
745 struct fuse_inode *fi = get_fuse_inode(inode);
747 spin_lock(&fi->lock);
748 if (attr_ver == fi->attr_version && size < inode->i_size &&
749 !test_bit(FUSE_I_SIZE_UNSTABLE, &fi->state)) {
750 fi->attr_version = atomic64_inc_return(&fc->attr_version);
751 i_size_write(inode, size);
753 spin_unlock(&fi->lock);
756 static void fuse_short_read(struct inode *inode, u64 attr_ver, size_t num_read,
757 struct fuse_args_pages *ap)
759 struct fuse_conn *fc = get_fuse_conn(inode);
761 if (fc->writeback_cache) {
763 * A hole in a file. Some data after the hole are in page cache,
764 * but have not reached the client fs yet. So, the hole is not
765 * present there.
767 int i;
768 int start_idx = num_read >> PAGE_SHIFT;
769 size_t off = num_read & (PAGE_SIZE - 1);
771 for (i = start_idx; i < ap->num_pages; i++) {
772 zero_user_segment(ap->pages[i], off, PAGE_SIZE);
773 off = 0;
775 } else {
776 loff_t pos = page_offset(ap->pages[0]) + num_read;
777 fuse_read_update_size(inode, pos, attr_ver);
781 static int fuse_do_readpage(struct file *file, struct page *page)
783 struct inode *inode = page->mapping->host;
784 struct fuse_conn *fc = get_fuse_conn(inode);
785 loff_t pos = page_offset(page);
786 struct fuse_page_desc desc = { .length = PAGE_SIZE };
787 struct fuse_io_args ia = {
788 .ap.args.page_zeroing = true,
789 .ap.args.out_pages = true,
790 .ap.num_pages = 1,
791 .ap.pages = &page,
792 .ap.descs = &desc,
794 ssize_t res;
795 u64 attr_ver;
798 * Page writeback can extend beyond the lifetime of the
799 * page-cache page, so make sure we read a properly synced
800 * page.
802 fuse_wait_on_page_writeback(inode, page->index);
804 attr_ver = fuse_get_attr_version(fc);
806 /* Don't overflow end offset */
807 if (pos + (desc.length - 1) == LLONG_MAX)
808 desc.length--;
810 fuse_read_args_fill(&ia, file, pos, desc.length, FUSE_READ);
811 res = fuse_simple_request(fc, &ia.ap.args);
812 if (res < 0)
813 return res;
815 * Short read means EOF. If file size is larger, truncate it
817 if (res < desc.length)
818 fuse_short_read(inode, attr_ver, res, &ia.ap);
820 SetPageUptodate(page);
822 return 0;
825 static int fuse_readpage(struct file *file, struct page *page)
827 struct inode *inode = page->mapping->host;
828 int err;
830 err = -EIO;
831 if (is_bad_inode(inode))
832 goto out;
834 err = fuse_do_readpage(file, page);
835 fuse_invalidate_atime(inode);
836 out:
837 unlock_page(page);
838 return err;
841 static void fuse_readpages_end(struct fuse_conn *fc, struct fuse_args *args,
842 int err)
844 int i;
845 struct fuse_io_args *ia = container_of(args, typeof(*ia), ap.args);
846 struct fuse_args_pages *ap = &ia->ap;
847 size_t count = ia->read.in.size;
848 size_t num_read = args->out_args[0].size;
849 struct address_space *mapping = NULL;
851 for (i = 0; mapping == NULL && i < ap->num_pages; i++)
852 mapping = ap->pages[i]->mapping;
854 if (mapping) {
855 struct inode *inode = mapping->host;
858 * Short read means EOF. If file size is larger, truncate it
860 if (!err && num_read < count)
861 fuse_short_read(inode, ia->read.attr_ver, num_read, ap);
863 fuse_invalidate_atime(inode);
866 for (i = 0; i < ap->num_pages; i++) {
867 struct page *page = ap->pages[i];
869 if (!err)
870 SetPageUptodate(page);
871 else
872 SetPageError(page);
873 unlock_page(page);
874 put_page(page);
876 if (ia->ff)
877 fuse_file_put(ia->ff, false, false);
879 fuse_io_free(ia);
882 static void fuse_send_readpages(struct fuse_io_args *ia, struct file *file)
884 struct fuse_file *ff = file->private_data;
885 struct fuse_conn *fc = ff->fc;
886 struct fuse_args_pages *ap = &ia->ap;
887 loff_t pos = page_offset(ap->pages[0]);
888 size_t count = ap->num_pages << PAGE_SHIFT;
889 ssize_t res;
890 int err;
892 ap->args.out_pages = true;
893 ap->args.page_zeroing = true;
894 ap->args.page_replace = true;
896 /* Don't overflow end offset */
897 if (pos + (count - 1) == LLONG_MAX) {
898 count--;
899 ap->descs[ap->num_pages - 1].length--;
901 WARN_ON((loff_t) (pos + count) < 0);
903 fuse_read_args_fill(ia, file, pos, count, FUSE_READ);
904 ia->read.attr_ver = fuse_get_attr_version(fc);
905 if (fc->async_read) {
906 ia->ff = fuse_file_get(ff);
907 ap->args.end = fuse_readpages_end;
908 err = fuse_simple_background(fc, &ap->args, GFP_KERNEL);
909 if (!err)
910 return;
911 } else {
912 res = fuse_simple_request(fc, &ap->args);
913 err = res < 0 ? res : 0;
915 fuse_readpages_end(fc, &ap->args, err);
918 struct fuse_fill_data {
919 struct fuse_io_args *ia;
920 struct file *file;
921 struct inode *inode;
922 unsigned int nr_pages;
923 unsigned int max_pages;
926 static int fuse_readpages_fill(void *_data, struct page *page)
928 struct fuse_fill_data *data = _data;
929 struct fuse_io_args *ia = data->ia;
930 struct fuse_args_pages *ap = &ia->ap;
931 struct inode *inode = data->inode;
932 struct fuse_conn *fc = get_fuse_conn(inode);
934 fuse_wait_on_page_writeback(inode, page->index);
936 if (ap->num_pages &&
937 (ap->num_pages == fc->max_pages ||
938 (ap->num_pages + 1) * PAGE_SIZE > fc->max_read ||
939 ap->pages[ap->num_pages - 1]->index + 1 != page->index)) {
940 data->max_pages = min_t(unsigned int, data->nr_pages,
941 fc->max_pages);
942 fuse_send_readpages(ia, data->file);
943 data->ia = ia = fuse_io_alloc(NULL, data->max_pages);
944 if (!ia) {
945 unlock_page(page);
946 return -ENOMEM;
948 ap = &ia->ap;
951 if (WARN_ON(ap->num_pages >= data->max_pages)) {
952 unlock_page(page);
953 fuse_io_free(ia);
954 return -EIO;
957 get_page(page);
958 ap->pages[ap->num_pages] = page;
959 ap->descs[ap->num_pages].length = PAGE_SIZE;
960 ap->num_pages++;
961 data->nr_pages--;
962 return 0;
965 static int fuse_readpages(struct file *file, struct address_space *mapping,
966 struct list_head *pages, unsigned nr_pages)
968 struct inode *inode = mapping->host;
969 struct fuse_conn *fc = get_fuse_conn(inode);
970 struct fuse_fill_data data;
971 int err;
973 err = -EIO;
974 if (is_bad_inode(inode))
975 goto out;
977 data.file = file;
978 data.inode = inode;
979 data.nr_pages = nr_pages;
980 data.max_pages = min_t(unsigned int, nr_pages, fc->max_pages);
982 data.ia = fuse_io_alloc(NULL, data.max_pages);
983 err = -ENOMEM;
984 if (!data.ia)
985 goto out;
987 err = read_cache_pages(mapping, pages, fuse_readpages_fill, &data);
988 if (!err) {
989 if (data.ia->ap.num_pages)
990 fuse_send_readpages(data.ia, file);
991 else
992 fuse_io_free(data.ia);
994 out:
995 return err;
998 static ssize_t fuse_cache_read_iter(struct kiocb *iocb, struct iov_iter *to)
1000 struct inode *inode = iocb->ki_filp->f_mapping->host;
1001 struct fuse_conn *fc = get_fuse_conn(inode);
1004 * In auto invalidate mode, always update attributes on read.
1005 * Otherwise, only update if we attempt to read past EOF (to ensure
1006 * i_size is up to date).
1008 if (fc->auto_inval_data ||
1009 (iocb->ki_pos + iov_iter_count(to) > i_size_read(inode))) {
1010 int err;
1011 err = fuse_update_attributes(inode, iocb->ki_filp);
1012 if (err)
1013 return err;
1016 return generic_file_read_iter(iocb, to);
1019 static void fuse_write_args_fill(struct fuse_io_args *ia, struct fuse_file *ff,
1020 loff_t pos, size_t count)
1022 struct fuse_args *args = &ia->ap.args;
1024 ia->write.in.fh = ff->fh;
1025 ia->write.in.offset = pos;
1026 ia->write.in.size = count;
1027 args->opcode = FUSE_WRITE;
1028 args->nodeid = ff->nodeid;
1029 args->in_numargs = 2;
1030 if (ff->fc->minor < 9)
1031 args->in_args[0].size = FUSE_COMPAT_WRITE_IN_SIZE;
1032 else
1033 args->in_args[0].size = sizeof(ia->write.in);
1034 args->in_args[0].value = &ia->write.in;
1035 args->in_args[1].size = count;
1036 args->out_numargs = 1;
1037 args->out_args[0].size = sizeof(ia->write.out);
1038 args->out_args[0].value = &ia->write.out;
1041 static unsigned int fuse_write_flags(struct kiocb *iocb)
1043 unsigned int flags = iocb->ki_filp->f_flags;
1045 if (iocb->ki_flags & IOCB_DSYNC)
1046 flags |= O_DSYNC;
1047 if (iocb->ki_flags & IOCB_SYNC)
1048 flags |= O_SYNC;
1050 return flags;
1053 static ssize_t fuse_send_write(struct fuse_io_args *ia, loff_t pos,
1054 size_t count, fl_owner_t owner)
1056 struct kiocb *iocb = ia->io->iocb;
1057 struct file *file = iocb->ki_filp;
1058 struct fuse_file *ff = file->private_data;
1059 struct fuse_conn *fc = ff->fc;
1060 struct fuse_write_in *inarg = &ia->write.in;
1061 ssize_t err;
1063 fuse_write_args_fill(ia, ff, pos, count);
1064 inarg->flags = fuse_write_flags(iocb);
1065 if (owner != NULL) {
1066 inarg->write_flags |= FUSE_WRITE_LOCKOWNER;
1067 inarg->lock_owner = fuse_lock_owner_id(fc, owner);
1070 if (ia->io->async)
1071 return fuse_async_req_send(fc, ia, count);
1073 err = fuse_simple_request(fc, &ia->ap.args);
1074 if (!err && ia->write.out.size > count)
1075 err = -EIO;
1077 return err ?: ia->write.out.size;
1080 bool fuse_write_update_size(struct inode *inode, loff_t pos)
1082 struct fuse_conn *fc = get_fuse_conn(inode);
1083 struct fuse_inode *fi = get_fuse_inode(inode);
1084 bool ret = false;
1086 spin_lock(&fi->lock);
1087 fi->attr_version = atomic64_inc_return(&fc->attr_version);
1088 if (pos > inode->i_size) {
1089 i_size_write(inode, pos);
1090 ret = true;
1092 spin_unlock(&fi->lock);
1094 return ret;
1097 static ssize_t fuse_send_write_pages(struct fuse_io_args *ia,
1098 struct kiocb *iocb, struct inode *inode,
1099 loff_t pos, size_t count)
1101 struct fuse_args_pages *ap = &ia->ap;
1102 struct file *file = iocb->ki_filp;
1103 struct fuse_file *ff = file->private_data;
1104 struct fuse_conn *fc = ff->fc;
1105 unsigned int offset, i;
1106 int err;
1108 for (i = 0; i < ap->num_pages; i++)
1109 fuse_wait_on_page_writeback(inode, ap->pages[i]->index);
1111 fuse_write_args_fill(ia, ff, pos, count);
1112 ia->write.in.flags = fuse_write_flags(iocb);
1114 err = fuse_simple_request(fc, &ap->args);
1115 if (!err && ia->write.out.size > count)
1116 err = -EIO;
1118 offset = ap->descs[0].offset;
1119 count = ia->write.out.size;
1120 for (i = 0; i < ap->num_pages; i++) {
1121 struct page *page = ap->pages[i];
1123 if (!err && !offset && count >= PAGE_SIZE)
1124 SetPageUptodate(page);
1126 if (count > PAGE_SIZE - offset)
1127 count -= PAGE_SIZE - offset;
1128 else
1129 count = 0;
1130 offset = 0;
1132 unlock_page(page);
1133 put_page(page);
1136 return err;
1139 static ssize_t fuse_fill_write_pages(struct fuse_args_pages *ap,
1140 struct address_space *mapping,
1141 struct iov_iter *ii, loff_t pos,
1142 unsigned int max_pages)
1144 struct fuse_conn *fc = get_fuse_conn(mapping->host);
1145 unsigned offset = pos & (PAGE_SIZE - 1);
1146 size_t count = 0;
1147 int err;
1149 ap->args.in_pages = true;
1150 ap->descs[0].offset = offset;
1152 do {
1153 size_t tmp;
1154 struct page *page;
1155 pgoff_t index = pos >> PAGE_SHIFT;
1156 size_t bytes = min_t(size_t, PAGE_SIZE - offset,
1157 iov_iter_count(ii));
1159 bytes = min_t(size_t, bytes, fc->max_write - count);
1161 again:
1162 err = -EFAULT;
1163 if (iov_iter_fault_in_readable(ii, bytes))
1164 break;
1166 err = -ENOMEM;
1167 page = grab_cache_page_write_begin(mapping, index, 0);
1168 if (!page)
1169 break;
1171 if (mapping_writably_mapped(mapping))
1172 flush_dcache_page(page);
1174 tmp = iov_iter_copy_from_user_atomic(page, ii, offset, bytes);
1175 flush_dcache_page(page);
1177 iov_iter_advance(ii, tmp);
1178 if (!tmp) {
1179 unlock_page(page);
1180 put_page(page);
1181 bytes = min(bytes, iov_iter_single_seg_count(ii));
1182 goto again;
1185 err = 0;
1186 ap->pages[ap->num_pages] = page;
1187 ap->descs[ap->num_pages].length = tmp;
1188 ap->num_pages++;
1190 count += tmp;
1191 pos += tmp;
1192 offset += tmp;
1193 if (offset == PAGE_SIZE)
1194 offset = 0;
1196 if (!fc->big_writes)
1197 break;
1198 } while (iov_iter_count(ii) && count < fc->max_write &&
1199 ap->num_pages < max_pages && offset == 0);
1201 return count > 0 ? count : err;
1204 static inline unsigned int fuse_wr_pages(loff_t pos, size_t len,
1205 unsigned int max_pages)
1207 return min_t(unsigned int,
1208 ((pos + len - 1) >> PAGE_SHIFT) -
1209 (pos >> PAGE_SHIFT) + 1,
1210 max_pages);
1213 static ssize_t fuse_perform_write(struct kiocb *iocb,
1214 struct address_space *mapping,
1215 struct iov_iter *ii, loff_t pos)
1217 struct inode *inode = mapping->host;
1218 struct fuse_conn *fc = get_fuse_conn(inode);
1219 struct fuse_inode *fi = get_fuse_inode(inode);
1220 int err = 0;
1221 ssize_t res = 0;
1223 if (inode->i_size < pos + iov_iter_count(ii))
1224 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1226 do {
1227 ssize_t count;
1228 struct fuse_io_args ia = {};
1229 struct fuse_args_pages *ap = &ia.ap;
1230 unsigned int nr_pages = fuse_wr_pages(pos, iov_iter_count(ii),
1231 fc->max_pages);
1233 ap->pages = fuse_pages_alloc(nr_pages, GFP_KERNEL, &ap->descs);
1234 if (!ap->pages) {
1235 err = -ENOMEM;
1236 break;
1239 count = fuse_fill_write_pages(ap, mapping, ii, pos, nr_pages);
1240 if (count <= 0) {
1241 err = count;
1242 } else {
1243 err = fuse_send_write_pages(&ia, iocb, inode,
1244 pos, count);
1245 if (!err) {
1246 size_t num_written = ia.write.out.size;
1248 res += num_written;
1249 pos += num_written;
1251 /* break out of the loop on short write */
1252 if (num_written != count)
1253 err = -EIO;
1256 kfree(ap->pages);
1257 } while (!err && iov_iter_count(ii));
1259 if (res > 0)
1260 fuse_write_update_size(inode, pos);
1262 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
1263 fuse_invalidate_attr(inode);
1265 return res > 0 ? res : err;
1268 static ssize_t fuse_cache_write_iter(struct kiocb *iocb, struct iov_iter *from)
1270 struct file *file = iocb->ki_filp;
1271 struct address_space *mapping = file->f_mapping;
1272 ssize_t written = 0;
1273 ssize_t written_buffered = 0;
1274 struct inode *inode = mapping->host;
1275 ssize_t err;
1276 loff_t endbyte = 0;
1278 if (get_fuse_conn(inode)->writeback_cache) {
1279 /* Update size (EOF optimization) and mode (SUID clearing) */
1280 err = fuse_update_attributes(mapping->host, file);
1281 if (err)
1282 return err;
1284 return generic_file_write_iter(iocb, from);
1287 inode_lock(inode);
1289 /* We can write back this queue in page reclaim */
1290 current->backing_dev_info = inode_to_bdi(inode);
1292 err = generic_write_checks(iocb, from);
1293 if (err <= 0)
1294 goto out;
1296 err = file_remove_privs(file);
1297 if (err)
1298 goto out;
1300 err = file_update_time(file);
1301 if (err)
1302 goto out;
1304 if (iocb->ki_flags & IOCB_DIRECT) {
1305 loff_t pos = iocb->ki_pos;
1306 written = generic_file_direct_write(iocb, from);
1307 if (written < 0 || !iov_iter_count(from))
1308 goto out;
1310 pos += written;
1312 written_buffered = fuse_perform_write(iocb, mapping, from, pos);
1313 if (written_buffered < 0) {
1314 err = written_buffered;
1315 goto out;
1317 endbyte = pos + written_buffered - 1;
1319 err = filemap_write_and_wait_range(file->f_mapping, pos,
1320 endbyte);
1321 if (err)
1322 goto out;
1324 invalidate_mapping_pages(file->f_mapping,
1325 pos >> PAGE_SHIFT,
1326 endbyte >> PAGE_SHIFT);
1328 written += written_buffered;
1329 iocb->ki_pos = pos + written_buffered;
1330 } else {
1331 written = fuse_perform_write(iocb, mapping, from, iocb->ki_pos);
1332 if (written >= 0)
1333 iocb->ki_pos += written;
1335 out:
1336 current->backing_dev_info = NULL;
1337 inode_unlock(inode);
1338 if (written > 0)
1339 written = generic_write_sync(iocb, written);
1341 return written ? written : err;
1344 static inline void fuse_page_descs_length_init(struct fuse_page_desc *descs,
1345 unsigned int index,
1346 unsigned int nr_pages)
1348 int i;
1350 for (i = index; i < index + nr_pages; i++)
1351 descs[i].length = PAGE_SIZE - descs[i].offset;
1354 static inline unsigned long fuse_get_user_addr(const struct iov_iter *ii)
1356 return (unsigned long)ii->iov->iov_base + ii->iov_offset;
1359 static inline size_t fuse_get_frag_size(const struct iov_iter *ii,
1360 size_t max_size)
1362 return min(iov_iter_single_seg_count(ii), max_size);
1365 static int fuse_get_user_pages(struct fuse_args_pages *ap, struct iov_iter *ii,
1366 size_t *nbytesp, int write,
1367 unsigned int max_pages)
1369 size_t nbytes = 0; /* # bytes already packed in req */
1370 ssize_t ret = 0;
1372 /* Special case for kernel I/O: can copy directly into the buffer */
1373 if (iov_iter_is_kvec(ii)) {
1374 unsigned long user_addr = fuse_get_user_addr(ii);
1375 size_t frag_size = fuse_get_frag_size(ii, *nbytesp);
1377 if (write)
1378 ap->args.in_args[1].value = (void *) user_addr;
1379 else
1380 ap->args.out_args[0].value = (void *) user_addr;
1382 iov_iter_advance(ii, frag_size);
1383 *nbytesp = frag_size;
1384 return 0;
1387 while (nbytes < *nbytesp && ap->num_pages < max_pages) {
1388 unsigned npages;
1389 size_t start;
1390 ret = iov_iter_get_pages(ii, &ap->pages[ap->num_pages],
1391 *nbytesp - nbytes,
1392 max_pages - ap->num_pages,
1393 &start);
1394 if (ret < 0)
1395 break;
1397 iov_iter_advance(ii, ret);
1398 nbytes += ret;
1400 ret += start;
1401 npages = (ret + PAGE_SIZE - 1) / PAGE_SIZE;
1403 ap->descs[ap->num_pages].offset = start;
1404 fuse_page_descs_length_init(ap->descs, ap->num_pages, npages);
1406 ap->num_pages += npages;
1407 ap->descs[ap->num_pages - 1].length -=
1408 (PAGE_SIZE - ret) & (PAGE_SIZE - 1);
1411 if (write)
1412 ap->args.in_pages = 1;
1413 else
1414 ap->args.out_pages = 1;
1416 *nbytesp = nbytes;
1418 return ret < 0 ? ret : 0;
1421 ssize_t fuse_direct_io(struct fuse_io_priv *io, struct iov_iter *iter,
1422 loff_t *ppos, int flags)
1424 int write = flags & FUSE_DIO_WRITE;
1425 int cuse = flags & FUSE_DIO_CUSE;
1426 struct file *file = io->iocb->ki_filp;
1427 struct inode *inode = file->f_mapping->host;
1428 struct fuse_file *ff = file->private_data;
1429 struct fuse_conn *fc = ff->fc;
1430 size_t nmax = write ? fc->max_write : fc->max_read;
1431 loff_t pos = *ppos;
1432 size_t count = iov_iter_count(iter);
1433 pgoff_t idx_from = pos >> PAGE_SHIFT;
1434 pgoff_t idx_to = (pos + count - 1) >> PAGE_SHIFT;
1435 ssize_t res = 0;
1436 int err = 0;
1437 struct fuse_io_args *ia;
1438 unsigned int max_pages;
1440 max_pages = iov_iter_npages(iter, fc->max_pages);
1441 ia = fuse_io_alloc(io, max_pages);
1442 if (!ia)
1443 return -ENOMEM;
1445 ia->io = io;
1446 if (!cuse && fuse_range_is_writeback(inode, idx_from, idx_to)) {
1447 if (!write)
1448 inode_lock(inode);
1449 fuse_sync_writes(inode);
1450 if (!write)
1451 inode_unlock(inode);
1454 io->should_dirty = !write && iter_is_iovec(iter);
1455 while (count) {
1456 ssize_t nres;
1457 fl_owner_t owner = current->files;
1458 size_t nbytes = min(count, nmax);
1460 err = fuse_get_user_pages(&ia->ap, iter, &nbytes, write,
1461 max_pages);
1462 if (err && !nbytes)
1463 break;
1465 if (write) {
1466 if (!capable(CAP_FSETID))
1467 ia->write.in.write_flags |= FUSE_WRITE_KILL_PRIV;
1469 nres = fuse_send_write(ia, pos, nbytes, owner);
1470 } else {
1471 nres = fuse_send_read(ia, pos, nbytes, owner);
1474 if (!io->async || nres < 0) {
1475 fuse_release_user_pages(&ia->ap, io->should_dirty);
1476 fuse_io_free(ia);
1478 ia = NULL;
1479 if (nres < 0) {
1480 iov_iter_revert(iter, nbytes);
1481 err = nres;
1482 break;
1484 WARN_ON(nres > nbytes);
1486 count -= nres;
1487 res += nres;
1488 pos += nres;
1489 if (nres != nbytes) {
1490 iov_iter_revert(iter, nbytes - nres);
1491 break;
1493 if (count) {
1494 max_pages = iov_iter_npages(iter, fc->max_pages);
1495 ia = fuse_io_alloc(io, max_pages);
1496 if (!ia)
1497 break;
1500 if (ia)
1501 fuse_io_free(ia);
1502 if (res > 0)
1503 *ppos = pos;
1505 return res > 0 ? res : err;
1507 EXPORT_SYMBOL_GPL(fuse_direct_io);
1509 static ssize_t __fuse_direct_read(struct fuse_io_priv *io,
1510 struct iov_iter *iter,
1511 loff_t *ppos)
1513 ssize_t res;
1514 struct inode *inode = file_inode(io->iocb->ki_filp);
1516 res = fuse_direct_io(io, iter, ppos, 0);
1518 fuse_invalidate_atime(inode);
1520 return res;
1523 static ssize_t fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter);
1525 static ssize_t fuse_direct_read_iter(struct kiocb *iocb, struct iov_iter *to)
1527 ssize_t res;
1529 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1530 res = fuse_direct_IO(iocb, to);
1531 } else {
1532 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1534 res = __fuse_direct_read(&io, to, &iocb->ki_pos);
1537 return res;
1540 static ssize_t fuse_direct_write_iter(struct kiocb *iocb, struct iov_iter *from)
1542 struct inode *inode = file_inode(iocb->ki_filp);
1543 struct fuse_io_priv io = FUSE_IO_PRIV_SYNC(iocb);
1544 ssize_t res;
1546 /* Don't allow parallel writes to the same file */
1547 inode_lock(inode);
1548 res = generic_write_checks(iocb, from);
1549 if (res > 0) {
1550 if (!is_sync_kiocb(iocb) && iocb->ki_flags & IOCB_DIRECT) {
1551 res = fuse_direct_IO(iocb, from);
1552 } else {
1553 res = fuse_direct_io(&io, from, &iocb->ki_pos,
1554 FUSE_DIO_WRITE);
1557 fuse_invalidate_attr(inode);
1558 if (res > 0)
1559 fuse_write_update_size(inode, iocb->ki_pos);
1560 inode_unlock(inode);
1562 return res;
1565 static ssize_t fuse_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
1567 struct file *file = iocb->ki_filp;
1568 struct fuse_file *ff = file->private_data;
1570 if (is_bad_inode(file_inode(file)))
1571 return -EIO;
1573 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1574 return fuse_cache_read_iter(iocb, to);
1575 else
1576 return fuse_direct_read_iter(iocb, to);
1579 static ssize_t fuse_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1581 struct file *file = iocb->ki_filp;
1582 struct fuse_file *ff = file->private_data;
1584 if (is_bad_inode(file_inode(file)))
1585 return -EIO;
1587 if (!(ff->open_flags & FOPEN_DIRECT_IO))
1588 return fuse_cache_write_iter(iocb, from);
1589 else
1590 return fuse_direct_write_iter(iocb, from);
1593 static void fuse_writepage_free(struct fuse_writepage_args *wpa)
1595 struct fuse_args_pages *ap = &wpa->ia.ap;
1596 int i;
1598 for (i = 0; i < ap->num_pages; i++)
1599 __free_page(ap->pages[i]);
1601 if (wpa->ia.ff)
1602 fuse_file_put(wpa->ia.ff, false, false);
1604 kfree(ap->pages);
1605 kfree(wpa);
1608 static void fuse_writepage_finish(struct fuse_conn *fc,
1609 struct fuse_writepage_args *wpa)
1611 struct fuse_args_pages *ap = &wpa->ia.ap;
1612 struct inode *inode = wpa->inode;
1613 struct fuse_inode *fi = get_fuse_inode(inode);
1614 struct backing_dev_info *bdi = inode_to_bdi(inode);
1615 int i;
1617 list_del(&wpa->writepages_entry);
1618 for (i = 0; i < ap->num_pages; i++) {
1619 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
1620 dec_node_page_state(ap->pages[i], NR_WRITEBACK_TEMP);
1621 wb_writeout_inc(&bdi->wb);
1623 wake_up(&fi->page_waitq);
1626 /* Called under fi->lock, may release and reacquire it */
1627 static void fuse_send_writepage(struct fuse_conn *fc,
1628 struct fuse_writepage_args *wpa, loff_t size)
1629 __releases(fi->lock)
1630 __acquires(fi->lock)
1632 struct fuse_writepage_args *aux, *next;
1633 struct fuse_inode *fi = get_fuse_inode(wpa->inode);
1634 struct fuse_write_in *inarg = &wpa->ia.write.in;
1635 struct fuse_args *args = &wpa->ia.ap.args;
1636 __u64 data_size = wpa->ia.ap.num_pages * PAGE_SIZE;
1637 int err;
1639 fi->writectr++;
1640 if (inarg->offset + data_size <= size) {
1641 inarg->size = data_size;
1642 } else if (inarg->offset < size) {
1643 inarg->size = size - inarg->offset;
1644 } else {
1645 /* Got truncated off completely */
1646 goto out_free;
1649 args->in_args[1].size = inarg->size;
1650 args->force = true;
1651 args->nocreds = true;
1653 err = fuse_simple_background(fc, args, GFP_ATOMIC);
1654 if (err == -ENOMEM) {
1655 spin_unlock(&fi->lock);
1656 err = fuse_simple_background(fc, args, GFP_NOFS | __GFP_NOFAIL);
1657 spin_lock(&fi->lock);
1660 /* Fails on broken connection only */
1661 if (unlikely(err))
1662 goto out_free;
1664 return;
1666 out_free:
1667 fi->writectr--;
1668 fuse_writepage_finish(fc, wpa);
1669 spin_unlock(&fi->lock);
1671 /* After fuse_writepage_finish() aux request list is private */
1672 for (aux = wpa->next; aux; aux = next) {
1673 next = aux->next;
1674 aux->next = NULL;
1675 fuse_writepage_free(aux);
1678 fuse_writepage_free(wpa);
1679 spin_lock(&fi->lock);
1683 * If fi->writectr is positive (no truncate or fsync going on) send
1684 * all queued writepage requests.
1686 * Called with fi->lock
1688 void fuse_flush_writepages(struct inode *inode)
1689 __releases(fi->lock)
1690 __acquires(fi->lock)
1692 struct fuse_conn *fc = get_fuse_conn(inode);
1693 struct fuse_inode *fi = get_fuse_inode(inode);
1694 loff_t crop = i_size_read(inode);
1695 struct fuse_writepage_args *wpa;
1697 while (fi->writectr >= 0 && !list_empty(&fi->queued_writes)) {
1698 wpa = list_entry(fi->queued_writes.next,
1699 struct fuse_writepage_args, queue_entry);
1700 list_del_init(&wpa->queue_entry);
1701 fuse_send_writepage(fc, wpa, crop);
1705 static void fuse_writepage_end(struct fuse_conn *fc, struct fuse_args *args,
1706 int error)
1708 struct fuse_writepage_args *wpa =
1709 container_of(args, typeof(*wpa), ia.ap.args);
1710 struct inode *inode = wpa->inode;
1711 struct fuse_inode *fi = get_fuse_inode(inode);
1713 mapping_set_error(inode->i_mapping, error);
1714 spin_lock(&fi->lock);
1715 while (wpa->next) {
1716 struct fuse_conn *fc = get_fuse_conn(inode);
1717 struct fuse_write_in *inarg = &wpa->ia.write.in;
1718 struct fuse_writepage_args *next = wpa->next;
1720 wpa->next = next->next;
1721 next->next = NULL;
1722 next->ia.ff = fuse_file_get(wpa->ia.ff);
1723 list_add(&next->writepages_entry, &fi->writepages);
1726 * Skip fuse_flush_writepages() to make it easy to crop requests
1727 * based on primary request size.
1729 * 1st case (trivial): there are no concurrent activities using
1730 * fuse_set/release_nowrite. Then we're on safe side because
1731 * fuse_flush_writepages() would call fuse_send_writepage()
1732 * anyway.
1734 * 2nd case: someone called fuse_set_nowrite and it is waiting
1735 * now for completion of all in-flight requests. This happens
1736 * rarely and no more than once per page, so this should be
1737 * okay.
1739 * 3rd case: someone (e.g. fuse_do_setattr()) is in the middle
1740 * of fuse_set_nowrite..fuse_release_nowrite section. The fact
1741 * that fuse_set_nowrite returned implies that all in-flight
1742 * requests were completed along with all of their secondary
1743 * requests. Further primary requests are blocked by negative
1744 * writectr. Hence there cannot be any in-flight requests and
1745 * no invocations of fuse_writepage_end() while we're in
1746 * fuse_set_nowrite..fuse_release_nowrite section.
1748 fuse_send_writepage(fc, next, inarg->offset + inarg->size);
1750 fi->writectr--;
1751 fuse_writepage_finish(fc, wpa);
1752 spin_unlock(&fi->lock);
1753 fuse_writepage_free(wpa);
1756 static struct fuse_file *__fuse_write_file_get(struct fuse_conn *fc,
1757 struct fuse_inode *fi)
1759 struct fuse_file *ff = NULL;
1761 spin_lock(&fi->lock);
1762 if (!list_empty(&fi->write_files)) {
1763 ff = list_entry(fi->write_files.next, struct fuse_file,
1764 write_entry);
1765 fuse_file_get(ff);
1767 spin_unlock(&fi->lock);
1769 return ff;
1772 static struct fuse_file *fuse_write_file_get(struct fuse_conn *fc,
1773 struct fuse_inode *fi)
1775 struct fuse_file *ff = __fuse_write_file_get(fc, fi);
1776 WARN_ON(!ff);
1777 return ff;
1780 int fuse_write_inode(struct inode *inode, struct writeback_control *wbc)
1782 struct fuse_conn *fc = get_fuse_conn(inode);
1783 struct fuse_inode *fi = get_fuse_inode(inode);
1784 struct fuse_file *ff;
1785 int err;
1787 ff = __fuse_write_file_get(fc, fi);
1788 err = fuse_flush_times(inode, ff);
1789 if (ff)
1790 fuse_file_put(ff, false, false);
1792 return err;
1795 static struct fuse_writepage_args *fuse_writepage_args_alloc(void)
1797 struct fuse_writepage_args *wpa;
1798 struct fuse_args_pages *ap;
1800 wpa = kzalloc(sizeof(*wpa), GFP_NOFS);
1801 if (wpa) {
1802 ap = &wpa->ia.ap;
1803 ap->num_pages = 0;
1804 ap->pages = fuse_pages_alloc(1, GFP_NOFS, &ap->descs);
1805 if (!ap->pages) {
1806 kfree(wpa);
1807 wpa = NULL;
1810 return wpa;
1814 static int fuse_writepage_locked(struct page *page)
1816 struct address_space *mapping = page->mapping;
1817 struct inode *inode = mapping->host;
1818 struct fuse_conn *fc = get_fuse_conn(inode);
1819 struct fuse_inode *fi = get_fuse_inode(inode);
1820 struct fuse_writepage_args *wpa;
1821 struct fuse_args_pages *ap;
1822 struct page *tmp_page;
1823 int error = -ENOMEM;
1825 set_page_writeback(page);
1827 wpa = fuse_writepage_args_alloc();
1828 if (!wpa)
1829 goto err;
1830 ap = &wpa->ia.ap;
1832 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
1833 if (!tmp_page)
1834 goto err_free;
1836 error = -EIO;
1837 wpa->ia.ff = fuse_write_file_get(fc, fi);
1838 if (!wpa->ia.ff)
1839 goto err_nofile;
1841 fuse_write_args_fill(&wpa->ia, wpa->ia.ff, page_offset(page), 0);
1843 copy_highpage(tmp_page, page);
1844 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
1845 wpa->next = NULL;
1846 ap->args.in_pages = true;
1847 ap->num_pages = 1;
1848 ap->pages[0] = tmp_page;
1849 ap->descs[0].offset = 0;
1850 ap->descs[0].length = PAGE_SIZE;
1851 ap->args.end = fuse_writepage_end;
1852 wpa->inode = inode;
1854 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
1855 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
1857 spin_lock(&fi->lock);
1858 list_add(&wpa->writepages_entry, &fi->writepages);
1859 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1860 fuse_flush_writepages(inode);
1861 spin_unlock(&fi->lock);
1863 end_page_writeback(page);
1865 return 0;
1867 err_nofile:
1868 __free_page(tmp_page);
1869 err_free:
1870 kfree(wpa);
1871 err:
1872 mapping_set_error(page->mapping, error);
1873 end_page_writeback(page);
1874 return error;
1877 static int fuse_writepage(struct page *page, struct writeback_control *wbc)
1879 int err;
1881 if (fuse_page_is_writeback(page->mapping->host, page->index)) {
1883 * ->writepages() should be called for sync() and friends. We
1884 * should only get here on direct reclaim and then we are
1885 * allowed to skip a page which is already in flight
1887 WARN_ON(wbc->sync_mode == WB_SYNC_ALL);
1889 redirty_page_for_writepage(wbc, page);
1890 unlock_page(page);
1891 return 0;
1894 err = fuse_writepage_locked(page);
1895 unlock_page(page);
1897 return err;
1900 struct fuse_fill_wb_data {
1901 struct fuse_writepage_args *wpa;
1902 struct fuse_file *ff;
1903 struct inode *inode;
1904 struct page **orig_pages;
1905 unsigned int max_pages;
1908 static bool fuse_pages_realloc(struct fuse_fill_wb_data *data)
1910 struct fuse_args_pages *ap = &data->wpa->ia.ap;
1911 struct fuse_conn *fc = get_fuse_conn(data->inode);
1912 struct page **pages;
1913 struct fuse_page_desc *descs;
1914 unsigned int npages = min_t(unsigned int,
1915 max_t(unsigned int, data->max_pages * 2,
1916 FUSE_DEFAULT_MAX_PAGES_PER_REQ),
1917 fc->max_pages);
1918 WARN_ON(npages <= data->max_pages);
1920 pages = fuse_pages_alloc(npages, GFP_NOFS, &descs);
1921 if (!pages)
1922 return false;
1924 memcpy(pages, ap->pages, sizeof(struct page *) * ap->num_pages);
1925 memcpy(descs, ap->descs, sizeof(struct fuse_page_desc) * ap->num_pages);
1926 kfree(ap->pages);
1927 ap->pages = pages;
1928 ap->descs = descs;
1929 data->max_pages = npages;
1931 return true;
1934 static void fuse_writepages_send(struct fuse_fill_wb_data *data)
1936 struct fuse_writepage_args *wpa = data->wpa;
1937 struct inode *inode = data->inode;
1938 struct fuse_inode *fi = get_fuse_inode(inode);
1939 int num_pages = wpa->ia.ap.num_pages;
1940 int i;
1942 wpa->ia.ff = fuse_file_get(data->ff);
1943 spin_lock(&fi->lock);
1944 list_add_tail(&wpa->queue_entry, &fi->queued_writes);
1945 fuse_flush_writepages(inode);
1946 spin_unlock(&fi->lock);
1948 for (i = 0; i < num_pages; i++)
1949 end_page_writeback(data->orig_pages[i]);
1953 * First recheck under fi->lock if the offending offset is still under
1954 * writeback. If yes, then iterate auxiliary write requests, to see if there's
1955 * one already added for a page at this offset. If there's none, then insert
1956 * this new request onto the auxiliary list, otherwise reuse the existing one by
1957 * copying the new page contents over to the old temporary page.
1959 static bool fuse_writepage_in_flight(struct fuse_writepage_args *new_wpa,
1960 struct page *page)
1962 struct fuse_inode *fi = get_fuse_inode(new_wpa->inode);
1963 struct fuse_writepage_args *tmp;
1964 struct fuse_writepage_args *old_wpa;
1965 struct fuse_args_pages *new_ap = &new_wpa->ia.ap;
1967 WARN_ON(new_ap->num_pages != 0);
1969 spin_lock(&fi->lock);
1970 list_del(&new_wpa->writepages_entry);
1971 old_wpa = fuse_find_writeback(fi, page->index, page->index);
1972 if (!old_wpa) {
1973 list_add(&new_wpa->writepages_entry, &fi->writepages);
1974 spin_unlock(&fi->lock);
1975 return false;
1978 new_ap->num_pages = 1;
1979 for (tmp = old_wpa->next; tmp; tmp = tmp->next) {
1980 pgoff_t curr_index;
1982 WARN_ON(tmp->inode != new_wpa->inode);
1983 curr_index = tmp->ia.write.in.offset >> PAGE_SHIFT;
1984 if (curr_index == page->index) {
1985 WARN_ON(tmp->ia.ap.num_pages != 1);
1986 swap(tmp->ia.ap.pages[0], new_ap->pages[0]);
1987 break;
1991 if (!tmp) {
1992 new_wpa->next = old_wpa->next;
1993 old_wpa->next = new_wpa;
1996 spin_unlock(&fi->lock);
1998 if (tmp) {
1999 struct backing_dev_info *bdi = inode_to_bdi(new_wpa->inode);
2001 dec_wb_stat(&bdi->wb, WB_WRITEBACK);
2002 dec_node_page_state(new_ap->pages[0], NR_WRITEBACK_TEMP);
2003 wb_writeout_inc(&bdi->wb);
2004 fuse_writepage_free(new_wpa);
2007 return true;
2010 static int fuse_writepages_fill(struct page *page,
2011 struct writeback_control *wbc, void *_data)
2013 struct fuse_fill_wb_data *data = _data;
2014 struct fuse_writepage_args *wpa = data->wpa;
2015 struct fuse_args_pages *ap = &wpa->ia.ap;
2016 struct inode *inode = data->inode;
2017 struct fuse_inode *fi = get_fuse_inode(inode);
2018 struct fuse_conn *fc = get_fuse_conn(inode);
2019 struct page *tmp_page;
2020 bool is_writeback;
2021 int err;
2023 if (!data->ff) {
2024 err = -EIO;
2025 data->ff = fuse_write_file_get(fc, fi);
2026 if (!data->ff)
2027 goto out_unlock;
2031 * Being under writeback is unlikely but possible. For example direct
2032 * read to an mmaped fuse file will set the page dirty twice; once when
2033 * the pages are faulted with get_user_pages(), and then after the read
2034 * completed.
2036 is_writeback = fuse_page_is_writeback(inode, page->index);
2038 if (wpa && ap->num_pages &&
2039 (is_writeback || ap->num_pages == fc->max_pages ||
2040 (ap->num_pages + 1) * PAGE_SIZE > fc->max_write ||
2041 data->orig_pages[ap->num_pages - 1]->index + 1 != page->index)) {
2042 fuse_writepages_send(data);
2043 data->wpa = NULL;
2044 } else if (wpa && ap->num_pages == data->max_pages) {
2045 if (!fuse_pages_realloc(data)) {
2046 fuse_writepages_send(data);
2047 data->wpa = NULL;
2051 err = -ENOMEM;
2052 tmp_page = alloc_page(GFP_NOFS | __GFP_HIGHMEM);
2053 if (!tmp_page)
2054 goto out_unlock;
2057 * The page must not be redirtied until the writeout is completed
2058 * (i.e. userspace has sent a reply to the write request). Otherwise
2059 * there could be more than one temporary page instance for each real
2060 * page.
2062 * This is ensured by holding the page lock in page_mkwrite() while
2063 * checking fuse_page_is_writeback(). We already hold the page lock
2064 * since clear_page_dirty_for_io() and keep it held until we add the
2065 * request to the fi->writepages list and increment ap->num_pages.
2066 * After this fuse_page_is_writeback() will indicate that the page is
2067 * under writeback, so we can release the page lock.
2069 if (data->wpa == NULL) {
2070 err = -ENOMEM;
2071 wpa = fuse_writepage_args_alloc();
2072 if (!wpa) {
2073 __free_page(tmp_page);
2074 goto out_unlock;
2076 data->max_pages = 1;
2078 ap = &wpa->ia.ap;
2079 fuse_write_args_fill(&wpa->ia, data->ff, page_offset(page), 0);
2080 wpa->ia.write.in.write_flags |= FUSE_WRITE_CACHE;
2081 wpa->next = NULL;
2082 ap->args.in_pages = true;
2083 ap->args.end = fuse_writepage_end;
2084 ap->num_pages = 0;
2085 wpa->inode = inode;
2087 spin_lock(&fi->lock);
2088 list_add(&wpa->writepages_entry, &fi->writepages);
2089 spin_unlock(&fi->lock);
2091 data->wpa = wpa;
2093 set_page_writeback(page);
2095 copy_highpage(tmp_page, page);
2096 ap->pages[ap->num_pages] = tmp_page;
2097 ap->descs[ap->num_pages].offset = 0;
2098 ap->descs[ap->num_pages].length = PAGE_SIZE;
2100 inc_wb_stat(&inode_to_bdi(inode)->wb, WB_WRITEBACK);
2101 inc_node_page_state(tmp_page, NR_WRITEBACK_TEMP);
2103 err = 0;
2104 if (is_writeback && fuse_writepage_in_flight(wpa, page)) {
2105 end_page_writeback(page);
2106 data->wpa = NULL;
2107 goto out_unlock;
2109 data->orig_pages[ap->num_pages] = page;
2112 * Protected by fi->lock against concurrent access by
2113 * fuse_page_is_writeback().
2115 spin_lock(&fi->lock);
2116 ap->num_pages++;
2117 spin_unlock(&fi->lock);
2119 out_unlock:
2120 unlock_page(page);
2122 return err;
2125 static int fuse_writepages(struct address_space *mapping,
2126 struct writeback_control *wbc)
2128 struct inode *inode = mapping->host;
2129 struct fuse_conn *fc = get_fuse_conn(inode);
2130 struct fuse_fill_wb_data data;
2131 int err;
2133 err = -EIO;
2134 if (is_bad_inode(inode))
2135 goto out;
2137 data.inode = inode;
2138 data.wpa = NULL;
2139 data.ff = NULL;
2141 err = -ENOMEM;
2142 data.orig_pages = kcalloc(fc->max_pages,
2143 sizeof(struct page *),
2144 GFP_NOFS);
2145 if (!data.orig_pages)
2146 goto out;
2148 err = write_cache_pages(mapping, wbc, fuse_writepages_fill, &data);
2149 if (data.wpa) {
2150 /* Ignore errors if we can write at least one page */
2151 WARN_ON(!data.wpa->ia.ap.num_pages);
2152 fuse_writepages_send(&data);
2153 err = 0;
2155 if (data.ff)
2156 fuse_file_put(data.ff, false, false);
2158 kfree(data.orig_pages);
2159 out:
2160 return err;
2164 * It's worthy to make sure that space is reserved on disk for the write,
2165 * but how to implement it without killing performance need more thinking.
2167 static int fuse_write_begin(struct file *file, struct address_space *mapping,
2168 loff_t pos, unsigned len, unsigned flags,
2169 struct page **pagep, void **fsdata)
2171 pgoff_t index = pos >> PAGE_SHIFT;
2172 struct fuse_conn *fc = get_fuse_conn(file_inode(file));
2173 struct page *page;
2174 loff_t fsize;
2175 int err = -ENOMEM;
2177 WARN_ON(!fc->writeback_cache);
2179 page = grab_cache_page_write_begin(mapping, index, flags);
2180 if (!page)
2181 goto error;
2183 fuse_wait_on_page_writeback(mapping->host, page->index);
2185 if (PageUptodate(page) || len == PAGE_SIZE)
2186 goto success;
2188 * Check if the start this page comes after the end of file, in which
2189 * case the readpage can be optimized away.
2191 fsize = i_size_read(mapping->host);
2192 if (fsize <= (pos & PAGE_MASK)) {
2193 size_t off = pos & ~PAGE_MASK;
2194 if (off)
2195 zero_user_segment(page, 0, off);
2196 goto success;
2198 err = fuse_do_readpage(file, page);
2199 if (err)
2200 goto cleanup;
2201 success:
2202 *pagep = page;
2203 return 0;
2205 cleanup:
2206 unlock_page(page);
2207 put_page(page);
2208 error:
2209 return err;
2212 static int fuse_write_end(struct file *file, struct address_space *mapping,
2213 loff_t pos, unsigned len, unsigned copied,
2214 struct page *page, void *fsdata)
2216 struct inode *inode = page->mapping->host;
2218 /* Haven't copied anything? Skip zeroing, size extending, dirtying. */
2219 if (!copied)
2220 goto unlock;
2222 if (!PageUptodate(page)) {
2223 /* Zero any unwritten bytes at the end of the page */
2224 size_t endoff = (pos + copied) & ~PAGE_MASK;
2225 if (endoff)
2226 zero_user_segment(page, endoff, PAGE_SIZE);
2227 SetPageUptodate(page);
2230 fuse_write_update_size(inode, pos + copied);
2231 set_page_dirty(page);
2233 unlock:
2234 unlock_page(page);
2235 put_page(page);
2237 return copied;
2240 static int fuse_launder_page(struct page *page)
2242 int err = 0;
2243 if (clear_page_dirty_for_io(page)) {
2244 struct inode *inode = page->mapping->host;
2245 err = fuse_writepage_locked(page);
2246 if (!err)
2247 fuse_wait_on_page_writeback(inode, page->index);
2249 return err;
2253 * Write back dirty pages now, because there may not be any suitable
2254 * open files later
2256 static void fuse_vma_close(struct vm_area_struct *vma)
2258 filemap_write_and_wait(vma->vm_file->f_mapping);
2262 * Wait for writeback against this page to complete before allowing it
2263 * to be marked dirty again, and hence written back again, possibly
2264 * before the previous writepage completed.
2266 * Block here, instead of in ->writepage(), so that the userspace fs
2267 * can only block processes actually operating on the filesystem.
2269 * Otherwise unprivileged userspace fs would be able to block
2270 * unrelated:
2272 * - page migration
2273 * - sync(2)
2274 * - try_to_free_pages() with order > PAGE_ALLOC_COSTLY_ORDER
2276 static vm_fault_t fuse_page_mkwrite(struct vm_fault *vmf)
2278 struct page *page = vmf->page;
2279 struct inode *inode = file_inode(vmf->vma->vm_file);
2281 file_update_time(vmf->vma->vm_file);
2282 lock_page(page);
2283 if (page->mapping != inode->i_mapping) {
2284 unlock_page(page);
2285 return VM_FAULT_NOPAGE;
2288 fuse_wait_on_page_writeback(inode, page->index);
2289 return VM_FAULT_LOCKED;
2292 static const struct vm_operations_struct fuse_file_vm_ops = {
2293 .close = fuse_vma_close,
2294 .fault = filemap_fault,
2295 .map_pages = filemap_map_pages,
2296 .page_mkwrite = fuse_page_mkwrite,
2299 static int fuse_file_mmap(struct file *file, struct vm_area_struct *vma)
2301 struct fuse_file *ff = file->private_data;
2303 if (ff->open_flags & FOPEN_DIRECT_IO) {
2304 /* Can't provide the coherency needed for MAP_SHARED */
2305 if (vma->vm_flags & VM_MAYSHARE)
2306 return -ENODEV;
2308 invalidate_inode_pages2(file->f_mapping);
2310 return generic_file_mmap(file, vma);
2313 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2314 fuse_link_write_file(file);
2316 file_accessed(file);
2317 vma->vm_ops = &fuse_file_vm_ops;
2318 return 0;
2321 static int convert_fuse_file_lock(struct fuse_conn *fc,
2322 const struct fuse_file_lock *ffl,
2323 struct file_lock *fl)
2325 switch (ffl->type) {
2326 case F_UNLCK:
2327 break;
2329 case F_RDLCK:
2330 case F_WRLCK:
2331 if (ffl->start > OFFSET_MAX || ffl->end > OFFSET_MAX ||
2332 ffl->end < ffl->start)
2333 return -EIO;
2335 fl->fl_start = ffl->start;
2336 fl->fl_end = ffl->end;
2339 * Convert pid into init's pid namespace. The locks API will
2340 * translate it into the caller's pid namespace.
2342 rcu_read_lock();
2343 fl->fl_pid = pid_nr_ns(find_pid_ns(ffl->pid, fc->pid_ns), &init_pid_ns);
2344 rcu_read_unlock();
2345 break;
2347 default:
2348 return -EIO;
2350 fl->fl_type = ffl->type;
2351 return 0;
2354 static void fuse_lk_fill(struct fuse_args *args, struct file *file,
2355 const struct file_lock *fl, int opcode, pid_t pid,
2356 int flock, struct fuse_lk_in *inarg)
2358 struct inode *inode = file_inode(file);
2359 struct fuse_conn *fc = get_fuse_conn(inode);
2360 struct fuse_file *ff = file->private_data;
2362 memset(inarg, 0, sizeof(*inarg));
2363 inarg->fh = ff->fh;
2364 inarg->owner = fuse_lock_owner_id(fc, fl->fl_owner);
2365 inarg->lk.start = fl->fl_start;
2366 inarg->lk.end = fl->fl_end;
2367 inarg->lk.type = fl->fl_type;
2368 inarg->lk.pid = pid;
2369 if (flock)
2370 inarg->lk_flags |= FUSE_LK_FLOCK;
2371 args->opcode = opcode;
2372 args->nodeid = get_node_id(inode);
2373 args->in_numargs = 1;
2374 args->in_args[0].size = sizeof(*inarg);
2375 args->in_args[0].value = inarg;
2378 static int fuse_getlk(struct file *file, struct file_lock *fl)
2380 struct inode *inode = file_inode(file);
2381 struct fuse_conn *fc = get_fuse_conn(inode);
2382 FUSE_ARGS(args);
2383 struct fuse_lk_in inarg;
2384 struct fuse_lk_out outarg;
2385 int err;
2387 fuse_lk_fill(&args, file, fl, FUSE_GETLK, 0, 0, &inarg);
2388 args.out_numargs = 1;
2389 args.out_args[0].size = sizeof(outarg);
2390 args.out_args[0].value = &outarg;
2391 err = fuse_simple_request(fc, &args);
2392 if (!err)
2393 err = convert_fuse_file_lock(fc, &outarg.lk, fl);
2395 return err;
2398 static int fuse_setlk(struct file *file, struct file_lock *fl, int flock)
2400 struct inode *inode = file_inode(file);
2401 struct fuse_conn *fc = get_fuse_conn(inode);
2402 FUSE_ARGS(args);
2403 struct fuse_lk_in inarg;
2404 int opcode = (fl->fl_flags & FL_SLEEP) ? FUSE_SETLKW : FUSE_SETLK;
2405 struct pid *pid = fl->fl_type != F_UNLCK ? task_tgid(current) : NULL;
2406 pid_t pid_nr = pid_nr_ns(pid, fc->pid_ns);
2407 int err;
2409 if (fl->fl_lmops && fl->fl_lmops->lm_grant) {
2410 /* NLM needs asynchronous locks, which we don't support yet */
2411 return -ENOLCK;
2414 /* Unlock on close is handled by the flush method */
2415 if ((fl->fl_flags & FL_CLOSE_POSIX) == FL_CLOSE_POSIX)
2416 return 0;
2418 fuse_lk_fill(&args, file, fl, opcode, pid_nr, flock, &inarg);
2419 err = fuse_simple_request(fc, &args);
2421 /* locking is restartable */
2422 if (err == -EINTR)
2423 err = -ERESTARTSYS;
2425 return err;
2428 static int fuse_file_lock(struct file *file, int cmd, struct file_lock *fl)
2430 struct inode *inode = file_inode(file);
2431 struct fuse_conn *fc = get_fuse_conn(inode);
2432 int err;
2434 if (cmd == F_CANCELLK) {
2435 err = 0;
2436 } else if (cmd == F_GETLK) {
2437 if (fc->no_lock) {
2438 posix_test_lock(file, fl);
2439 err = 0;
2440 } else
2441 err = fuse_getlk(file, fl);
2442 } else {
2443 if (fc->no_lock)
2444 err = posix_lock_file(file, fl, NULL);
2445 else
2446 err = fuse_setlk(file, fl, 0);
2448 return err;
2451 static int fuse_file_flock(struct file *file, int cmd, struct file_lock *fl)
2453 struct inode *inode = file_inode(file);
2454 struct fuse_conn *fc = get_fuse_conn(inode);
2455 int err;
2457 if (fc->no_flock) {
2458 err = locks_lock_file_wait(file, fl);
2459 } else {
2460 struct fuse_file *ff = file->private_data;
2462 /* emulate flock with POSIX locks */
2463 ff->flock = true;
2464 err = fuse_setlk(file, fl, 1);
2467 return err;
2470 static sector_t fuse_bmap(struct address_space *mapping, sector_t block)
2472 struct inode *inode = mapping->host;
2473 struct fuse_conn *fc = get_fuse_conn(inode);
2474 FUSE_ARGS(args);
2475 struct fuse_bmap_in inarg;
2476 struct fuse_bmap_out outarg;
2477 int err;
2479 if (!inode->i_sb->s_bdev || fc->no_bmap)
2480 return 0;
2482 memset(&inarg, 0, sizeof(inarg));
2483 inarg.block = block;
2484 inarg.blocksize = inode->i_sb->s_blocksize;
2485 args.opcode = FUSE_BMAP;
2486 args.nodeid = get_node_id(inode);
2487 args.in_numargs = 1;
2488 args.in_args[0].size = sizeof(inarg);
2489 args.in_args[0].value = &inarg;
2490 args.out_numargs = 1;
2491 args.out_args[0].size = sizeof(outarg);
2492 args.out_args[0].value = &outarg;
2493 err = fuse_simple_request(fc, &args);
2494 if (err == -ENOSYS)
2495 fc->no_bmap = 1;
2497 return err ? 0 : outarg.block;
2500 static loff_t fuse_lseek(struct file *file, loff_t offset, int whence)
2502 struct inode *inode = file->f_mapping->host;
2503 struct fuse_conn *fc = get_fuse_conn(inode);
2504 struct fuse_file *ff = file->private_data;
2505 FUSE_ARGS(args);
2506 struct fuse_lseek_in inarg = {
2507 .fh = ff->fh,
2508 .offset = offset,
2509 .whence = whence
2511 struct fuse_lseek_out outarg;
2512 int err;
2514 if (fc->no_lseek)
2515 goto fallback;
2517 args.opcode = FUSE_LSEEK;
2518 args.nodeid = ff->nodeid;
2519 args.in_numargs = 1;
2520 args.in_args[0].size = sizeof(inarg);
2521 args.in_args[0].value = &inarg;
2522 args.out_numargs = 1;
2523 args.out_args[0].size = sizeof(outarg);
2524 args.out_args[0].value = &outarg;
2525 err = fuse_simple_request(fc, &args);
2526 if (err) {
2527 if (err == -ENOSYS) {
2528 fc->no_lseek = 1;
2529 goto fallback;
2531 return err;
2534 return vfs_setpos(file, outarg.offset, inode->i_sb->s_maxbytes);
2536 fallback:
2537 err = fuse_update_attributes(inode, file);
2538 if (!err)
2539 return generic_file_llseek(file, offset, whence);
2540 else
2541 return err;
2544 static loff_t fuse_file_llseek(struct file *file, loff_t offset, int whence)
2546 loff_t retval;
2547 struct inode *inode = file_inode(file);
2549 switch (whence) {
2550 case SEEK_SET:
2551 case SEEK_CUR:
2552 /* No i_mutex protection necessary for SEEK_CUR and SEEK_SET */
2553 retval = generic_file_llseek(file, offset, whence);
2554 break;
2555 case SEEK_END:
2556 inode_lock(inode);
2557 retval = fuse_update_attributes(inode, file);
2558 if (!retval)
2559 retval = generic_file_llseek(file, offset, whence);
2560 inode_unlock(inode);
2561 break;
2562 case SEEK_HOLE:
2563 case SEEK_DATA:
2564 inode_lock(inode);
2565 retval = fuse_lseek(file, offset, whence);
2566 inode_unlock(inode);
2567 break;
2568 default:
2569 retval = -EINVAL;
2572 return retval;
2576 * CUSE servers compiled on 32bit broke on 64bit kernels because the
2577 * ABI was defined to be 'struct iovec' which is different on 32bit
2578 * and 64bit. Fortunately we can determine which structure the server
2579 * used from the size of the reply.
2581 static int fuse_copy_ioctl_iovec_old(struct iovec *dst, void *src,
2582 size_t transferred, unsigned count,
2583 bool is_compat)
2585 #ifdef CONFIG_COMPAT
2586 if (count * sizeof(struct compat_iovec) == transferred) {
2587 struct compat_iovec *ciov = src;
2588 unsigned i;
2591 * With this interface a 32bit server cannot support
2592 * non-compat (i.e. ones coming from 64bit apps) ioctl
2593 * requests
2595 if (!is_compat)
2596 return -EINVAL;
2598 for (i = 0; i < count; i++) {
2599 dst[i].iov_base = compat_ptr(ciov[i].iov_base);
2600 dst[i].iov_len = ciov[i].iov_len;
2602 return 0;
2604 #endif
2606 if (count * sizeof(struct iovec) != transferred)
2607 return -EIO;
2609 memcpy(dst, src, transferred);
2610 return 0;
2613 /* Make sure iov_length() won't overflow */
2614 static int fuse_verify_ioctl_iov(struct fuse_conn *fc, struct iovec *iov,
2615 size_t count)
2617 size_t n;
2618 u32 max = fc->max_pages << PAGE_SHIFT;
2620 for (n = 0; n < count; n++, iov++) {
2621 if (iov->iov_len > (size_t) max)
2622 return -ENOMEM;
2623 max -= iov->iov_len;
2625 return 0;
2628 static int fuse_copy_ioctl_iovec(struct fuse_conn *fc, struct iovec *dst,
2629 void *src, size_t transferred, unsigned count,
2630 bool is_compat)
2632 unsigned i;
2633 struct fuse_ioctl_iovec *fiov = src;
2635 if (fc->minor < 16) {
2636 return fuse_copy_ioctl_iovec_old(dst, src, transferred,
2637 count, is_compat);
2640 if (count * sizeof(struct fuse_ioctl_iovec) != transferred)
2641 return -EIO;
2643 for (i = 0; i < count; i++) {
2644 /* Did the server supply an inappropriate value? */
2645 if (fiov[i].base != (unsigned long) fiov[i].base ||
2646 fiov[i].len != (unsigned long) fiov[i].len)
2647 return -EIO;
2649 dst[i].iov_base = (void __user *) (unsigned long) fiov[i].base;
2650 dst[i].iov_len = (size_t) fiov[i].len;
2652 #ifdef CONFIG_COMPAT
2653 if (is_compat &&
2654 (ptr_to_compat(dst[i].iov_base) != fiov[i].base ||
2655 (compat_size_t) dst[i].iov_len != fiov[i].len))
2656 return -EIO;
2657 #endif
2660 return 0;
2665 * For ioctls, there is no generic way to determine how much memory
2666 * needs to be read and/or written. Furthermore, ioctls are allowed
2667 * to dereference the passed pointer, so the parameter requires deep
2668 * copying but FUSE has no idea whatsoever about what to copy in or
2669 * out.
2671 * This is solved by allowing FUSE server to retry ioctl with
2672 * necessary in/out iovecs. Let's assume the ioctl implementation
2673 * needs to read in the following structure.
2675 * struct a {
2676 * char *buf;
2677 * size_t buflen;
2680 * On the first callout to FUSE server, inarg->in_size and
2681 * inarg->out_size will be NULL; then, the server completes the ioctl
2682 * with FUSE_IOCTL_RETRY set in out->flags, out->in_iovs set to 1 and
2683 * the actual iov array to
2685 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) } }
2687 * which tells FUSE to copy in the requested area and retry the ioctl.
2688 * On the second round, the server has access to the structure and
2689 * from that it can tell what to look for next, so on the invocation,
2690 * it sets FUSE_IOCTL_RETRY, out->in_iovs to 2 and iov array to
2692 * { { .iov_base = inarg.arg, .iov_len = sizeof(struct a) },
2693 * { .iov_base = a.buf, .iov_len = a.buflen } }
2695 * FUSE will copy both struct a and the pointed buffer from the
2696 * process doing the ioctl and retry ioctl with both struct a and the
2697 * buffer.
2699 * This time, FUSE server has everything it needs and completes ioctl
2700 * without FUSE_IOCTL_RETRY which finishes the ioctl call.
2702 * Copying data out works the same way.
2704 * Note that if FUSE_IOCTL_UNRESTRICTED is clear, the kernel
2705 * automatically initializes in and out iovs by decoding @cmd with
2706 * _IOC_* macros and the server is not allowed to request RETRY. This
2707 * limits ioctl data transfers to well-formed ioctls and is the forced
2708 * behavior for all FUSE servers.
2710 long fuse_do_ioctl(struct file *file, unsigned int cmd, unsigned long arg,
2711 unsigned int flags)
2713 struct fuse_file *ff = file->private_data;
2714 struct fuse_conn *fc = ff->fc;
2715 struct fuse_ioctl_in inarg = {
2716 .fh = ff->fh,
2717 .cmd = cmd,
2718 .arg = arg,
2719 .flags = flags
2721 struct fuse_ioctl_out outarg;
2722 struct iovec *iov_page = NULL;
2723 struct iovec *in_iov = NULL, *out_iov = NULL;
2724 unsigned int in_iovs = 0, out_iovs = 0, max_pages;
2725 size_t in_size, out_size, c;
2726 ssize_t transferred;
2727 int err, i;
2728 struct iov_iter ii;
2729 struct fuse_args_pages ap = {};
2731 #if BITS_PER_LONG == 32
2732 inarg.flags |= FUSE_IOCTL_32BIT;
2733 #else
2734 if (flags & FUSE_IOCTL_COMPAT) {
2735 inarg.flags |= FUSE_IOCTL_32BIT;
2736 #ifdef CONFIG_X86_X32
2737 if (in_x32_syscall())
2738 inarg.flags |= FUSE_IOCTL_COMPAT_X32;
2739 #endif
2741 #endif
2743 /* assume all the iovs returned by client always fits in a page */
2744 BUILD_BUG_ON(sizeof(struct fuse_ioctl_iovec) * FUSE_IOCTL_MAX_IOV > PAGE_SIZE);
2746 err = -ENOMEM;
2747 ap.pages = fuse_pages_alloc(fc->max_pages, GFP_KERNEL, &ap.descs);
2748 iov_page = (struct iovec *) __get_free_page(GFP_KERNEL);
2749 if (!ap.pages || !iov_page)
2750 goto out;
2752 fuse_page_descs_length_init(ap.descs, 0, fc->max_pages);
2755 * If restricted, initialize IO parameters as encoded in @cmd.
2756 * RETRY from server is not allowed.
2758 if (!(flags & FUSE_IOCTL_UNRESTRICTED)) {
2759 struct iovec *iov = iov_page;
2761 iov->iov_base = (void __user *)arg;
2762 iov->iov_len = _IOC_SIZE(cmd);
2764 if (_IOC_DIR(cmd) & _IOC_WRITE) {
2765 in_iov = iov;
2766 in_iovs = 1;
2769 if (_IOC_DIR(cmd) & _IOC_READ) {
2770 out_iov = iov;
2771 out_iovs = 1;
2775 retry:
2776 inarg.in_size = in_size = iov_length(in_iov, in_iovs);
2777 inarg.out_size = out_size = iov_length(out_iov, out_iovs);
2780 * Out data can be used either for actual out data or iovs,
2781 * make sure there always is at least one page.
2783 out_size = max_t(size_t, out_size, PAGE_SIZE);
2784 max_pages = DIV_ROUND_UP(max(in_size, out_size), PAGE_SIZE);
2786 /* make sure there are enough buffer pages and init request with them */
2787 err = -ENOMEM;
2788 if (max_pages > fc->max_pages)
2789 goto out;
2790 while (ap.num_pages < max_pages) {
2791 ap.pages[ap.num_pages] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM);
2792 if (!ap.pages[ap.num_pages])
2793 goto out;
2794 ap.num_pages++;
2798 /* okay, let's send it to the client */
2799 ap.args.opcode = FUSE_IOCTL;
2800 ap.args.nodeid = ff->nodeid;
2801 ap.args.in_numargs = 1;
2802 ap.args.in_args[0].size = sizeof(inarg);
2803 ap.args.in_args[0].value = &inarg;
2804 if (in_size) {
2805 ap.args.in_numargs++;
2806 ap.args.in_args[1].size = in_size;
2807 ap.args.in_pages = true;
2809 err = -EFAULT;
2810 iov_iter_init(&ii, WRITE, in_iov, in_iovs, in_size);
2811 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2812 c = copy_page_from_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2813 if (c != PAGE_SIZE && iov_iter_count(&ii))
2814 goto out;
2818 ap.args.out_numargs = 2;
2819 ap.args.out_args[0].size = sizeof(outarg);
2820 ap.args.out_args[0].value = &outarg;
2821 ap.args.out_args[1].size = out_size;
2822 ap.args.out_pages = true;
2823 ap.args.out_argvar = true;
2825 transferred = fuse_simple_request(fc, &ap.args);
2826 err = transferred;
2827 if (transferred < 0)
2828 goto out;
2830 /* did it ask for retry? */
2831 if (outarg.flags & FUSE_IOCTL_RETRY) {
2832 void *vaddr;
2834 /* no retry if in restricted mode */
2835 err = -EIO;
2836 if (!(flags & FUSE_IOCTL_UNRESTRICTED))
2837 goto out;
2839 in_iovs = outarg.in_iovs;
2840 out_iovs = outarg.out_iovs;
2843 * Make sure things are in boundary, separate checks
2844 * are to protect against overflow.
2846 err = -ENOMEM;
2847 if (in_iovs > FUSE_IOCTL_MAX_IOV ||
2848 out_iovs > FUSE_IOCTL_MAX_IOV ||
2849 in_iovs + out_iovs > FUSE_IOCTL_MAX_IOV)
2850 goto out;
2852 vaddr = kmap_atomic(ap.pages[0]);
2853 err = fuse_copy_ioctl_iovec(fc, iov_page, vaddr,
2854 transferred, in_iovs + out_iovs,
2855 (flags & FUSE_IOCTL_COMPAT) != 0);
2856 kunmap_atomic(vaddr);
2857 if (err)
2858 goto out;
2860 in_iov = iov_page;
2861 out_iov = in_iov + in_iovs;
2863 err = fuse_verify_ioctl_iov(fc, in_iov, in_iovs);
2864 if (err)
2865 goto out;
2867 err = fuse_verify_ioctl_iov(fc, out_iov, out_iovs);
2868 if (err)
2869 goto out;
2871 goto retry;
2874 err = -EIO;
2875 if (transferred > inarg.out_size)
2876 goto out;
2878 err = -EFAULT;
2879 iov_iter_init(&ii, READ, out_iov, out_iovs, transferred);
2880 for (i = 0; iov_iter_count(&ii) && !WARN_ON(i >= ap.num_pages); i++) {
2881 c = copy_page_to_iter(ap.pages[i], 0, PAGE_SIZE, &ii);
2882 if (c != PAGE_SIZE && iov_iter_count(&ii))
2883 goto out;
2885 err = 0;
2886 out:
2887 free_page((unsigned long) iov_page);
2888 while (ap.num_pages)
2889 __free_page(ap.pages[--ap.num_pages]);
2890 kfree(ap.pages);
2892 return err ? err : outarg.result;
2894 EXPORT_SYMBOL_GPL(fuse_do_ioctl);
2896 long fuse_ioctl_common(struct file *file, unsigned int cmd,
2897 unsigned long arg, unsigned int flags)
2899 struct inode *inode = file_inode(file);
2900 struct fuse_conn *fc = get_fuse_conn(inode);
2902 if (!fuse_allow_current_process(fc))
2903 return -EACCES;
2905 if (is_bad_inode(inode))
2906 return -EIO;
2908 return fuse_do_ioctl(file, cmd, arg, flags);
2911 static long fuse_file_ioctl(struct file *file, unsigned int cmd,
2912 unsigned long arg)
2914 return fuse_ioctl_common(file, cmd, arg, 0);
2917 static long fuse_file_compat_ioctl(struct file *file, unsigned int cmd,
2918 unsigned long arg)
2920 return fuse_ioctl_common(file, cmd, arg, FUSE_IOCTL_COMPAT);
2924 * All files which have been polled are linked to RB tree
2925 * fuse_conn->polled_files which is indexed by kh. Walk the tree and
2926 * find the matching one.
2928 static struct rb_node **fuse_find_polled_node(struct fuse_conn *fc, u64 kh,
2929 struct rb_node **parent_out)
2931 struct rb_node **link = &fc->polled_files.rb_node;
2932 struct rb_node *last = NULL;
2934 while (*link) {
2935 struct fuse_file *ff;
2937 last = *link;
2938 ff = rb_entry(last, struct fuse_file, polled_node);
2940 if (kh < ff->kh)
2941 link = &last->rb_left;
2942 else if (kh > ff->kh)
2943 link = &last->rb_right;
2944 else
2945 return link;
2948 if (parent_out)
2949 *parent_out = last;
2950 return link;
2954 * The file is about to be polled. Make sure it's on the polled_files
2955 * RB tree. Note that files once added to the polled_files tree are
2956 * not removed before the file is released. This is because a file
2957 * polled once is likely to be polled again.
2959 static void fuse_register_polled_file(struct fuse_conn *fc,
2960 struct fuse_file *ff)
2962 spin_lock(&fc->lock);
2963 if (RB_EMPTY_NODE(&ff->polled_node)) {
2964 struct rb_node **link, *uninitialized_var(parent);
2966 link = fuse_find_polled_node(fc, ff->kh, &parent);
2967 BUG_ON(*link);
2968 rb_link_node(&ff->polled_node, parent, link);
2969 rb_insert_color(&ff->polled_node, &fc->polled_files);
2971 spin_unlock(&fc->lock);
2974 __poll_t fuse_file_poll(struct file *file, poll_table *wait)
2976 struct fuse_file *ff = file->private_data;
2977 struct fuse_conn *fc = ff->fc;
2978 struct fuse_poll_in inarg = { .fh = ff->fh, .kh = ff->kh };
2979 struct fuse_poll_out outarg;
2980 FUSE_ARGS(args);
2981 int err;
2983 if (fc->no_poll)
2984 return DEFAULT_POLLMASK;
2986 poll_wait(file, &ff->poll_wait, wait);
2987 inarg.events = mangle_poll(poll_requested_events(wait));
2990 * Ask for notification iff there's someone waiting for it.
2991 * The client may ignore the flag and always notify.
2993 if (waitqueue_active(&ff->poll_wait)) {
2994 inarg.flags |= FUSE_POLL_SCHEDULE_NOTIFY;
2995 fuse_register_polled_file(fc, ff);
2998 args.opcode = FUSE_POLL;
2999 args.nodeid = ff->nodeid;
3000 args.in_numargs = 1;
3001 args.in_args[0].size = sizeof(inarg);
3002 args.in_args[0].value = &inarg;
3003 args.out_numargs = 1;
3004 args.out_args[0].size = sizeof(outarg);
3005 args.out_args[0].value = &outarg;
3006 err = fuse_simple_request(fc, &args);
3008 if (!err)
3009 return demangle_poll(outarg.revents);
3010 if (err == -ENOSYS) {
3011 fc->no_poll = 1;
3012 return DEFAULT_POLLMASK;
3014 return EPOLLERR;
3016 EXPORT_SYMBOL_GPL(fuse_file_poll);
3019 * This is called from fuse_handle_notify() on FUSE_NOTIFY_POLL and
3020 * wakes up the poll waiters.
3022 int fuse_notify_poll_wakeup(struct fuse_conn *fc,
3023 struct fuse_notify_poll_wakeup_out *outarg)
3025 u64 kh = outarg->kh;
3026 struct rb_node **link;
3028 spin_lock(&fc->lock);
3030 link = fuse_find_polled_node(fc, kh, NULL);
3031 if (*link) {
3032 struct fuse_file *ff;
3034 ff = rb_entry(*link, struct fuse_file, polled_node);
3035 wake_up_interruptible_sync(&ff->poll_wait);
3038 spin_unlock(&fc->lock);
3039 return 0;
3042 static void fuse_do_truncate(struct file *file)
3044 struct inode *inode = file->f_mapping->host;
3045 struct iattr attr;
3047 attr.ia_valid = ATTR_SIZE;
3048 attr.ia_size = i_size_read(inode);
3050 attr.ia_file = file;
3051 attr.ia_valid |= ATTR_FILE;
3053 fuse_do_setattr(file_dentry(file), &attr, file);
3056 static inline loff_t fuse_round_up(struct fuse_conn *fc, loff_t off)
3058 return round_up(off, fc->max_pages << PAGE_SHIFT);
3061 static ssize_t
3062 fuse_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3064 DECLARE_COMPLETION_ONSTACK(wait);
3065 ssize_t ret = 0;
3066 struct file *file = iocb->ki_filp;
3067 struct fuse_file *ff = file->private_data;
3068 bool async_dio = ff->fc->async_dio;
3069 loff_t pos = 0;
3070 struct inode *inode;
3071 loff_t i_size;
3072 size_t count = iov_iter_count(iter);
3073 loff_t offset = iocb->ki_pos;
3074 struct fuse_io_priv *io;
3076 pos = offset;
3077 inode = file->f_mapping->host;
3078 i_size = i_size_read(inode);
3080 if ((iov_iter_rw(iter) == READ) && (offset > i_size))
3081 return 0;
3083 /* optimization for short read */
3084 if (async_dio && iov_iter_rw(iter) != WRITE && offset + count > i_size) {
3085 if (offset >= i_size)
3086 return 0;
3087 iov_iter_truncate(iter, fuse_round_up(ff->fc, i_size - offset));
3088 count = iov_iter_count(iter);
3091 io = kmalloc(sizeof(struct fuse_io_priv), GFP_KERNEL);
3092 if (!io)
3093 return -ENOMEM;
3094 spin_lock_init(&io->lock);
3095 kref_init(&io->refcnt);
3096 io->reqs = 1;
3097 io->bytes = -1;
3098 io->size = 0;
3099 io->offset = offset;
3100 io->write = (iov_iter_rw(iter) == WRITE);
3101 io->err = 0;
3103 * By default, we want to optimize all I/Os with async request
3104 * submission to the client filesystem if supported.
3106 io->async = async_dio;
3107 io->iocb = iocb;
3108 io->blocking = is_sync_kiocb(iocb);
3111 * We cannot asynchronously extend the size of a file.
3112 * In such case the aio will behave exactly like sync io.
3114 if ((offset + count > i_size) && iov_iter_rw(iter) == WRITE)
3115 io->blocking = true;
3117 if (io->async && io->blocking) {
3119 * Additional reference to keep io around after
3120 * calling fuse_aio_complete()
3122 kref_get(&io->refcnt);
3123 io->done = &wait;
3126 if (iov_iter_rw(iter) == WRITE) {
3127 ret = fuse_direct_io(io, iter, &pos, FUSE_DIO_WRITE);
3128 fuse_invalidate_attr(inode);
3129 } else {
3130 ret = __fuse_direct_read(io, iter, &pos);
3133 if (io->async) {
3134 bool blocking = io->blocking;
3136 fuse_aio_complete(io, ret < 0 ? ret : 0, -1);
3138 /* we have a non-extending, async request, so return */
3139 if (!blocking)
3140 return -EIOCBQUEUED;
3142 wait_for_completion(&wait);
3143 ret = fuse_get_res_by_io(io);
3146 kref_put(&io->refcnt, fuse_io_release);
3148 if (iov_iter_rw(iter) == WRITE) {
3149 if (ret > 0)
3150 fuse_write_update_size(inode, pos);
3151 else if (ret < 0 && offset + count > i_size)
3152 fuse_do_truncate(file);
3155 return ret;
3158 static int fuse_writeback_range(struct inode *inode, loff_t start, loff_t end)
3160 int err = filemap_write_and_wait_range(inode->i_mapping, start, end);
3162 if (!err)
3163 fuse_sync_writes(inode);
3165 return err;
3168 static long fuse_file_fallocate(struct file *file, int mode, loff_t offset,
3169 loff_t length)
3171 struct fuse_file *ff = file->private_data;
3172 struct inode *inode = file_inode(file);
3173 struct fuse_inode *fi = get_fuse_inode(inode);
3174 struct fuse_conn *fc = ff->fc;
3175 FUSE_ARGS(args);
3176 struct fuse_fallocate_in inarg = {
3177 .fh = ff->fh,
3178 .offset = offset,
3179 .length = length,
3180 .mode = mode
3182 int err;
3183 bool lock_inode = !(mode & FALLOC_FL_KEEP_SIZE) ||
3184 (mode & FALLOC_FL_PUNCH_HOLE);
3186 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
3187 return -EOPNOTSUPP;
3189 if (fc->no_fallocate)
3190 return -EOPNOTSUPP;
3192 if (lock_inode) {
3193 inode_lock(inode);
3194 if (mode & FALLOC_FL_PUNCH_HOLE) {
3195 loff_t endbyte = offset + length - 1;
3197 err = fuse_writeback_range(inode, offset, endbyte);
3198 if (err)
3199 goto out;
3203 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
3204 offset + length > i_size_read(inode)) {
3205 err = inode_newsize_ok(inode, offset + length);
3206 if (err)
3207 goto out;
3210 if (!(mode & FALLOC_FL_KEEP_SIZE))
3211 set_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3213 args.opcode = FUSE_FALLOCATE;
3214 args.nodeid = ff->nodeid;
3215 args.in_numargs = 1;
3216 args.in_args[0].size = sizeof(inarg);
3217 args.in_args[0].value = &inarg;
3218 err = fuse_simple_request(fc, &args);
3219 if (err == -ENOSYS) {
3220 fc->no_fallocate = 1;
3221 err = -EOPNOTSUPP;
3223 if (err)
3224 goto out;
3226 /* we could have extended the file */
3227 if (!(mode & FALLOC_FL_KEEP_SIZE)) {
3228 bool changed = fuse_write_update_size(inode, offset + length);
3230 if (changed && fc->writeback_cache)
3231 file_update_time(file);
3234 if (mode & FALLOC_FL_PUNCH_HOLE)
3235 truncate_pagecache_range(inode, offset, offset + length - 1);
3237 fuse_invalidate_attr(inode);
3239 out:
3240 if (!(mode & FALLOC_FL_KEEP_SIZE))
3241 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi->state);
3243 if (lock_inode)
3244 inode_unlock(inode);
3246 return err;
3249 static ssize_t __fuse_copy_file_range(struct file *file_in, loff_t pos_in,
3250 struct file *file_out, loff_t pos_out,
3251 size_t len, unsigned int flags)
3253 struct fuse_file *ff_in = file_in->private_data;
3254 struct fuse_file *ff_out = file_out->private_data;
3255 struct inode *inode_in = file_inode(file_in);
3256 struct inode *inode_out = file_inode(file_out);
3257 struct fuse_inode *fi_out = get_fuse_inode(inode_out);
3258 struct fuse_conn *fc = ff_in->fc;
3259 FUSE_ARGS(args);
3260 struct fuse_copy_file_range_in inarg = {
3261 .fh_in = ff_in->fh,
3262 .off_in = pos_in,
3263 .nodeid_out = ff_out->nodeid,
3264 .fh_out = ff_out->fh,
3265 .off_out = pos_out,
3266 .len = len,
3267 .flags = flags
3269 struct fuse_write_out outarg;
3270 ssize_t err;
3271 /* mark unstable when write-back is not used, and file_out gets
3272 * extended */
3273 bool is_unstable = (!fc->writeback_cache) &&
3274 ((pos_out + len) > inode_out->i_size);
3276 if (fc->no_copy_file_range)
3277 return -EOPNOTSUPP;
3279 if (file_inode(file_in)->i_sb != file_inode(file_out)->i_sb)
3280 return -EXDEV;
3282 if (fc->writeback_cache) {
3283 inode_lock(inode_in);
3284 err = fuse_writeback_range(inode_in, pos_in, pos_in + len);
3285 inode_unlock(inode_in);
3286 if (err)
3287 return err;
3290 inode_lock(inode_out);
3292 err = file_modified(file_out);
3293 if (err)
3294 goto out;
3296 if (fc->writeback_cache) {
3297 err = fuse_writeback_range(inode_out, pos_out, pos_out + len);
3298 if (err)
3299 goto out;
3302 if (is_unstable)
3303 set_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3305 args.opcode = FUSE_COPY_FILE_RANGE;
3306 args.nodeid = ff_in->nodeid;
3307 args.in_numargs = 1;
3308 args.in_args[0].size = sizeof(inarg);
3309 args.in_args[0].value = &inarg;
3310 args.out_numargs = 1;
3311 args.out_args[0].size = sizeof(outarg);
3312 args.out_args[0].value = &outarg;
3313 err = fuse_simple_request(fc, &args);
3314 if (err == -ENOSYS) {
3315 fc->no_copy_file_range = 1;
3316 err = -EOPNOTSUPP;
3318 if (err)
3319 goto out;
3321 if (fc->writeback_cache) {
3322 fuse_write_update_size(inode_out, pos_out + outarg.size);
3323 file_update_time(file_out);
3326 fuse_invalidate_attr(inode_out);
3328 err = outarg.size;
3329 out:
3330 if (is_unstable)
3331 clear_bit(FUSE_I_SIZE_UNSTABLE, &fi_out->state);
3333 inode_unlock(inode_out);
3334 file_accessed(file_in);
3336 return err;
3339 static ssize_t fuse_copy_file_range(struct file *src_file, loff_t src_off,
3340 struct file *dst_file, loff_t dst_off,
3341 size_t len, unsigned int flags)
3343 ssize_t ret;
3345 ret = __fuse_copy_file_range(src_file, src_off, dst_file, dst_off,
3346 len, flags);
3348 if (ret == -EOPNOTSUPP || ret == -EXDEV)
3349 ret = generic_copy_file_range(src_file, src_off, dst_file,
3350 dst_off, len, flags);
3351 return ret;
3354 static const struct file_operations fuse_file_operations = {
3355 .llseek = fuse_file_llseek,
3356 .read_iter = fuse_file_read_iter,
3357 .write_iter = fuse_file_write_iter,
3358 .mmap = fuse_file_mmap,
3359 .open = fuse_open,
3360 .flush = fuse_flush,
3361 .release = fuse_release,
3362 .fsync = fuse_fsync,
3363 .lock = fuse_file_lock,
3364 .flock = fuse_file_flock,
3365 .splice_read = generic_file_splice_read,
3366 .splice_write = iter_file_splice_write,
3367 .unlocked_ioctl = fuse_file_ioctl,
3368 .compat_ioctl = fuse_file_compat_ioctl,
3369 .poll = fuse_file_poll,
3370 .fallocate = fuse_file_fallocate,
3371 .copy_file_range = fuse_copy_file_range,
3374 static const struct address_space_operations fuse_file_aops = {
3375 .readpage = fuse_readpage,
3376 .writepage = fuse_writepage,
3377 .writepages = fuse_writepages,
3378 .launder_page = fuse_launder_page,
3379 .readpages = fuse_readpages,
3380 .set_page_dirty = __set_page_dirty_nobuffers,
3381 .bmap = fuse_bmap,
3382 .direct_IO = fuse_direct_IO,
3383 .write_begin = fuse_write_begin,
3384 .write_end = fuse_write_end,
3387 void fuse_init_file_inode(struct inode *inode)
3389 struct fuse_inode *fi = get_fuse_inode(inode);
3391 inode->i_fop = &fuse_file_operations;
3392 inode->i_data.a_ops = &fuse_file_aops;
3394 INIT_LIST_HEAD(&fi->write_files);
3395 INIT_LIST_HEAD(&fi->queued_writes);
3396 fi->writectr = 0;
3397 init_waitqueue_head(&fi->page_waitq);
3398 INIT_LIST_HEAD(&fi->writepages);