ARM: dts: omap5: Add bus_dma_limit for L3 bus
[linux/fpc-iii.git] / fs / namei.c
blob70eb4bfeaebc6caa119546b0b3f85b4ea3787896
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/namei.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
8 /*
9 * Some corrections by tytso.
12 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
13 * lookup logic.
15 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
18 #include <linux/init.h>
19 #include <linux/export.h>
20 #include <linux/kernel.h>
21 #include <linux/slab.h>
22 #include <linux/fs.h>
23 #include <linux/namei.h>
24 #include <linux/pagemap.h>
25 #include <linux/fsnotify.h>
26 #include <linux/personality.h>
27 #include <linux/security.h>
28 #include <linux/ima.h>
29 #include <linux/syscalls.h>
30 #include <linux/mount.h>
31 #include <linux/audit.h>
32 #include <linux/capability.h>
33 #include <linux/file.h>
34 #include <linux/fcntl.h>
35 #include <linux/device_cgroup.h>
36 #include <linux/fs_struct.h>
37 #include <linux/posix_acl.h>
38 #include <linux/hash.h>
39 #include <linux/bitops.h>
40 #include <linux/init_task.h>
41 #include <linux/uaccess.h>
43 #include "internal.h"
44 #include "mount.h"
46 /* [Feb-1997 T. Schoebel-Theuer]
47 * Fundamental changes in the pathname lookup mechanisms (namei)
48 * were necessary because of omirr. The reason is that omirr needs
49 * to know the _real_ pathname, not the user-supplied one, in case
50 * of symlinks (and also when transname replacements occur).
52 * The new code replaces the old recursive symlink resolution with
53 * an iterative one (in case of non-nested symlink chains). It does
54 * this with calls to <fs>_follow_link().
55 * As a side effect, dir_namei(), _namei() and follow_link() are now
56 * replaced with a single function lookup_dentry() that can handle all
57 * the special cases of the former code.
59 * With the new dcache, the pathname is stored at each inode, at least as
60 * long as the refcount of the inode is positive. As a side effect, the
61 * size of the dcache depends on the inode cache and thus is dynamic.
63 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
64 * resolution to correspond with current state of the code.
66 * Note that the symlink resolution is not *completely* iterative.
67 * There is still a significant amount of tail- and mid- recursion in
68 * the algorithm. Also, note that <fs>_readlink() is not used in
69 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
70 * may return different results than <fs>_follow_link(). Many virtual
71 * filesystems (including /proc) exhibit this behavior.
74 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
75 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
76 * and the name already exists in form of a symlink, try to create the new
77 * name indicated by the symlink. The old code always complained that the
78 * name already exists, due to not following the symlink even if its target
79 * is nonexistent. The new semantics affects also mknod() and link() when
80 * the name is a symlink pointing to a non-existent name.
82 * I don't know which semantics is the right one, since I have no access
83 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
84 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
85 * "old" one. Personally, I think the new semantics is much more logical.
86 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
87 * file does succeed in both HP-UX and SunOs, but not in Solaris
88 * and in the old Linux semantics.
91 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
92 * semantics. See the comments in "open_namei" and "do_link" below.
94 * [10-Sep-98 Alan Modra] Another symlink change.
97 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
98 * inside the path - always follow.
99 * in the last component in creation/removal/renaming - never follow.
100 * if LOOKUP_FOLLOW passed - follow.
101 * if the pathname has trailing slashes - follow.
102 * otherwise - don't follow.
103 * (applied in that order).
105 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
106 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
107 * During the 2.4 we need to fix the userland stuff depending on it -
108 * hopefully we will be able to get rid of that wart in 2.5. So far only
109 * XEmacs seems to be relying on it...
112 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
113 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
114 * any extra contention...
117 /* In order to reduce some races, while at the same time doing additional
118 * checking and hopefully speeding things up, we copy filenames to the
119 * kernel data space before using them..
121 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
122 * PATH_MAX includes the nul terminator --RR.
125 #define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname))
127 struct filename *
128 getname_flags(const char __user *filename, int flags, int *empty)
130 struct filename *result;
131 char *kname;
132 int len;
134 result = audit_reusename(filename);
135 if (result)
136 return result;
138 result = __getname();
139 if (unlikely(!result))
140 return ERR_PTR(-ENOMEM);
143 * First, try to embed the struct filename inside the names_cache
144 * allocation
146 kname = (char *)result->iname;
147 result->name = kname;
149 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
150 if (unlikely(len < 0)) {
151 __putname(result);
152 return ERR_PTR(len);
156 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
157 * separate struct filename so we can dedicate the entire
158 * names_cache allocation for the pathname, and re-do the copy from
159 * userland.
161 if (unlikely(len == EMBEDDED_NAME_MAX)) {
162 const size_t size = offsetof(struct filename, iname[1]);
163 kname = (char *)result;
166 * size is chosen that way we to guarantee that
167 * result->iname[0] is within the same object and that
168 * kname can't be equal to result->iname, no matter what.
170 result = kzalloc(size, GFP_KERNEL);
171 if (unlikely(!result)) {
172 __putname(kname);
173 return ERR_PTR(-ENOMEM);
175 result->name = kname;
176 len = strncpy_from_user(kname, filename, PATH_MAX);
177 if (unlikely(len < 0)) {
178 __putname(kname);
179 kfree(result);
180 return ERR_PTR(len);
182 if (unlikely(len == PATH_MAX)) {
183 __putname(kname);
184 kfree(result);
185 return ERR_PTR(-ENAMETOOLONG);
189 result->refcnt = 1;
190 /* The empty path is special. */
191 if (unlikely(!len)) {
192 if (empty)
193 *empty = 1;
194 if (!(flags & LOOKUP_EMPTY)) {
195 putname(result);
196 return ERR_PTR(-ENOENT);
200 result->uptr = filename;
201 result->aname = NULL;
202 audit_getname(result);
203 return result;
206 struct filename *
207 getname(const char __user * filename)
209 return getname_flags(filename, 0, NULL);
212 struct filename *
213 getname_kernel(const char * filename)
215 struct filename *result;
216 int len = strlen(filename) + 1;
218 result = __getname();
219 if (unlikely(!result))
220 return ERR_PTR(-ENOMEM);
222 if (len <= EMBEDDED_NAME_MAX) {
223 result->name = (char *)result->iname;
224 } else if (len <= PATH_MAX) {
225 const size_t size = offsetof(struct filename, iname[1]);
226 struct filename *tmp;
228 tmp = kmalloc(size, GFP_KERNEL);
229 if (unlikely(!tmp)) {
230 __putname(result);
231 return ERR_PTR(-ENOMEM);
233 tmp->name = (char *)result;
234 result = tmp;
235 } else {
236 __putname(result);
237 return ERR_PTR(-ENAMETOOLONG);
239 memcpy((char *)result->name, filename, len);
240 result->uptr = NULL;
241 result->aname = NULL;
242 result->refcnt = 1;
243 audit_getname(result);
245 return result;
248 void putname(struct filename *name)
250 BUG_ON(name->refcnt <= 0);
252 if (--name->refcnt > 0)
253 return;
255 if (name->name != name->iname) {
256 __putname(name->name);
257 kfree(name);
258 } else
259 __putname(name);
262 static int check_acl(struct inode *inode, int mask)
264 #ifdef CONFIG_FS_POSIX_ACL
265 struct posix_acl *acl;
267 if (mask & MAY_NOT_BLOCK) {
268 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
269 if (!acl)
270 return -EAGAIN;
271 /* no ->get_acl() calls in RCU mode... */
272 if (is_uncached_acl(acl))
273 return -ECHILD;
274 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
277 acl = get_acl(inode, ACL_TYPE_ACCESS);
278 if (IS_ERR(acl))
279 return PTR_ERR(acl);
280 if (acl) {
281 int error = posix_acl_permission(inode, acl, mask);
282 posix_acl_release(acl);
283 return error;
285 #endif
287 return -EAGAIN;
291 * This does the basic permission checking
293 static int acl_permission_check(struct inode *inode, int mask)
295 unsigned int mode = inode->i_mode;
297 if (likely(uid_eq(current_fsuid(), inode->i_uid)))
298 mode >>= 6;
299 else {
300 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
301 int error = check_acl(inode, mask);
302 if (error != -EAGAIN)
303 return error;
306 if (in_group_p(inode->i_gid))
307 mode >>= 3;
311 * If the DACs are ok we don't need any capability check.
313 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
314 return 0;
315 return -EACCES;
319 * generic_permission - check for access rights on a Posix-like filesystem
320 * @inode: inode to check access rights for
321 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
323 * Used to check for read/write/execute permissions on a file.
324 * We use "fsuid" for this, letting us set arbitrary permissions
325 * for filesystem access without changing the "normal" uids which
326 * are used for other things.
328 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
329 * request cannot be satisfied (eg. requires blocking or too much complexity).
330 * It would then be called again in ref-walk mode.
332 int generic_permission(struct inode *inode, int mask)
334 int ret;
337 * Do the basic permission checks.
339 ret = acl_permission_check(inode, mask);
340 if (ret != -EACCES)
341 return ret;
343 if (S_ISDIR(inode->i_mode)) {
344 /* DACs are overridable for directories */
345 if (!(mask & MAY_WRITE))
346 if (capable_wrt_inode_uidgid(inode,
347 CAP_DAC_READ_SEARCH))
348 return 0;
349 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
350 return 0;
351 return -EACCES;
355 * Searching includes executable on directories, else just read.
357 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
358 if (mask == MAY_READ)
359 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
360 return 0;
362 * Read/write DACs are always overridable.
363 * Executable DACs are overridable when there is
364 * at least one exec bit set.
366 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
367 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
368 return 0;
370 return -EACCES;
372 EXPORT_SYMBOL(generic_permission);
375 * We _really_ want to just do "generic_permission()" without
376 * even looking at the inode->i_op values. So we keep a cache
377 * flag in inode->i_opflags, that says "this has not special
378 * permission function, use the fast case".
380 static inline int do_inode_permission(struct inode *inode, int mask)
382 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
383 if (likely(inode->i_op->permission))
384 return inode->i_op->permission(inode, mask);
386 /* This gets set once for the inode lifetime */
387 spin_lock(&inode->i_lock);
388 inode->i_opflags |= IOP_FASTPERM;
389 spin_unlock(&inode->i_lock);
391 return generic_permission(inode, mask);
395 * sb_permission - Check superblock-level permissions
396 * @sb: Superblock of inode to check permission on
397 * @inode: Inode to check permission on
398 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
400 * Separate out file-system wide checks from inode-specific permission checks.
402 static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
404 if (unlikely(mask & MAY_WRITE)) {
405 umode_t mode = inode->i_mode;
407 /* Nobody gets write access to a read-only fs. */
408 if (sb_rdonly(sb) && (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
409 return -EROFS;
411 return 0;
415 * inode_permission - Check for access rights to a given inode
416 * @inode: Inode to check permission on
417 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
419 * Check for read/write/execute permissions on an inode. We use fs[ug]id for
420 * this, letting us set arbitrary permissions for filesystem access without
421 * changing the "normal" UIDs which are used for other things.
423 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
425 int inode_permission(struct inode *inode, int mask)
427 int retval;
429 retval = sb_permission(inode->i_sb, inode, mask);
430 if (retval)
431 return retval;
433 if (unlikely(mask & MAY_WRITE)) {
435 * Nobody gets write access to an immutable file.
437 if (IS_IMMUTABLE(inode))
438 return -EPERM;
441 * Updating mtime will likely cause i_uid and i_gid to be
442 * written back improperly if their true value is unknown
443 * to the vfs.
445 if (HAS_UNMAPPED_ID(inode))
446 return -EACCES;
449 retval = do_inode_permission(inode, mask);
450 if (retval)
451 return retval;
453 retval = devcgroup_inode_permission(inode, mask);
454 if (retval)
455 return retval;
457 return security_inode_permission(inode, mask);
459 EXPORT_SYMBOL(inode_permission);
462 * path_get - get a reference to a path
463 * @path: path to get the reference to
465 * Given a path increment the reference count to the dentry and the vfsmount.
467 void path_get(const struct path *path)
469 mntget(path->mnt);
470 dget(path->dentry);
472 EXPORT_SYMBOL(path_get);
475 * path_put - put a reference to a path
476 * @path: path to put the reference to
478 * Given a path decrement the reference count to the dentry and the vfsmount.
480 void path_put(const struct path *path)
482 dput(path->dentry);
483 mntput(path->mnt);
485 EXPORT_SYMBOL(path_put);
487 #define EMBEDDED_LEVELS 2
488 struct nameidata {
489 struct path path;
490 struct qstr last;
491 struct path root;
492 struct inode *inode; /* path.dentry.d_inode */
493 unsigned int flags;
494 unsigned seq, m_seq;
495 int last_type;
496 unsigned depth;
497 int total_link_count;
498 struct saved {
499 struct path link;
500 struct delayed_call done;
501 const char *name;
502 unsigned seq;
503 } *stack, internal[EMBEDDED_LEVELS];
504 struct filename *name;
505 struct nameidata *saved;
506 struct inode *link_inode;
507 unsigned root_seq;
508 int dfd;
509 } __randomize_layout;
511 static void set_nameidata(struct nameidata *p, int dfd, struct filename *name)
513 struct nameidata *old = current->nameidata;
514 p->stack = p->internal;
515 p->dfd = dfd;
516 p->name = name;
517 p->total_link_count = old ? old->total_link_count : 0;
518 p->saved = old;
519 current->nameidata = p;
522 static void restore_nameidata(void)
524 struct nameidata *now = current->nameidata, *old = now->saved;
526 current->nameidata = old;
527 if (old)
528 old->total_link_count = now->total_link_count;
529 if (now->stack != now->internal)
530 kfree(now->stack);
533 static int __nd_alloc_stack(struct nameidata *nd)
535 struct saved *p;
537 if (nd->flags & LOOKUP_RCU) {
538 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
539 GFP_ATOMIC);
540 if (unlikely(!p))
541 return -ECHILD;
542 } else {
543 p= kmalloc_array(MAXSYMLINKS, sizeof(struct saved),
544 GFP_KERNEL);
545 if (unlikely(!p))
546 return -ENOMEM;
548 memcpy(p, nd->internal, sizeof(nd->internal));
549 nd->stack = p;
550 return 0;
554 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
555 * @path: nameidate to verify
557 * Rename can sometimes move a file or directory outside of a bind
558 * mount, path_connected allows those cases to be detected.
560 static bool path_connected(const struct path *path)
562 struct vfsmount *mnt = path->mnt;
563 struct super_block *sb = mnt->mnt_sb;
565 /* Bind mounts and multi-root filesystems can have disconnected paths */
566 if (!(sb->s_iflags & SB_I_MULTIROOT) && (mnt->mnt_root == sb->s_root))
567 return true;
569 return is_subdir(path->dentry, mnt->mnt_root);
572 static inline int nd_alloc_stack(struct nameidata *nd)
574 if (likely(nd->depth != EMBEDDED_LEVELS))
575 return 0;
576 if (likely(nd->stack != nd->internal))
577 return 0;
578 return __nd_alloc_stack(nd);
581 static void drop_links(struct nameidata *nd)
583 int i = nd->depth;
584 while (i--) {
585 struct saved *last = nd->stack + i;
586 do_delayed_call(&last->done);
587 clear_delayed_call(&last->done);
591 static void terminate_walk(struct nameidata *nd)
593 drop_links(nd);
594 if (!(nd->flags & LOOKUP_RCU)) {
595 int i;
596 path_put(&nd->path);
597 for (i = 0; i < nd->depth; i++)
598 path_put(&nd->stack[i].link);
599 if (nd->flags & LOOKUP_ROOT_GRABBED) {
600 path_put(&nd->root);
601 nd->flags &= ~LOOKUP_ROOT_GRABBED;
603 } else {
604 nd->flags &= ~LOOKUP_RCU;
605 rcu_read_unlock();
607 nd->depth = 0;
610 /* path_put is needed afterwards regardless of success or failure */
611 static bool legitimize_path(struct nameidata *nd,
612 struct path *path, unsigned seq)
614 int res = __legitimize_mnt(path->mnt, nd->m_seq);
615 if (unlikely(res)) {
616 if (res > 0)
617 path->mnt = NULL;
618 path->dentry = NULL;
619 return false;
621 if (unlikely(!lockref_get_not_dead(&path->dentry->d_lockref))) {
622 path->dentry = NULL;
623 return false;
625 return !read_seqcount_retry(&path->dentry->d_seq, seq);
628 static bool legitimize_links(struct nameidata *nd)
630 int i;
631 for (i = 0; i < nd->depth; i++) {
632 struct saved *last = nd->stack + i;
633 if (unlikely(!legitimize_path(nd, &last->link, last->seq))) {
634 drop_links(nd);
635 nd->depth = i + 1;
636 return false;
639 return true;
642 static bool legitimize_root(struct nameidata *nd)
644 if (!nd->root.mnt || (nd->flags & LOOKUP_ROOT))
645 return true;
646 nd->flags |= LOOKUP_ROOT_GRABBED;
647 return legitimize_path(nd, &nd->root, nd->root_seq);
651 * Path walking has 2 modes, rcu-walk and ref-walk (see
652 * Documentation/filesystems/path-lookup.txt). In situations when we can't
653 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
654 * normal reference counts on dentries and vfsmounts to transition to ref-walk
655 * mode. Refcounts are grabbed at the last known good point before rcu-walk
656 * got stuck, so ref-walk may continue from there. If this is not successful
657 * (eg. a seqcount has changed), then failure is returned and it's up to caller
658 * to restart the path walk from the beginning in ref-walk mode.
662 * unlazy_walk - try to switch to ref-walk mode.
663 * @nd: nameidata pathwalk data
664 * Returns: 0 on success, -ECHILD on failure
666 * unlazy_walk attempts to legitimize the current nd->path and nd->root
667 * for ref-walk mode.
668 * Must be called from rcu-walk context.
669 * Nothing should touch nameidata between unlazy_walk() failure and
670 * terminate_walk().
672 static int unlazy_walk(struct nameidata *nd)
674 struct dentry *parent = nd->path.dentry;
676 BUG_ON(!(nd->flags & LOOKUP_RCU));
678 nd->flags &= ~LOOKUP_RCU;
679 if (unlikely(!legitimize_links(nd)))
680 goto out1;
681 if (unlikely(!legitimize_path(nd, &nd->path, nd->seq)))
682 goto out;
683 if (unlikely(!legitimize_root(nd)))
684 goto out;
685 rcu_read_unlock();
686 BUG_ON(nd->inode != parent->d_inode);
687 return 0;
689 out1:
690 nd->path.mnt = NULL;
691 nd->path.dentry = NULL;
692 out:
693 rcu_read_unlock();
694 return -ECHILD;
698 * unlazy_child - try to switch to ref-walk mode.
699 * @nd: nameidata pathwalk data
700 * @dentry: child of nd->path.dentry
701 * @seq: seq number to check dentry against
702 * Returns: 0 on success, -ECHILD on failure
704 * unlazy_child attempts to legitimize the current nd->path, nd->root and dentry
705 * for ref-walk mode. @dentry must be a path found by a do_lookup call on
706 * @nd. Must be called from rcu-walk context.
707 * Nothing should touch nameidata between unlazy_child() failure and
708 * terminate_walk().
710 static int unlazy_child(struct nameidata *nd, struct dentry *dentry, unsigned seq)
712 BUG_ON(!(nd->flags & LOOKUP_RCU));
714 nd->flags &= ~LOOKUP_RCU;
715 if (unlikely(!legitimize_links(nd)))
716 goto out2;
717 if (unlikely(!legitimize_mnt(nd->path.mnt, nd->m_seq)))
718 goto out2;
719 if (unlikely(!lockref_get_not_dead(&nd->path.dentry->d_lockref)))
720 goto out1;
723 * We need to move both the parent and the dentry from the RCU domain
724 * to be properly refcounted. And the sequence number in the dentry
725 * validates *both* dentry counters, since we checked the sequence
726 * number of the parent after we got the child sequence number. So we
727 * know the parent must still be valid if the child sequence number is
729 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref)))
730 goto out;
731 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
732 goto out_dput;
734 * Sequence counts matched. Now make sure that the root is
735 * still valid and get it if required.
737 if (unlikely(!legitimize_root(nd)))
738 goto out_dput;
739 rcu_read_unlock();
740 return 0;
742 out2:
743 nd->path.mnt = NULL;
744 out1:
745 nd->path.dentry = NULL;
746 out:
747 rcu_read_unlock();
748 return -ECHILD;
749 out_dput:
750 rcu_read_unlock();
751 dput(dentry);
752 return -ECHILD;
755 static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
757 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE))
758 return dentry->d_op->d_revalidate(dentry, flags);
759 else
760 return 1;
764 * complete_walk - successful completion of path walk
765 * @nd: pointer nameidata
767 * If we had been in RCU mode, drop out of it and legitimize nd->path.
768 * Revalidate the final result, unless we'd already done that during
769 * the path walk or the filesystem doesn't ask for it. Return 0 on
770 * success, -error on failure. In case of failure caller does not
771 * need to drop nd->path.
773 static int complete_walk(struct nameidata *nd)
775 struct dentry *dentry = nd->path.dentry;
776 int status;
778 if (nd->flags & LOOKUP_RCU) {
779 if (!(nd->flags & LOOKUP_ROOT))
780 nd->root.mnt = NULL;
781 if (unlikely(unlazy_walk(nd)))
782 return -ECHILD;
785 if (likely(!(nd->flags & LOOKUP_JUMPED)))
786 return 0;
788 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
789 return 0;
791 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
792 if (status > 0)
793 return 0;
795 if (!status)
796 status = -ESTALE;
798 return status;
801 static void set_root(struct nameidata *nd)
803 struct fs_struct *fs = current->fs;
805 if (nd->flags & LOOKUP_RCU) {
806 unsigned seq;
808 do {
809 seq = read_seqcount_begin(&fs->seq);
810 nd->root = fs->root;
811 nd->root_seq = __read_seqcount_begin(&nd->root.dentry->d_seq);
812 } while (read_seqcount_retry(&fs->seq, seq));
813 } else {
814 get_fs_root(fs, &nd->root);
815 nd->flags |= LOOKUP_ROOT_GRABBED;
819 static void path_put_conditional(struct path *path, struct nameidata *nd)
821 dput(path->dentry);
822 if (path->mnt != nd->path.mnt)
823 mntput(path->mnt);
826 static inline void path_to_nameidata(const struct path *path,
827 struct nameidata *nd)
829 if (!(nd->flags & LOOKUP_RCU)) {
830 dput(nd->path.dentry);
831 if (nd->path.mnt != path->mnt)
832 mntput(nd->path.mnt);
834 nd->path.mnt = path->mnt;
835 nd->path.dentry = path->dentry;
838 static int nd_jump_root(struct nameidata *nd)
840 if (nd->flags & LOOKUP_RCU) {
841 struct dentry *d;
842 nd->path = nd->root;
843 d = nd->path.dentry;
844 nd->inode = d->d_inode;
845 nd->seq = nd->root_seq;
846 if (unlikely(read_seqcount_retry(&d->d_seq, nd->seq)))
847 return -ECHILD;
848 } else {
849 path_put(&nd->path);
850 nd->path = nd->root;
851 path_get(&nd->path);
852 nd->inode = nd->path.dentry->d_inode;
854 nd->flags |= LOOKUP_JUMPED;
855 return 0;
859 * Helper to directly jump to a known parsed path from ->get_link,
860 * caller must have taken a reference to path beforehand.
862 void nd_jump_link(struct path *path)
864 struct nameidata *nd = current->nameidata;
865 path_put(&nd->path);
867 nd->path = *path;
868 nd->inode = nd->path.dentry->d_inode;
869 nd->flags |= LOOKUP_JUMPED;
872 static inline void put_link(struct nameidata *nd)
874 struct saved *last = nd->stack + --nd->depth;
875 do_delayed_call(&last->done);
876 if (!(nd->flags & LOOKUP_RCU))
877 path_put(&last->link);
880 int sysctl_protected_symlinks __read_mostly = 0;
881 int sysctl_protected_hardlinks __read_mostly = 0;
882 int sysctl_protected_fifos __read_mostly;
883 int sysctl_protected_regular __read_mostly;
886 * may_follow_link - Check symlink following for unsafe situations
887 * @nd: nameidata pathwalk data
889 * In the case of the sysctl_protected_symlinks sysctl being enabled,
890 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
891 * in a sticky world-writable directory. This is to protect privileged
892 * processes from failing races against path names that may change out
893 * from under them by way of other users creating malicious symlinks.
894 * It will permit symlinks to be followed only when outside a sticky
895 * world-writable directory, or when the uid of the symlink and follower
896 * match, or when the directory owner matches the symlink's owner.
898 * Returns 0 if following the symlink is allowed, -ve on error.
900 static inline int may_follow_link(struct nameidata *nd)
902 const struct inode *inode;
903 const struct inode *parent;
904 kuid_t puid;
906 if (!sysctl_protected_symlinks)
907 return 0;
909 /* Allowed if owner and follower match. */
910 inode = nd->link_inode;
911 if (uid_eq(current_cred()->fsuid, inode->i_uid))
912 return 0;
914 /* Allowed if parent directory not sticky and world-writable. */
915 parent = nd->inode;
916 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
917 return 0;
919 /* Allowed if parent directory and link owner match. */
920 puid = parent->i_uid;
921 if (uid_valid(puid) && uid_eq(puid, inode->i_uid))
922 return 0;
924 if (nd->flags & LOOKUP_RCU)
925 return -ECHILD;
927 audit_inode(nd->name, nd->stack[0].link.dentry, 0);
928 audit_log_path_denied(AUDIT_ANOM_LINK, "follow_link");
929 return -EACCES;
933 * safe_hardlink_source - Check for safe hardlink conditions
934 * @inode: the source inode to hardlink from
936 * Return false if at least one of the following conditions:
937 * - inode is not a regular file
938 * - inode is setuid
939 * - inode is setgid and group-exec
940 * - access failure for read and write
942 * Otherwise returns true.
944 static bool safe_hardlink_source(struct inode *inode)
946 umode_t mode = inode->i_mode;
948 /* Special files should not get pinned to the filesystem. */
949 if (!S_ISREG(mode))
950 return false;
952 /* Setuid files should not get pinned to the filesystem. */
953 if (mode & S_ISUID)
954 return false;
956 /* Executable setgid files should not get pinned to the filesystem. */
957 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
958 return false;
960 /* Hardlinking to unreadable or unwritable sources is dangerous. */
961 if (inode_permission(inode, MAY_READ | MAY_WRITE))
962 return false;
964 return true;
968 * may_linkat - Check permissions for creating a hardlink
969 * @link: the source to hardlink from
971 * Block hardlink when all of:
972 * - sysctl_protected_hardlinks enabled
973 * - fsuid does not match inode
974 * - hardlink source is unsafe (see safe_hardlink_source() above)
975 * - not CAP_FOWNER in a namespace with the inode owner uid mapped
977 * Returns 0 if successful, -ve on error.
979 static int may_linkat(struct path *link)
981 struct inode *inode = link->dentry->d_inode;
983 /* Inode writeback is not safe when the uid or gid are invalid. */
984 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
985 return -EOVERFLOW;
987 if (!sysctl_protected_hardlinks)
988 return 0;
990 /* Source inode owner (or CAP_FOWNER) can hardlink all they like,
991 * otherwise, it must be a safe source.
993 if (safe_hardlink_source(inode) || inode_owner_or_capable(inode))
994 return 0;
996 audit_log_path_denied(AUDIT_ANOM_LINK, "linkat");
997 return -EPERM;
1001 * may_create_in_sticky - Check whether an O_CREAT open in a sticky directory
1002 * should be allowed, or not, on files that already
1003 * exist.
1004 * @dir_mode: mode bits of directory
1005 * @dir_uid: owner of directory
1006 * @inode: the inode of the file to open
1008 * Block an O_CREAT open of a FIFO (or a regular file) when:
1009 * - sysctl_protected_fifos (or sysctl_protected_regular) is enabled
1010 * - the file already exists
1011 * - we are in a sticky directory
1012 * - we don't own the file
1013 * - the owner of the directory doesn't own the file
1014 * - the directory is world writable
1015 * If the sysctl_protected_fifos (or sysctl_protected_regular) is set to 2
1016 * the directory doesn't have to be world writable: being group writable will
1017 * be enough.
1019 * Returns 0 if the open is allowed, -ve on error.
1021 static int may_create_in_sticky(umode_t dir_mode, kuid_t dir_uid,
1022 struct inode * const inode)
1024 if ((!sysctl_protected_fifos && S_ISFIFO(inode->i_mode)) ||
1025 (!sysctl_protected_regular && S_ISREG(inode->i_mode)) ||
1026 likely(!(dir_mode & S_ISVTX)) ||
1027 uid_eq(inode->i_uid, dir_uid) ||
1028 uid_eq(current_fsuid(), inode->i_uid))
1029 return 0;
1031 if (likely(dir_mode & 0002) ||
1032 (dir_mode & 0020 &&
1033 ((sysctl_protected_fifos >= 2 && S_ISFIFO(inode->i_mode)) ||
1034 (sysctl_protected_regular >= 2 && S_ISREG(inode->i_mode))))) {
1035 const char *operation = S_ISFIFO(inode->i_mode) ?
1036 "sticky_create_fifo" :
1037 "sticky_create_regular";
1038 audit_log_path_denied(AUDIT_ANOM_CREAT, operation);
1039 return -EACCES;
1041 return 0;
1044 static __always_inline
1045 const char *get_link(struct nameidata *nd)
1047 struct saved *last = nd->stack + nd->depth - 1;
1048 struct dentry *dentry = last->link.dentry;
1049 struct inode *inode = nd->link_inode;
1050 int error;
1051 const char *res;
1053 if (!(nd->flags & LOOKUP_RCU)) {
1054 touch_atime(&last->link);
1055 cond_resched();
1056 } else if (atime_needs_update(&last->link, inode)) {
1057 if (unlikely(unlazy_walk(nd)))
1058 return ERR_PTR(-ECHILD);
1059 touch_atime(&last->link);
1062 error = security_inode_follow_link(dentry, inode,
1063 nd->flags & LOOKUP_RCU);
1064 if (unlikely(error))
1065 return ERR_PTR(error);
1067 nd->last_type = LAST_BIND;
1068 res = READ_ONCE(inode->i_link);
1069 if (!res) {
1070 const char * (*get)(struct dentry *, struct inode *,
1071 struct delayed_call *);
1072 get = inode->i_op->get_link;
1073 if (nd->flags & LOOKUP_RCU) {
1074 res = get(NULL, inode, &last->done);
1075 if (res == ERR_PTR(-ECHILD)) {
1076 if (unlikely(unlazy_walk(nd)))
1077 return ERR_PTR(-ECHILD);
1078 res = get(dentry, inode, &last->done);
1080 } else {
1081 res = get(dentry, inode, &last->done);
1083 if (IS_ERR_OR_NULL(res))
1084 return res;
1086 if (*res == '/') {
1087 if (!nd->root.mnt)
1088 set_root(nd);
1089 if (unlikely(nd_jump_root(nd)))
1090 return ERR_PTR(-ECHILD);
1091 while (unlikely(*++res == '/'))
1094 if (!*res)
1095 res = NULL;
1096 return res;
1100 * follow_up - Find the mountpoint of path's vfsmount
1102 * Given a path, find the mountpoint of its source file system.
1103 * Replace @path with the path of the mountpoint in the parent mount.
1104 * Up is towards /.
1106 * Return 1 if we went up a level and 0 if we were already at the
1107 * root.
1109 int follow_up(struct path *path)
1111 struct mount *mnt = real_mount(path->mnt);
1112 struct mount *parent;
1113 struct dentry *mountpoint;
1115 read_seqlock_excl(&mount_lock);
1116 parent = mnt->mnt_parent;
1117 if (parent == mnt) {
1118 read_sequnlock_excl(&mount_lock);
1119 return 0;
1121 mntget(&parent->mnt);
1122 mountpoint = dget(mnt->mnt_mountpoint);
1123 read_sequnlock_excl(&mount_lock);
1124 dput(path->dentry);
1125 path->dentry = mountpoint;
1126 mntput(path->mnt);
1127 path->mnt = &parent->mnt;
1128 return 1;
1130 EXPORT_SYMBOL(follow_up);
1133 * Perform an automount
1134 * - return -EISDIR to tell follow_managed() to stop and return the path we
1135 * were called with.
1137 static int follow_automount(struct path *path, struct nameidata *nd,
1138 bool *need_mntput)
1140 struct vfsmount *mnt;
1141 int err;
1143 if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
1144 return -EREMOTE;
1146 /* We don't want to mount if someone's just doing a stat -
1147 * unless they're stat'ing a directory and appended a '/' to
1148 * the name.
1150 * We do, however, want to mount if someone wants to open or
1151 * create a file of any type under the mountpoint, wants to
1152 * traverse through the mountpoint or wants to open the
1153 * mounted directory. Also, autofs may mark negative dentries
1154 * as being automount points. These will need the attentions
1155 * of the daemon to instantiate them before they can be used.
1157 if (!(nd->flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1158 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1159 path->dentry->d_inode)
1160 return -EISDIR;
1162 nd->total_link_count++;
1163 if (nd->total_link_count >= 40)
1164 return -ELOOP;
1166 mnt = path->dentry->d_op->d_automount(path);
1167 if (IS_ERR(mnt)) {
1169 * The filesystem is allowed to return -EISDIR here to indicate
1170 * it doesn't want to automount. For instance, autofs would do
1171 * this so that its userspace daemon can mount on this dentry.
1173 * However, we can only permit this if it's a terminal point in
1174 * the path being looked up; if it wasn't then the remainder of
1175 * the path is inaccessible and we should say so.
1177 if (PTR_ERR(mnt) == -EISDIR && (nd->flags & LOOKUP_PARENT))
1178 return -EREMOTE;
1179 return PTR_ERR(mnt);
1182 if (!mnt) /* mount collision */
1183 return 0;
1185 if (!*need_mntput) {
1186 /* lock_mount() may release path->mnt on error */
1187 mntget(path->mnt);
1188 *need_mntput = true;
1190 err = finish_automount(mnt, path);
1192 switch (err) {
1193 case -EBUSY:
1194 /* Someone else made a mount here whilst we were busy */
1195 return 0;
1196 case 0:
1197 path_put(path);
1198 path->mnt = mnt;
1199 path->dentry = dget(mnt->mnt_root);
1200 return 0;
1201 default:
1202 return err;
1208 * Handle a dentry that is managed in some way.
1209 * - Flagged for transit management (autofs)
1210 * - Flagged as mountpoint
1211 * - Flagged as automount point
1213 * This may only be called in refwalk mode.
1214 * On success path->dentry is known positive.
1216 * Serialization is taken care of in namespace.c
1218 static int follow_managed(struct path *path, struct nameidata *nd)
1220 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1221 unsigned flags;
1222 bool need_mntput = false;
1223 int ret = 0;
1225 /* Given that we're not holding a lock here, we retain the value in a
1226 * local variable for each dentry as we look at it so that we don't see
1227 * the components of that value change under us */
1228 while (flags = smp_load_acquire(&path->dentry->d_flags),
1229 unlikely(flags & DCACHE_MANAGED_DENTRY)) {
1230 /* Allow the filesystem to manage the transit without i_mutex
1231 * being held. */
1232 if (flags & DCACHE_MANAGE_TRANSIT) {
1233 BUG_ON(!path->dentry->d_op);
1234 BUG_ON(!path->dentry->d_op->d_manage);
1235 ret = path->dentry->d_op->d_manage(path, false);
1236 flags = smp_load_acquire(&path->dentry->d_flags);
1237 if (ret < 0)
1238 break;
1241 /* Transit to a mounted filesystem. */
1242 if (flags & DCACHE_MOUNTED) {
1243 struct vfsmount *mounted = lookup_mnt(path);
1244 if (mounted) {
1245 dput(path->dentry);
1246 if (need_mntput)
1247 mntput(path->mnt);
1248 path->mnt = mounted;
1249 path->dentry = dget(mounted->mnt_root);
1250 need_mntput = true;
1251 continue;
1254 /* Something is mounted on this dentry in another
1255 * namespace and/or whatever was mounted there in this
1256 * namespace got unmounted before lookup_mnt() could
1257 * get it */
1260 /* Handle an automount point */
1261 if (flags & DCACHE_NEED_AUTOMOUNT) {
1262 ret = follow_automount(path, nd, &need_mntput);
1263 if (ret < 0)
1264 break;
1265 continue;
1268 /* We didn't change the current path point */
1269 break;
1272 if (need_mntput && path->mnt == mnt)
1273 mntput(path->mnt);
1274 if (need_mntput)
1275 nd->flags |= LOOKUP_JUMPED;
1276 if (ret == -EISDIR || !ret)
1277 ret = 1;
1278 if (ret > 0 && unlikely(d_flags_negative(flags)))
1279 ret = -ENOENT;
1280 if (unlikely(ret < 0))
1281 path_put_conditional(path, nd);
1282 return ret;
1285 int follow_down_one(struct path *path)
1287 struct vfsmount *mounted;
1289 mounted = lookup_mnt(path);
1290 if (mounted) {
1291 dput(path->dentry);
1292 mntput(path->mnt);
1293 path->mnt = mounted;
1294 path->dentry = dget(mounted->mnt_root);
1295 return 1;
1297 return 0;
1299 EXPORT_SYMBOL(follow_down_one);
1301 static inline int managed_dentry_rcu(const struct path *path)
1303 return (path->dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1304 path->dentry->d_op->d_manage(path, true) : 0;
1308 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if
1309 * we meet a managed dentry that would need blocking.
1311 static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1312 struct inode **inode, unsigned *seqp)
1314 for (;;) {
1315 struct mount *mounted;
1317 * Don't forget we might have a non-mountpoint managed dentry
1318 * that wants to block transit.
1320 switch (managed_dentry_rcu(path)) {
1321 case -ECHILD:
1322 default:
1323 return false;
1324 case -EISDIR:
1325 return true;
1326 case 0:
1327 break;
1330 if (!d_mountpoint(path->dentry))
1331 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1333 mounted = __lookup_mnt(path->mnt, path->dentry);
1334 if (!mounted)
1335 break;
1336 path->mnt = &mounted->mnt;
1337 path->dentry = mounted->mnt.mnt_root;
1338 nd->flags |= LOOKUP_JUMPED;
1339 *seqp = read_seqcount_begin(&path->dentry->d_seq);
1341 * Update the inode too. We don't need to re-check the
1342 * dentry sequence number here after this d_inode read,
1343 * because a mount-point is always pinned.
1345 *inode = path->dentry->d_inode;
1347 return !read_seqretry(&mount_lock, nd->m_seq) &&
1348 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1351 static int follow_dotdot_rcu(struct nameidata *nd)
1353 struct inode *inode = nd->inode;
1355 while (1) {
1356 if (path_equal(&nd->path, &nd->root))
1357 break;
1358 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1359 struct dentry *old = nd->path.dentry;
1360 struct dentry *parent = old->d_parent;
1361 unsigned seq;
1363 inode = parent->d_inode;
1364 seq = read_seqcount_begin(&parent->d_seq);
1365 if (unlikely(read_seqcount_retry(&old->d_seq, nd->seq)))
1366 return -ECHILD;
1367 nd->path.dentry = parent;
1368 nd->seq = seq;
1369 if (unlikely(!path_connected(&nd->path)))
1370 return -ECHILD;
1371 break;
1372 } else {
1373 struct mount *mnt = real_mount(nd->path.mnt);
1374 struct mount *mparent = mnt->mnt_parent;
1375 struct dentry *mountpoint = mnt->mnt_mountpoint;
1376 struct inode *inode2 = mountpoint->d_inode;
1377 unsigned seq = read_seqcount_begin(&mountpoint->d_seq);
1378 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1379 return -ECHILD;
1380 if (&mparent->mnt == nd->path.mnt)
1381 break;
1382 /* we know that mountpoint was pinned */
1383 nd->path.dentry = mountpoint;
1384 nd->path.mnt = &mparent->mnt;
1385 inode = inode2;
1386 nd->seq = seq;
1389 while (unlikely(d_mountpoint(nd->path.dentry))) {
1390 struct mount *mounted;
1391 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1392 if (unlikely(read_seqretry(&mount_lock, nd->m_seq)))
1393 return -ECHILD;
1394 if (!mounted)
1395 break;
1396 nd->path.mnt = &mounted->mnt;
1397 nd->path.dentry = mounted->mnt.mnt_root;
1398 inode = nd->path.dentry->d_inode;
1399 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1401 nd->inode = inode;
1402 return 0;
1406 * Follow down to the covering mount currently visible to userspace. At each
1407 * point, the filesystem owning that dentry may be queried as to whether the
1408 * caller is permitted to proceed or not.
1410 int follow_down(struct path *path)
1412 unsigned managed;
1413 int ret;
1415 while (managed = READ_ONCE(path->dentry->d_flags),
1416 unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1417 /* Allow the filesystem to manage the transit without i_mutex
1418 * being held.
1420 * We indicate to the filesystem if someone is trying to mount
1421 * something here. This gives autofs the chance to deny anyone
1422 * other than its daemon the right to mount on its
1423 * superstructure.
1425 * The filesystem may sleep at this point.
1427 if (managed & DCACHE_MANAGE_TRANSIT) {
1428 BUG_ON(!path->dentry->d_op);
1429 BUG_ON(!path->dentry->d_op->d_manage);
1430 ret = path->dentry->d_op->d_manage(path, false);
1431 if (ret < 0)
1432 return ret == -EISDIR ? 0 : ret;
1435 /* Transit to a mounted filesystem. */
1436 if (managed & DCACHE_MOUNTED) {
1437 struct vfsmount *mounted = lookup_mnt(path);
1438 if (!mounted)
1439 break;
1440 dput(path->dentry);
1441 mntput(path->mnt);
1442 path->mnt = mounted;
1443 path->dentry = dget(mounted->mnt_root);
1444 continue;
1447 /* Don't handle automount points here */
1448 break;
1450 return 0;
1452 EXPORT_SYMBOL(follow_down);
1455 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1457 static void follow_mount(struct path *path)
1459 while (d_mountpoint(path->dentry)) {
1460 struct vfsmount *mounted = lookup_mnt(path);
1461 if (!mounted)
1462 break;
1463 dput(path->dentry);
1464 mntput(path->mnt);
1465 path->mnt = mounted;
1466 path->dentry = dget(mounted->mnt_root);
1470 static int path_parent_directory(struct path *path)
1472 struct dentry *old = path->dentry;
1473 /* rare case of legitimate dget_parent()... */
1474 path->dentry = dget_parent(path->dentry);
1475 dput(old);
1476 if (unlikely(!path_connected(path)))
1477 return -ENOENT;
1478 return 0;
1481 static int follow_dotdot(struct nameidata *nd)
1483 while(1) {
1484 if (path_equal(&nd->path, &nd->root))
1485 break;
1486 if (nd->path.dentry != nd->path.mnt->mnt_root) {
1487 int ret = path_parent_directory(&nd->path);
1488 if (ret)
1489 return ret;
1490 break;
1492 if (!follow_up(&nd->path))
1493 break;
1495 follow_mount(&nd->path);
1496 nd->inode = nd->path.dentry->d_inode;
1497 return 0;
1501 * This looks up the name in dcache and possibly revalidates the found dentry.
1502 * NULL is returned if the dentry does not exist in the cache.
1504 static struct dentry *lookup_dcache(const struct qstr *name,
1505 struct dentry *dir,
1506 unsigned int flags)
1508 struct dentry *dentry = d_lookup(dir, name);
1509 if (dentry) {
1510 int error = d_revalidate(dentry, flags);
1511 if (unlikely(error <= 0)) {
1512 if (!error)
1513 d_invalidate(dentry);
1514 dput(dentry);
1515 return ERR_PTR(error);
1518 return dentry;
1522 * Parent directory has inode locked exclusive. This is one
1523 * and only case when ->lookup() gets called on non in-lookup
1524 * dentries - as the matter of fact, this only gets called
1525 * when directory is guaranteed to have no in-lookup children
1526 * at all.
1528 static struct dentry *__lookup_hash(const struct qstr *name,
1529 struct dentry *base, unsigned int flags)
1531 struct dentry *dentry = lookup_dcache(name, base, flags);
1532 struct dentry *old;
1533 struct inode *dir = base->d_inode;
1535 if (dentry)
1536 return dentry;
1538 /* Don't create child dentry for a dead directory. */
1539 if (unlikely(IS_DEADDIR(dir)))
1540 return ERR_PTR(-ENOENT);
1542 dentry = d_alloc(base, name);
1543 if (unlikely(!dentry))
1544 return ERR_PTR(-ENOMEM);
1546 old = dir->i_op->lookup(dir, dentry, flags);
1547 if (unlikely(old)) {
1548 dput(dentry);
1549 dentry = old;
1551 return dentry;
1554 static int lookup_fast(struct nameidata *nd,
1555 struct path *path, struct inode **inode,
1556 unsigned *seqp)
1558 struct vfsmount *mnt = nd->path.mnt;
1559 struct dentry *dentry, *parent = nd->path.dentry;
1560 int status = 1;
1561 int err;
1564 * Rename seqlock is not required here because in the off chance
1565 * of a false negative due to a concurrent rename, the caller is
1566 * going to fall back to non-racy lookup.
1568 if (nd->flags & LOOKUP_RCU) {
1569 unsigned seq;
1570 bool negative;
1571 dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1572 if (unlikely(!dentry)) {
1573 if (unlazy_walk(nd))
1574 return -ECHILD;
1575 return 0;
1579 * This sequence count validates that the inode matches
1580 * the dentry name information from lookup.
1582 *inode = d_backing_inode(dentry);
1583 negative = d_is_negative(dentry);
1584 if (unlikely(read_seqcount_retry(&dentry->d_seq, seq)))
1585 return -ECHILD;
1588 * This sequence count validates that the parent had no
1589 * changes while we did the lookup of the dentry above.
1591 * The memory barrier in read_seqcount_begin of child is
1592 * enough, we can use __read_seqcount_retry here.
1594 if (unlikely(__read_seqcount_retry(&parent->d_seq, nd->seq)))
1595 return -ECHILD;
1597 *seqp = seq;
1598 status = d_revalidate(dentry, nd->flags);
1599 if (likely(status > 0)) {
1601 * Note: do negative dentry check after revalidation in
1602 * case that drops it.
1604 if (unlikely(negative))
1605 return -ENOENT;
1606 path->mnt = mnt;
1607 path->dentry = dentry;
1608 if (likely(__follow_mount_rcu(nd, path, inode, seqp)))
1609 return 1;
1611 if (unlazy_child(nd, dentry, seq))
1612 return -ECHILD;
1613 if (unlikely(status == -ECHILD))
1614 /* we'd been told to redo it in non-rcu mode */
1615 status = d_revalidate(dentry, nd->flags);
1616 } else {
1617 dentry = __d_lookup(parent, &nd->last);
1618 if (unlikely(!dentry))
1619 return 0;
1620 status = d_revalidate(dentry, nd->flags);
1622 if (unlikely(status <= 0)) {
1623 if (!status)
1624 d_invalidate(dentry);
1625 dput(dentry);
1626 return status;
1629 path->mnt = mnt;
1630 path->dentry = dentry;
1631 err = follow_managed(path, nd);
1632 if (likely(err > 0))
1633 *inode = d_backing_inode(path->dentry);
1634 return err;
1637 /* Fast lookup failed, do it the slow way */
1638 static struct dentry *__lookup_slow(const struct qstr *name,
1639 struct dentry *dir,
1640 unsigned int flags)
1642 struct dentry *dentry, *old;
1643 struct inode *inode = dir->d_inode;
1644 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1646 /* Don't go there if it's already dead */
1647 if (unlikely(IS_DEADDIR(inode)))
1648 return ERR_PTR(-ENOENT);
1649 again:
1650 dentry = d_alloc_parallel(dir, name, &wq);
1651 if (IS_ERR(dentry))
1652 return dentry;
1653 if (unlikely(!d_in_lookup(dentry))) {
1654 int error = d_revalidate(dentry, flags);
1655 if (unlikely(error <= 0)) {
1656 if (!error) {
1657 d_invalidate(dentry);
1658 dput(dentry);
1659 goto again;
1661 dput(dentry);
1662 dentry = ERR_PTR(error);
1664 } else {
1665 old = inode->i_op->lookup(inode, dentry, flags);
1666 d_lookup_done(dentry);
1667 if (unlikely(old)) {
1668 dput(dentry);
1669 dentry = old;
1672 return dentry;
1675 static struct dentry *lookup_slow(const struct qstr *name,
1676 struct dentry *dir,
1677 unsigned int flags)
1679 struct inode *inode = dir->d_inode;
1680 struct dentry *res;
1681 inode_lock_shared(inode);
1682 res = __lookup_slow(name, dir, flags);
1683 inode_unlock_shared(inode);
1684 return res;
1687 static inline int may_lookup(struct nameidata *nd)
1689 if (nd->flags & LOOKUP_RCU) {
1690 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1691 if (err != -ECHILD)
1692 return err;
1693 if (unlazy_walk(nd))
1694 return -ECHILD;
1696 return inode_permission(nd->inode, MAY_EXEC);
1699 static inline int handle_dots(struct nameidata *nd, int type)
1701 if (type == LAST_DOTDOT) {
1702 if (!nd->root.mnt)
1703 set_root(nd);
1704 if (nd->flags & LOOKUP_RCU) {
1705 return follow_dotdot_rcu(nd);
1706 } else
1707 return follow_dotdot(nd);
1709 return 0;
1712 static int pick_link(struct nameidata *nd, struct path *link,
1713 struct inode *inode, unsigned seq)
1715 int error;
1716 struct saved *last;
1717 if (unlikely(nd->total_link_count++ >= MAXSYMLINKS)) {
1718 path_to_nameidata(link, nd);
1719 return -ELOOP;
1721 if (!(nd->flags & LOOKUP_RCU)) {
1722 if (link->mnt == nd->path.mnt)
1723 mntget(link->mnt);
1725 error = nd_alloc_stack(nd);
1726 if (unlikely(error)) {
1727 if (error == -ECHILD) {
1728 if (unlikely(!legitimize_path(nd, link, seq))) {
1729 drop_links(nd);
1730 nd->depth = 0;
1731 nd->flags &= ~LOOKUP_RCU;
1732 nd->path.mnt = NULL;
1733 nd->path.dentry = NULL;
1734 rcu_read_unlock();
1735 } else if (likely(unlazy_walk(nd)) == 0)
1736 error = nd_alloc_stack(nd);
1738 if (error) {
1739 path_put(link);
1740 return error;
1744 last = nd->stack + nd->depth++;
1745 last->link = *link;
1746 clear_delayed_call(&last->done);
1747 nd->link_inode = inode;
1748 last->seq = seq;
1749 return 1;
1752 enum {WALK_FOLLOW = 1, WALK_MORE = 2};
1755 * Do we need to follow links? We _really_ want to be able
1756 * to do this check without having to look at inode->i_op,
1757 * so we keep a cache of "no, this doesn't need follow_link"
1758 * for the common case.
1760 static inline int step_into(struct nameidata *nd, struct path *path,
1761 int flags, struct inode *inode, unsigned seq)
1763 if (!(flags & WALK_MORE) && nd->depth)
1764 put_link(nd);
1765 if (likely(!d_is_symlink(path->dentry)) ||
1766 !(flags & WALK_FOLLOW || nd->flags & LOOKUP_FOLLOW)) {
1767 /* not a symlink or should not follow */
1768 path_to_nameidata(path, nd);
1769 nd->inode = inode;
1770 nd->seq = seq;
1771 return 0;
1773 /* make sure that d_is_symlink above matches inode */
1774 if (nd->flags & LOOKUP_RCU) {
1775 if (read_seqcount_retry(&path->dentry->d_seq, seq))
1776 return -ECHILD;
1778 return pick_link(nd, path, inode, seq);
1781 static int walk_component(struct nameidata *nd, int flags)
1783 struct path path;
1784 struct inode *inode;
1785 unsigned seq;
1786 int err;
1788 * "." and ".." are special - ".." especially so because it has
1789 * to be able to know about the current root directory and
1790 * parent relationships.
1792 if (unlikely(nd->last_type != LAST_NORM)) {
1793 err = handle_dots(nd, nd->last_type);
1794 if (!(flags & WALK_MORE) && nd->depth)
1795 put_link(nd);
1796 return err;
1798 err = lookup_fast(nd, &path, &inode, &seq);
1799 if (unlikely(err <= 0)) {
1800 if (err < 0)
1801 return err;
1802 path.dentry = lookup_slow(&nd->last, nd->path.dentry,
1803 nd->flags);
1804 if (IS_ERR(path.dentry))
1805 return PTR_ERR(path.dentry);
1807 path.mnt = nd->path.mnt;
1808 err = follow_managed(&path, nd);
1809 if (unlikely(err < 0))
1810 return err;
1812 seq = 0; /* we are already out of RCU mode */
1813 inode = d_backing_inode(path.dentry);
1816 return step_into(nd, &path, flags, inode, seq);
1820 * We can do the critical dentry name comparison and hashing
1821 * operations one word at a time, but we are limited to:
1823 * - Architectures with fast unaligned word accesses. We could
1824 * do a "get_unaligned()" if this helps and is sufficiently
1825 * fast.
1827 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1828 * do not trap on the (extremely unlikely) case of a page
1829 * crossing operation.
1831 * - Furthermore, we need an efficient 64-bit compile for the
1832 * 64-bit case in order to generate the "number of bytes in
1833 * the final mask". Again, that could be replaced with a
1834 * efficient population count instruction or similar.
1836 #ifdef CONFIG_DCACHE_WORD_ACCESS
1838 #include <asm/word-at-a-time.h>
1840 #ifdef HASH_MIX
1842 /* Architecture provides HASH_MIX and fold_hash() in <asm/hash.h> */
1844 #elif defined(CONFIG_64BIT)
1846 * Register pressure in the mixing function is an issue, particularly
1847 * on 32-bit x86, but almost any function requires one state value and
1848 * one temporary. Instead, use a function designed for two state values
1849 * and no temporaries.
1851 * This function cannot create a collision in only two iterations, so
1852 * we have two iterations to achieve avalanche. In those two iterations,
1853 * we have six layers of mixing, which is enough to spread one bit's
1854 * influence out to 2^6 = 64 state bits.
1856 * Rotate constants are scored by considering either 64 one-bit input
1857 * deltas or 64*63/2 = 2016 two-bit input deltas, and finding the
1858 * probability of that delta causing a change to each of the 128 output
1859 * bits, using a sample of random initial states.
1861 * The Shannon entropy of the computed probabilities is then summed
1862 * to produce a score. Ideally, any input change has a 50% chance of
1863 * toggling any given output bit.
1865 * Mixing scores (in bits) for (12,45):
1866 * Input delta: 1-bit 2-bit
1867 * 1 round: 713.3 42542.6
1868 * 2 rounds: 2753.7 140389.8
1869 * 3 rounds: 5954.1 233458.2
1870 * 4 rounds: 7862.6 256672.2
1871 * Perfect: 8192 258048
1872 * (64*128) (64*63/2 * 128)
1874 #define HASH_MIX(x, y, a) \
1875 ( x ^= (a), \
1876 y ^= x, x = rol64(x,12),\
1877 x += y, y = rol64(y,45),\
1878 y *= 9 )
1881 * Fold two longs into one 32-bit hash value. This must be fast, but
1882 * latency isn't quite as critical, as there is a fair bit of additional
1883 * work done before the hash value is used.
1885 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1887 y ^= x * GOLDEN_RATIO_64;
1888 y *= GOLDEN_RATIO_64;
1889 return y >> 32;
1892 #else /* 32-bit case */
1895 * Mixing scores (in bits) for (7,20):
1896 * Input delta: 1-bit 2-bit
1897 * 1 round: 330.3 9201.6
1898 * 2 rounds: 1246.4 25475.4
1899 * 3 rounds: 1907.1 31295.1
1900 * 4 rounds: 2042.3 31718.6
1901 * Perfect: 2048 31744
1902 * (32*64) (32*31/2 * 64)
1904 #define HASH_MIX(x, y, a) \
1905 ( x ^= (a), \
1906 y ^= x, x = rol32(x, 7),\
1907 x += y, y = rol32(y,20),\
1908 y *= 9 )
1910 static inline unsigned int fold_hash(unsigned long x, unsigned long y)
1912 /* Use arch-optimized multiply if one exists */
1913 return __hash_32(y ^ __hash_32(x));
1916 #endif
1919 * Return the hash of a string of known length. This is carfully
1920 * designed to match hash_name(), which is the more critical function.
1921 * In particular, we must end by hashing a final word containing 0..7
1922 * payload bytes, to match the way that hash_name() iterates until it
1923 * finds the delimiter after the name.
1925 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
1927 unsigned long a, x = 0, y = (unsigned long)salt;
1929 for (;;) {
1930 if (!len)
1931 goto done;
1932 a = load_unaligned_zeropad(name);
1933 if (len < sizeof(unsigned long))
1934 break;
1935 HASH_MIX(x, y, a);
1936 name += sizeof(unsigned long);
1937 len -= sizeof(unsigned long);
1939 x ^= a & bytemask_from_count(len);
1940 done:
1941 return fold_hash(x, y);
1943 EXPORT_SYMBOL(full_name_hash);
1945 /* Return the "hash_len" (hash and length) of a null-terminated string */
1946 u64 hashlen_string(const void *salt, const char *name)
1948 unsigned long a = 0, x = 0, y = (unsigned long)salt;
1949 unsigned long adata, mask, len;
1950 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1952 len = 0;
1953 goto inside;
1955 do {
1956 HASH_MIX(x, y, a);
1957 len += sizeof(unsigned long);
1958 inside:
1959 a = load_unaligned_zeropad(name+len);
1960 } while (!has_zero(a, &adata, &constants));
1962 adata = prep_zero_mask(a, adata, &constants);
1963 mask = create_zero_mask(adata);
1964 x ^= a & zero_bytemask(mask);
1966 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1968 EXPORT_SYMBOL(hashlen_string);
1971 * Calculate the length and hash of the path component, and
1972 * return the "hash_len" as the result.
1974 static inline u64 hash_name(const void *salt, const char *name)
1976 unsigned long a = 0, b, x = 0, y = (unsigned long)salt;
1977 unsigned long adata, bdata, mask, len;
1978 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1980 len = 0;
1981 goto inside;
1983 do {
1984 HASH_MIX(x, y, a);
1985 len += sizeof(unsigned long);
1986 inside:
1987 a = load_unaligned_zeropad(name+len);
1988 b = a ^ REPEAT_BYTE('/');
1989 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1991 adata = prep_zero_mask(a, adata, &constants);
1992 bdata = prep_zero_mask(b, bdata, &constants);
1993 mask = create_zero_mask(adata | bdata);
1994 x ^= a & zero_bytemask(mask);
1996 return hashlen_create(fold_hash(x, y), len + find_zero(mask));
1999 #else /* !CONFIG_DCACHE_WORD_ACCESS: Slow, byte-at-a-time version */
2001 /* Return the hash of a string of known length */
2002 unsigned int full_name_hash(const void *salt, const char *name, unsigned int len)
2004 unsigned long hash = init_name_hash(salt);
2005 while (len--)
2006 hash = partial_name_hash((unsigned char)*name++, hash);
2007 return end_name_hash(hash);
2009 EXPORT_SYMBOL(full_name_hash);
2011 /* Return the "hash_len" (hash and length) of a null-terminated string */
2012 u64 hashlen_string(const void *salt, const char *name)
2014 unsigned long hash = init_name_hash(salt);
2015 unsigned long len = 0, c;
2017 c = (unsigned char)*name;
2018 while (c) {
2019 len++;
2020 hash = partial_name_hash(c, hash);
2021 c = (unsigned char)name[len];
2023 return hashlen_create(end_name_hash(hash), len);
2025 EXPORT_SYMBOL(hashlen_string);
2028 * We know there's a real path component here of at least
2029 * one character.
2031 static inline u64 hash_name(const void *salt, const char *name)
2033 unsigned long hash = init_name_hash(salt);
2034 unsigned long len = 0, c;
2036 c = (unsigned char)*name;
2037 do {
2038 len++;
2039 hash = partial_name_hash(c, hash);
2040 c = (unsigned char)name[len];
2041 } while (c && c != '/');
2042 return hashlen_create(end_name_hash(hash), len);
2045 #endif
2048 * Name resolution.
2049 * This is the basic name resolution function, turning a pathname into
2050 * the final dentry. We expect 'base' to be positive and a directory.
2052 * Returns 0 and nd will have valid dentry and mnt on success.
2053 * Returns error and drops reference to input namei data on failure.
2055 static int link_path_walk(const char *name, struct nameidata *nd)
2057 int err;
2059 if (IS_ERR(name))
2060 return PTR_ERR(name);
2061 while (*name=='/')
2062 name++;
2063 if (!*name)
2064 return 0;
2066 /* At this point we know we have a real path component. */
2067 for(;;) {
2068 u64 hash_len;
2069 int type;
2071 err = may_lookup(nd);
2072 if (err)
2073 return err;
2075 hash_len = hash_name(nd->path.dentry, name);
2077 type = LAST_NORM;
2078 if (name[0] == '.') switch (hashlen_len(hash_len)) {
2079 case 2:
2080 if (name[1] == '.') {
2081 type = LAST_DOTDOT;
2082 nd->flags |= LOOKUP_JUMPED;
2084 break;
2085 case 1:
2086 type = LAST_DOT;
2088 if (likely(type == LAST_NORM)) {
2089 struct dentry *parent = nd->path.dentry;
2090 nd->flags &= ~LOOKUP_JUMPED;
2091 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
2092 struct qstr this = { { .hash_len = hash_len }, .name = name };
2093 err = parent->d_op->d_hash(parent, &this);
2094 if (err < 0)
2095 return err;
2096 hash_len = this.hash_len;
2097 name = this.name;
2101 nd->last.hash_len = hash_len;
2102 nd->last.name = name;
2103 nd->last_type = type;
2105 name += hashlen_len(hash_len);
2106 if (!*name)
2107 goto OK;
2109 * If it wasn't NUL, we know it was '/'. Skip that
2110 * slash, and continue until no more slashes.
2112 do {
2113 name++;
2114 } while (unlikely(*name == '/'));
2115 if (unlikely(!*name)) {
2117 /* pathname body, done */
2118 if (!nd->depth)
2119 return 0;
2120 name = nd->stack[nd->depth - 1].name;
2121 /* trailing symlink, done */
2122 if (!name)
2123 return 0;
2124 /* last component of nested symlink */
2125 err = walk_component(nd, WALK_FOLLOW);
2126 } else {
2127 /* not the last component */
2128 err = walk_component(nd, WALK_FOLLOW | WALK_MORE);
2130 if (err < 0)
2131 return err;
2133 if (err) {
2134 const char *s = get_link(nd);
2136 if (IS_ERR(s))
2137 return PTR_ERR(s);
2138 err = 0;
2139 if (unlikely(!s)) {
2140 /* jumped */
2141 put_link(nd);
2142 } else {
2143 nd->stack[nd->depth - 1].name = name;
2144 name = s;
2145 continue;
2148 if (unlikely(!d_can_lookup(nd->path.dentry))) {
2149 if (nd->flags & LOOKUP_RCU) {
2150 if (unlazy_walk(nd))
2151 return -ECHILD;
2153 return -ENOTDIR;
2158 /* must be paired with terminate_walk() */
2159 static const char *path_init(struct nameidata *nd, unsigned flags)
2161 const char *s = nd->name->name;
2163 if (!*s)
2164 flags &= ~LOOKUP_RCU;
2165 if (flags & LOOKUP_RCU)
2166 rcu_read_lock();
2168 nd->last_type = LAST_ROOT; /* if there are only slashes... */
2169 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
2170 nd->depth = 0;
2171 if (flags & LOOKUP_ROOT) {
2172 struct dentry *root = nd->root.dentry;
2173 struct inode *inode = root->d_inode;
2174 if (*s && unlikely(!d_can_lookup(root)))
2175 return ERR_PTR(-ENOTDIR);
2176 nd->path = nd->root;
2177 nd->inode = inode;
2178 if (flags & LOOKUP_RCU) {
2179 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2180 nd->root_seq = nd->seq;
2181 nd->m_seq = read_seqbegin(&mount_lock);
2182 } else {
2183 path_get(&nd->path);
2185 return s;
2188 nd->root.mnt = NULL;
2189 nd->path.mnt = NULL;
2190 nd->path.dentry = NULL;
2192 nd->m_seq = read_seqbegin(&mount_lock);
2193 if (*s == '/') {
2194 set_root(nd);
2195 if (likely(!nd_jump_root(nd)))
2196 return s;
2197 return ERR_PTR(-ECHILD);
2198 } else if (nd->dfd == AT_FDCWD) {
2199 if (flags & LOOKUP_RCU) {
2200 struct fs_struct *fs = current->fs;
2201 unsigned seq;
2203 do {
2204 seq = read_seqcount_begin(&fs->seq);
2205 nd->path = fs->pwd;
2206 nd->inode = nd->path.dentry->d_inode;
2207 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
2208 } while (read_seqcount_retry(&fs->seq, seq));
2209 } else {
2210 get_fs_pwd(current->fs, &nd->path);
2211 nd->inode = nd->path.dentry->d_inode;
2213 return s;
2214 } else {
2215 /* Caller must check execute permissions on the starting path component */
2216 struct fd f = fdget_raw(nd->dfd);
2217 struct dentry *dentry;
2219 if (!f.file)
2220 return ERR_PTR(-EBADF);
2222 dentry = f.file->f_path.dentry;
2224 if (*s && unlikely(!d_can_lookup(dentry))) {
2225 fdput(f);
2226 return ERR_PTR(-ENOTDIR);
2229 nd->path = f.file->f_path;
2230 if (flags & LOOKUP_RCU) {
2231 nd->inode = nd->path.dentry->d_inode;
2232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
2233 } else {
2234 path_get(&nd->path);
2235 nd->inode = nd->path.dentry->d_inode;
2237 fdput(f);
2238 return s;
2242 static const char *trailing_symlink(struct nameidata *nd)
2244 const char *s;
2245 int error = may_follow_link(nd);
2246 if (unlikely(error))
2247 return ERR_PTR(error);
2248 nd->flags |= LOOKUP_PARENT;
2249 nd->stack[0].name = NULL;
2250 s = get_link(nd);
2251 return s ? s : "";
2254 static inline int lookup_last(struct nameidata *nd)
2256 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2257 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2259 nd->flags &= ~LOOKUP_PARENT;
2260 return walk_component(nd, 0);
2263 static int handle_lookup_down(struct nameidata *nd)
2265 struct path path = nd->path;
2266 struct inode *inode = nd->inode;
2267 unsigned seq = nd->seq;
2268 int err;
2270 if (nd->flags & LOOKUP_RCU) {
2272 * don't bother with unlazy_walk on failure - we are
2273 * at the very beginning of walk, so we lose nothing
2274 * if we simply redo everything in non-RCU mode
2276 if (unlikely(!__follow_mount_rcu(nd, &path, &inode, &seq)))
2277 return -ECHILD;
2278 } else {
2279 dget(path.dentry);
2280 err = follow_managed(&path, nd);
2281 if (unlikely(err < 0))
2282 return err;
2283 inode = d_backing_inode(path.dentry);
2284 seq = 0;
2286 path_to_nameidata(&path, nd);
2287 nd->inode = inode;
2288 nd->seq = seq;
2289 return 0;
2292 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2293 static int path_lookupat(struct nameidata *nd, unsigned flags, struct path *path)
2295 const char *s = path_init(nd, flags);
2296 int err;
2298 if (unlikely(flags & LOOKUP_DOWN) && !IS_ERR(s)) {
2299 err = handle_lookup_down(nd);
2300 if (unlikely(err < 0))
2301 s = ERR_PTR(err);
2304 while (!(err = link_path_walk(s, nd))
2305 && ((err = lookup_last(nd)) > 0)) {
2306 s = trailing_symlink(nd);
2308 if (!err)
2309 err = complete_walk(nd);
2311 if (!err && nd->flags & LOOKUP_DIRECTORY)
2312 if (!d_can_lookup(nd->path.dentry))
2313 err = -ENOTDIR;
2314 if (!err) {
2315 *path = nd->path;
2316 nd->path.mnt = NULL;
2317 nd->path.dentry = NULL;
2319 terminate_walk(nd);
2320 return err;
2323 int filename_lookup(int dfd, struct filename *name, unsigned flags,
2324 struct path *path, struct path *root)
2326 int retval;
2327 struct nameidata nd;
2328 if (IS_ERR(name))
2329 return PTR_ERR(name);
2330 if (unlikely(root)) {
2331 nd.root = *root;
2332 flags |= LOOKUP_ROOT;
2334 set_nameidata(&nd, dfd, name);
2335 retval = path_lookupat(&nd, flags | LOOKUP_RCU, path);
2336 if (unlikely(retval == -ECHILD))
2337 retval = path_lookupat(&nd, flags, path);
2338 if (unlikely(retval == -ESTALE))
2339 retval = path_lookupat(&nd, flags | LOOKUP_REVAL, path);
2341 if (likely(!retval))
2342 audit_inode(name, path->dentry, 0);
2343 restore_nameidata();
2344 putname(name);
2345 return retval;
2348 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2349 static int path_parentat(struct nameidata *nd, unsigned flags,
2350 struct path *parent)
2352 const char *s = path_init(nd, flags);
2353 int err = link_path_walk(s, nd);
2354 if (!err)
2355 err = complete_walk(nd);
2356 if (!err) {
2357 *parent = nd->path;
2358 nd->path.mnt = NULL;
2359 nd->path.dentry = NULL;
2361 terminate_walk(nd);
2362 return err;
2365 static struct filename *filename_parentat(int dfd, struct filename *name,
2366 unsigned int flags, struct path *parent,
2367 struct qstr *last, int *type)
2369 int retval;
2370 struct nameidata nd;
2372 if (IS_ERR(name))
2373 return name;
2374 set_nameidata(&nd, dfd, name);
2375 retval = path_parentat(&nd, flags | LOOKUP_RCU, parent);
2376 if (unlikely(retval == -ECHILD))
2377 retval = path_parentat(&nd, flags, parent);
2378 if (unlikely(retval == -ESTALE))
2379 retval = path_parentat(&nd, flags | LOOKUP_REVAL, parent);
2380 if (likely(!retval)) {
2381 *last = nd.last;
2382 *type = nd.last_type;
2383 audit_inode(name, parent->dentry, AUDIT_INODE_PARENT);
2384 } else {
2385 putname(name);
2386 name = ERR_PTR(retval);
2388 restore_nameidata();
2389 return name;
2392 /* does lookup, returns the object with parent locked */
2393 struct dentry *kern_path_locked(const char *name, struct path *path)
2395 struct filename *filename;
2396 struct dentry *d;
2397 struct qstr last;
2398 int type;
2400 filename = filename_parentat(AT_FDCWD, getname_kernel(name), 0, path,
2401 &last, &type);
2402 if (IS_ERR(filename))
2403 return ERR_CAST(filename);
2404 if (unlikely(type != LAST_NORM)) {
2405 path_put(path);
2406 putname(filename);
2407 return ERR_PTR(-EINVAL);
2409 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
2410 d = __lookup_hash(&last, path->dentry, 0);
2411 if (IS_ERR(d)) {
2412 inode_unlock(path->dentry->d_inode);
2413 path_put(path);
2415 putname(filename);
2416 return d;
2419 int kern_path(const char *name, unsigned int flags, struct path *path)
2421 return filename_lookup(AT_FDCWD, getname_kernel(name),
2422 flags, path, NULL);
2424 EXPORT_SYMBOL(kern_path);
2427 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2428 * @dentry: pointer to dentry of the base directory
2429 * @mnt: pointer to vfs mount of the base directory
2430 * @name: pointer to file name
2431 * @flags: lookup flags
2432 * @path: pointer to struct path to fill
2434 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2435 const char *name, unsigned int flags,
2436 struct path *path)
2438 struct path root = {.mnt = mnt, .dentry = dentry};
2439 /* the first argument of filename_lookup() is ignored with root */
2440 return filename_lookup(AT_FDCWD, getname_kernel(name),
2441 flags , path, &root);
2443 EXPORT_SYMBOL(vfs_path_lookup);
2445 static int lookup_one_len_common(const char *name, struct dentry *base,
2446 int len, struct qstr *this)
2448 this->name = name;
2449 this->len = len;
2450 this->hash = full_name_hash(base, name, len);
2451 if (!len)
2452 return -EACCES;
2454 if (unlikely(name[0] == '.')) {
2455 if (len < 2 || (len == 2 && name[1] == '.'))
2456 return -EACCES;
2459 while (len--) {
2460 unsigned int c = *(const unsigned char *)name++;
2461 if (c == '/' || c == '\0')
2462 return -EACCES;
2465 * See if the low-level filesystem might want
2466 * to use its own hash..
2468 if (base->d_flags & DCACHE_OP_HASH) {
2469 int err = base->d_op->d_hash(base, this);
2470 if (err < 0)
2471 return err;
2474 return inode_permission(base->d_inode, MAY_EXEC);
2478 * try_lookup_one_len - filesystem helper to lookup single pathname component
2479 * @name: pathname component to lookup
2480 * @base: base directory to lookup from
2481 * @len: maximum length @len should be interpreted to
2483 * Look up a dentry by name in the dcache, returning NULL if it does not
2484 * currently exist. The function does not try to create a dentry.
2486 * Note that this routine is purely a helper for filesystem usage and should
2487 * not be called by generic code.
2489 * The caller must hold base->i_mutex.
2491 struct dentry *try_lookup_one_len(const char *name, struct dentry *base, int len)
2493 struct qstr this;
2494 int err;
2496 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2498 err = lookup_one_len_common(name, base, len, &this);
2499 if (err)
2500 return ERR_PTR(err);
2502 return lookup_dcache(&this, base, 0);
2504 EXPORT_SYMBOL(try_lookup_one_len);
2507 * lookup_one_len - filesystem helper to lookup single pathname component
2508 * @name: pathname component to lookup
2509 * @base: base directory to lookup from
2510 * @len: maximum length @len should be interpreted to
2512 * Note that this routine is purely a helper for filesystem usage and should
2513 * not be called by generic code.
2515 * The caller must hold base->i_mutex.
2517 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2519 struct dentry *dentry;
2520 struct qstr this;
2521 int err;
2523 WARN_ON_ONCE(!inode_is_locked(base->d_inode));
2525 err = lookup_one_len_common(name, base, len, &this);
2526 if (err)
2527 return ERR_PTR(err);
2529 dentry = lookup_dcache(&this, base, 0);
2530 return dentry ? dentry : __lookup_slow(&this, base, 0);
2532 EXPORT_SYMBOL(lookup_one_len);
2535 * lookup_one_len_unlocked - filesystem helper to lookup single pathname component
2536 * @name: pathname component to lookup
2537 * @base: base directory to lookup from
2538 * @len: maximum length @len should be interpreted to
2540 * Note that this routine is purely a helper for filesystem usage and should
2541 * not be called by generic code.
2543 * Unlike lookup_one_len, it should be called without the parent
2544 * i_mutex held, and will take the i_mutex itself if necessary.
2546 struct dentry *lookup_one_len_unlocked(const char *name,
2547 struct dentry *base, int len)
2549 struct qstr this;
2550 int err;
2551 struct dentry *ret;
2553 err = lookup_one_len_common(name, base, len, &this);
2554 if (err)
2555 return ERR_PTR(err);
2557 ret = lookup_dcache(&this, base, 0);
2558 if (!ret)
2559 ret = lookup_slow(&this, base, 0);
2560 return ret;
2562 EXPORT_SYMBOL(lookup_one_len_unlocked);
2565 * Like lookup_one_len_unlocked(), except that it yields ERR_PTR(-ENOENT)
2566 * on negatives. Returns known positive or ERR_PTR(); that's what
2567 * most of the users want. Note that pinned negative with unlocked parent
2568 * _can_ become positive at any time, so callers of lookup_one_len_unlocked()
2569 * need to be very careful; pinned positives have ->d_inode stable, so
2570 * this one avoids such problems.
2572 struct dentry *lookup_positive_unlocked(const char *name,
2573 struct dentry *base, int len)
2575 struct dentry *ret = lookup_one_len_unlocked(name, base, len);
2576 if (!IS_ERR(ret) && d_flags_negative(smp_load_acquire(&ret->d_flags))) {
2577 dput(ret);
2578 ret = ERR_PTR(-ENOENT);
2580 return ret;
2582 EXPORT_SYMBOL(lookup_positive_unlocked);
2584 #ifdef CONFIG_UNIX98_PTYS
2585 int path_pts(struct path *path)
2587 /* Find something mounted on "pts" in the same directory as
2588 * the input path.
2590 struct dentry *child, *parent;
2591 struct qstr this;
2592 int ret;
2594 ret = path_parent_directory(path);
2595 if (ret)
2596 return ret;
2598 parent = path->dentry;
2599 this.name = "pts";
2600 this.len = 3;
2601 child = d_hash_and_lookup(parent, &this);
2602 if (!child)
2603 return -ENOENT;
2605 path->dentry = child;
2606 dput(parent);
2607 follow_mount(path);
2608 return 0;
2610 #endif
2612 int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2613 struct path *path, int *empty)
2615 return filename_lookup(dfd, getname_flags(name, flags, empty),
2616 flags, path, NULL);
2618 EXPORT_SYMBOL(user_path_at_empty);
2621 * path_mountpoint - look up a path to be umounted
2622 * @nd: lookup context
2623 * @flags: lookup flags
2624 * @path: pointer to container for result
2626 * Look up the given name, but don't attempt to revalidate the last component.
2627 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2629 static int
2630 path_mountpoint(struct nameidata *nd, unsigned flags, struct path *path)
2632 const char *s = path_init(nd, flags);
2633 int err;
2635 while (!(err = link_path_walk(s, nd)) &&
2636 (err = lookup_last(nd)) > 0) {
2637 s = trailing_symlink(nd);
2639 if (!err && (nd->flags & LOOKUP_RCU))
2640 err = unlazy_walk(nd);
2641 if (!err)
2642 err = handle_lookup_down(nd);
2643 if (!err) {
2644 *path = nd->path;
2645 nd->path.mnt = NULL;
2646 nd->path.dentry = NULL;
2648 terminate_walk(nd);
2649 return err;
2652 static int
2653 filename_mountpoint(int dfd, struct filename *name, struct path *path,
2654 unsigned int flags)
2656 struct nameidata nd;
2657 int error;
2658 if (IS_ERR(name))
2659 return PTR_ERR(name);
2660 set_nameidata(&nd, dfd, name);
2661 error = path_mountpoint(&nd, flags | LOOKUP_RCU, path);
2662 if (unlikely(error == -ECHILD))
2663 error = path_mountpoint(&nd, flags, path);
2664 if (unlikely(error == -ESTALE))
2665 error = path_mountpoint(&nd, flags | LOOKUP_REVAL, path);
2666 if (likely(!error))
2667 audit_inode(name, path->dentry, AUDIT_INODE_NOEVAL);
2668 restore_nameidata();
2669 putname(name);
2670 return error;
2674 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2675 * @dfd: directory file descriptor
2676 * @name: pathname from userland
2677 * @flags: lookup flags
2678 * @path: pointer to container to hold result
2680 * A umount is a special case for path walking. We're not actually interested
2681 * in the inode in this situation, and ESTALE errors can be a problem. We
2682 * simply want track down the dentry and vfsmount attached at the mountpoint
2683 * and avoid revalidating the last component.
2685 * Returns 0 and populates "path" on success.
2688 user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2689 struct path *path)
2691 return filename_mountpoint(dfd, getname(name), path, flags);
2695 kern_path_mountpoint(int dfd, const char *name, struct path *path,
2696 unsigned int flags)
2698 return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2700 EXPORT_SYMBOL(kern_path_mountpoint);
2702 int __check_sticky(struct inode *dir, struct inode *inode)
2704 kuid_t fsuid = current_fsuid();
2706 if (uid_eq(inode->i_uid, fsuid))
2707 return 0;
2708 if (uid_eq(dir->i_uid, fsuid))
2709 return 0;
2710 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2712 EXPORT_SYMBOL(__check_sticky);
2715 * Check whether we can remove a link victim from directory dir, check
2716 * whether the type of victim is right.
2717 * 1. We can't do it if dir is read-only (done in permission())
2718 * 2. We should have write and exec permissions on dir
2719 * 3. We can't remove anything from append-only dir
2720 * 4. We can't do anything with immutable dir (done in permission())
2721 * 5. If the sticky bit on dir is set we should either
2722 * a. be owner of dir, or
2723 * b. be owner of victim, or
2724 * c. have CAP_FOWNER capability
2725 * 6. If the victim is append-only or immutable we can't do antyhing with
2726 * links pointing to it.
2727 * 7. If the victim has an unknown uid or gid we can't change the inode.
2728 * 8. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2729 * 9. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2730 * 10. We can't remove a root or mountpoint.
2731 * 11. We don't allow removal of NFS sillyrenamed files; it's handled by
2732 * nfs_async_unlink().
2734 static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2736 struct inode *inode = d_backing_inode(victim);
2737 int error;
2739 if (d_is_negative(victim))
2740 return -ENOENT;
2741 BUG_ON(!inode);
2743 BUG_ON(victim->d_parent->d_inode != dir);
2745 /* Inode writeback is not safe when the uid or gid are invalid. */
2746 if (!uid_valid(inode->i_uid) || !gid_valid(inode->i_gid))
2747 return -EOVERFLOW;
2749 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2751 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2752 if (error)
2753 return error;
2754 if (IS_APPEND(dir))
2755 return -EPERM;
2757 if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2758 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode) || HAS_UNMAPPED_ID(inode))
2759 return -EPERM;
2760 if (isdir) {
2761 if (!d_is_dir(victim))
2762 return -ENOTDIR;
2763 if (IS_ROOT(victim))
2764 return -EBUSY;
2765 } else if (d_is_dir(victim))
2766 return -EISDIR;
2767 if (IS_DEADDIR(dir))
2768 return -ENOENT;
2769 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2770 return -EBUSY;
2771 return 0;
2774 /* Check whether we can create an object with dentry child in directory
2775 * dir.
2776 * 1. We can't do it if child already exists (open has special treatment for
2777 * this case, but since we are inlined it's OK)
2778 * 2. We can't do it if dir is read-only (done in permission())
2779 * 3. We can't do it if the fs can't represent the fsuid or fsgid.
2780 * 4. We should have write and exec permissions on dir
2781 * 5. We can't do it if dir is immutable (done in permission())
2783 static inline int may_create(struct inode *dir, struct dentry *child)
2785 struct user_namespace *s_user_ns;
2786 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2787 if (child->d_inode)
2788 return -EEXIST;
2789 if (IS_DEADDIR(dir))
2790 return -ENOENT;
2791 s_user_ns = dir->i_sb->s_user_ns;
2792 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2793 !kgid_has_mapping(s_user_ns, current_fsgid()))
2794 return -EOVERFLOW;
2795 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2799 * p1 and p2 should be directories on the same fs.
2801 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2803 struct dentry *p;
2805 if (p1 == p2) {
2806 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2807 return NULL;
2810 mutex_lock(&p1->d_sb->s_vfs_rename_mutex);
2812 p = d_ancestor(p2, p1);
2813 if (p) {
2814 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT);
2815 inode_lock_nested(p1->d_inode, I_MUTEX_CHILD);
2816 return p;
2819 p = d_ancestor(p1, p2);
2820 if (p) {
2821 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2822 inode_lock_nested(p2->d_inode, I_MUTEX_CHILD);
2823 return p;
2826 inode_lock_nested(p1->d_inode, I_MUTEX_PARENT);
2827 inode_lock_nested(p2->d_inode, I_MUTEX_PARENT2);
2828 return NULL;
2830 EXPORT_SYMBOL(lock_rename);
2832 void unlock_rename(struct dentry *p1, struct dentry *p2)
2834 inode_unlock(p1->d_inode);
2835 if (p1 != p2) {
2836 inode_unlock(p2->d_inode);
2837 mutex_unlock(&p1->d_sb->s_vfs_rename_mutex);
2840 EXPORT_SYMBOL(unlock_rename);
2842 int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2843 bool want_excl)
2845 int error = may_create(dir, dentry);
2846 if (error)
2847 return error;
2849 if (!dir->i_op->create)
2850 return -EACCES; /* shouldn't it be ENOSYS? */
2851 mode &= S_IALLUGO;
2852 mode |= S_IFREG;
2853 error = security_inode_create(dir, dentry, mode);
2854 if (error)
2855 return error;
2856 error = dir->i_op->create(dir, dentry, mode, want_excl);
2857 if (!error)
2858 fsnotify_create(dir, dentry);
2859 return error;
2861 EXPORT_SYMBOL(vfs_create);
2863 int vfs_mkobj(struct dentry *dentry, umode_t mode,
2864 int (*f)(struct dentry *, umode_t, void *),
2865 void *arg)
2867 struct inode *dir = dentry->d_parent->d_inode;
2868 int error = may_create(dir, dentry);
2869 if (error)
2870 return error;
2872 mode &= S_IALLUGO;
2873 mode |= S_IFREG;
2874 error = security_inode_create(dir, dentry, mode);
2875 if (error)
2876 return error;
2877 error = f(dentry, mode, arg);
2878 if (!error)
2879 fsnotify_create(dir, dentry);
2880 return error;
2882 EXPORT_SYMBOL(vfs_mkobj);
2884 bool may_open_dev(const struct path *path)
2886 return !(path->mnt->mnt_flags & MNT_NODEV) &&
2887 !(path->mnt->mnt_sb->s_iflags & SB_I_NODEV);
2890 static int may_open(const struct path *path, int acc_mode, int flag)
2892 struct dentry *dentry = path->dentry;
2893 struct inode *inode = dentry->d_inode;
2894 int error;
2896 if (!inode)
2897 return -ENOENT;
2899 switch (inode->i_mode & S_IFMT) {
2900 case S_IFLNK:
2901 return -ELOOP;
2902 case S_IFDIR:
2903 if (acc_mode & MAY_WRITE)
2904 return -EISDIR;
2905 break;
2906 case S_IFBLK:
2907 case S_IFCHR:
2908 if (!may_open_dev(path))
2909 return -EACCES;
2910 /*FALLTHRU*/
2911 case S_IFIFO:
2912 case S_IFSOCK:
2913 flag &= ~O_TRUNC;
2914 break;
2917 error = inode_permission(inode, MAY_OPEN | acc_mode);
2918 if (error)
2919 return error;
2922 * An append-only file must be opened in append mode for writing.
2924 if (IS_APPEND(inode)) {
2925 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2926 return -EPERM;
2927 if (flag & O_TRUNC)
2928 return -EPERM;
2931 /* O_NOATIME can only be set by the owner or superuser */
2932 if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2933 return -EPERM;
2935 return 0;
2938 static int handle_truncate(struct file *filp)
2940 const struct path *path = &filp->f_path;
2941 struct inode *inode = path->dentry->d_inode;
2942 int error = get_write_access(inode);
2943 if (error)
2944 return error;
2946 * Refuse to truncate files with mandatory locks held on them.
2948 error = locks_verify_locked(filp);
2949 if (!error)
2950 error = security_path_truncate(path);
2951 if (!error) {
2952 error = do_truncate(path->dentry, 0,
2953 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2954 filp);
2956 put_write_access(inode);
2957 return error;
2960 static inline int open_to_namei_flags(int flag)
2962 if ((flag & O_ACCMODE) == 3)
2963 flag--;
2964 return flag;
2967 static int may_o_create(const struct path *dir, struct dentry *dentry, umode_t mode)
2969 struct user_namespace *s_user_ns;
2970 int error = security_path_mknod(dir, dentry, mode, 0);
2971 if (error)
2972 return error;
2974 s_user_ns = dir->dentry->d_sb->s_user_ns;
2975 if (!kuid_has_mapping(s_user_ns, current_fsuid()) ||
2976 !kgid_has_mapping(s_user_ns, current_fsgid()))
2977 return -EOVERFLOW;
2979 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2980 if (error)
2981 return error;
2983 return security_inode_create(dir->dentry->d_inode, dentry, mode);
2987 * Attempt to atomically look up, create and open a file from a negative
2988 * dentry.
2990 * Returns 0 if successful. The file will have been created and attached to
2991 * @file by the filesystem calling finish_open().
2993 * If the file was looked up only or didn't need creating, FMODE_OPENED won't
2994 * be set. The caller will need to perform the open themselves. @path will
2995 * have been updated to point to the new dentry. This may be negative.
2997 * Returns an error code otherwise.
2999 static int atomic_open(struct nameidata *nd, struct dentry *dentry,
3000 struct path *path, struct file *file,
3001 const struct open_flags *op,
3002 int open_flag, umode_t mode)
3004 struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
3005 struct inode *dir = nd->path.dentry->d_inode;
3006 int error;
3008 if (!(~open_flag & (O_EXCL | O_CREAT))) /* both O_EXCL and O_CREAT */
3009 open_flag &= ~O_TRUNC;
3011 if (nd->flags & LOOKUP_DIRECTORY)
3012 open_flag |= O_DIRECTORY;
3014 file->f_path.dentry = DENTRY_NOT_SET;
3015 file->f_path.mnt = nd->path.mnt;
3016 error = dir->i_op->atomic_open(dir, dentry, file,
3017 open_to_namei_flags(open_flag), mode);
3018 d_lookup_done(dentry);
3019 if (!error) {
3020 if (file->f_mode & FMODE_OPENED) {
3022 * We didn't have the inode before the open, so check open
3023 * permission here.
3025 int acc_mode = op->acc_mode;
3026 if (file->f_mode & FMODE_CREATED) {
3027 WARN_ON(!(open_flag & O_CREAT));
3028 fsnotify_create(dir, dentry);
3029 acc_mode = 0;
3031 error = may_open(&file->f_path, acc_mode, open_flag);
3032 if (WARN_ON(error > 0))
3033 error = -EINVAL;
3034 } else if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
3035 error = -EIO;
3036 } else {
3037 if (file->f_path.dentry) {
3038 dput(dentry);
3039 dentry = file->f_path.dentry;
3041 if (file->f_mode & FMODE_CREATED)
3042 fsnotify_create(dir, dentry);
3043 if (unlikely(d_is_negative(dentry))) {
3044 error = -ENOENT;
3045 } else {
3046 path->dentry = dentry;
3047 path->mnt = nd->path.mnt;
3048 return 0;
3052 dput(dentry);
3053 return error;
3057 * Look up and maybe create and open the last component.
3059 * Must be called with parent locked (exclusive in O_CREAT case).
3061 * Returns 0 on success, that is, if
3062 * the file was successfully atomically created (if necessary) and opened, or
3063 * the file was not completely opened at this time, though lookups and
3064 * creations were performed.
3065 * These case are distinguished by presence of FMODE_OPENED on file->f_mode.
3066 * In the latter case dentry returned in @path might be negative if O_CREAT
3067 * hadn't been specified.
3069 * An error code is returned on failure.
3071 static int lookup_open(struct nameidata *nd, struct path *path,
3072 struct file *file,
3073 const struct open_flags *op,
3074 bool got_write)
3076 struct dentry *dir = nd->path.dentry;
3077 struct inode *dir_inode = dir->d_inode;
3078 int open_flag = op->open_flag;
3079 struct dentry *dentry;
3080 int error, create_error = 0;
3081 umode_t mode = op->mode;
3082 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
3084 if (unlikely(IS_DEADDIR(dir_inode)))
3085 return -ENOENT;
3087 file->f_mode &= ~FMODE_CREATED;
3088 dentry = d_lookup(dir, &nd->last);
3089 for (;;) {
3090 if (!dentry) {
3091 dentry = d_alloc_parallel(dir, &nd->last, &wq);
3092 if (IS_ERR(dentry))
3093 return PTR_ERR(dentry);
3095 if (d_in_lookup(dentry))
3096 break;
3098 error = d_revalidate(dentry, nd->flags);
3099 if (likely(error > 0))
3100 break;
3101 if (error)
3102 goto out_dput;
3103 d_invalidate(dentry);
3104 dput(dentry);
3105 dentry = NULL;
3107 if (dentry->d_inode) {
3108 /* Cached positive dentry: will open in f_op->open */
3109 goto out_no_open;
3113 * Checking write permission is tricky, bacuse we don't know if we are
3114 * going to actually need it: O_CREAT opens should work as long as the
3115 * file exists. But checking existence breaks atomicity. The trick is
3116 * to check access and if not granted clear O_CREAT from the flags.
3118 * Another problem is returing the "right" error value (e.g. for an
3119 * O_EXCL open we want to return EEXIST not EROFS).
3121 if (open_flag & O_CREAT) {
3122 if (!IS_POSIXACL(dir->d_inode))
3123 mode &= ~current_umask();
3124 if (unlikely(!got_write)) {
3125 create_error = -EROFS;
3126 open_flag &= ~O_CREAT;
3127 if (open_flag & (O_EXCL | O_TRUNC))
3128 goto no_open;
3129 /* No side effects, safe to clear O_CREAT */
3130 } else {
3131 create_error = may_o_create(&nd->path, dentry, mode);
3132 if (create_error) {
3133 open_flag &= ~O_CREAT;
3134 if (open_flag & O_EXCL)
3135 goto no_open;
3138 } else if ((open_flag & (O_TRUNC|O_WRONLY|O_RDWR)) &&
3139 unlikely(!got_write)) {
3141 * No O_CREATE -> atomicity not a requirement -> fall
3142 * back to lookup + open
3144 goto no_open;
3147 if (dir_inode->i_op->atomic_open) {
3148 error = atomic_open(nd, dentry, path, file, op, open_flag,
3149 mode);
3150 if (unlikely(error == -ENOENT) && create_error)
3151 error = create_error;
3152 return error;
3155 no_open:
3156 if (d_in_lookup(dentry)) {
3157 struct dentry *res = dir_inode->i_op->lookup(dir_inode, dentry,
3158 nd->flags);
3159 d_lookup_done(dentry);
3160 if (unlikely(res)) {
3161 if (IS_ERR(res)) {
3162 error = PTR_ERR(res);
3163 goto out_dput;
3165 dput(dentry);
3166 dentry = res;
3170 /* Negative dentry, just create the file */
3171 if (!dentry->d_inode && (open_flag & O_CREAT)) {
3172 file->f_mode |= FMODE_CREATED;
3173 audit_inode_child(dir_inode, dentry, AUDIT_TYPE_CHILD_CREATE);
3174 if (!dir_inode->i_op->create) {
3175 error = -EACCES;
3176 goto out_dput;
3178 error = dir_inode->i_op->create(dir_inode, dentry, mode,
3179 open_flag & O_EXCL);
3180 if (error)
3181 goto out_dput;
3182 fsnotify_create(dir_inode, dentry);
3184 if (unlikely(create_error) && !dentry->d_inode) {
3185 error = create_error;
3186 goto out_dput;
3188 out_no_open:
3189 path->dentry = dentry;
3190 path->mnt = nd->path.mnt;
3191 return 0;
3193 out_dput:
3194 dput(dentry);
3195 return error;
3199 * Handle the last step of open()
3201 static int do_last(struct nameidata *nd,
3202 struct file *file, const struct open_flags *op)
3204 struct dentry *dir = nd->path.dentry;
3205 kuid_t dir_uid = nd->inode->i_uid;
3206 umode_t dir_mode = nd->inode->i_mode;
3207 int open_flag = op->open_flag;
3208 bool will_truncate = (open_flag & O_TRUNC) != 0;
3209 bool got_write = false;
3210 int acc_mode = op->acc_mode;
3211 unsigned seq;
3212 struct inode *inode;
3213 struct path path;
3214 int error;
3216 nd->flags &= ~LOOKUP_PARENT;
3217 nd->flags |= op->intent;
3219 if (nd->last_type != LAST_NORM) {
3220 error = handle_dots(nd, nd->last_type);
3221 if (unlikely(error))
3222 return error;
3223 goto finish_open;
3226 if (!(open_flag & O_CREAT)) {
3227 if (nd->last.name[nd->last.len])
3228 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
3229 /* we _can_ be in RCU mode here */
3230 error = lookup_fast(nd, &path, &inode, &seq);
3231 if (likely(error > 0))
3232 goto finish_lookup;
3234 if (error < 0)
3235 return error;
3237 BUG_ON(nd->inode != dir->d_inode);
3238 BUG_ON(nd->flags & LOOKUP_RCU);
3239 } else {
3240 /* create side of things */
3242 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
3243 * has been cleared when we got to the last component we are
3244 * about to look up
3246 error = complete_walk(nd);
3247 if (error)
3248 return error;
3250 audit_inode(nd->name, dir, AUDIT_INODE_PARENT);
3251 /* trailing slashes? */
3252 if (unlikely(nd->last.name[nd->last.len]))
3253 return -EISDIR;
3256 if (open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3257 error = mnt_want_write(nd->path.mnt);
3258 if (!error)
3259 got_write = true;
3261 * do _not_ fail yet - we might not need that or fail with
3262 * a different error; let lookup_open() decide; we'll be
3263 * dropping this one anyway.
3266 if (open_flag & O_CREAT)
3267 inode_lock(dir->d_inode);
3268 else
3269 inode_lock_shared(dir->d_inode);
3270 error = lookup_open(nd, &path, file, op, got_write);
3271 if (open_flag & O_CREAT)
3272 inode_unlock(dir->d_inode);
3273 else
3274 inode_unlock_shared(dir->d_inode);
3276 if (error)
3277 goto out;
3279 if (file->f_mode & FMODE_OPENED) {
3280 if ((file->f_mode & FMODE_CREATED) ||
3281 !S_ISREG(file_inode(file)->i_mode))
3282 will_truncate = false;
3284 audit_inode(nd->name, file->f_path.dentry, 0);
3285 goto opened;
3288 if (file->f_mode & FMODE_CREATED) {
3289 /* Don't check for write permission, don't truncate */
3290 open_flag &= ~O_TRUNC;
3291 will_truncate = false;
3292 acc_mode = 0;
3293 path_to_nameidata(&path, nd);
3294 goto finish_open_created;
3298 * If atomic_open() acquired write access it is dropped now due to
3299 * possible mount and symlink following (this might be optimized away if
3300 * necessary...)
3302 if (got_write) {
3303 mnt_drop_write(nd->path.mnt);
3304 got_write = false;
3307 error = follow_managed(&path, nd);
3308 if (unlikely(error < 0))
3309 return error;
3312 * create/update audit record if it already exists.
3314 audit_inode(nd->name, path.dentry, 0);
3316 if (unlikely((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))) {
3317 path_to_nameidata(&path, nd);
3318 return -EEXIST;
3321 seq = 0; /* out of RCU mode, so the value doesn't matter */
3322 inode = d_backing_inode(path.dentry);
3323 finish_lookup:
3324 error = step_into(nd, &path, 0, inode, seq);
3325 if (unlikely(error))
3326 return error;
3327 finish_open:
3328 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */
3329 error = complete_walk(nd);
3330 if (error)
3331 return error;
3332 audit_inode(nd->name, nd->path.dentry, 0);
3333 if (open_flag & O_CREAT) {
3334 error = -EISDIR;
3335 if (d_is_dir(nd->path.dentry))
3336 goto out;
3337 error = may_create_in_sticky(dir_mode, dir_uid,
3338 d_backing_inode(nd->path.dentry));
3339 if (unlikely(error))
3340 goto out;
3342 error = -ENOTDIR;
3343 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3344 goto out;
3345 if (!d_is_reg(nd->path.dentry))
3346 will_truncate = false;
3348 if (will_truncate) {
3349 error = mnt_want_write(nd->path.mnt);
3350 if (error)
3351 goto out;
3352 got_write = true;
3354 finish_open_created:
3355 error = may_open(&nd->path, acc_mode, open_flag);
3356 if (error)
3357 goto out;
3358 BUG_ON(file->f_mode & FMODE_OPENED); /* once it's opened, it's opened */
3359 error = vfs_open(&nd->path, file);
3360 if (error)
3361 goto out;
3362 opened:
3363 error = ima_file_check(file, op->acc_mode);
3364 if (!error && will_truncate)
3365 error = handle_truncate(file);
3366 out:
3367 if (unlikely(error > 0)) {
3368 WARN_ON(1);
3369 error = -EINVAL;
3371 if (got_write)
3372 mnt_drop_write(nd->path.mnt);
3373 return error;
3376 struct dentry *vfs_tmpfile(struct dentry *dentry, umode_t mode, int open_flag)
3378 struct dentry *child = NULL;
3379 struct inode *dir = dentry->d_inode;
3380 struct inode *inode;
3381 int error;
3383 /* we want directory to be writable */
3384 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
3385 if (error)
3386 goto out_err;
3387 error = -EOPNOTSUPP;
3388 if (!dir->i_op->tmpfile)
3389 goto out_err;
3390 error = -ENOMEM;
3391 child = d_alloc(dentry, &slash_name);
3392 if (unlikely(!child))
3393 goto out_err;
3394 error = dir->i_op->tmpfile(dir, child, mode);
3395 if (error)
3396 goto out_err;
3397 error = -ENOENT;
3398 inode = child->d_inode;
3399 if (unlikely(!inode))
3400 goto out_err;
3401 if (!(open_flag & O_EXCL)) {
3402 spin_lock(&inode->i_lock);
3403 inode->i_state |= I_LINKABLE;
3404 spin_unlock(&inode->i_lock);
3406 ima_post_create_tmpfile(inode);
3407 return child;
3409 out_err:
3410 dput(child);
3411 return ERR_PTR(error);
3413 EXPORT_SYMBOL(vfs_tmpfile);
3415 static int do_tmpfile(struct nameidata *nd, unsigned flags,
3416 const struct open_flags *op,
3417 struct file *file)
3419 struct dentry *child;
3420 struct path path;
3421 int error = path_lookupat(nd, flags | LOOKUP_DIRECTORY, &path);
3422 if (unlikely(error))
3423 return error;
3424 error = mnt_want_write(path.mnt);
3425 if (unlikely(error))
3426 goto out;
3427 child = vfs_tmpfile(path.dentry, op->mode, op->open_flag);
3428 error = PTR_ERR(child);
3429 if (IS_ERR(child))
3430 goto out2;
3431 dput(path.dentry);
3432 path.dentry = child;
3433 audit_inode(nd->name, child, 0);
3434 /* Don't check for other permissions, the inode was just created */
3435 error = may_open(&path, 0, op->open_flag);
3436 if (error)
3437 goto out2;
3438 file->f_path.mnt = path.mnt;
3439 error = finish_open(file, child, NULL);
3440 out2:
3441 mnt_drop_write(path.mnt);
3442 out:
3443 path_put(&path);
3444 return error;
3447 static int do_o_path(struct nameidata *nd, unsigned flags, struct file *file)
3449 struct path path;
3450 int error = path_lookupat(nd, flags, &path);
3451 if (!error) {
3452 audit_inode(nd->name, path.dentry, 0);
3453 error = vfs_open(&path, file);
3454 path_put(&path);
3456 return error;
3459 static struct file *path_openat(struct nameidata *nd,
3460 const struct open_flags *op, unsigned flags)
3462 struct file *file;
3463 int error;
3465 file = alloc_empty_file(op->open_flag, current_cred());
3466 if (IS_ERR(file))
3467 return file;
3469 if (unlikely(file->f_flags & __O_TMPFILE)) {
3470 error = do_tmpfile(nd, flags, op, file);
3471 } else if (unlikely(file->f_flags & O_PATH)) {
3472 error = do_o_path(nd, flags, file);
3473 } else {
3474 const char *s = path_init(nd, flags);
3475 while (!(error = link_path_walk(s, nd)) &&
3476 (error = do_last(nd, file, op)) > 0) {
3477 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3478 s = trailing_symlink(nd);
3480 terminate_walk(nd);
3482 if (likely(!error)) {
3483 if (likely(file->f_mode & FMODE_OPENED))
3484 return file;
3485 WARN_ON(1);
3486 error = -EINVAL;
3488 fput(file);
3489 if (error == -EOPENSTALE) {
3490 if (flags & LOOKUP_RCU)
3491 error = -ECHILD;
3492 else
3493 error = -ESTALE;
3495 return ERR_PTR(error);
3498 struct file *do_filp_open(int dfd, struct filename *pathname,
3499 const struct open_flags *op)
3501 struct nameidata nd;
3502 int flags = op->lookup_flags;
3503 struct file *filp;
3505 set_nameidata(&nd, dfd, pathname);
3506 filp = path_openat(&nd, op, flags | LOOKUP_RCU);
3507 if (unlikely(filp == ERR_PTR(-ECHILD)))
3508 filp = path_openat(&nd, op, flags);
3509 if (unlikely(filp == ERR_PTR(-ESTALE)))
3510 filp = path_openat(&nd, op, flags | LOOKUP_REVAL);
3511 restore_nameidata();
3512 return filp;
3515 struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3516 const char *name, const struct open_flags *op)
3518 struct nameidata nd;
3519 struct file *file;
3520 struct filename *filename;
3521 int flags = op->lookup_flags | LOOKUP_ROOT;
3523 nd.root.mnt = mnt;
3524 nd.root.dentry = dentry;
3526 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3527 return ERR_PTR(-ELOOP);
3529 filename = getname_kernel(name);
3530 if (IS_ERR(filename))
3531 return ERR_CAST(filename);
3533 set_nameidata(&nd, -1, filename);
3534 file = path_openat(&nd, op, flags | LOOKUP_RCU);
3535 if (unlikely(file == ERR_PTR(-ECHILD)))
3536 file = path_openat(&nd, op, flags);
3537 if (unlikely(file == ERR_PTR(-ESTALE)))
3538 file = path_openat(&nd, op, flags | LOOKUP_REVAL);
3539 restore_nameidata();
3540 putname(filename);
3541 return file;
3544 static struct dentry *filename_create(int dfd, struct filename *name,
3545 struct path *path, unsigned int lookup_flags)
3547 struct dentry *dentry = ERR_PTR(-EEXIST);
3548 struct qstr last;
3549 int type;
3550 int err2;
3551 int error;
3552 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3555 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3556 * other flags passed in are ignored!
3558 lookup_flags &= LOOKUP_REVAL;
3560 name = filename_parentat(dfd, name, lookup_flags, path, &last, &type);
3561 if (IS_ERR(name))
3562 return ERR_CAST(name);
3565 * Yucky last component or no last component at all?
3566 * (foo/., foo/.., /////)
3568 if (unlikely(type != LAST_NORM))
3569 goto out;
3571 /* don't fail immediately if it's r/o, at least try to report other errors */
3572 err2 = mnt_want_write(path->mnt);
3574 * Do the final lookup.
3576 lookup_flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3577 inode_lock_nested(path->dentry->d_inode, I_MUTEX_PARENT);
3578 dentry = __lookup_hash(&last, path->dentry, lookup_flags);
3579 if (IS_ERR(dentry))
3580 goto unlock;
3582 error = -EEXIST;
3583 if (d_is_positive(dentry))
3584 goto fail;
3587 * Special case - lookup gave negative, but... we had foo/bar/
3588 * From the vfs_mknod() POV we just have a negative dentry -
3589 * all is fine. Let's be bastards - you had / on the end, you've
3590 * been asking for (non-existent) directory. -ENOENT for you.
3592 if (unlikely(!is_dir && last.name[last.len])) {
3593 error = -ENOENT;
3594 goto fail;
3596 if (unlikely(err2)) {
3597 error = err2;
3598 goto fail;
3600 putname(name);
3601 return dentry;
3602 fail:
3603 dput(dentry);
3604 dentry = ERR_PTR(error);
3605 unlock:
3606 inode_unlock(path->dentry->d_inode);
3607 if (!err2)
3608 mnt_drop_write(path->mnt);
3609 out:
3610 path_put(path);
3611 putname(name);
3612 return dentry;
3615 struct dentry *kern_path_create(int dfd, const char *pathname,
3616 struct path *path, unsigned int lookup_flags)
3618 return filename_create(dfd, getname_kernel(pathname),
3619 path, lookup_flags);
3621 EXPORT_SYMBOL(kern_path_create);
3623 void done_path_create(struct path *path, struct dentry *dentry)
3625 dput(dentry);
3626 inode_unlock(path->dentry->d_inode);
3627 mnt_drop_write(path->mnt);
3628 path_put(path);
3630 EXPORT_SYMBOL(done_path_create);
3632 inline struct dentry *user_path_create(int dfd, const char __user *pathname,
3633 struct path *path, unsigned int lookup_flags)
3635 return filename_create(dfd, getname(pathname), path, lookup_flags);
3637 EXPORT_SYMBOL(user_path_create);
3639 int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3641 int error = may_create(dir, dentry);
3643 if (error)
3644 return error;
3646 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3647 return -EPERM;
3649 if (!dir->i_op->mknod)
3650 return -EPERM;
3652 error = devcgroup_inode_mknod(mode, dev);
3653 if (error)
3654 return error;
3656 error = security_inode_mknod(dir, dentry, mode, dev);
3657 if (error)
3658 return error;
3660 error = dir->i_op->mknod(dir, dentry, mode, dev);
3661 if (!error)
3662 fsnotify_create(dir, dentry);
3663 return error;
3665 EXPORT_SYMBOL(vfs_mknod);
3667 static int may_mknod(umode_t mode)
3669 switch (mode & S_IFMT) {
3670 case S_IFREG:
3671 case S_IFCHR:
3672 case S_IFBLK:
3673 case S_IFIFO:
3674 case S_IFSOCK:
3675 case 0: /* zero mode translates to S_IFREG */
3676 return 0;
3677 case S_IFDIR:
3678 return -EPERM;
3679 default:
3680 return -EINVAL;
3684 long do_mknodat(int dfd, const char __user *filename, umode_t mode,
3685 unsigned int dev)
3687 struct dentry *dentry;
3688 struct path path;
3689 int error;
3690 unsigned int lookup_flags = 0;
3692 error = may_mknod(mode);
3693 if (error)
3694 return error;
3695 retry:
3696 dentry = user_path_create(dfd, filename, &path, lookup_flags);
3697 if (IS_ERR(dentry))
3698 return PTR_ERR(dentry);
3700 if (!IS_POSIXACL(path.dentry->d_inode))
3701 mode &= ~current_umask();
3702 error = security_path_mknod(&path, dentry, mode, dev);
3703 if (error)
3704 goto out;
3705 switch (mode & S_IFMT) {
3706 case 0: case S_IFREG:
3707 error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3708 if (!error)
3709 ima_post_path_mknod(dentry);
3710 break;
3711 case S_IFCHR: case S_IFBLK:
3712 error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3713 new_decode_dev(dev));
3714 break;
3715 case S_IFIFO: case S_IFSOCK:
3716 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3717 break;
3719 out:
3720 done_path_create(&path, dentry);
3721 if (retry_estale(error, lookup_flags)) {
3722 lookup_flags |= LOOKUP_REVAL;
3723 goto retry;
3725 return error;
3728 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3729 unsigned int, dev)
3731 return do_mknodat(dfd, filename, mode, dev);
3734 SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3736 return do_mknodat(AT_FDCWD, filename, mode, dev);
3739 int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3741 int error = may_create(dir, dentry);
3742 unsigned max_links = dir->i_sb->s_max_links;
3744 if (error)
3745 return error;
3747 if (!dir->i_op->mkdir)
3748 return -EPERM;
3750 mode &= (S_IRWXUGO|S_ISVTX);
3751 error = security_inode_mkdir(dir, dentry, mode);
3752 if (error)
3753 return error;
3755 if (max_links && dir->i_nlink >= max_links)
3756 return -EMLINK;
3758 error = dir->i_op->mkdir(dir, dentry, mode);
3759 if (!error)
3760 fsnotify_mkdir(dir, dentry);
3761 return error;
3763 EXPORT_SYMBOL(vfs_mkdir);
3765 long do_mkdirat(int dfd, const char __user *pathname, umode_t mode)
3767 struct dentry *dentry;
3768 struct path path;
3769 int error;
3770 unsigned int lookup_flags = LOOKUP_DIRECTORY;
3772 retry:
3773 dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3774 if (IS_ERR(dentry))
3775 return PTR_ERR(dentry);
3777 if (!IS_POSIXACL(path.dentry->d_inode))
3778 mode &= ~current_umask();
3779 error = security_path_mkdir(&path, dentry, mode);
3780 if (!error)
3781 error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3782 done_path_create(&path, dentry);
3783 if (retry_estale(error, lookup_flags)) {
3784 lookup_flags |= LOOKUP_REVAL;
3785 goto retry;
3787 return error;
3790 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3792 return do_mkdirat(dfd, pathname, mode);
3795 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3797 return do_mkdirat(AT_FDCWD, pathname, mode);
3800 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3802 int error = may_delete(dir, dentry, 1);
3804 if (error)
3805 return error;
3807 if (!dir->i_op->rmdir)
3808 return -EPERM;
3810 dget(dentry);
3811 inode_lock(dentry->d_inode);
3813 error = -EBUSY;
3814 if (is_local_mountpoint(dentry))
3815 goto out;
3817 error = security_inode_rmdir(dir, dentry);
3818 if (error)
3819 goto out;
3821 error = dir->i_op->rmdir(dir, dentry);
3822 if (error)
3823 goto out;
3825 shrink_dcache_parent(dentry);
3826 dentry->d_inode->i_flags |= S_DEAD;
3827 dont_mount(dentry);
3828 detach_mounts(dentry);
3829 fsnotify_rmdir(dir, dentry);
3831 out:
3832 inode_unlock(dentry->d_inode);
3833 dput(dentry);
3834 if (!error)
3835 d_delete(dentry);
3836 return error;
3838 EXPORT_SYMBOL(vfs_rmdir);
3840 long do_rmdir(int dfd, const char __user *pathname)
3842 int error = 0;
3843 struct filename *name;
3844 struct dentry *dentry;
3845 struct path path;
3846 struct qstr last;
3847 int type;
3848 unsigned int lookup_flags = 0;
3849 retry:
3850 name = filename_parentat(dfd, getname(pathname), lookup_flags,
3851 &path, &last, &type);
3852 if (IS_ERR(name))
3853 return PTR_ERR(name);
3855 switch (type) {
3856 case LAST_DOTDOT:
3857 error = -ENOTEMPTY;
3858 goto exit1;
3859 case LAST_DOT:
3860 error = -EINVAL;
3861 goto exit1;
3862 case LAST_ROOT:
3863 error = -EBUSY;
3864 goto exit1;
3867 error = mnt_want_write(path.mnt);
3868 if (error)
3869 goto exit1;
3871 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3872 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3873 error = PTR_ERR(dentry);
3874 if (IS_ERR(dentry))
3875 goto exit2;
3876 if (!dentry->d_inode) {
3877 error = -ENOENT;
3878 goto exit3;
3880 error = security_path_rmdir(&path, dentry);
3881 if (error)
3882 goto exit3;
3883 error = vfs_rmdir(path.dentry->d_inode, dentry);
3884 exit3:
3885 dput(dentry);
3886 exit2:
3887 inode_unlock(path.dentry->d_inode);
3888 mnt_drop_write(path.mnt);
3889 exit1:
3890 path_put(&path);
3891 putname(name);
3892 if (retry_estale(error, lookup_flags)) {
3893 lookup_flags |= LOOKUP_REVAL;
3894 goto retry;
3896 return error;
3899 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3901 return do_rmdir(AT_FDCWD, pathname);
3905 * vfs_unlink - unlink a filesystem object
3906 * @dir: parent directory
3907 * @dentry: victim
3908 * @delegated_inode: returns victim inode, if the inode is delegated.
3910 * The caller must hold dir->i_mutex.
3912 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3913 * return a reference to the inode in delegated_inode. The caller
3914 * should then break the delegation on that inode and retry. Because
3915 * breaking a delegation may take a long time, the caller should drop
3916 * dir->i_mutex before doing so.
3918 * Alternatively, a caller may pass NULL for delegated_inode. This may
3919 * be appropriate for callers that expect the underlying filesystem not
3920 * to be NFS exported.
3922 int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3924 struct inode *target = dentry->d_inode;
3925 int error = may_delete(dir, dentry, 0);
3927 if (error)
3928 return error;
3930 if (!dir->i_op->unlink)
3931 return -EPERM;
3933 inode_lock(target);
3934 if (is_local_mountpoint(dentry))
3935 error = -EBUSY;
3936 else {
3937 error = security_inode_unlink(dir, dentry);
3938 if (!error) {
3939 error = try_break_deleg(target, delegated_inode);
3940 if (error)
3941 goto out;
3942 error = dir->i_op->unlink(dir, dentry);
3943 if (!error) {
3944 dont_mount(dentry);
3945 detach_mounts(dentry);
3946 fsnotify_unlink(dir, dentry);
3950 out:
3951 inode_unlock(target);
3953 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
3954 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3955 fsnotify_link_count(target);
3956 d_delete(dentry);
3959 return error;
3961 EXPORT_SYMBOL(vfs_unlink);
3964 * Make sure that the actual truncation of the file will occur outside its
3965 * directory's i_mutex. Truncate can take a long time if there is a lot of
3966 * writeout happening, and we don't want to prevent access to the directory
3967 * while waiting on the I/O.
3969 long do_unlinkat(int dfd, struct filename *name)
3971 int error;
3972 struct dentry *dentry;
3973 struct path path;
3974 struct qstr last;
3975 int type;
3976 struct inode *inode = NULL;
3977 struct inode *delegated_inode = NULL;
3978 unsigned int lookup_flags = 0;
3979 retry:
3980 name = filename_parentat(dfd, name, lookup_flags, &path, &last, &type);
3981 if (IS_ERR(name))
3982 return PTR_ERR(name);
3984 error = -EISDIR;
3985 if (type != LAST_NORM)
3986 goto exit1;
3988 error = mnt_want_write(path.mnt);
3989 if (error)
3990 goto exit1;
3991 retry_deleg:
3992 inode_lock_nested(path.dentry->d_inode, I_MUTEX_PARENT);
3993 dentry = __lookup_hash(&last, path.dentry, lookup_flags);
3994 error = PTR_ERR(dentry);
3995 if (!IS_ERR(dentry)) {
3996 /* Why not before? Because we want correct error value */
3997 if (last.name[last.len])
3998 goto slashes;
3999 inode = dentry->d_inode;
4000 if (d_is_negative(dentry))
4001 goto slashes;
4002 ihold(inode);
4003 error = security_path_unlink(&path, dentry);
4004 if (error)
4005 goto exit2;
4006 error = vfs_unlink(path.dentry->d_inode, dentry, &delegated_inode);
4007 exit2:
4008 dput(dentry);
4010 inode_unlock(path.dentry->d_inode);
4011 if (inode)
4012 iput(inode); /* truncate the inode here */
4013 inode = NULL;
4014 if (delegated_inode) {
4015 error = break_deleg_wait(&delegated_inode);
4016 if (!error)
4017 goto retry_deleg;
4019 mnt_drop_write(path.mnt);
4020 exit1:
4021 path_put(&path);
4022 if (retry_estale(error, lookup_flags)) {
4023 lookup_flags |= LOOKUP_REVAL;
4024 inode = NULL;
4025 goto retry;
4027 putname(name);
4028 return error;
4030 slashes:
4031 if (d_is_negative(dentry))
4032 error = -ENOENT;
4033 else if (d_is_dir(dentry))
4034 error = -EISDIR;
4035 else
4036 error = -ENOTDIR;
4037 goto exit2;
4040 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
4042 if ((flag & ~AT_REMOVEDIR) != 0)
4043 return -EINVAL;
4045 if (flag & AT_REMOVEDIR)
4046 return do_rmdir(dfd, pathname);
4048 return do_unlinkat(dfd, getname(pathname));
4051 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
4053 return do_unlinkat(AT_FDCWD, getname(pathname));
4056 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
4058 int error = may_create(dir, dentry);
4060 if (error)
4061 return error;
4063 if (!dir->i_op->symlink)
4064 return -EPERM;
4066 error = security_inode_symlink(dir, dentry, oldname);
4067 if (error)
4068 return error;
4070 error = dir->i_op->symlink(dir, dentry, oldname);
4071 if (!error)
4072 fsnotify_create(dir, dentry);
4073 return error;
4075 EXPORT_SYMBOL(vfs_symlink);
4077 long do_symlinkat(const char __user *oldname, int newdfd,
4078 const char __user *newname)
4080 int error;
4081 struct filename *from;
4082 struct dentry *dentry;
4083 struct path path;
4084 unsigned int lookup_flags = 0;
4086 from = getname(oldname);
4087 if (IS_ERR(from))
4088 return PTR_ERR(from);
4089 retry:
4090 dentry = user_path_create(newdfd, newname, &path, lookup_flags);
4091 error = PTR_ERR(dentry);
4092 if (IS_ERR(dentry))
4093 goto out_putname;
4095 error = security_path_symlink(&path, dentry, from->name);
4096 if (!error)
4097 error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
4098 done_path_create(&path, dentry);
4099 if (retry_estale(error, lookup_flags)) {
4100 lookup_flags |= LOOKUP_REVAL;
4101 goto retry;
4103 out_putname:
4104 putname(from);
4105 return error;
4108 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
4109 int, newdfd, const char __user *, newname)
4111 return do_symlinkat(oldname, newdfd, newname);
4114 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
4116 return do_symlinkat(oldname, AT_FDCWD, newname);
4120 * vfs_link - create a new link
4121 * @old_dentry: object to be linked
4122 * @dir: new parent
4123 * @new_dentry: where to create the new link
4124 * @delegated_inode: returns inode needing a delegation break
4126 * The caller must hold dir->i_mutex
4128 * If vfs_link discovers a delegation on the to-be-linked file in need
4129 * of breaking, it will return -EWOULDBLOCK and return a reference to the
4130 * inode in delegated_inode. The caller should then break the delegation
4131 * and retry. Because breaking a delegation may take a long time, the
4132 * caller should drop the i_mutex before doing so.
4134 * Alternatively, a caller may pass NULL for delegated_inode. This may
4135 * be appropriate for callers that expect the underlying filesystem not
4136 * to be NFS exported.
4138 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
4140 struct inode *inode = old_dentry->d_inode;
4141 unsigned max_links = dir->i_sb->s_max_links;
4142 int error;
4144 if (!inode)
4145 return -ENOENT;
4147 error = may_create(dir, new_dentry);
4148 if (error)
4149 return error;
4151 if (dir->i_sb != inode->i_sb)
4152 return -EXDEV;
4155 * A link to an append-only or immutable file cannot be created.
4157 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4158 return -EPERM;
4160 * Updating the link count will likely cause i_uid and i_gid to
4161 * be writen back improperly if their true value is unknown to
4162 * the vfs.
4164 if (HAS_UNMAPPED_ID(inode))
4165 return -EPERM;
4166 if (!dir->i_op->link)
4167 return -EPERM;
4168 if (S_ISDIR(inode->i_mode))
4169 return -EPERM;
4171 error = security_inode_link(old_dentry, dir, new_dentry);
4172 if (error)
4173 return error;
4175 inode_lock(inode);
4176 /* Make sure we don't allow creating hardlink to an unlinked file */
4177 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
4178 error = -ENOENT;
4179 else if (max_links && inode->i_nlink >= max_links)
4180 error = -EMLINK;
4181 else {
4182 error = try_break_deleg(inode, delegated_inode);
4183 if (!error)
4184 error = dir->i_op->link(old_dentry, dir, new_dentry);
4187 if (!error && (inode->i_state & I_LINKABLE)) {
4188 spin_lock(&inode->i_lock);
4189 inode->i_state &= ~I_LINKABLE;
4190 spin_unlock(&inode->i_lock);
4192 inode_unlock(inode);
4193 if (!error)
4194 fsnotify_link(dir, inode, new_dentry);
4195 return error;
4197 EXPORT_SYMBOL(vfs_link);
4200 * Hardlinks are often used in delicate situations. We avoid
4201 * security-related surprises by not following symlinks on the
4202 * newname. --KAB
4204 * We don't follow them on the oldname either to be compatible
4205 * with linux 2.0, and to avoid hard-linking to directories
4206 * and other special files. --ADM
4208 int do_linkat(int olddfd, const char __user *oldname, int newdfd,
4209 const char __user *newname, int flags)
4211 struct dentry *new_dentry;
4212 struct path old_path, new_path;
4213 struct inode *delegated_inode = NULL;
4214 int how = 0;
4215 int error;
4217 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4218 return -EINVAL;
4220 * To use null names we require CAP_DAC_READ_SEARCH
4221 * This ensures that not everyone will be able to create
4222 * handlink using the passed filedescriptor.
4224 if (flags & AT_EMPTY_PATH) {
4225 if (!capable(CAP_DAC_READ_SEARCH))
4226 return -ENOENT;
4227 how = LOOKUP_EMPTY;
4230 if (flags & AT_SYMLINK_FOLLOW)
4231 how |= LOOKUP_FOLLOW;
4232 retry:
4233 error = user_path_at(olddfd, oldname, how, &old_path);
4234 if (error)
4235 return error;
4237 new_dentry = user_path_create(newdfd, newname, &new_path,
4238 (how & LOOKUP_REVAL));
4239 error = PTR_ERR(new_dentry);
4240 if (IS_ERR(new_dentry))
4241 goto out;
4243 error = -EXDEV;
4244 if (old_path.mnt != new_path.mnt)
4245 goto out_dput;
4246 error = may_linkat(&old_path);
4247 if (unlikely(error))
4248 goto out_dput;
4249 error = security_path_link(old_path.dentry, &new_path, new_dentry);
4250 if (error)
4251 goto out_dput;
4252 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4253 out_dput:
4254 done_path_create(&new_path, new_dentry);
4255 if (delegated_inode) {
4256 error = break_deleg_wait(&delegated_inode);
4257 if (!error) {
4258 path_put(&old_path);
4259 goto retry;
4262 if (retry_estale(error, how)) {
4263 path_put(&old_path);
4264 how |= LOOKUP_REVAL;
4265 goto retry;
4267 out:
4268 path_put(&old_path);
4270 return error;
4273 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4274 int, newdfd, const char __user *, newname, int, flags)
4276 return do_linkat(olddfd, oldname, newdfd, newname, flags);
4279 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4281 return do_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4285 * vfs_rename - rename a filesystem object
4286 * @old_dir: parent of source
4287 * @old_dentry: source
4288 * @new_dir: parent of destination
4289 * @new_dentry: destination
4290 * @delegated_inode: returns an inode needing a delegation break
4291 * @flags: rename flags
4293 * The caller must hold multiple mutexes--see lock_rename()).
4295 * If vfs_rename discovers a delegation in need of breaking at either
4296 * the source or destination, it will return -EWOULDBLOCK and return a
4297 * reference to the inode in delegated_inode. The caller should then
4298 * break the delegation and retry. Because breaking a delegation may
4299 * take a long time, the caller should drop all locks before doing
4300 * so.
4302 * Alternatively, a caller may pass NULL for delegated_inode. This may
4303 * be appropriate for callers that expect the underlying filesystem not
4304 * to be NFS exported.
4306 * The worst of all namespace operations - renaming directory. "Perverted"
4307 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4308 * Problems:
4310 * a) we can get into loop creation.
4311 * b) race potential - two innocent renames can create a loop together.
4312 * That's where 4.4 screws up. Current fix: serialization on
4313 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4314 * story.
4315 * c) we have to lock _four_ objects - parents and victim (if it exists),
4316 * and source (if it is not a directory).
4317 * And that - after we got ->i_mutex on parents (until then we don't know
4318 * whether the target exists). Solution: try to be smart with locking
4319 * order for inodes. We rely on the fact that tree topology may change
4320 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
4321 * move will be locked. Thus we can rank directories by the tree
4322 * (ancestors first) and rank all non-directories after them.
4323 * That works since everybody except rename does "lock parent, lookup,
4324 * lock child" and rename is under ->s_vfs_rename_mutex.
4325 * HOWEVER, it relies on the assumption that any object with ->lookup()
4326 * has no more than 1 dentry. If "hybrid" objects will ever appear,
4327 * we'd better make sure that there's no link(2) for them.
4328 * d) conversion from fhandle to dentry may come in the wrong moment - when
4329 * we are removing the target. Solution: we will have to grab ->i_mutex
4330 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4331 * ->i_mutex on parents, which works but leads to some truly excessive
4332 * locking].
4334 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4335 struct inode *new_dir, struct dentry *new_dentry,
4336 struct inode **delegated_inode, unsigned int flags)
4338 int error;
4339 bool is_dir = d_is_dir(old_dentry);
4340 struct inode *source = old_dentry->d_inode;
4341 struct inode *target = new_dentry->d_inode;
4342 bool new_is_dir = false;
4343 unsigned max_links = new_dir->i_sb->s_max_links;
4344 struct name_snapshot old_name;
4346 if (source == target)
4347 return 0;
4349 error = may_delete(old_dir, old_dentry, is_dir);
4350 if (error)
4351 return error;
4353 if (!target) {
4354 error = may_create(new_dir, new_dentry);
4355 } else {
4356 new_is_dir = d_is_dir(new_dentry);
4358 if (!(flags & RENAME_EXCHANGE))
4359 error = may_delete(new_dir, new_dentry, is_dir);
4360 else
4361 error = may_delete(new_dir, new_dentry, new_is_dir);
4363 if (error)
4364 return error;
4366 if (!old_dir->i_op->rename)
4367 return -EPERM;
4370 * If we are going to change the parent - check write permissions,
4371 * we'll need to flip '..'.
4373 if (new_dir != old_dir) {
4374 if (is_dir) {
4375 error = inode_permission(source, MAY_WRITE);
4376 if (error)
4377 return error;
4379 if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4380 error = inode_permission(target, MAY_WRITE);
4381 if (error)
4382 return error;
4386 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4387 flags);
4388 if (error)
4389 return error;
4391 take_dentry_name_snapshot(&old_name, old_dentry);
4392 dget(new_dentry);
4393 if (!is_dir || (flags & RENAME_EXCHANGE))
4394 lock_two_nondirectories(source, target);
4395 else if (target)
4396 inode_lock(target);
4398 error = -EBUSY;
4399 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4400 goto out;
4402 if (max_links && new_dir != old_dir) {
4403 error = -EMLINK;
4404 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4405 goto out;
4406 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4407 old_dir->i_nlink >= max_links)
4408 goto out;
4410 if (!is_dir) {
4411 error = try_break_deleg(source, delegated_inode);
4412 if (error)
4413 goto out;
4415 if (target && !new_is_dir) {
4416 error = try_break_deleg(target, delegated_inode);
4417 if (error)
4418 goto out;
4420 error = old_dir->i_op->rename(old_dir, old_dentry,
4421 new_dir, new_dentry, flags);
4422 if (error)
4423 goto out;
4425 if (!(flags & RENAME_EXCHANGE) && target) {
4426 if (is_dir) {
4427 shrink_dcache_parent(new_dentry);
4428 target->i_flags |= S_DEAD;
4430 dont_mount(new_dentry);
4431 detach_mounts(new_dentry);
4433 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4434 if (!(flags & RENAME_EXCHANGE))
4435 d_move(old_dentry, new_dentry);
4436 else
4437 d_exchange(old_dentry, new_dentry);
4439 out:
4440 if (!is_dir || (flags & RENAME_EXCHANGE))
4441 unlock_two_nondirectories(source, target);
4442 else if (target)
4443 inode_unlock(target);
4444 dput(new_dentry);
4445 if (!error) {
4446 fsnotify_move(old_dir, new_dir, &old_name.name, is_dir,
4447 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4448 if (flags & RENAME_EXCHANGE) {
4449 fsnotify_move(new_dir, old_dir, &old_dentry->d_name,
4450 new_is_dir, NULL, new_dentry);
4453 release_dentry_name_snapshot(&old_name);
4455 return error;
4457 EXPORT_SYMBOL(vfs_rename);
4459 static int do_renameat2(int olddfd, const char __user *oldname, int newdfd,
4460 const char __user *newname, unsigned int flags)
4462 struct dentry *old_dentry, *new_dentry;
4463 struct dentry *trap;
4464 struct path old_path, new_path;
4465 struct qstr old_last, new_last;
4466 int old_type, new_type;
4467 struct inode *delegated_inode = NULL;
4468 struct filename *from;
4469 struct filename *to;
4470 unsigned int lookup_flags = 0, target_flags = LOOKUP_RENAME_TARGET;
4471 bool should_retry = false;
4472 int error;
4474 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4475 return -EINVAL;
4477 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4478 (flags & RENAME_EXCHANGE))
4479 return -EINVAL;
4481 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4482 return -EPERM;
4484 if (flags & RENAME_EXCHANGE)
4485 target_flags = 0;
4487 retry:
4488 from = filename_parentat(olddfd, getname(oldname), lookup_flags,
4489 &old_path, &old_last, &old_type);
4490 if (IS_ERR(from)) {
4491 error = PTR_ERR(from);
4492 goto exit;
4495 to = filename_parentat(newdfd, getname(newname), lookup_flags,
4496 &new_path, &new_last, &new_type);
4497 if (IS_ERR(to)) {
4498 error = PTR_ERR(to);
4499 goto exit1;
4502 error = -EXDEV;
4503 if (old_path.mnt != new_path.mnt)
4504 goto exit2;
4506 error = -EBUSY;
4507 if (old_type != LAST_NORM)
4508 goto exit2;
4510 if (flags & RENAME_NOREPLACE)
4511 error = -EEXIST;
4512 if (new_type != LAST_NORM)
4513 goto exit2;
4515 error = mnt_want_write(old_path.mnt);
4516 if (error)
4517 goto exit2;
4519 retry_deleg:
4520 trap = lock_rename(new_path.dentry, old_path.dentry);
4522 old_dentry = __lookup_hash(&old_last, old_path.dentry, lookup_flags);
4523 error = PTR_ERR(old_dentry);
4524 if (IS_ERR(old_dentry))
4525 goto exit3;
4526 /* source must exist */
4527 error = -ENOENT;
4528 if (d_is_negative(old_dentry))
4529 goto exit4;
4530 new_dentry = __lookup_hash(&new_last, new_path.dentry, lookup_flags | target_flags);
4531 error = PTR_ERR(new_dentry);
4532 if (IS_ERR(new_dentry))
4533 goto exit4;
4534 error = -EEXIST;
4535 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4536 goto exit5;
4537 if (flags & RENAME_EXCHANGE) {
4538 error = -ENOENT;
4539 if (d_is_negative(new_dentry))
4540 goto exit5;
4542 if (!d_is_dir(new_dentry)) {
4543 error = -ENOTDIR;
4544 if (new_last.name[new_last.len])
4545 goto exit5;
4548 /* unless the source is a directory trailing slashes give -ENOTDIR */
4549 if (!d_is_dir(old_dentry)) {
4550 error = -ENOTDIR;
4551 if (old_last.name[old_last.len])
4552 goto exit5;
4553 if (!(flags & RENAME_EXCHANGE) && new_last.name[new_last.len])
4554 goto exit5;
4556 /* source should not be ancestor of target */
4557 error = -EINVAL;
4558 if (old_dentry == trap)
4559 goto exit5;
4560 /* target should not be an ancestor of source */
4561 if (!(flags & RENAME_EXCHANGE))
4562 error = -ENOTEMPTY;
4563 if (new_dentry == trap)
4564 goto exit5;
4566 error = security_path_rename(&old_path, old_dentry,
4567 &new_path, new_dentry, flags);
4568 if (error)
4569 goto exit5;
4570 error = vfs_rename(old_path.dentry->d_inode, old_dentry,
4571 new_path.dentry->d_inode, new_dentry,
4572 &delegated_inode, flags);
4573 exit5:
4574 dput(new_dentry);
4575 exit4:
4576 dput(old_dentry);
4577 exit3:
4578 unlock_rename(new_path.dentry, old_path.dentry);
4579 if (delegated_inode) {
4580 error = break_deleg_wait(&delegated_inode);
4581 if (!error)
4582 goto retry_deleg;
4584 mnt_drop_write(old_path.mnt);
4585 exit2:
4586 if (retry_estale(error, lookup_flags))
4587 should_retry = true;
4588 path_put(&new_path);
4589 putname(to);
4590 exit1:
4591 path_put(&old_path);
4592 putname(from);
4593 if (should_retry) {
4594 should_retry = false;
4595 lookup_flags |= LOOKUP_REVAL;
4596 goto retry;
4598 exit:
4599 return error;
4602 SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4603 int, newdfd, const char __user *, newname, unsigned int, flags)
4605 return do_renameat2(olddfd, oldname, newdfd, newname, flags);
4608 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4609 int, newdfd, const char __user *, newname)
4611 return do_renameat2(olddfd, oldname, newdfd, newname, 0);
4614 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4616 return do_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4619 int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4621 int error = may_create(dir, dentry);
4622 if (error)
4623 return error;
4625 if (!dir->i_op->mknod)
4626 return -EPERM;
4628 return dir->i_op->mknod(dir, dentry,
4629 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4631 EXPORT_SYMBOL(vfs_whiteout);
4633 int readlink_copy(char __user *buffer, int buflen, const char *link)
4635 int len = PTR_ERR(link);
4636 if (IS_ERR(link))
4637 goto out;
4639 len = strlen(link);
4640 if (len > (unsigned) buflen)
4641 len = buflen;
4642 if (copy_to_user(buffer, link, len))
4643 len = -EFAULT;
4644 out:
4645 return len;
4649 * vfs_readlink - copy symlink body into userspace buffer
4650 * @dentry: dentry on which to get symbolic link
4651 * @buffer: user memory pointer
4652 * @buflen: size of buffer
4654 * Does not touch atime. That's up to the caller if necessary
4656 * Does not call security hook.
4658 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4660 struct inode *inode = d_inode(dentry);
4661 DEFINE_DELAYED_CALL(done);
4662 const char *link;
4663 int res;
4665 if (unlikely(!(inode->i_opflags & IOP_DEFAULT_READLINK))) {
4666 if (unlikely(inode->i_op->readlink))
4667 return inode->i_op->readlink(dentry, buffer, buflen);
4669 if (!d_is_symlink(dentry))
4670 return -EINVAL;
4672 spin_lock(&inode->i_lock);
4673 inode->i_opflags |= IOP_DEFAULT_READLINK;
4674 spin_unlock(&inode->i_lock);
4677 link = READ_ONCE(inode->i_link);
4678 if (!link) {
4679 link = inode->i_op->get_link(dentry, inode, &done);
4680 if (IS_ERR(link))
4681 return PTR_ERR(link);
4683 res = readlink_copy(buffer, buflen, link);
4684 do_delayed_call(&done);
4685 return res;
4687 EXPORT_SYMBOL(vfs_readlink);
4690 * vfs_get_link - get symlink body
4691 * @dentry: dentry on which to get symbolic link
4692 * @done: caller needs to free returned data with this
4694 * Calls security hook and i_op->get_link() on the supplied inode.
4696 * It does not touch atime. That's up to the caller if necessary.
4698 * Does not work on "special" symlinks like /proc/$$/fd/N
4700 const char *vfs_get_link(struct dentry *dentry, struct delayed_call *done)
4702 const char *res = ERR_PTR(-EINVAL);
4703 struct inode *inode = d_inode(dentry);
4705 if (d_is_symlink(dentry)) {
4706 res = ERR_PTR(security_inode_readlink(dentry));
4707 if (!res)
4708 res = inode->i_op->get_link(dentry, inode, done);
4710 return res;
4712 EXPORT_SYMBOL(vfs_get_link);
4714 /* get the link contents into pagecache */
4715 const char *page_get_link(struct dentry *dentry, struct inode *inode,
4716 struct delayed_call *callback)
4718 char *kaddr;
4719 struct page *page;
4720 struct address_space *mapping = inode->i_mapping;
4722 if (!dentry) {
4723 page = find_get_page(mapping, 0);
4724 if (!page)
4725 return ERR_PTR(-ECHILD);
4726 if (!PageUptodate(page)) {
4727 put_page(page);
4728 return ERR_PTR(-ECHILD);
4730 } else {
4731 page = read_mapping_page(mapping, 0, NULL);
4732 if (IS_ERR(page))
4733 return (char*)page;
4735 set_delayed_call(callback, page_put_link, page);
4736 BUG_ON(mapping_gfp_mask(mapping) & __GFP_HIGHMEM);
4737 kaddr = page_address(page);
4738 nd_terminate_link(kaddr, inode->i_size, PAGE_SIZE - 1);
4739 return kaddr;
4742 EXPORT_SYMBOL(page_get_link);
4744 void page_put_link(void *arg)
4746 put_page(arg);
4748 EXPORT_SYMBOL(page_put_link);
4750 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4752 DEFINE_DELAYED_CALL(done);
4753 int res = readlink_copy(buffer, buflen,
4754 page_get_link(dentry, d_inode(dentry),
4755 &done));
4756 do_delayed_call(&done);
4757 return res;
4759 EXPORT_SYMBOL(page_readlink);
4762 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4764 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4766 struct address_space *mapping = inode->i_mapping;
4767 struct page *page;
4768 void *fsdata;
4769 int err;
4770 unsigned int flags = 0;
4771 if (nofs)
4772 flags |= AOP_FLAG_NOFS;
4774 retry:
4775 err = pagecache_write_begin(NULL, mapping, 0, len-1,
4776 flags, &page, &fsdata);
4777 if (err)
4778 goto fail;
4780 memcpy(page_address(page), symname, len-1);
4782 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4783 page, fsdata);
4784 if (err < 0)
4785 goto fail;
4786 if (err < len-1)
4787 goto retry;
4789 mark_inode_dirty(inode);
4790 return 0;
4791 fail:
4792 return err;
4794 EXPORT_SYMBOL(__page_symlink);
4796 int page_symlink(struct inode *inode, const char *symname, int len)
4798 return __page_symlink(inode, symname, len,
4799 !mapping_gfp_constraint(inode->i_mapping, __GFP_FS));
4801 EXPORT_SYMBOL(page_symlink);
4803 const struct inode_operations page_symlink_inode_operations = {
4804 .get_link = page_get_link,
4806 EXPORT_SYMBOL(page_symlink_inode_operations);