2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
27 #include "kvm_cache_regs.h"
30 #include "assigned-dev.h"
32 #include <linux/clocksource.h>
33 #include <linux/interrupt.h>
34 #include <linux/kvm.h>
36 #include <linux/vmalloc.h>
37 #include <linux/module.h>
38 #include <linux/mman.h>
39 #include <linux/highmem.h>
40 #include <linux/iommu.h>
41 #include <linux/intel-iommu.h>
42 #include <linux/cpufreq.h>
43 #include <linux/user-return-notifier.h>
44 #include <linux/srcu.h>
45 #include <linux/slab.h>
46 #include <linux/perf_event.h>
47 #include <linux/uaccess.h>
48 #include <linux/hash.h>
49 #include <linux/pci.h>
50 #include <linux/timekeeper_internal.h>
51 #include <linux/pvclock_gtod.h>
52 #include <trace/events/kvm.h>
54 #define CREATE_TRACE_POINTS
57 #include <asm/debugreg.h>
63 #include <asm/fpu-internal.h> /* Ugh! */
65 #include <asm/pvclock.h>
66 #include <asm/div64.h>
68 #define MAX_IO_MSRS 256
69 #define KVM_MAX_MCE_BANKS 32
70 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
72 #define emul_to_vcpu(ctxt) \
73 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
76 * - enable syscall per default because its emulated by KVM
77 * - enable LME and LMA per default on 64 bit KVM
81 u64 __read_mostly efer_reserved_bits
= ~((u64
)(EFER_SCE
| EFER_LME
| EFER_LMA
));
83 static u64 __read_mostly efer_reserved_bits
= ~((u64
)EFER_SCE
);
86 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
87 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
89 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
);
90 static void process_nmi(struct kvm_vcpu
*vcpu
);
91 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
);
93 struct kvm_x86_ops
*kvm_x86_ops
;
94 EXPORT_SYMBOL_GPL(kvm_x86_ops
);
96 static bool ignore_msrs
= 0;
97 module_param(ignore_msrs
, bool, S_IRUGO
| S_IWUSR
);
99 unsigned int min_timer_period_us
= 500;
100 module_param(min_timer_period_us
, uint
, S_IRUGO
| S_IWUSR
);
102 bool kvm_has_tsc_control
;
103 EXPORT_SYMBOL_GPL(kvm_has_tsc_control
);
104 u32 kvm_max_guest_tsc_khz
;
105 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz
);
107 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
108 static u32 tsc_tolerance_ppm
= 250;
109 module_param(tsc_tolerance_ppm
, uint
, S_IRUGO
| S_IWUSR
);
111 /* lapic timer advance (tscdeadline mode only) in nanoseconds */
112 unsigned int lapic_timer_advance_ns
= 0;
113 module_param(lapic_timer_advance_ns
, uint
, S_IRUGO
| S_IWUSR
);
115 static bool backwards_tsc_observed
= false;
117 #define KVM_NR_SHARED_MSRS 16
119 struct kvm_shared_msrs_global
{
121 u32 msrs
[KVM_NR_SHARED_MSRS
];
124 struct kvm_shared_msrs
{
125 struct user_return_notifier urn
;
127 struct kvm_shared_msr_values
{
130 } values
[KVM_NR_SHARED_MSRS
];
133 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global
;
134 static struct kvm_shared_msrs __percpu
*shared_msrs
;
136 struct kvm_stats_debugfs_item debugfs_entries
[] = {
137 { "pf_fixed", VCPU_STAT(pf_fixed
) },
138 { "pf_guest", VCPU_STAT(pf_guest
) },
139 { "tlb_flush", VCPU_STAT(tlb_flush
) },
140 { "invlpg", VCPU_STAT(invlpg
) },
141 { "exits", VCPU_STAT(exits
) },
142 { "io_exits", VCPU_STAT(io_exits
) },
143 { "mmio_exits", VCPU_STAT(mmio_exits
) },
144 { "signal_exits", VCPU_STAT(signal_exits
) },
145 { "irq_window", VCPU_STAT(irq_window_exits
) },
146 { "nmi_window", VCPU_STAT(nmi_window_exits
) },
147 { "halt_exits", VCPU_STAT(halt_exits
) },
148 { "halt_successful_poll", VCPU_STAT(halt_successful_poll
) },
149 { "halt_wakeup", VCPU_STAT(halt_wakeup
) },
150 { "hypercalls", VCPU_STAT(hypercalls
) },
151 { "request_irq", VCPU_STAT(request_irq_exits
) },
152 { "irq_exits", VCPU_STAT(irq_exits
) },
153 { "host_state_reload", VCPU_STAT(host_state_reload
) },
154 { "efer_reload", VCPU_STAT(efer_reload
) },
155 { "fpu_reload", VCPU_STAT(fpu_reload
) },
156 { "insn_emulation", VCPU_STAT(insn_emulation
) },
157 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail
) },
158 { "irq_injections", VCPU_STAT(irq_injections
) },
159 { "nmi_injections", VCPU_STAT(nmi_injections
) },
160 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped
) },
161 { "mmu_pte_write", VM_STAT(mmu_pte_write
) },
162 { "mmu_pte_updated", VM_STAT(mmu_pte_updated
) },
163 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped
) },
164 { "mmu_flooded", VM_STAT(mmu_flooded
) },
165 { "mmu_recycled", VM_STAT(mmu_recycled
) },
166 { "mmu_cache_miss", VM_STAT(mmu_cache_miss
) },
167 { "mmu_unsync", VM_STAT(mmu_unsync
) },
168 { "remote_tlb_flush", VM_STAT(remote_tlb_flush
) },
169 { "largepages", VM_STAT(lpages
) },
173 u64 __read_mostly host_xcr0
;
175 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
);
177 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu
*vcpu
)
180 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
); i
++)
181 vcpu
->arch
.apf
.gfns
[i
] = ~0;
184 static void kvm_on_user_return(struct user_return_notifier
*urn
)
187 struct kvm_shared_msrs
*locals
188 = container_of(urn
, struct kvm_shared_msrs
, urn
);
189 struct kvm_shared_msr_values
*values
;
191 for (slot
= 0; slot
< shared_msrs_global
.nr
; ++slot
) {
192 values
= &locals
->values
[slot
];
193 if (values
->host
!= values
->curr
) {
194 wrmsrl(shared_msrs_global
.msrs
[slot
], values
->host
);
195 values
->curr
= values
->host
;
198 locals
->registered
= false;
199 user_return_notifier_unregister(urn
);
202 static void shared_msr_update(unsigned slot
, u32 msr
)
205 unsigned int cpu
= smp_processor_id();
206 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
208 /* only read, and nobody should modify it at this time,
209 * so don't need lock */
210 if (slot
>= shared_msrs_global
.nr
) {
211 printk(KERN_ERR
"kvm: invalid MSR slot!");
214 rdmsrl_safe(msr
, &value
);
215 smsr
->values
[slot
].host
= value
;
216 smsr
->values
[slot
].curr
= value
;
219 void kvm_define_shared_msr(unsigned slot
, u32 msr
)
221 BUG_ON(slot
>= KVM_NR_SHARED_MSRS
);
222 if (slot
>= shared_msrs_global
.nr
)
223 shared_msrs_global
.nr
= slot
+ 1;
224 shared_msrs_global
.msrs
[slot
] = msr
;
225 /* we need ensured the shared_msr_global have been updated */
228 EXPORT_SYMBOL_GPL(kvm_define_shared_msr
);
230 static void kvm_shared_msr_cpu_online(void)
234 for (i
= 0; i
< shared_msrs_global
.nr
; ++i
)
235 shared_msr_update(i
, shared_msrs_global
.msrs
[i
]);
238 int kvm_set_shared_msr(unsigned slot
, u64 value
, u64 mask
)
240 unsigned int cpu
= smp_processor_id();
241 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
244 if (((value
^ smsr
->values
[slot
].curr
) & mask
) == 0)
246 smsr
->values
[slot
].curr
= value
;
247 err
= wrmsrl_safe(shared_msrs_global
.msrs
[slot
], value
);
251 if (!smsr
->registered
) {
252 smsr
->urn
.on_user_return
= kvm_on_user_return
;
253 user_return_notifier_register(&smsr
->urn
);
254 smsr
->registered
= true;
258 EXPORT_SYMBOL_GPL(kvm_set_shared_msr
);
260 static void drop_user_return_notifiers(void)
262 unsigned int cpu
= smp_processor_id();
263 struct kvm_shared_msrs
*smsr
= per_cpu_ptr(shared_msrs
, cpu
);
265 if (smsr
->registered
)
266 kvm_on_user_return(&smsr
->urn
);
269 u64
kvm_get_apic_base(struct kvm_vcpu
*vcpu
)
271 return vcpu
->arch
.apic_base
;
273 EXPORT_SYMBOL_GPL(kvm_get_apic_base
);
275 int kvm_set_apic_base(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
277 u64 old_state
= vcpu
->arch
.apic_base
&
278 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
279 u64 new_state
= msr_info
->data
&
280 (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
);
281 u64 reserved_bits
= ((~0ULL) << cpuid_maxphyaddr(vcpu
)) |
282 0x2ff | (guest_cpuid_has_x2apic(vcpu
) ? 0 : X2APIC_ENABLE
);
284 if (!msr_info
->host_initiated
&&
285 ((msr_info
->data
& reserved_bits
) != 0 ||
286 new_state
== X2APIC_ENABLE
||
287 (new_state
== MSR_IA32_APICBASE_ENABLE
&&
288 old_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
)) ||
289 (new_state
== (MSR_IA32_APICBASE_ENABLE
| X2APIC_ENABLE
) &&
293 kvm_lapic_set_base(vcpu
, msr_info
->data
);
296 EXPORT_SYMBOL_GPL(kvm_set_apic_base
);
298 asmlinkage __visible
void kvm_spurious_fault(void)
300 /* Fault while not rebooting. We want the trace. */
303 EXPORT_SYMBOL_GPL(kvm_spurious_fault
);
305 #define EXCPT_BENIGN 0
306 #define EXCPT_CONTRIBUTORY 1
309 static int exception_class(int vector
)
319 return EXCPT_CONTRIBUTORY
;
326 #define EXCPT_FAULT 0
328 #define EXCPT_ABORT 2
329 #define EXCPT_INTERRUPT 3
331 static int exception_type(int vector
)
335 if (WARN_ON(vector
> 31 || vector
== NMI_VECTOR
))
336 return EXCPT_INTERRUPT
;
340 /* #DB is trap, as instruction watchpoints are handled elsewhere */
341 if (mask
& ((1 << DB_VECTOR
) | (1 << BP_VECTOR
) | (1 << OF_VECTOR
)))
344 if (mask
& ((1 << DF_VECTOR
) | (1 << MC_VECTOR
)))
347 /* Reserved exceptions will result in fault */
351 static void kvm_multiple_exception(struct kvm_vcpu
*vcpu
,
352 unsigned nr
, bool has_error
, u32 error_code
,
358 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
360 if (!vcpu
->arch
.exception
.pending
) {
362 if (has_error
&& !is_protmode(vcpu
))
364 vcpu
->arch
.exception
.pending
= true;
365 vcpu
->arch
.exception
.has_error_code
= has_error
;
366 vcpu
->arch
.exception
.nr
= nr
;
367 vcpu
->arch
.exception
.error_code
= error_code
;
368 vcpu
->arch
.exception
.reinject
= reinject
;
372 /* to check exception */
373 prev_nr
= vcpu
->arch
.exception
.nr
;
374 if (prev_nr
== DF_VECTOR
) {
375 /* triple fault -> shutdown */
376 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
379 class1
= exception_class(prev_nr
);
380 class2
= exception_class(nr
);
381 if ((class1
== EXCPT_CONTRIBUTORY
&& class2
== EXCPT_CONTRIBUTORY
)
382 || (class1
== EXCPT_PF
&& class2
!= EXCPT_BENIGN
)) {
383 /* generate double fault per SDM Table 5-5 */
384 vcpu
->arch
.exception
.pending
= true;
385 vcpu
->arch
.exception
.has_error_code
= true;
386 vcpu
->arch
.exception
.nr
= DF_VECTOR
;
387 vcpu
->arch
.exception
.error_code
= 0;
389 /* replace previous exception with a new one in a hope
390 that instruction re-execution will regenerate lost
395 void kvm_queue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
397 kvm_multiple_exception(vcpu
, nr
, false, 0, false);
399 EXPORT_SYMBOL_GPL(kvm_queue_exception
);
401 void kvm_requeue_exception(struct kvm_vcpu
*vcpu
, unsigned nr
)
403 kvm_multiple_exception(vcpu
, nr
, false, 0, true);
405 EXPORT_SYMBOL_GPL(kvm_requeue_exception
);
407 void kvm_complete_insn_gp(struct kvm_vcpu
*vcpu
, int err
)
410 kvm_inject_gp(vcpu
, 0);
412 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
414 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp
);
416 void kvm_inject_page_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
418 ++vcpu
->stat
.pf_guest
;
419 vcpu
->arch
.cr2
= fault
->address
;
420 kvm_queue_exception_e(vcpu
, PF_VECTOR
, fault
->error_code
);
422 EXPORT_SYMBOL_GPL(kvm_inject_page_fault
);
424 static bool kvm_propagate_fault(struct kvm_vcpu
*vcpu
, struct x86_exception
*fault
)
426 if (mmu_is_nested(vcpu
) && !fault
->nested_page_fault
)
427 vcpu
->arch
.nested_mmu
.inject_page_fault(vcpu
, fault
);
429 vcpu
->arch
.mmu
.inject_page_fault(vcpu
, fault
);
431 return fault
->nested_page_fault
;
434 void kvm_inject_nmi(struct kvm_vcpu
*vcpu
)
436 atomic_inc(&vcpu
->arch
.nmi_queued
);
437 kvm_make_request(KVM_REQ_NMI
, vcpu
);
439 EXPORT_SYMBOL_GPL(kvm_inject_nmi
);
441 void kvm_queue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
443 kvm_multiple_exception(vcpu
, nr
, true, error_code
, false);
445 EXPORT_SYMBOL_GPL(kvm_queue_exception_e
);
447 void kvm_requeue_exception_e(struct kvm_vcpu
*vcpu
, unsigned nr
, u32 error_code
)
449 kvm_multiple_exception(vcpu
, nr
, true, error_code
, true);
451 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e
);
454 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
455 * a #GP and return false.
457 bool kvm_require_cpl(struct kvm_vcpu
*vcpu
, int required_cpl
)
459 if (kvm_x86_ops
->get_cpl(vcpu
) <= required_cpl
)
461 kvm_queue_exception_e(vcpu
, GP_VECTOR
, 0);
464 EXPORT_SYMBOL_GPL(kvm_require_cpl
);
466 bool kvm_require_dr(struct kvm_vcpu
*vcpu
, int dr
)
468 if ((dr
!= 4 && dr
!= 5) || !kvm_read_cr4_bits(vcpu
, X86_CR4_DE
))
471 kvm_queue_exception(vcpu
, UD_VECTOR
);
474 EXPORT_SYMBOL_GPL(kvm_require_dr
);
477 * This function will be used to read from the physical memory of the currently
478 * running guest. The difference to kvm_read_guest_page is that this function
479 * can read from guest physical or from the guest's guest physical memory.
481 int kvm_read_guest_page_mmu(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
482 gfn_t ngfn
, void *data
, int offset
, int len
,
485 struct x86_exception exception
;
489 ngpa
= gfn_to_gpa(ngfn
);
490 real_gfn
= mmu
->translate_gpa(vcpu
, ngpa
, access
, &exception
);
491 if (real_gfn
== UNMAPPED_GVA
)
494 real_gfn
= gpa_to_gfn(real_gfn
);
496 return kvm_read_guest_page(vcpu
->kvm
, real_gfn
, data
, offset
, len
);
498 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu
);
500 static int kvm_read_nested_guest_page(struct kvm_vcpu
*vcpu
, gfn_t gfn
,
501 void *data
, int offset
, int len
, u32 access
)
503 return kvm_read_guest_page_mmu(vcpu
, vcpu
->arch
.walk_mmu
, gfn
,
504 data
, offset
, len
, access
);
508 * Load the pae pdptrs. Return true is they are all valid.
510 int load_pdptrs(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
, unsigned long cr3
)
512 gfn_t pdpt_gfn
= cr3
>> PAGE_SHIFT
;
513 unsigned offset
= ((cr3
& (PAGE_SIZE
-1)) >> 5) << 2;
516 u64 pdpte
[ARRAY_SIZE(mmu
->pdptrs
)];
518 ret
= kvm_read_guest_page_mmu(vcpu
, mmu
, pdpt_gfn
, pdpte
,
519 offset
* sizeof(u64
), sizeof(pdpte
),
520 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
525 for (i
= 0; i
< ARRAY_SIZE(pdpte
); ++i
) {
526 if (is_present_gpte(pdpte
[i
]) &&
527 (pdpte
[i
] & vcpu
->arch
.mmu
.rsvd_bits_mask
[0][2])) {
534 memcpy(mmu
->pdptrs
, pdpte
, sizeof(mmu
->pdptrs
));
535 __set_bit(VCPU_EXREG_PDPTR
,
536 (unsigned long *)&vcpu
->arch
.regs_avail
);
537 __set_bit(VCPU_EXREG_PDPTR
,
538 (unsigned long *)&vcpu
->arch
.regs_dirty
);
543 EXPORT_SYMBOL_GPL(load_pdptrs
);
545 static bool pdptrs_changed(struct kvm_vcpu
*vcpu
)
547 u64 pdpte
[ARRAY_SIZE(vcpu
->arch
.walk_mmu
->pdptrs
)];
553 if (is_long_mode(vcpu
) || !is_pae(vcpu
))
556 if (!test_bit(VCPU_EXREG_PDPTR
,
557 (unsigned long *)&vcpu
->arch
.regs_avail
))
560 gfn
= (kvm_read_cr3(vcpu
) & ~31u) >> PAGE_SHIFT
;
561 offset
= (kvm_read_cr3(vcpu
) & ~31u) & (PAGE_SIZE
- 1);
562 r
= kvm_read_nested_guest_page(vcpu
, gfn
, pdpte
, offset
, sizeof(pdpte
),
563 PFERR_USER_MASK
| PFERR_WRITE_MASK
);
566 changed
= memcmp(pdpte
, vcpu
->arch
.walk_mmu
->pdptrs
, sizeof(pdpte
)) != 0;
572 int kvm_set_cr0(struct kvm_vcpu
*vcpu
, unsigned long cr0
)
574 unsigned long old_cr0
= kvm_read_cr0(vcpu
);
575 unsigned long update_bits
= X86_CR0_PG
| X86_CR0_WP
|
576 X86_CR0_CD
| X86_CR0_NW
;
581 if (cr0
& 0xffffffff00000000UL
)
585 cr0
&= ~CR0_RESERVED_BITS
;
587 if ((cr0
& X86_CR0_NW
) && !(cr0
& X86_CR0_CD
))
590 if ((cr0
& X86_CR0_PG
) && !(cr0
& X86_CR0_PE
))
593 if (!is_paging(vcpu
) && (cr0
& X86_CR0_PG
)) {
595 if ((vcpu
->arch
.efer
& EFER_LME
)) {
600 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
605 if (is_pae(vcpu
) && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
610 if (!(cr0
& X86_CR0_PG
) && kvm_read_cr4_bits(vcpu
, X86_CR4_PCIDE
))
613 kvm_x86_ops
->set_cr0(vcpu
, cr0
);
615 if ((cr0
^ old_cr0
) & X86_CR0_PG
) {
616 kvm_clear_async_pf_completion_queue(vcpu
);
617 kvm_async_pf_hash_reset(vcpu
);
620 if ((cr0
^ old_cr0
) & update_bits
)
621 kvm_mmu_reset_context(vcpu
);
624 EXPORT_SYMBOL_GPL(kvm_set_cr0
);
626 void kvm_lmsw(struct kvm_vcpu
*vcpu
, unsigned long msw
)
628 (void)kvm_set_cr0(vcpu
, kvm_read_cr0_bits(vcpu
, ~0x0eul
) | (msw
& 0x0f));
630 EXPORT_SYMBOL_GPL(kvm_lmsw
);
632 static void kvm_load_guest_xcr0(struct kvm_vcpu
*vcpu
)
634 if (kvm_read_cr4_bits(vcpu
, X86_CR4_OSXSAVE
) &&
635 !vcpu
->guest_xcr0_loaded
) {
636 /* kvm_set_xcr() also depends on this */
637 xsetbv(XCR_XFEATURE_ENABLED_MASK
, vcpu
->arch
.xcr0
);
638 vcpu
->guest_xcr0_loaded
= 1;
642 static void kvm_put_guest_xcr0(struct kvm_vcpu
*vcpu
)
644 if (vcpu
->guest_xcr0_loaded
) {
645 if (vcpu
->arch
.xcr0
!= host_xcr0
)
646 xsetbv(XCR_XFEATURE_ENABLED_MASK
, host_xcr0
);
647 vcpu
->guest_xcr0_loaded
= 0;
651 static int __kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
654 u64 old_xcr0
= vcpu
->arch
.xcr0
;
657 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
658 if (index
!= XCR_XFEATURE_ENABLED_MASK
)
660 if (!(xcr0
& XSTATE_FP
))
662 if ((xcr0
& XSTATE_YMM
) && !(xcr0
& XSTATE_SSE
))
666 * Do not allow the guest to set bits that we do not support
667 * saving. However, xcr0 bit 0 is always set, even if the
668 * emulated CPU does not support XSAVE (see fx_init).
670 valid_bits
= vcpu
->arch
.guest_supported_xcr0
| XSTATE_FP
;
671 if (xcr0
& ~valid_bits
)
674 if ((!(xcr0
& XSTATE_BNDREGS
)) != (!(xcr0
& XSTATE_BNDCSR
)))
677 if (xcr0
& XSTATE_AVX512
) {
678 if (!(xcr0
& XSTATE_YMM
))
680 if ((xcr0
& XSTATE_AVX512
) != XSTATE_AVX512
)
683 vcpu
->arch
.xcr0
= xcr0
;
685 if ((xcr0
^ old_xcr0
) & XSTATE_EXTEND_MASK
)
686 kvm_update_cpuid(vcpu
);
690 int kvm_set_xcr(struct kvm_vcpu
*vcpu
, u32 index
, u64 xcr
)
692 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 ||
693 __kvm_set_xcr(vcpu
, index
, xcr
)) {
694 kvm_inject_gp(vcpu
, 0);
699 EXPORT_SYMBOL_GPL(kvm_set_xcr
);
701 int kvm_set_cr4(struct kvm_vcpu
*vcpu
, unsigned long cr4
)
703 unsigned long old_cr4
= kvm_read_cr4(vcpu
);
704 unsigned long pdptr_bits
= X86_CR4_PGE
| X86_CR4_PSE
| X86_CR4_PAE
|
705 X86_CR4_SMEP
| X86_CR4_SMAP
;
707 if (cr4
& CR4_RESERVED_BITS
)
710 if (!guest_cpuid_has_xsave(vcpu
) && (cr4
& X86_CR4_OSXSAVE
))
713 if (!guest_cpuid_has_smep(vcpu
) && (cr4
& X86_CR4_SMEP
))
716 if (!guest_cpuid_has_smap(vcpu
) && (cr4
& X86_CR4_SMAP
))
719 if (!guest_cpuid_has_fsgsbase(vcpu
) && (cr4
& X86_CR4_FSGSBASE
))
722 if (is_long_mode(vcpu
)) {
723 if (!(cr4
& X86_CR4_PAE
))
725 } else if (is_paging(vcpu
) && (cr4
& X86_CR4_PAE
)
726 && ((cr4
^ old_cr4
) & pdptr_bits
)
727 && !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
,
731 if ((cr4
& X86_CR4_PCIDE
) && !(old_cr4
& X86_CR4_PCIDE
)) {
732 if (!guest_cpuid_has_pcid(vcpu
))
735 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
736 if ((kvm_read_cr3(vcpu
) & X86_CR3_PCID_MASK
) || !is_long_mode(vcpu
))
740 if (kvm_x86_ops
->set_cr4(vcpu
, cr4
))
743 if (((cr4
^ old_cr4
) & pdptr_bits
) ||
744 (!(cr4
& X86_CR4_PCIDE
) && (old_cr4
& X86_CR4_PCIDE
)))
745 kvm_mmu_reset_context(vcpu
);
747 if ((cr4
^ old_cr4
) & X86_CR4_OSXSAVE
)
748 kvm_update_cpuid(vcpu
);
752 EXPORT_SYMBOL_GPL(kvm_set_cr4
);
754 int kvm_set_cr3(struct kvm_vcpu
*vcpu
, unsigned long cr3
)
757 cr3
&= ~CR3_PCID_INVD
;
760 if (cr3
== kvm_read_cr3(vcpu
) && !pdptrs_changed(vcpu
)) {
761 kvm_mmu_sync_roots(vcpu
);
762 kvm_make_request(KVM_REQ_TLB_FLUSH
, vcpu
);
766 if (is_long_mode(vcpu
)) {
767 if (cr3
& CR3_L_MODE_RESERVED_BITS
)
769 } else if (is_pae(vcpu
) && is_paging(vcpu
) &&
770 !load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, cr3
))
773 vcpu
->arch
.cr3
= cr3
;
774 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
775 kvm_mmu_new_cr3(vcpu
);
778 EXPORT_SYMBOL_GPL(kvm_set_cr3
);
780 int kvm_set_cr8(struct kvm_vcpu
*vcpu
, unsigned long cr8
)
782 if (cr8
& CR8_RESERVED_BITS
)
784 if (irqchip_in_kernel(vcpu
->kvm
))
785 kvm_lapic_set_tpr(vcpu
, cr8
);
787 vcpu
->arch
.cr8
= cr8
;
790 EXPORT_SYMBOL_GPL(kvm_set_cr8
);
792 unsigned long kvm_get_cr8(struct kvm_vcpu
*vcpu
)
794 if (irqchip_in_kernel(vcpu
->kvm
))
795 return kvm_lapic_get_cr8(vcpu
);
797 return vcpu
->arch
.cr8
;
799 EXPORT_SYMBOL_GPL(kvm_get_cr8
);
801 static void kvm_update_dr0123(struct kvm_vcpu
*vcpu
)
805 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)) {
806 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
807 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
808 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_RELOAD
;
812 static void kvm_update_dr6(struct kvm_vcpu
*vcpu
)
814 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
815 kvm_x86_ops
->set_dr6(vcpu
, vcpu
->arch
.dr6
);
818 static void kvm_update_dr7(struct kvm_vcpu
*vcpu
)
822 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
823 dr7
= vcpu
->arch
.guest_debug_dr7
;
825 dr7
= vcpu
->arch
.dr7
;
826 kvm_x86_ops
->set_dr7(vcpu
, dr7
);
827 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_BP_ENABLED
;
828 if (dr7
& DR7_BP_EN_MASK
)
829 vcpu
->arch
.switch_db_regs
|= KVM_DEBUGREG_BP_ENABLED
;
832 static u64
kvm_dr6_fixed(struct kvm_vcpu
*vcpu
)
834 u64 fixed
= DR6_FIXED_1
;
836 if (!guest_cpuid_has_rtm(vcpu
))
841 static int __kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
845 vcpu
->arch
.db
[dr
] = val
;
846 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
))
847 vcpu
->arch
.eff_db
[dr
] = val
;
852 if (val
& 0xffffffff00000000ULL
)
854 vcpu
->arch
.dr6
= (val
& DR6_VOLATILE
) | kvm_dr6_fixed(vcpu
);
855 kvm_update_dr6(vcpu
);
860 if (val
& 0xffffffff00000000ULL
)
862 vcpu
->arch
.dr7
= (val
& DR7_VOLATILE
) | DR7_FIXED_1
;
863 kvm_update_dr7(vcpu
);
870 int kvm_set_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long val
)
872 if (__kvm_set_dr(vcpu
, dr
, val
)) {
873 kvm_inject_gp(vcpu
, 0);
878 EXPORT_SYMBOL_GPL(kvm_set_dr
);
880 int kvm_get_dr(struct kvm_vcpu
*vcpu
, int dr
, unsigned long *val
)
884 *val
= vcpu
->arch
.db
[dr
];
889 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
)
890 *val
= vcpu
->arch
.dr6
;
892 *val
= kvm_x86_ops
->get_dr6(vcpu
);
897 *val
= vcpu
->arch
.dr7
;
902 EXPORT_SYMBOL_GPL(kvm_get_dr
);
904 bool kvm_rdpmc(struct kvm_vcpu
*vcpu
)
906 u32 ecx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
910 err
= kvm_pmu_read_pmc(vcpu
, ecx
, &data
);
913 kvm_register_write(vcpu
, VCPU_REGS_RAX
, (u32
)data
);
914 kvm_register_write(vcpu
, VCPU_REGS_RDX
, data
>> 32);
917 EXPORT_SYMBOL_GPL(kvm_rdpmc
);
920 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
921 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
923 * This list is modified at module load time to reflect the
924 * capabilities of the host cpu. This capabilities test skips MSRs that are
925 * kvm-specific. Those are put in the beginning of the list.
928 #define KVM_SAVE_MSRS_BEGIN 12
929 static u32 msrs_to_save
[] = {
930 MSR_KVM_SYSTEM_TIME
, MSR_KVM_WALL_CLOCK
,
931 MSR_KVM_SYSTEM_TIME_NEW
, MSR_KVM_WALL_CLOCK_NEW
,
932 HV_X64_MSR_GUEST_OS_ID
, HV_X64_MSR_HYPERCALL
,
933 HV_X64_MSR_TIME_REF_COUNT
, HV_X64_MSR_REFERENCE_TSC
,
934 HV_X64_MSR_APIC_ASSIST_PAGE
, MSR_KVM_ASYNC_PF_EN
, MSR_KVM_STEAL_TIME
,
936 MSR_IA32_SYSENTER_CS
, MSR_IA32_SYSENTER_ESP
, MSR_IA32_SYSENTER_EIP
,
939 MSR_CSTAR
, MSR_KERNEL_GS_BASE
, MSR_SYSCALL_MASK
, MSR_LSTAR
,
941 MSR_IA32_TSC
, MSR_IA32_CR_PAT
, MSR_VM_HSAVE_PA
,
942 MSR_IA32_FEATURE_CONTROL
, MSR_IA32_BNDCFGS
, MSR_TSC_AUX
,
945 static unsigned num_msrs_to_save
;
947 static const u32 emulated_msrs
[] = {
949 MSR_IA32_TSCDEADLINE
,
950 MSR_IA32_MISC_ENABLE
,
955 bool kvm_valid_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
957 if (efer
& efer_reserved_bits
)
960 if (efer
& EFER_FFXSR
) {
961 struct kvm_cpuid_entry2
*feat
;
963 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
964 if (!feat
|| !(feat
->edx
& bit(X86_FEATURE_FXSR_OPT
)))
968 if (efer
& EFER_SVME
) {
969 struct kvm_cpuid_entry2
*feat
;
971 feat
= kvm_find_cpuid_entry(vcpu
, 0x80000001, 0);
972 if (!feat
|| !(feat
->ecx
& bit(X86_FEATURE_SVM
)))
978 EXPORT_SYMBOL_GPL(kvm_valid_efer
);
980 static int set_efer(struct kvm_vcpu
*vcpu
, u64 efer
)
982 u64 old_efer
= vcpu
->arch
.efer
;
984 if (!kvm_valid_efer(vcpu
, efer
))
988 && (vcpu
->arch
.efer
& EFER_LME
) != (efer
& EFER_LME
))
992 efer
|= vcpu
->arch
.efer
& EFER_LMA
;
994 kvm_x86_ops
->set_efer(vcpu
, efer
);
996 /* Update reserved bits */
997 if ((efer
^ old_efer
) & EFER_NX
)
998 kvm_mmu_reset_context(vcpu
);
1003 void kvm_enable_efer_bits(u64 mask
)
1005 efer_reserved_bits
&= ~mask
;
1007 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits
);
1010 * Writes msr value into into the appropriate "register".
1011 * Returns 0 on success, non-0 otherwise.
1012 * Assumes vcpu_load() was already called.
1014 int kvm_set_msr(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1016 switch (msr
->index
) {
1019 case MSR_KERNEL_GS_BASE
:
1022 if (is_noncanonical_address(msr
->data
))
1025 case MSR_IA32_SYSENTER_EIP
:
1026 case MSR_IA32_SYSENTER_ESP
:
1028 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1029 * non-canonical address is written on Intel but not on
1030 * AMD (which ignores the top 32-bits, because it does
1031 * not implement 64-bit SYSENTER).
1033 * 64-bit code should hence be able to write a non-canonical
1034 * value on AMD. Making the address canonical ensures that
1035 * vmentry does not fail on Intel after writing a non-canonical
1036 * value, and that something deterministic happens if the guest
1037 * invokes 64-bit SYSENTER.
1039 msr
->data
= get_canonical(msr
->data
);
1041 return kvm_x86_ops
->set_msr(vcpu
, msr
);
1043 EXPORT_SYMBOL_GPL(kvm_set_msr
);
1046 * Adapt set_msr() to msr_io()'s calling convention
1048 static int do_set_msr(struct kvm_vcpu
*vcpu
, unsigned index
, u64
*data
)
1050 struct msr_data msr
;
1054 msr
.host_initiated
= true;
1055 return kvm_set_msr(vcpu
, &msr
);
1058 #ifdef CONFIG_X86_64
1059 struct pvclock_gtod_data
{
1062 struct { /* extract of a clocksource struct */
1074 static struct pvclock_gtod_data pvclock_gtod_data
;
1076 static void update_pvclock_gtod(struct timekeeper
*tk
)
1078 struct pvclock_gtod_data
*vdata
= &pvclock_gtod_data
;
1081 boot_ns
= ktime_to_ns(ktime_add(tk
->tkr_mono
.base
, tk
->offs_boot
));
1083 write_seqcount_begin(&vdata
->seq
);
1085 /* copy pvclock gtod data */
1086 vdata
->clock
.vclock_mode
= tk
->tkr_mono
.clock
->archdata
.vclock_mode
;
1087 vdata
->clock
.cycle_last
= tk
->tkr_mono
.cycle_last
;
1088 vdata
->clock
.mask
= tk
->tkr_mono
.mask
;
1089 vdata
->clock
.mult
= tk
->tkr_mono
.mult
;
1090 vdata
->clock
.shift
= tk
->tkr_mono
.shift
;
1092 vdata
->boot_ns
= boot_ns
;
1093 vdata
->nsec_base
= tk
->tkr_mono
.xtime_nsec
;
1095 write_seqcount_end(&vdata
->seq
);
1099 void kvm_set_pending_timer(struct kvm_vcpu
*vcpu
)
1102 * Note: KVM_REQ_PENDING_TIMER is implicitly checked in
1103 * vcpu_enter_guest. This function is only called from
1104 * the physical CPU that is running vcpu.
1106 kvm_make_request(KVM_REQ_PENDING_TIMER
, vcpu
);
1109 static void kvm_write_wall_clock(struct kvm
*kvm
, gpa_t wall_clock
)
1113 struct pvclock_wall_clock wc
;
1114 struct timespec boot
;
1119 r
= kvm_read_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1124 ++version
; /* first time write, random junk */
1128 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1131 * The guest calculates current wall clock time by adding
1132 * system time (updated by kvm_guest_time_update below) to the
1133 * wall clock specified here. guest system time equals host
1134 * system time for us, thus we must fill in host boot time here.
1138 if (kvm
->arch
.kvmclock_offset
) {
1139 struct timespec ts
= ns_to_timespec(kvm
->arch
.kvmclock_offset
);
1140 boot
= timespec_sub(boot
, ts
);
1142 wc
.sec
= boot
.tv_sec
;
1143 wc
.nsec
= boot
.tv_nsec
;
1144 wc
.version
= version
;
1146 kvm_write_guest(kvm
, wall_clock
, &wc
, sizeof(wc
));
1149 kvm_write_guest(kvm
, wall_clock
, &version
, sizeof(version
));
1152 static uint32_t div_frac(uint32_t dividend
, uint32_t divisor
)
1154 uint32_t quotient
, remainder
;
1156 /* Don't try to replace with do_div(), this one calculates
1157 * "(dividend << 32) / divisor" */
1159 : "=a" (quotient
), "=d" (remainder
)
1160 : "0" (0), "1" (dividend
), "r" (divisor
) );
1164 static void kvm_get_time_scale(uint32_t scaled_khz
, uint32_t base_khz
,
1165 s8
*pshift
, u32
*pmultiplier
)
1172 tps64
= base_khz
* 1000LL;
1173 scaled64
= scaled_khz
* 1000LL;
1174 while (tps64
> scaled64
*2 || tps64
& 0xffffffff00000000ULL
) {
1179 tps32
= (uint32_t)tps64
;
1180 while (tps32
<= scaled64
|| scaled64
& 0xffffffff00000000ULL
) {
1181 if (scaled64
& 0xffffffff00000000ULL
|| tps32
& 0x80000000)
1189 *pmultiplier
= div_frac(scaled64
, tps32
);
1191 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
1192 __func__
, base_khz
, scaled_khz
, shift
, *pmultiplier
);
1195 static inline u64
get_kernel_ns(void)
1197 return ktime_get_boot_ns();
1200 #ifdef CONFIG_X86_64
1201 static atomic_t kvm_guest_has_master_clock
= ATOMIC_INIT(0);
1204 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz
);
1205 static unsigned long max_tsc_khz
;
1207 static inline u64
nsec_to_cycles(struct kvm_vcpu
*vcpu
, u64 nsec
)
1209 return pvclock_scale_delta(nsec
, vcpu
->arch
.virtual_tsc_mult
,
1210 vcpu
->arch
.virtual_tsc_shift
);
1213 static u32
adjust_tsc_khz(u32 khz
, s32 ppm
)
1215 u64 v
= (u64
)khz
* (1000000 + ppm
);
1220 static void kvm_set_tsc_khz(struct kvm_vcpu
*vcpu
, u32 this_tsc_khz
)
1222 u32 thresh_lo
, thresh_hi
;
1223 int use_scaling
= 0;
1225 /* tsc_khz can be zero if TSC calibration fails */
1226 if (this_tsc_khz
== 0)
1229 /* Compute a scale to convert nanoseconds in TSC cycles */
1230 kvm_get_time_scale(this_tsc_khz
, NSEC_PER_SEC
/ 1000,
1231 &vcpu
->arch
.virtual_tsc_shift
,
1232 &vcpu
->arch
.virtual_tsc_mult
);
1233 vcpu
->arch
.virtual_tsc_khz
= this_tsc_khz
;
1236 * Compute the variation in TSC rate which is acceptable
1237 * within the range of tolerance and decide if the
1238 * rate being applied is within that bounds of the hardware
1239 * rate. If so, no scaling or compensation need be done.
1241 thresh_lo
= adjust_tsc_khz(tsc_khz
, -tsc_tolerance_ppm
);
1242 thresh_hi
= adjust_tsc_khz(tsc_khz
, tsc_tolerance_ppm
);
1243 if (this_tsc_khz
< thresh_lo
|| this_tsc_khz
> thresh_hi
) {
1244 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", this_tsc_khz
, thresh_lo
, thresh_hi
);
1247 kvm_x86_ops
->set_tsc_khz(vcpu
, this_tsc_khz
, use_scaling
);
1250 static u64
compute_guest_tsc(struct kvm_vcpu
*vcpu
, s64 kernel_ns
)
1252 u64 tsc
= pvclock_scale_delta(kernel_ns
-vcpu
->arch
.this_tsc_nsec
,
1253 vcpu
->arch
.virtual_tsc_mult
,
1254 vcpu
->arch
.virtual_tsc_shift
);
1255 tsc
+= vcpu
->arch
.this_tsc_write
;
1259 static void kvm_track_tsc_matching(struct kvm_vcpu
*vcpu
)
1261 #ifdef CONFIG_X86_64
1263 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
1264 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1266 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1267 atomic_read(&vcpu
->kvm
->online_vcpus
));
1270 * Once the masterclock is enabled, always perform request in
1271 * order to update it.
1273 * In order to enable masterclock, the host clocksource must be TSC
1274 * and the vcpus need to have matched TSCs. When that happens,
1275 * perform request to enable masterclock.
1277 if (ka
->use_master_clock
||
1278 (gtod
->clock
.vclock_mode
== VCLOCK_TSC
&& vcpus_matched
))
1279 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
1281 trace_kvm_track_tsc(vcpu
->vcpu_id
, ka
->nr_vcpus_matched_tsc
,
1282 atomic_read(&vcpu
->kvm
->online_vcpus
),
1283 ka
->use_master_clock
, gtod
->clock
.vclock_mode
);
1287 static void update_ia32_tsc_adjust_msr(struct kvm_vcpu
*vcpu
, s64 offset
)
1289 u64 curr_offset
= kvm_x86_ops
->read_tsc_offset(vcpu
);
1290 vcpu
->arch
.ia32_tsc_adjust_msr
+= offset
- curr_offset
;
1293 void kvm_write_tsc(struct kvm_vcpu
*vcpu
, struct msr_data
*msr
)
1295 struct kvm
*kvm
= vcpu
->kvm
;
1296 u64 offset
, ns
, elapsed
;
1297 unsigned long flags
;
1300 bool already_matched
;
1301 u64 data
= msr
->data
;
1303 raw_spin_lock_irqsave(&kvm
->arch
.tsc_write_lock
, flags
);
1304 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1305 ns
= get_kernel_ns();
1306 elapsed
= ns
- kvm
->arch
.last_tsc_nsec
;
1308 if (vcpu
->arch
.virtual_tsc_khz
) {
1311 /* n.b - signed multiplication and division required */
1312 usdiff
= data
- kvm
->arch
.last_tsc_write
;
1313 #ifdef CONFIG_X86_64
1314 usdiff
= (usdiff
* 1000) / vcpu
->arch
.virtual_tsc_khz
;
1316 /* do_div() only does unsigned */
1317 asm("1: idivl %[divisor]\n"
1318 "2: xor %%edx, %%edx\n"
1319 " movl $0, %[faulted]\n"
1321 ".section .fixup,\"ax\"\n"
1322 "4: movl $1, %[faulted]\n"
1326 _ASM_EXTABLE(1b
, 4b
)
1328 : "=A"(usdiff
), [faulted
] "=r" (faulted
)
1329 : "A"(usdiff
* 1000), [divisor
] "rm"(vcpu
->arch
.virtual_tsc_khz
));
1332 do_div(elapsed
, 1000);
1337 /* idivl overflow => difference is larger than USEC_PER_SEC */
1339 usdiff
= USEC_PER_SEC
;
1341 usdiff
= USEC_PER_SEC
; /* disable TSC match window below */
1344 * Special case: TSC write with a small delta (1 second) of virtual
1345 * cycle time against real time is interpreted as an attempt to
1346 * synchronize the CPU.
1348 * For a reliable TSC, we can match TSC offsets, and for an unstable
1349 * TSC, we add elapsed time in this computation. We could let the
1350 * compensation code attempt to catch up if we fall behind, but
1351 * it's better to try to match offsets from the beginning.
1353 if (usdiff
< USEC_PER_SEC
&&
1354 vcpu
->arch
.virtual_tsc_khz
== kvm
->arch
.last_tsc_khz
) {
1355 if (!check_tsc_unstable()) {
1356 offset
= kvm
->arch
.cur_tsc_offset
;
1357 pr_debug("kvm: matched tsc offset for %llu\n", data
);
1359 u64 delta
= nsec_to_cycles(vcpu
, elapsed
);
1361 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
, data
);
1362 pr_debug("kvm: adjusted tsc offset by %llu\n", delta
);
1365 already_matched
= (vcpu
->arch
.this_tsc_generation
== kvm
->arch
.cur_tsc_generation
);
1368 * We split periods of matched TSC writes into generations.
1369 * For each generation, we track the original measured
1370 * nanosecond time, offset, and write, so if TSCs are in
1371 * sync, we can match exact offset, and if not, we can match
1372 * exact software computation in compute_guest_tsc()
1374 * These values are tracked in kvm->arch.cur_xxx variables.
1376 kvm
->arch
.cur_tsc_generation
++;
1377 kvm
->arch
.cur_tsc_nsec
= ns
;
1378 kvm
->arch
.cur_tsc_write
= data
;
1379 kvm
->arch
.cur_tsc_offset
= offset
;
1381 pr_debug("kvm: new tsc generation %llu, clock %llu\n",
1382 kvm
->arch
.cur_tsc_generation
, data
);
1386 * We also track th most recent recorded KHZ, write and time to
1387 * allow the matching interval to be extended at each write.
1389 kvm
->arch
.last_tsc_nsec
= ns
;
1390 kvm
->arch
.last_tsc_write
= data
;
1391 kvm
->arch
.last_tsc_khz
= vcpu
->arch
.virtual_tsc_khz
;
1393 vcpu
->arch
.last_guest_tsc
= data
;
1395 /* Keep track of which generation this VCPU has synchronized to */
1396 vcpu
->arch
.this_tsc_generation
= kvm
->arch
.cur_tsc_generation
;
1397 vcpu
->arch
.this_tsc_nsec
= kvm
->arch
.cur_tsc_nsec
;
1398 vcpu
->arch
.this_tsc_write
= kvm
->arch
.cur_tsc_write
;
1400 if (guest_cpuid_has_tsc_adjust(vcpu
) && !msr
->host_initiated
)
1401 update_ia32_tsc_adjust_msr(vcpu
, offset
);
1402 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
1403 raw_spin_unlock_irqrestore(&kvm
->arch
.tsc_write_lock
, flags
);
1405 spin_lock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1407 kvm
->arch
.nr_vcpus_matched_tsc
= 0;
1408 } else if (!already_matched
) {
1409 kvm
->arch
.nr_vcpus_matched_tsc
++;
1412 kvm_track_tsc_matching(vcpu
);
1413 spin_unlock(&kvm
->arch
.pvclock_gtod_sync_lock
);
1416 EXPORT_SYMBOL_GPL(kvm_write_tsc
);
1418 #ifdef CONFIG_X86_64
1420 static cycle_t
read_tsc(void)
1426 * Empirically, a fence (of type that depends on the CPU)
1427 * before rdtsc is enough to ensure that rdtsc is ordered
1428 * with respect to loads. The various CPU manuals are unclear
1429 * as to whether rdtsc can be reordered with later loads,
1430 * but no one has ever seen it happen.
1433 ret
= (cycle_t
)vget_cycles();
1435 last
= pvclock_gtod_data
.clock
.cycle_last
;
1437 if (likely(ret
>= last
))
1441 * GCC likes to generate cmov here, but this branch is extremely
1442 * predictable (it's just a funciton of time and the likely is
1443 * very likely) and there's a data dependence, so force GCC
1444 * to generate a branch instead. I don't barrier() because
1445 * we don't actually need a barrier, and if this function
1446 * ever gets inlined it will generate worse code.
1452 static inline u64
vgettsc(cycle_t
*cycle_now
)
1455 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1457 *cycle_now
= read_tsc();
1459 v
= (*cycle_now
- gtod
->clock
.cycle_last
) & gtod
->clock
.mask
;
1460 return v
* gtod
->clock
.mult
;
1463 static int do_monotonic_boot(s64
*t
, cycle_t
*cycle_now
)
1465 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
1471 seq
= read_seqcount_begin(>od
->seq
);
1472 mode
= gtod
->clock
.vclock_mode
;
1473 ns
= gtod
->nsec_base
;
1474 ns
+= vgettsc(cycle_now
);
1475 ns
>>= gtod
->clock
.shift
;
1476 ns
+= gtod
->boot_ns
;
1477 } while (unlikely(read_seqcount_retry(>od
->seq
, seq
)));
1483 /* returns true if host is using tsc clocksource */
1484 static bool kvm_get_time_and_clockread(s64
*kernel_ns
, cycle_t
*cycle_now
)
1486 /* checked again under seqlock below */
1487 if (pvclock_gtod_data
.clock
.vclock_mode
!= VCLOCK_TSC
)
1490 return do_monotonic_boot(kernel_ns
, cycle_now
) == VCLOCK_TSC
;
1496 * Assuming a stable TSC across physical CPUS, and a stable TSC
1497 * across virtual CPUs, the following condition is possible.
1498 * Each numbered line represents an event visible to both
1499 * CPUs at the next numbered event.
1501 * "timespecX" represents host monotonic time. "tscX" represents
1504 * VCPU0 on CPU0 | VCPU1 on CPU1
1506 * 1. read timespec0,tsc0
1507 * 2. | timespec1 = timespec0 + N
1509 * 3. transition to guest | transition to guest
1510 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
1511 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
1512 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
1514 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
1517 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
1519 * - 0 < N - M => M < N
1521 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
1522 * always the case (the difference between two distinct xtime instances
1523 * might be smaller then the difference between corresponding TSC reads,
1524 * when updating guest vcpus pvclock areas).
1526 * To avoid that problem, do not allow visibility of distinct
1527 * system_timestamp/tsc_timestamp values simultaneously: use a master
1528 * copy of host monotonic time values. Update that master copy
1531 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
1535 static void pvclock_update_vm_gtod_copy(struct kvm
*kvm
)
1537 #ifdef CONFIG_X86_64
1538 struct kvm_arch
*ka
= &kvm
->arch
;
1540 bool host_tsc_clocksource
, vcpus_matched
;
1542 vcpus_matched
= (ka
->nr_vcpus_matched_tsc
+ 1 ==
1543 atomic_read(&kvm
->online_vcpus
));
1546 * If the host uses TSC clock, then passthrough TSC as stable
1549 host_tsc_clocksource
= kvm_get_time_and_clockread(
1550 &ka
->master_kernel_ns
,
1551 &ka
->master_cycle_now
);
1553 ka
->use_master_clock
= host_tsc_clocksource
&& vcpus_matched
1554 && !backwards_tsc_observed
1555 && !ka
->boot_vcpu_runs_old_kvmclock
;
1557 if (ka
->use_master_clock
)
1558 atomic_set(&kvm_guest_has_master_clock
, 1);
1560 vclock_mode
= pvclock_gtod_data
.clock
.vclock_mode
;
1561 trace_kvm_update_master_clock(ka
->use_master_clock
, vclock_mode
,
1566 static void kvm_gen_update_masterclock(struct kvm
*kvm
)
1568 #ifdef CONFIG_X86_64
1570 struct kvm_vcpu
*vcpu
;
1571 struct kvm_arch
*ka
= &kvm
->arch
;
1573 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1574 kvm_make_mclock_inprogress_request(kvm
);
1575 /* no guest entries from this point */
1576 pvclock_update_vm_gtod_copy(kvm
);
1578 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1579 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1581 /* guest entries allowed */
1582 kvm_for_each_vcpu(i
, vcpu
, kvm
)
1583 clear_bit(KVM_REQ_MCLOCK_INPROGRESS
, &vcpu
->requests
);
1585 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1589 static int kvm_guest_time_update(struct kvm_vcpu
*v
)
1591 unsigned long flags
, this_tsc_khz
;
1592 struct kvm_vcpu_arch
*vcpu
= &v
->arch
;
1593 struct kvm_arch
*ka
= &v
->kvm
->arch
;
1595 u64 tsc_timestamp
, host_tsc
;
1596 struct pvclock_vcpu_time_info guest_hv_clock
;
1598 bool use_master_clock
;
1604 * If the host uses TSC clock, then passthrough TSC as stable
1607 spin_lock(&ka
->pvclock_gtod_sync_lock
);
1608 use_master_clock
= ka
->use_master_clock
;
1609 if (use_master_clock
) {
1610 host_tsc
= ka
->master_cycle_now
;
1611 kernel_ns
= ka
->master_kernel_ns
;
1613 spin_unlock(&ka
->pvclock_gtod_sync_lock
);
1615 /* Keep irq disabled to prevent changes to the clock */
1616 local_irq_save(flags
);
1617 this_tsc_khz
= __this_cpu_read(cpu_tsc_khz
);
1618 if (unlikely(this_tsc_khz
== 0)) {
1619 local_irq_restore(flags
);
1620 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1623 if (!use_master_clock
) {
1624 host_tsc
= native_read_tsc();
1625 kernel_ns
= get_kernel_ns();
1628 tsc_timestamp
= kvm_x86_ops
->read_l1_tsc(v
, host_tsc
);
1631 * We may have to catch up the TSC to match elapsed wall clock
1632 * time for two reasons, even if kvmclock is used.
1633 * 1) CPU could have been running below the maximum TSC rate
1634 * 2) Broken TSC compensation resets the base at each VCPU
1635 * entry to avoid unknown leaps of TSC even when running
1636 * again on the same CPU. This may cause apparent elapsed
1637 * time to disappear, and the guest to stand still or run
1640 if (vcpu
->tsc_catchup
) {
1641 u64 tsc
= compute_guest_tsc(v
, kernel_ns
);
1642 if (tsc
> tsc_timestamp
) {
1643 adjust_tsc_offset_guest(v
, tsc
- tsc_timestamp
);
1644 tsc_timestamp
= tsc
;
1648 local_irq_restore(flags
);
1650 if (!vcpu
->pv_time_enabled
)
1653 if (unlikely(vcpu
->hw_tsc_khz
!= this_tsc_khz
)) {
1654 kvm_get_time_scale(NSEC_PER_SEC
/ 1000, this_tsc_khz
,
1655 &vcpu
->hv_clock
.tsc_shift
,
1656 &vcpu
->hv_clock
.tsc_to_system_mul
);
1657 vcpu
->hw_tsc_khz
= this_tsc_khz
;
1660 /* With all the info we got, fill in the values */
1661 vcpu
->hv_clock
.tsc_timestamp
= tsc_timestamp
;
1662 vcpu
->hv_clock
.system_time
= kernel_ns
+ v
->kvm
->arch
.kvmclock_offset
;
1663 vcpu
->last_guest_tsc
= tsc_timestamp
;
1665 if (unlikely(kvm_read_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1666 &guest_hv_clock
, sizeof(guest_hv_clock
))))
1669 /* This VCPU is paused, but it's legal for a guest to read another
1670 * VCPU's kvmclock, so we really have to follow the specification where
1671 * it says that version is odd if data is being modified, and even after
1674 * Version field updates must be kept separate. This is because
1675 * kvm_write_guest_cached might use a "rep movs" instruction, and
1676 * writes within a string instruction are weakly ordered. So there
1677 * are three writes overall.
1679 * As a small optimization, only write the version field in the first
1680 * and third write. The vcpu->pv_time cache is still valid, because the
1681 * version field is the first in the struct.
1683 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info
, version
) != 0);
1685 vcpu
->hv_clock
.version
= guest_hv_clock
.version
+ 1;
1686 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1688 sizeof(vcpu
->hv_clock
.version
));
1692 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
1693 pvclock_flags
= (guest_hv_clock
.flags
& PVCLOCK_GUEST_STOPPED
);
1695 if (vcpu
->pvclock_set_guest_stopped_request
) {
1696 pvclock_flags
|= PVCLOCK_GUEST_STOPPED
;
1697 vcpu
->pvclock_set_guest_stopped_request
= false;
1700 /* If the host uses TSC clocksource, then it is stable */
1701 if (use_master_clock
)
1702 pvclock_flags
|= PVCLOCK_TSC_STABLE_BIT
;
1704 vcpu
->hv_clock
.flags
= pvclock_flags
;
1706 trace_kvm_pvclock_update(v
->vcpu_id
, &vcpu
->hv_clock
);
1708 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1710 sizeof(vcpu
->hv_clock
));
1714 vcpu
->hv_clock
.version
++;
1715 kvm_write_guest_cached(v
->kvm
, &vcpu
->pv_time
,
1717 sizeof(vcpu
->hv_clock
.version
));
1722 * kvmclock updates which are isolated to a given vcpu, such as
1723 * vcpu->cpu migration, should not allow system_timestamp from
1724 * the rest of the vcpus to remain static. Otherwise ntp frequency
1725 * correction applies to one vcpu's system_timestamp but not
1728 * So in those cases, request a kvmclock update for all vcpus.
1729 * We need to rate-limit these requests though, as they can
1730 * considerably slow guests that have a large number of vcpus.
1731 * The time for a remote vcpu to update its kvmclock is bound
1732 * by the delay we use to rate-limit the updates.
1735 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
1737 static void kvmclock_update_fn(struct work_struct
*work
)
1740 struct delayed_work
*dwork
= to_delayed_work(work
);
1741 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1742 kvmclock_update_work
);
1743 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1744 struct kvm_vcpu
*vcpu
;
1746 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
1747 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
1748 kvm_vcpu_kick(vcpu
);
1752 static void kvm_gen_kvmclock_update(struct kvm_vcpu
*v
)
1754 struct kvm
*kvm
= v
->kvm
;
1756 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, v
);
1757 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
,
1758 KVMCLOCK_UPDATE_DELAY
);
1761 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
1763 static void kvmclock_sync_fn(struct work_struct
*work
)
1765 struct delayed_work
*dwork
= to_delayed_work(work
);
1766 struct kvm_arch
*ka
= container_of(dwork
, struct kvm_arch
,
1767 kvmclock_sync_work
);
1768 struct kvm
*kvm
= container_of(ka
, struct kvm
, arch
);
1770 schedule_delayed_work(&kvm
->arch
.kvmclock_update_work
, 0);
1771 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
1772 KVMCLOCK_SYNC_PERIOD
);
1775 static bool msr_mtrr_valid(unsigned msr
)
1778 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR
- 1:
1779 case MSR_MTRRfix64K_00000
:
1780 case MSR_MTRRfix16K_80000
:
1781 case MSR_MTRRfix16K_A0000
:
1782 case MSR_MTRRfix4K_C0000
:
1783 case MSR_MTRRfix4K_C8000
:
1784 case MSR_MTRRfix4K_D0000
:
1785 case MSR_MTRRfix4K_D8000
:
1786 case MSR_MTRRfix4K_E0000
:
1787 case MSR_MTRRfix4K_E8000
:
1788 case MSR_MTRRfix4K_F0000
:
1789 case MSR_MTRRfix4K_F8000
:
1790 case MSR_MTRRdefType
:
1791 case MSR_IA32_CR_PAT
:
1799 static bool valid_pat_type(unsigned t
)
1801 return t
< 8 && (1 << t
) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1804 static bool valid_mtrr_type(unsigned t
)
1806 return t
< 8 && (1 << t
) & 0x73; /* 0, 1, 4, 5, 6 */
1809 bool kvm_mtrr_valid(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1814 if (!msr_mtrr_valid(msr
))
1817 if (msr
== MSR_IA32_CR_PAT
) {
1818 for (i
= 0; i
< 8; i
++)
1819 if (!valid_pat_type((data
>> (i
* 8)) & 0xff))
1822 } else if (msr
== MSR_MTRRdefType
) {
1825 return valid_mtrr_type(data
& 0xff);
1826 } else if (msr
>= MSR_MTRRfix64K_00000
&& msr
<= MSR_MTRRfix4K_F8000
) {
1827 for (i
= 0; i
< 8 ; i
++)
1828 if (!valid_mtrr_type((data
>> (i
* 8)) & 0xff))
1833 /* variable MTRRs */
1834 WARN_ON(!(msr
>= 0x200 && msr
< 0x200 + 2 * KVM_NR_VAR_MTRR
));
1836 mask
= (~0ULL) << cpuid_maxphyaddr(vcpu
);
1837 if ((msr
& 1) == 0) {
1839 if (!valid_mtrr_type(data
& 0xff))
1846 kvm_inject_gp(vcpu
, 0);
1852 EXPORT_SYMBOL_GPL(kvm_mtrr_valid
);
1854 static int set_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1856 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
1858 if (!kvm_mtrr_valid(vcpu
, msr
, data
))
1861 if (msr
== MSR_MTRRdefType
) {
1862 vcpu
->arch
.mtrr_state
.def_type
= data
;
1863 vcpu
->arch
.mtrr_state
.enabled
= (data
& 0xc00) >> 10;
1864 } else if (msr
== MSR_MTRRfix64K_00000
)
1866 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
1867 p
[1 + msr
- MSR_MTRRfix16K_80000
] = data
;
1868 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
1869 p
[3 + msr
- MSR_MTRRfix4K_C0000
] = data
;
1870 else if (msr
== MSR_IA32_CR_PAT
)
1871 vcpu
->arch
.pat
= data
;
1872 else { /* Variable MTRRs */
1873 int idx
, is_mtrr_mask
;
1876 idx
= (msr
- 0x200) / 2;
1877 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
1880 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
1883 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
1887 kvm_mmu_reset_context(vcpu
);
1891 static int set_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1893 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
1894 unsigned bank_num
= mcg_cap
& 0xff;
1897 case MSR_IA32_MCG_STATUS
:
1898 vcpu
->arch
.mcg_status
= data
;
1900 case MSR_IA32_MCG_CTL
:
1901 if (!(mcg_cap
& MCG_CTL_P
))
1903 if (data
!= 0 && data
!= ~(u64
)0)
1905 vcpu
->arch
.mcg_ctl
= data
;
1908 if (msr
>= MSR_IA32_MC0_CTL
&&
1909 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
1910 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
1911 /* only 0 or all 1s can be written to IA32_MCi_CTL
1912 * some Linux kernels though clear bit 10 in bank 4 to
1913 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1914 * this to avoid an uncatched #GP in the guest
1916 if ((offset
& 0x3) == 0 &&
1917 data
!= 0 && (data
| (1 << 10)) != ~(u64
)0)
1919 vcpu
->arch
.mce_banks
[offset
] = data
;
1927 static int xen_hvm_config(struct kvm_vcpu
*vcpu
, u64 data
)
1929 struct kvm
*kvm
= vcpu
->kvm
;
1930 int lm
= is_long_mode(vcpu
);
1931 u8
*blob_addr
= lm
? (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_64
1932 : (u8
*)(long)kvm
->arch
.xen_hvm_config
.blob_addr_32
;
1933 u8 blob_size
= lm
? kvm
->arch
.xen_hvm_config
.blob_size_64
1934 : kvm
->arch
.xen_hvm_config
.blob_size_32
;
1935 u32 page_num
= data
& ~PAGE_MASK
;
1936 u64 page_addr
= data
& PAGE_MASK
;
1941 if (page_num
>= blob_size
)
1944 page
= memdup_user(blob_addr
+ (page_num
* PAGE_SIZE
), PAGE_SIZE
);
1949 if (kvm_write_guest(kvm
, page_addr
, page
, PAGE_SIZE
))
1958 static bool kvm_hv_hypercall_enabled(struct kvm
*kvm
)
1960 return kvm
->arch
.hv_hypercall
& HV_X64_MSR_HYPERCALL_ENABLE
;
1963 static bool kvm_hv_msr_partition_wide(u32 msr
)
1967 case HV_X64_MSR_GUEST_OS_ID
:
1968 case HV_X64_MSR_HYPERCALL
:
1969 case HV_X64_MSR_REFERENCE_TSC
:
1970 case HV_X64_MSR_TIME_REF_COUNT
:
1978 static int set_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
1980 struct kvm
*kvm
= vcpu
->kvm
;
1983 case HV_X64_MSR_GUEST_OS_ID
:
1984 kvm
->arch
.hv_guest_os_id
= data
;
1985 /* setting guest os id to zero disables hypercall page */
1986 if (!kvm
->arch
.hv_guest_os_id
)
1987 kvm
->arch
.hv_hypercall
&= ~HV_X64_MSR_HYPERCALL_ENABLE
;
1989 case HV_X64_MSR_HYPERCALL
: {
1994 /* if guest os id is not set hypercall should remain disabled */
1995 if (!kvm
->arch
.hv_guest_os_id
)
1997 if (!(data
& HV_X64_MSR_HYPERCALL_ENABLE
)) {
1998 kvm
->arch
.hv_hypercall
= data
;
2001 gfn
= data
>> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT
;
2002 addr
= gfn_to_hva(kvm
, gfn
);
2003 if (kvm_is_error_hva(addr
))
2005 kvm_x86_ops
->patch_hypercall(vcpu
, instructions
);
2006 ((unsigned char *)instructions
)[3] = 0xc3; /* ret */
2007 if (__copy_to_user((void __user
*)addr
, instructions
, 4))
2009 kvm
->arch
.hv_hypercall
= data
;
2010 mark_page_dirty(kvm
, gfn
);
2013 case HV_X64_MSR_REFERENCE_TSC
: {
2015 HV_REFERENCE_TSC_PAGE tsc_ref
;
2016 memset(&tsc_ref
, 0, sizeof(tsc_ref
));
2017 kvm
->arch
.hv_tsc_page
= data
;
2018 if (!(data
& HV_X64_MSR_TSC_REFERENCE_ENABLE
))
2020 gfn
= data
>> HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
;
2021 if (kvm_write_guest(kvm
, gfn
<< HV_X64_MSR_TSC_REFERENCE_ADDRESS_SHIFT
,
2022 &tsc_ref
, sizeof(tsc_ref
)))
2024 mark_page_dirty(kvm
, gfn
);
2028 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
2029 "data 0x%llx\n", msr
, data
);
2035 static int set_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64 data
)
2038 case HV_X64_MSR_APIC_ASSIST_PAGE
: {
2042 if (!(data
& HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE
)) {
2043 vcpu
->arch
.hv_vapic
= data
;
2044 if (kvm_lapic_enable_pv_eoi(vcpu
, 0))
2048 gfn
= data
>> HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT
;
2049 addr
= gfn_to_hva(vcpu
->kvm
, gfn
);
2050 if (kvm_is_error_hva(addr
))
2052 if (__clear_user((void __user
*)addr
, PAGE_SIZE
))
2054 vcpu
->arch
.hv_vapic
= data
;
2055 mark_page_dirty(vcpu
->kvm
, gfn
);
2056 if (kvm_lapic_enable_pv_eoi(vcpu
, gfn_to_gpa(gfn
) | KVM_MSR_ENABLED
))
2060 case HV_X64_MSR_EOI
:
2061 return kvm_hv_vapic_msr_write(vcpu
, APIC_EOI
, data
);
2062 case HV_X64_MSR_ICR
:
2063 return kvm_hv_vapic_msr_write(vcpu
, APIC_ICR
, data
);
2064 case HV_X64_MSR_TPR
:
2065 return kvm_hv_vapic_msr_write(vcpu
, APIC_TASKPRI
, data
);
2067 vcpu_unimpl(vcpu
, "HYPER-V unimplemented wrmsr: 0x%x "
2068 "data 0x%llx\n", msr
, data
);
2075 static int kvm_pv_enable_async_pf(struct kvm_vcpu
*vcpu
, u64 data
)
2077 gpa_t gpa
= data
& ~0x3f;
2079 /* Bits 2:5 are reserved, Should be zero */
2083 vcpu
->arch
.apf
.msr_val
= data
;
2085 if (!(data
& KVM_ASYNC_PF_ENABLED
)) {
2086 kvm_clear_async_pf_completion_queue(vcpu
);
2087 kvm_async_pf_hash_reset(vcpu
);
2091 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, gpa
,
2095 vcpu
->arch
.apf
.send_user_only
= !(data
& KVM_ASYNC_PF_SEND_ALWAYS
);
2096 kvm_async_pf_wakeup_all(vcpu
);
2100 static void kvmclock_reset(struct kvm_vcpu
*vcpu
)
2102 vcpu
->arch
.pv_time_enabled
= false;
2105 static void accumulate_steal_time(struct kvm_vcpu
*vcpu
)
2109 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2112 delta
= current
->sched_info
.run_delay
- vcpu
->arch
.st
.last_steal
;
2113 vcpu
->arch
.st
.last_steal
= current
->sched_info
.run_delay
;
2114 vcpu
->arch
.st
.accum_steal
= delta
;
2117 static void record_steal_time(struct kvm_vcpu
*vcpu
)
2119 accumulate_steal_time(vcpu
);
2121 if (!(vcpu
->arch
.st
.msr_val
& KVM_MSR_ENABLED
))
2124 if (unlikely(kvm_read_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2125 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
))))
2128 vcpu
->arch
.st
.steal
.steal
+= vcpu
->arch
.st
.accum_steal
;
2129 vcpu
->arch
.st
.steal
.version
+= 2;
2130 vcpu
->arch
.st
.accum_steal
= 0;
2132 kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2133 &vcpu
->arch
.st
.steal
, sizeof(struct kvm_steal_time
));
2136 int kvm_set_msr_common(struct kvm_vcpu
*vcpu
, struct msr_data
*msr_info
)
2139 u32 msr
= msr_info
->index
;
2140 u64 data
= msr_info
->data
;
2143 case MSR_AMD64_NB_CFG
:
2144 case MSR_IA32_UCODE_REV
:
2145 case MSR_IA32_UCODE_WRITE
:
2146 case MSR_VM_HSAVE_PA
:
2147 case MSR_AMD64_PATCH_LOADER
:
2148 case MSR_AMD64_BU_CFG2
:
2152 return set_efer(vcpu
, data
);
2154 data
&= ~(u64
)0x40; /* ignore flush filter disable */
2155 data
&= ~(u64
)0x100; /* ignore ignne emulation enable */
2156 data
&= ~(u64
)0x8; /* ignore TLB cache disable */
2157 data
&= ~(u64
)0x40000; /* ignore Mc status write enable */
2159 vcpu_unimpl(vcpu
, "unimplemented HWCR wrmsr: 0x%llx\n",
2164 case MSR_FAM10H_MMIO_CONF_BASE
:
2166 vcpu_unimpl(vcpu
, "unimplemented MMIO_CONF_BASE wrmsr: "
2171 case MSR_IA32_DEBUGCTLMSR
:
2173 /* We support the non-activated case already */
2175 } else if (data
& ~(DEBUGCTLMSR_LBR
| DEBUGCTLMSR_BTF
)) {
2176 /* Values other than LBR and BTF are vendor-specific,
2177 thus reserved and should throw a #GP */
2180 vcpu_unimpl(vcpu
, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
2183 case 0x200 ... 0x2ff:
2184 return set_msr_mtrr(vcpu
, msr
, data
);
2185 case MSR_IA32_APICBASE
:
2186 return kvm_set_apic_base(vcpu
, msr_info
);
2187 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2188 return kvm_x2apic_msr_write(vcpu
, msr
, data
);
2189 case MSR_IA32_TSCDEADLINE
:
2190 kvm_set_lapic_tscdeadline_msr(vcpu
, data
);
2192 case MSR_IA32_TSC_ADJUST
:
2193 if (guest_cpuid_has_tsc_adjust(vcpu
)) {
2194 if (!msr_info
->host_initiated
) {
2195 s64 adj
= data
- vcpu
->arch
.ia32_tsc_adjust_msr
;
2196 adjust_tsc_offset_guest(vcpu
, adj
);
2198 vcpu
->arch
.ia32_tsc_adjust_msr
= data
;
2201 case MSR_IA32_MISC_ENABLE
:
2202 vcpu
->arch
.ia32_misc_enable_msr
= data
;
2204 case MSR_KVM_WALL_CLOCK_NEW
:
2205 case MSR_KVM_WALL_CLOCK
:
2206 vcpu
->kvm
->arch
.wall_clock
= data
;
2207 kvm_write_wall_clock(vcpu
->kvm
, data
);
2209 case MSR_KVM_SYSTEM_TIME_NEW
:
2210 case MSR_KVM_SYSTEM_TIME
: {
2212 struct kvm_arch
*ka
= &vcpu
->kvm
->arch
;
2214 kvmclock_reset(vcpu
);
2216 if (vcpu
->vcpu_id
== 0 && !msr_info
->host_initiated
) {
2217 bool tmp
= (msr
== MSR_KVM_SYSTEM_TIME
);
2219 if (ka
->boot_vcpu_runs_old_kvmclock
!= tmp
)
2220 set_bit(KVM_REQ_MASTERCLOCK_UPDATE
,
2223 ka
->boot_vcpu_runs_old_kvmclock
= tmp
;
2226 vcpu
->arch
.time
= data
;
2227 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2229 /* we verify if the enable bit is set... */
2233 gpa_offset
= data
& ~(PAGE_MASK
| 1);
2235 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
,
2236 &vcpu
->arch
.pv_time
, data
& ~1ULL,
2237 sizeof(struct pvclock_vcpu_time_info
)))
2238 vcpu
->arch
.pv_time_enabled
= false;
2240 vcpu
->arch
.pv_time_enabled
= true;
2244 case MSR_KVM_ASYNC_PF_EN
:
2245 if (kvm_pv_enable_async_pf(vcpu
, data
))
2248 case MSR_KVM_STEAL_TIME
:
2250 if (unlikely(!sched_info_on()))
2253 if (data
& KVM_STEAL_RESERVED_MASK
)
2256 if (kvm_gfn_to_hva_cache_init(vcpu
->kvm
, &vcpu
->arch
.st
.stime
,
2257 data
& KVM_STEAL_VALID_BITS
,
2258 sizeof(struct kvm_steal_time
)))
2261 vcpu
->arch
.st
.msr_val
= data
;
2263 if (!(data
& KVM_MSR_ENABLED
))
2266 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2269 case MSR_KVM_PV_EOI_EN
:
2270 if (kvm_lapic_enable_pv_eoi(vcpu
, data
))
2274 case MSR_IA32_MCG_CTL
:
2275 case MSR_IA32_MCG_STATUS
:
2276 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2277 return set_msr_mce(vcpu
, msr
, data
);
2279 /* Performance counters are not protected by a CPUID bit,
2280 * so we should check all of them in the generic path for the sake of
2281 * cross vendor migration.
2282 * Writing a zero into the event select MSRs disables them,
2283 * which we perfectly emulate ;-). Any other value should be at least
2284 * reported, some guests depend on them.
2286 case MSR_K7_EVNTSEL0
:
2287 case MSR_K7_EVNTSEL1
:
2288 case MSR_K7_EVNTSEL2
:
2289 case MSR_K7_EVNTSEL3
:
2291 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2292 "0x%x data 0x%llx\n", msr
, data
);
2294 /* at least RHEL 4 unconditionally writes to the perfctr registers,
2295 * so we ignore writes to make it happy.
2297 case MSR_K7_PERFCTR0
:
2298 case MSR_K7_PERFCTR1
:
2299 case MSR_K7_PERFCTR2
:
2300 case MSR_K7_PERFCTR3
:
2301 vcpu_unimpl(vcpu
, "unimplemented perfctr wrmsr: "
2302 "0x%x data 0x%llx\n", msr
, data
);
2304 case MSR_P6_PERFCTR0
:
2305 case MSR_P6_PERFCTR1
:
2307 case MSR_P6_EVNTSEL0
:
2308 case MSR_P6_EVNTSEL1
:
2309 if (kvm_pmu_msr(vcpu
, msr
))
2310 return kvm_pmu_set_msr(vcpu
, msr_info
);
2312 if (pr
|| data
!= 0)
2313 vcpu_unimpl(vcpu
, "disabled perfctr wrmsr: "
2314 "0x%x data 0x%llx\n", msr
, data
);
2316 case MSR_K7_CLK_CTL
:
2318 * Ignore all writes to this no longer documented MSR.
2319 * Writes are only relevant for old K7 processors,
2320 * all pre-dating SVM, but a recommended workaround from
2321 * AMD for these chips. It is possible to specify the
2322 * affected processor models on the command line, hence
2323 * the need to ignore the workaround.
2326 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2327 if (kvm_hv_msr_partition_wide(msr
)) {
2329 mutex_lock(&vcpu
->kvm
->lock
);
2330 r
= set_msr_hyperv_pw(vcpu
, msr
, data
);
2331 mutex_unlock(&vcpu
->kvm
->lock
);
2334 return set_msr_hyperv(vcpu
, msr
, data
);
2336 case MSR_IA32_BBL_CR_CTL3
:
2337 /* Drop writes to this legacy MSR -- see rdmsr
2338 * counterpart for further detail.
2340 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n", msr
, data
);
2342 case MSR_AMD64_OSVW_ID_LENGTH
:
2343 if (!guest_cpuid_has_osvw(vcpu
))
2345 vcpu
->arch
.osvw
.length
= data
;
2347 case MSR_AMD64_OSVW_STATUS
:
2348 if (!guest_cpuid_has_osvw(vcpu
))
2350 vcpu
->arch
.osvw
.status
= data
;
2353 if (msr
&& (msr
== vcpu
->kvm
->arch
.xen_hvm_config
.msr
))
2354 return xen_hvm_config(vcpu
, data
);
2355 if (kvm_pmu_msr(vcpu
, msr
))
2356 return kvm_pmu_set_msr(vcpu
, msr_info
);
2358 vcpu_unimpl(vcpu
, "unhandled wrmsr: 0x%x data %llx\n",
2362 vcpu_unimpl(vcpu
, "ignored wrmsr: 0x%x data %llx\n",
2369 EXPORT_SYMBOL_GPL(kvm_set_msr_common
);
2373 * Reads an msr value (of 'msr_index') into 'pdata'.
2374 * Returns 0 on success, non-0 otherwise.
2375 * Assumes vcpu_load() was already called.
2377 int kvm_get_msr(struct kvm_vcpu
*vcpu
, u32 msr_index
, u64
*pdata
)
2379 return kvm_x86_ops
->get_msr(vcpu
, msr_index
, pdata
);
2381 EXPORT_SYMBOL_GPL(kvm_get_msr
);
2383 static int get_msr_mtrr(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2385 u64
*p
= (u64
*)&vcpu
->arch
.mtrr_state
.fixed_ranges
;
2387 if (!msr_mtrr_valid(msr
))
2390 if (msr
== MSR_MTRRdefType
)
2391 *pdata
= vcpu
->arch
.mtrr_state
.def_type
+
2392 (vcpu
->arch
.mtrr_state
.enabled
<< 10);
2393 else if (msr
== MSR_MTRRfix64K_00000
)
2395 else if (msr
== MSR_MTRRfix16K_80000
|| msr
== MSR_MTRRfix16K_A0000
)
2396 *pdata
= p
[1 + msr
- MSR_MTRRfix16K_80000
];
2397 else if (msr
>= MSR_MTRRfix4K_C0000
&& msr
<= MSR_MTRRfix4K_F8000
)
2398 *pdata
= p
[3 + msr
- MSR_MTRRfix4K_C0000
];
2399 else if (msr
== MSR_IA32_CR_PAT
)
2400 *pdata
= vcpu
->arch
.pat
;
2401 else { /* Variable MTRRs */
2402 int idx
, is_mtrr_mask
;
2405 idx
= (msr
- 0x200) / 2;
2406 is_mtrr_mask
= msr
- 0x200 - 2 * idx
;
2409 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].base_lo
;
2412 (u64
*)&vcpu
->arch
.mtrr_state
.var_ranges
[idx
].mask_lo
;
2419 static int get_msr_mce(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2422 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
2423 unsigned bank_num
= mcg_cap
& 0xff;
2426 case MSR_IA32_P5_MC_ADDR
:
2427 case MSR_IA32_P5_MC_TYPE
:
2430 case MSR_IA32_MCG_CAP
:
2431 data
= vcpu
->arch
.mcg_cap
;
2433 case MSR_IA32_MCG_CTL
:
2434 if (!(mcg_cap
& MCG_CTL_P
))
2436 data
= vcpu
->arch
.mcg_ctl
;
2438 case MSR_IA32_MCG_STATUS
:
2439 data
= vcpu
->arch
.mcg_status
;
2442 if (msr
>= MSR_IA32_MC0_CTL
&&
2443 msr
< MSR_IA32_MCx_CTL(bank_num
)) {
2444 u32 offset
= msr
- MSR_IA32_MC0_CTL
;
2445 data
= vcpu
->arch
.mce_banks
[offset
];
2454 static int get_msr_hyperv_pw(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2457 struct kvm
*kvm
= vcpu
->kvm
;
2460 case HV_X64_MSR_GUEST_OS_ID
:
2461 data
= kvm
->arch
.hv_guest_os_id
;
2463 case HV_X64_MSR_HYPERCALL
:
2464 data
= kvm
->arch
.hv_hypercall
;
2466 case HV_X64_MSR_TIME_REF_COUNT
: {
2468 div_u64(get_kernel_ns() + kvm
->arch
.kvmclock_offset
, 100);
2471 case HV_X64_MSR_REFERENCE_TSC
:
2472 data
= kvm
->arch
.hv_tsc_page
;
2475 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2483 static int get_msr_hyperv(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2488 case HV_X64_MSR_VP_INDEX
: {
2491 kvm_for_each_vcpu(r
, v
, vcpu
->kvm
) {
2499 case HV_X64_MSR_EOI
:
2500 return kvm_hv_vapic_msr_read(vcpu
, APIC_EOI
, pdata
);
2501 case HV_X64_MSR_ICR
:
2502 return kvm_hv_vapic_msr_read(vcpu
, APIC_ICR
, pdata
);
2503 case HV_X64_MSR_TPR
:
2504 return kvm_hv_vapic_msr_read(vcpu
, APIC_TASKPRI
, pdata
);
2505 case HV_X64_MSR_APIC_ASSIST_PAGE
:
2506 data
= vcpu
->arch
.hv_vapic
;
2509 vcpu_unimpl(vcpu
, "Hyper-V unhandled rdmsr: 0x%x\n", msr
);
2516 int kvm_get_msr_common(struct kvm_vcpu
*vcpu
, u32 msr
, u64
*pdata
)
2521 case MSR_IA32_PLATFORM_ID
:
2522 case MSR_IA32_EBL_CR_POWERON
:
2523 case MSR_IA32_DEBUGCTLMSR
:
2524 case MSR_IA32_LASTBRANCHFROMIP
:
2525 case MSR_IA32_LASTBRANCHTOIP
:
2526 case MSR_IA32_LASTINTFROMIP
:
2527 case MSR_IA32_LASTINTTOIP
:
2530 case MSR_VM_HSAVE_PA
:
2531 case MSR_K7_EVNTSEL0
:
2532 case MSR_K7_EVNTSEL1
:
2533 case MSR_K7_EVNTSEL2
:
2534 case MSR_K7_EVNTSEL3
:
2535 case MSR_K7_PERFCTR0
:
2536 case MSR_K7_PERFCTR1
:
2537 case MSR_K7_PERFCTR2
:
2538 case MSR_K7_PERFCTR3
:
2539 case MSR_K8_INT_PENDING_MSG
:
2540 case MSR_AMD64_NB_CFG
:
2541 case MSR_FAM10H_MMIO_CONF_BASE
:
2542 case MSR_AMD64_BU_CFG2
:
2545 case MSR_P6_PERFCTR0
:
2546 case MSR_P6_PERFCTR1
:
2547 case MSR_P6_EVNTSEL0
:
2548 case MSR_P6_EVNTSEL1
:
2549 if (kvm_pmu_msr(vcpu
, msr
))
2550 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2553 case MSR_IA32_UCODE_REV
:
2554 data
= 0x100000000ULL
;
2557 data
= 0x500 | KVM_NR_VAR_MTRR
;
2559 case 0x200 ... 0x2ff:
2560 return get_msr_mtrr(vcpu
, msr
, pdata
);
2561 case 0xcd: /* fsb frequency */
2565 * MSR_EBC_FREQUENCY_ID
2566 * Conservative value valid for even the basic CPU models.
2567 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
2568 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
2569 * and 266MHz for model 3, or 4. Set Core Clock
2570 * Frequency to System Bus Frequency Ratio to 1 (bits
2571 * 31:24) even though these are only valid for CPU
2572 * models > 2, however guests may end up dividing or
2573 * multiplying by zero otherwise.
2575 case MSR_EBC_FREQUENCY_ID
:
2578 case MSR_IA32_APICBASE
:
2579 data
= kvm_get_apic_base(vcpu
);
2581 case APIC_BASE_MSR
... APIC_BASE_MSR
+ 0x3ff:
2582 return kvm_x2apic_msr_read(vcpu
, msr
, pdata
);
2584 case MSR_IA32_TSCDEADLINE
:
2585 data
= kvm_get_lapic_tscdeadline_msr(vcpu
);
2587 case MSR_IA32_TSC_ADJUST
:
2588 data
= (u64
)vcpu
->arch
.ia32_tsc_adjust_msr
;
2590 case MSR_IA32_MISC_ENABLE
:
2591 data
= vcpu
->arch
.ia32_misc_enable_msr
;
2593 case MSR_IA32_PERF_STATUS
:
2594 /* TSC increment by tick */
2596 /* CPU multiplier */
2597 data
|= (((uint64_t)4ULL) << 40);
2600 data
= vcpu
->arch
.efer
;
2602 case MSR_KVM_WALL_CLOCK
:
2603 case MSR_KVM_WALL_CLOCK_NEW
:
2604 data
= vcpu
->kvm
->arch
.wall_clock
;
2606 case MSR_KVM_SYSTEM_TIME
:
2607 case MSR_KVM_SYSTEM_TIME_NEW
:
2608 data
= vcpu
->arch
.time
;
2610 case MSR_KVM_ASYNC_PF_EN
:
2611 data
= vcpu
->arch
.apf
.msr_val
;
2613 case MSR_KVM_STEAL_TIME
:
2614 data
= vcpu
->arch
.st
.msr_val
;
2616 case MSR_KVM_PV_EOI_EN
:
2617 data
= vcpu
->arch
.pv_eoi
.msr_val
;
2619 case MSR_IA32_P5_MC_ADDR
:
2620 case MSR_IA32_P5_MC_TYPE
:
2621 case MSR_IA32_MCG_CAP
:
2622 case MSR_IA32_MCG_CTL
:
2623 case MSR_IA32_MCG_STATUS
:
2624 case MSR_IA32_MC0_CTL
... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS
) - 1:
2625 return get_msr_mce(vcpu
, msr
, pdata
);
2626 case MSR_K7_CLK_CTL
:
2628 * Provide expected ramp-up count for K7. All other
2629 * are set to zero, indicating minimum divisors for
2632 * This prevents guest kernels on AMD host with CPU
2633 * type 6, model 8 and higher from exploding due to
2634 * the rdmsr failing.
2638 case HV_X64_MSR_GUEST_OS_ID
... HV_X64_MSR_SINT15
:
2639 if (kvm_hv_msr_partition_wide(msr
)) {
2641 mutex_lock(&vcpu
->kvm
->lock
);
2642 r
= get_msr_hyperv_pw(vcpu
, msr
, pdata
);
2643 mutex_unlock(&vcpu
->kvm
->lock
);
2646 return get_msr_hyperv(vcpu
, msr
, pdata
);
2648 case MSR_IA32_BBL_CR_CTL3
:
2649 /* This legacy MSR exists but isn't fully documented in current
2650 * silicon. It is however accessed by winxp in very narrow
2651 * scenarios where it sets bit #19, itself documented as
2652 * a "reserved" bit. Best effort attempt to source coherent
2653 * read data here should the balance of the register be
2654 * interpreted by the guest:
2656 * L2 cache control register 3: 64GB range, 256KB size,
2657 * enabled, latency 0x1, configured
2661 case MSR_AMD64_OSVW_ID_LENGTH
:
2662 if (!guest_cpuid_has_osvw(vcpu
))
2664 data
= vcpu
->arch
.osvw
.length
;
2666 case MSR_AMD64_OSVW_STATUS
:
2667 if (!guest_cpuid_has_osvw(vcpu
))
2669 data
= vcpu
->arch
.osvw
.status
;
2672 if (kvm_pmu_msr(vcpu
, msr
))
2673 return kvm_pmu_get_msr(vcpu
, msr
, pdata
);
2675 vcpu_unimpl(vcpu
, "unhandled rdmsr: 0x%x\n", msr
);
2678 vcpu_unimpl(vcpu
, "ignored rdmsr: 0x%x\n", msr
);
2686 EXPORT_SYMBOL_GPL(kvm_get_msr_common
);
2689 * Read or write a bunch of msrs. All parameters are kernel addresses.
2691 * @return number of msrs set successfully.
2693 static int __msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs
*msrs
,
2694 struct kvm_msr_entry
*entries
,
2695 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2696 unsigned index
, u64
*data
))
2700 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
2701 for (i
= 0; i
< msrs
->nmsrs
; ++i
)
2702 if (do_msr(vcpu
, entries
[i
].index
, &entries
[i
].data
))
2704 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
2710 * Read or write a bunch of msrs. Parameters are user addresses.
2712 * @return number of msrs set successfully.
2714 static int msr_io(struct kvm_vcpu
*vcpu
, struct kvm_msrs __user
*user_msrs
,
2715 int (*do_msr
)(struct kvm_vcpu
*vcpu
,
2716 unsigned index
, u64
*data
),
2719 struct kvm_msrs msrs
;
2720 struct kvm_msr_entry
*entries
;
2725 if (copy_from_user(&msrs
, user_msrs
, sizeof msrs
))
2729 if (msrs
.nmsrs
>= MAX_IO_MSRS
)
2732 size
= sizeof(struct kvm_msr_entry
) * msrs
.nmsrs
;
2733 entries
= memdup_user(user_msrs
->entries
, size
);
2734 if (IS_ERR(entries
)) {
2735 r
= PTR_ERR(entries
);
2739 r
= n
= __msr_io(vcpu
, &msrs
, entries
, do_msr
);
2744 if (writeback
&& copy_to_user(user_msrs
->entries
, entries
, size
))
2755 int kvm_vm_ioctl_check_extension(struct kvm
*kvm
, long ext
)
2760 case KVM_CAP_IRQCHIP
:
2762 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL
:
2763 case KVM_CAP_SET_TSS_ADDR
:
2764 case KVM_CAP_EXT_CPUID
:
2765 case KVM_CAP_EXT_EMUL_CPUID
:
2766 case KVM_CAP_CLOCKSOURCE
:
2768 case KVM_CAP_NOP_IO_DELAY
:
2769 case KVM_CAP_MP_STATE
:
2770 case KVM_CAP_SYNC_MMU
:
2771 case KVM_CAP_USER_NMI
:
2772 case KVM_CAP_REINJECT_CONTROL
:
2773 case KVM_CAP_IRQ_INJECT_STATUS
:
2774 case KVM_CAP_IOEVENTFD
:
2775 case KVM_CAP_IOEVENTFD_NO_LENGTH
:
2777 case KVM_CAP_PIT_STATE2
:
2778 case KVM_CAP_SET_IDENTITY_MAP_ADDR
:
2779 case KVM_CAP_XEN_HVM
:
2780 case KVM_CAP_ADJUST_CLOCK
:
2781 case KVM_CAP_VCPU_EVENTS
:
2782 case KVM_CAP_HYPERV
:
2783 case KVM_CAP_HYPERV_VAPIC
:
2784 case KVM_CAP_HYPERV_SPIN
:
2785 case KVM_CAP_PCI_SEGMENT
:
2786 case KVM_CAP_DEBUGREGS
:
2787 case KVM_CAP_X86_ROBUST_SINGLESTEP
:
2789 case KVM_CAP_ASYNC_PF
:
2790 case KVM_CAP_GET_TSC_KHZ
:
2791 case KVM_CAP_KVMCLOCK_CTRL
:
2792 case KVM_CAP_READONLY_MEM
:
2793 case KVM_CAP_HYPERV_TIME
:
2794 case KVM_CAP_IOAPIC_POLARITY_IGNORED
:
2795 case KVM_CAP_TSC_DEADLINE_TIMER
:
2796 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2797 case KVM_CAP_ASSIGN_DEV_IRQ
:
2798 case KVM_CAP_PCI_2_3
:
2802 case KVM_CAP_COALESCED_MMIO
:
2803 r
= KVM_COALESCED_MMIO_PAGE_OFFSET
;
2806 r
= !kvm_x86_ops
->cpu_has_accelerated_tpr();
2808 case KVM_CAP_NR_VCPUS
:
2809 r
= KVM_SOFT_MAX_VCPUS
;
2811 case KVM_CAP_MAX_VCPUS
:
2814 case KVM_CAP_NR_MEMSLOTS
:
2815 r
= KVM_USER_MEM_SLOTS
;
2817 case KVM_CAP_PV_MMU
: /* obsolete */
2820 #ifdef CONFIG_KVM_DEVICE_ASSIGNMENT
2822 r
= iommu_present(&pci_bus_type
);
2826 r
= KVM_MAX_MCE_BANKS
;
2831 case KVM_CAP_TSC_CONTROL
:
2832 r
= kvm_has_tsc_control
;
2842 long kvm_arch_dev_ioctl(struct file
*filp
,
2843 unsigned int ioctl
, unsigned long arg
)
2845 void __user
*argp
= (void __user
*)arg
;
2849 case KVM_GET_MSR_INDEX_LIST
: {
2850 struct kvm_msr_list __user
*user_msr_list
= argp
;
2851 struct kvm_msr_list msr_list
;
2855 if (copy_from_user(&msr_list
, user_msr_list
, sizeof msr_list
))
2858 msr_list
.nmsrs
= num_msrs_to_save
+ ARRAY_SIZE(emulated_msrs
);
2859 if (copy_to_user(user_msr_list
, &msr_list
, sizeof msr_list
))
2862 if (n
< msr_list
.nmsrs
)
2865 if (copy_to_user(user_msr_list
->indices
, &msrs_to_save
,
2866 num_msrs_to_save
* sizeof(u32
)))
2868 if (copy_to_user(user_msr_list
->indices
+ num_msrs_to_save
,
2870 ARRAY_SIZE(emulated_msrs
) * sizeof(u32
)))
2875 case KVM_GET_SUPPORTED_CPUID
:
2876 case KVM_GET_EMULATED_CPUID
: {
2877 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
2878 struct kvm_cpuid2 cpuid
;
2881 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
2884 r
= kvm_dev_ioctl_get_cpuid(&cpuid
, cpuid_arg
->entries
,
2890 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
2895 case KVM_X86_GET_MCE_CAP_SUPPORTED
: {
2898 mce_cap
= KVM_MCE_CAP_SUPPORTED
;
2900 if (copy_to_user(argp
, &mce_cap
, sizeof mce_cap
))
2912 static void wbinvd_ipi(void *garbage
)
2917 static bool need_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
2919 return kvm_arch_has_noncoherent_dma(vcpu
->kvm
);
2922 void kvm_arch_vcpu_load(struct kvm_vcpu
*vcpu
, int cpu
)
2924 /* Address WBINVD may be executed by guest */
2925 if (need_emulate_wbinvd(vcpu
)) {
2926 if (kvm_x86_ops
->has_wbinvd_exit())
2927 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
2928 else if (vcpu
->cpu
!= -1 && vcpu
->cpu
!= cpu
)
2929 smp_call_function_single(vcpu
->cpu
,
2930 wbinvd_ipi
, NULL
, 1);
2933 kvm_x86_ops
->vcpu_load(vcpu
, cpu
);
2935 /* Apply any externally detected TSC adjustments (due to suspend) */
2936 if (unlikely(vcpu
->arch
.tsc_offset_adjustment
)) {
2937 adjust_tsc_offset_host(vcpu
, vcpu
->arch
.tsc_offset_adjustment
);
2938 vcpu
->arch
.tsc_offset_adjustment
= 0;
2939 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
2942 if (unlikely(vcpu
->cpu
!= cpu
) || check_tsc_unstable()) {
2943 s64 tsc_delta
= !vcpu
->arch
.last_host_tsc
? 0 :
2944 native_read_tsc() - vcpu
->arch
.last_host_tsc
;
2946 mark_tsc_unstable("KVM discovered backwards TSC");
2947 if (check_tsc_unstable()) {
2948 u64 offset
= kvm_x86_ops
->compute_tsc_offset(vcpu
,
2949 vcpu
->arch
.last_guest_tsc
);
2950 kvm_x86_ops
->write_tsc_offset(vcpu
, offset
);
2951 vcpu
->arch
.tsc_catchup
= 1;
2954 * On a host with synchronized TSC, there is no need to update
2955 * kvmclock on vcpu->cpu migration
2957 if (!vcpu
->kvm
->arch
.use_master_clock
|| vcpu
->cpu
== -1)
2958 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
);
2959 if (vcpu
->cpu
!= cpu
)
2960 kvm_migrate_timers(vcpu
);
2964 kvm_make_request(KVM_REQ_STEAL_UPDATE
, vcpu
);
2967 void kvm_arch_vcpu_put(struct kvm_vcpu
*vcpu
)
2969 kvm_x86_ops
->vcpu_put(vcpu
);
2970 kvm_put_guest_fpu(vcpu
);
2971 vcpu
->arch
.last_host_tsc
= native_read_tsc();
2974 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu
*vcpu
,
2975 struct kvm_lapic_state
*s
)
2977 kvm_x86_ops
->sync_pir_to_irr(vcpu
);
2978 memcpy(s
->regs
, vcpu
->arch
.apic
->regs
, sizeof *s
);
2983 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu
*vcpu
,
2984 struct kvm_lapic_state
*s
)
2986 kvm_apic_post_state_restore(vcpu
, s
);
2987 update_cr8_intercept(vcpu
);
2992 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu
*vcpu
,
2993 struct kvm_interrupt
*irq
)
2995 if (irq
->irq
>= KVM_NR_INTERRUPTS
)
2997 if (irqchip_in_kernel(vcpu
->kvm
))
3000 kvm_queue_interrupt(vcpu
, irq
->irq
, false);
3001 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3006 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu
*vcpu
)
3008 kvm_inject_nmi(vcpu
);
3013 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu
*vcpu
,
3014 struct kvm_tpr_access_ctl
*tac
)
3018 vcpu
->arch
.tpr_access_reporting
= !!tac
->enabled
;
3022 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu
*vcpu
,
3026 unsigned bank_num
= mcg_cap
& 0xff, bank
;
3029 if (!bank_num
|| bank_num
>= KVM_MAX_MCE_BANKS
)
3031 if (mcg_cap
& ~(KVM_MCE_CAP_SUPPORTED
| 0xff | 0xff0000))
3034 vcpu
->arch
.mcg_cap
= mcg_cap
;
3035 /* Init IA32_MCG_CTL to all 1s */
3036 if (mcg_cap
& MCG_CTL_P
)
3037 vcpu
->arch
.mcg_ctl
= ~(u64
)0;
3038 /* Init IA32_MCi_CTL to all 1s */
3039 for (bank
= 0; bank
< bank_num
; bank
++)
3040 vcpu
->arch
.mce_banks
[bank
*4] = ~(u64
)0;
3045 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu
*vcpu
,
3046 struct kvm_x86_mce
*mce
)
3048 u64 mcg_cap
= vcpu
->arch
.mcg_cap
;
3049 unsigned bank_num
= mcg_cap
& 0xff;
3050 u64
*banks
= vcpu
->arch
.mce_banks
;
3052 if (mce
->bank
>= bank_num
|| !(mce
->status
& MCI_STATUS_VAL
))
3055 * if IA32_MCG_CTL is not all 1s, the uncorrected error
3056 * reporting is disabled
3058 if ((mce
->status
& MCI_STATUS_UC
) && (mcg_cap
& MCG_CTL_P
) &&
3059 vcpu
->arch
.mcg_ctl
!= ~(u64
)0)
3061 banks
+= 4 * mce
->bank
;
3063 * if IA32_MCi_CTL is not all 1s, the uncorrected error
3064 * reporting is disabled for the bank
3066 if ((mce
->status
& MCI_STATUS_UC
) && banks
[0] != ~(u64
)0)
3068 if (mce
->status
& MCI_STATUS_UC
) {
3069 if ((vcpu
->arch
.mcg_status
& MCG_STATUS_MCIP
) ||
3070 !kvm_read_cr4_bits(vcpu
, X86_CR4_MCE
)) {
3071 kvm_make_request(KVM_REQ_TRIPLE_FAULT
, vcpu
);
3074 if (banks
[1] & MCI_STATUS_VAL
)
3075 mce
->status
|= MCI_STATUS_OVER
;
3076 banks
[2] = mce
->addr
;
3077 banks
[3] = mce
->misc
;
3078 vcpu
->arch
.mcg_status
= mce
->mcg_status
;
3079 banks
[1] = mce
->status
;
3080 kvm_queue_exception(vcpu
, MC_VECTOR
);
3081 } else if (!(banks
[1] & MCI_STATUS_VAL
)
3082 || !(banks
[1] & MCI_STATUS_UC
)) {
3083 if (banks
[1] & MCI_STATUS_VAL
)
3084 mce
->status
|= MCI_STATUS_OVER
;
3085 banks
[2] = mce
->addr
;
3086 banks
[3] = mce
->misc
;
3087 banks
[1] = mce
->status
;
3089 banks
[1] |= MCI_STATUS_OVER
;
3093 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu
*vcpu
,
3094 struct kvm_vcpu_events
*events
)
3097 events
->exception
.injected
=
3098 vcpu
->arch
.exception
.pending
&&
3099 !kvm_exception_is_soft(vcpu
->arch
.exception
.nr
);
3100 events
->exception
.nr
= vcpu
->arch
.exception
.nr
;
3101 events
->exception
.has_error_code
= vcpu
->arch
.exception
.has_error_code
;
3102 events
->exception
.pad
= 0;
3103 events
->exception
.error_code
= vcpu
->arch
.exception
.error_code
;
3105 events
->interrupt
.injected
=
3106 vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
;
3107 events
->interrupt
.nr
= vcpu
->arch
.interrupt
.nr
;
3108 events
->interrupt
.soft
= 0;
3109 events
->interrupt
.shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
3111 events
->nmi
.injected
= vcpu
->arch
.nmi_injected
;
3112 events
->nmi
.pending
= vcpu
->arch
.nmi_pending
!= 0;
3113 events
->nmi
.masked
= kvm_x86_ops
->get_nmi_mask(vcpu
);
3114 events
->nmi
.pad
= 0;
3116 events
->sipi_vector
= 0; /* never valid when reporting to user space */
3118 events
->flags
= (KVM_VCPUEVENT_VALID_NMI_PENDING
3119 | KVM_VCPUEVENT_VALID_SHADOW
);
3120 memset(&events
->reserved
, 0, sizeof(events
->reserved
));
3123 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu
*vcpu
,
3124 struct kvm_vcpu_events
*events
)
3126 if (events
->flags
& ~(KVM_VCPUEVENT_VALID_NMI_PENDING
3127 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
3128 | KVM_VCPUEVENT_VALID_SHADOW
))
3132 vcpu
->arch
.exception
.pending
= events
->exception
.injected
;
3133 vcpu
->arch
.exception
.nr
= events
->exception
.nr
;
3134 vcpu
->arch
.exception
.has_error_code
= events
->exception
.has_error_code
;
3135 vcpu
->arch
.exception
.error_code
= events
->exception
.error_code
;
3137 vcpu
->arch
.interrupt
.pending
= events
->interrupt
.injected
;
3138 vcpu
->arch
.interrupt
.nr
= events
->interrupt
.nr
;
3139 vcpu
->arch
.interrupt
.soft
= events
->interrupt
.soft
;
3140 if (events
->flags
& KVM_VCPUEVENT_VALID_SHADOW
)
3141 kvm_x86_ops
->set_interrupt_shadow(vcpu
,
3142 events
->interrupt
.shadow
);
3144 vcpu
->arch
.nmi_injected
= events
->nmi
.injected
;
3145 if (events
->flags
& KVM_VCPUEVENT_VALID_NMI_PENDING
)
3146 vcpu
->arch
.nmi_pending
= events
->nmi
.pending
;
3147 kvm_x86_ops
->set_nmi_mask(vcpu
, events
->nmi
.masked
);
3149 if (events
->flags
& KVM_VCPUEVENT_VALID_SIPI_VECTOR
&&
3150 kvm_vcpu_has_lapic(vcpu
))
3151 vcpu
->arch
.apic
->sipi_vector
= events
->sipi_vector
;
3153 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
3158 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu
*vcpu
,
3159 struct kvm_debugregs
*dbgregs
)
3163 memcpy(dbgregs
->db
, vcpu
->arch
.db
, sizeof(vcpu
->arch
.db
));
3164 kvm_get_dr(vcpu
, 6, &val
);
3166 dbgregs
->dr7
= vcpu
->arch
.dr7
;
3168 memset(&dbgregs
->reserved
, 0, sizeof(dbgregs
->reserved
));
3171 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu
*vcpu
,
3172 struct kvm_debugregs
*dbgregs
)
3177 if (dbgregs
->dr6
& ~0xffffffffull
)
3179 if (dbgregs
->dr7
& ~0xffffffffull
)
3182 memcpy(vcpu
->arch
.db
, dbgregs
->db
, sizeof(vcpu
->arch
.db
));
3183 kvm_update_dr0123(vcpu
);
3184 vcpu
->arch
.dr6
= dbgregs
->dr6
;
3185 kvm_update_dr6(vcpu
);
3186 vcpu
->arch
.dr7
= dbgregs
->dr7
;
3187 kvm_update_dr7(vcpu
);
3192 #define XSTATE_COMPACTION_ENABLED (1ULL << 63)
3194 static void fill_xsave(u8
*dest
, struct kvm_vcpu
*vcpu
)
3196 struct xsave_struct
*xsave
= &vcpu
->arch
.guest_fpu
.state
->xsave
;
3197 u64 xstate_bv
= xsave
->xsave_hdr
.xstate_bv
;
3201 * Copy legacy XSAVE area, to avoid complications with CPUID
3202 * leaves 0 and 1 in the loop below.
3204 memcpy(dest
, xsave
, XSAVE_HDR_OFFSET
);
3207 *(u64
*)(dest
+ XSAVE_HDR_OFFSET
) = xstate_bv
;
3210 * Copy each region from the possibly compacted offset to the
3211 * non-compacted offset.
3213 valid
= xstate_bv
& ~XSTATE_FPSSE
;
3215 u64 feature
= valid
& -valid
;
3216 int index
= fls64(feature
) - 1;
3217 void *src
= get_xsave_addr(xsave
, feature
);
3220 u32 size
, offset
, ecx
, edx
;
3221 cpuid_count(XSTATE_CPUID
, index
,
3222 &size
, &offset
, &ecx
, &edx
);
3223 memcpy(dest
+ offset
, src
, size
);
3230 static void load_xsave(struct kvm_vcpu
*vcpu
, u8
*src
)
3232 struct xsave_struct
*xsave
= &vcpu
->arch
.guest_fpu
.state
->xsave
;
3233 u64 xstate_bv
= *(u64
*)(src
+ XSAVE_HDR_OFFSET
);
3237 * Copy legacy XSAVE area, to avoid complications with CPUID
3238 * leaves 0 and 1 in the loop below.
3240 memcpy(xsave
, src
, XSAVE_HDR_OFFSET
);
3242 /* Set XSTATE_BV and possibly XCOMP_BV. */
3243 xsave
->xsave_hdr
.xstate_bv
= xstate_bv
;
3245 xsave
->xsave_hdr
.xcomp_bv
= host_xcr0
| XSTATE_COMPACTION_ENABLED
;
3248 * Copy each region from the non-compacted offset to the
3249 * possibly compacted offset.
3251 valid
= xstate_bv
& ~XSTATE_FPSSE
;
3253 u64 feature
= valid
& -valid
;
3254 int index
= fls64(feature
) - 1;
3255 void *dest
= get_xsave_addr(xsave
, feature
);
3258 u32 size
, offset
, ecx
, edx
;
3259 cpuid_count(XSTATE_CPUID
, index
,
3260 &size
, &offset
, &ecx
, &edx
);
3261 memcpy(dest
, src
+ offset
, size
);
3269 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu
*vcpu
,
3270 struct kvm_xsave
*guest_xsave
)
3272 if (cpu_has_xsave
) {
3273 memset(guest_xsave
, 0, sizeof(struct kvm_xsave
));
3274 fill_xsave((u8
*) guest_xsave
->region
, vcpu
);
3276 memcpy(guest_xsave
->region
,
3277 &vcpu
->arch
.guest_fpu
.state
->fxsave
,
3278 sizeof(struct i387_fxsave_struct
));
3279 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)] =
3284 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu
*vcpu
,
3285 struct kvm_xsave
*guest_xsave
)
3288 *(u64
*)&guest_xsave
->region
[XSAVE_HDR_OFFSET
/ sizeof(u32
)];
3290 if (cpu_has_xsave
) {
3292 * Here we allow setting states that are not present in
3293 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
3294 * with old userspace.
3296 if (xstate_bv
& ~kvm_supported_xcr0())
3298 load_xsave(vcpu
, (u8
*)guest_xsave
->region
);
3300 if (xstate_bv
& ~XSTATE_FPSSE
)
3302 memcpy(&vcpu
->arch
.guest_fpu
.state
->fxsave
,
3303 guest_xsave
->region
, sizeof(struct i387_fxsave_struct
));
3308 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu
*vcpu
,
3309 struct kvm_xcrs
*guest_xcrs
)
3311 if (!cpu_has_xsave
) {
3312 guest_xcrs
->nr_xcrs
= 0;
3316 guest_xcrs
->nr_xcrs
= 1;
3317 guest_xcrs
->flags
= 0;
3318 guest_xcrs
->xcrs
[0].xcr
= XCR_XFEATURE_ENABLED_MASK
;
3319 guest_xcrs
->xcrs
[0].value
= vcpu
->arch
.xcr0
;
3322 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu
*vcpu
,
3323 struct kvm_xcrs
*guest_xcrs
)
3330 if (guest_xcrs
->nr_xcrs
> KVM_MAX_XCRS
|| guest_xcrs
->flags
)
3333 for (i
= 0; i
< guest_xcrs
->nr_xcrs
; i
++)
3334 /* Only support XCR0 currently */
3335 if (guest_xcrs
->xcrs
[i
].xcr
== XCR_XFEATURE_ENABLED_MASK
) {
3336 r
= __kvm_set_xcr(vcpu
, XCR_XFEATURE_ENABLED_MASK
,
3337 guest_xcrs
->xcrs
[i
].value
);
3346 * kvm_set_guest_paused() indicates to the guest kernel that it has been
3347 * stopped by the hypervisor. This function will be called from the host only.
3348 * EINVAL is returned when the host attempts to set the flag for a guest that
3349 * does not support pv clocks.
3351 static int kvm_set_guest_paused(struct kvm_vcpu
*vcpu
)
3353 if (!vcpu
->arch
.pv_time_enabled
)
3355 vcpu
->arch
.pvclock_set_guest_stopped_request
= true;
3356 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
3360 long kvm_arch_vcpu_ioctl(struct file
*filp
,
3361 unsigned int ioctl
, unsigned long arg
)
3363 struct kvm_vcpu
*vcpu
= filp
->private_data
;
3364 void __user
*argp
= (void __user
*)arg
;
3367 struct kvm_lapic_state
*lapic
;
3368 struct kvm_xsave
*xsave
;
3369 struct kvm_xcrs
*xcrs
;
3375 case KVM_GET_LAPIC
: {
3377 if (!vcpu
->arch
.apic
)
3379 u
.lapic
= kzalloc(sizeof(struct kvm_lapic_state
), GFP_KERNEL
);
3384 r
= kvm_vcpu_ioctl_get_lapic(vcpu
, u
.lapic
);
3388 if (copy_to_user(argp
, u
.lapic
, sizeof(struct kvm_lapic_state
)))
3393 case KVM_SET_LAPIC
: {
3395 if (!vcpu
->arch
.apic
)
3397 u
.lapic
= memdup_user(argp
, sizeof(*u
.lapic
));
3398 if (IS_ERR(u
.lapic
))
3399 return PTR_ERR(u
.lapic
);
3401 r
= kvm_vcpu_ioctl_set_lapic(vcpu
, u
.lapic
);
3404 case KVM_INTERRUPT
: {
3405 struct kvm_interrupt irq
;
3408 if (copy_from_user(&irq
, argp
, sizeof irq
))
3410 r
= kvm_vcpu_ioctl_interrupt(vcpu
, &irq
);
3414 r
= kvm_vcpu_ioctl_nmi(vcpu
);
3417 case KVM_SET_CPUID
: {
3418 struct kvm_cpuid __user
*cpuid_arg
= argp
;
3419 struct kvm_cpuid cpuid
;
3422 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3424 r
= kvm_vcpu_ioctl_set_cpuid(vcpu
, &cpuid
, cpuid_arg
->entries
);
3427 case KVM_SET_CPUID2
: {
3428 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3429 struct kvm_cpuid2 cpuid
;
3432 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3434 r
= kvm_vcpu_ioctl_set_cpuid2(vcpu
, &cpuid
,
3435 cpuid_arg
->entries
);
3438 case KVM_GET_CPUID2
: {
3439 struct kvm_cpuid2 __user
*cpuid_arg
= argp
;
3440 struct kvm_cpuid2 cpuid
;
3443 if (copy_from_user(&cpuid
, cpuid_arg
, sizeof cpuid
))
3445 r
= kvm_vcpu_ioctl_get_cpuid2(vcpu
, &cpuid
,
3446 cpuid_arg
->entries
);
3450 if (copy_to_user(cpuid_arg
, &cpuid
, sizeof cpuid
))
3456 r
= msr_io(vcpu
, argp
, kvm_get_msr
, 1);
3459 r
= msr_io(vcpu
, argp
, do_set_msr
, 0);
3461 case KVM_TPR_ACCESS_REPORTING
: {
3462 struct kvm_tpr_access_ctl tac
;
3465 if (copy_from_user(&tac
, argp
, sizeof tac
))
3467 r
= vcpu_ioctl_tpr_access_reporting(vcpu
, &tac
);
3471 if (copy_to_user(argp
, &tac
, sizeof tac
))
3476 case KVM_SET_VAPIC_ADDR
: {
3477 struct kvm_vapic_addr va
;
3480 if (!irqchip_in_kernel(vcpu
->kvm
))
3483 if (copy_from_user(&va
, argp
, sizeof va
))
3485 r
= kvm_lapic_set_vapic_addr(vcpu
, va
.vapic_addr
);
3488 case KVM_X86_SETUP_MCE
: {
3492 if (copy_from_user(&mcg_cap
, argp
, sizeof mcg_cap
))
3494 r
= kvm_vcpu_ioctl_x86_setup_mce(vcpu
, mcg_cap
);
3497 case KVM_X86_SET_MCE
: {
3498 struct kvm_x86_mce mce
;
3501 if (copy_from_user(&mce
, argp
, sizeof mce
))
3503 r
= kvm_vcpu_ioctl_x86_set_mce(vcpu
, &mce
);
3506 case KVM_GET_VCPU_EVENTS
: {
3507 struct kvm_vcpu_events events
;
3509 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu
, &events
);
3512 if (copy_to_user(argp
, &events
, sizeof(struct kvm_vcpu_events
)))
3517 case KVM_SET_VCPU_EVENTS
: {
3518 struct kvm_vcpu_events events
;
3521 if (copy_from_user(&events
, argp
, sizeof(struct kvm_vcpu_events
)))
3524 r
= kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu
, &events
);
3527 case KVM_GET_DEBUGREGS
: {
3528 struct kvm_debugregs dbgregs
;
3530 kvm_vcpu_ioctl_x86_get_debugregs(vcpu
, &dbgregs
);
3533 if (copy_to_user(argp
, &dbgregs
,
3534 sizeof(struct kvm_debugregs
)))
3539 case KVM_SET_DEBUGREGS
: {
3540 struct kvm_debugregs dbgregs
;
3543 if (copy_from_user(&dbgregs
, argp
,
3544 sizeof(struct kvm_debugregs
)))
3547 r
= kvm_vcpu_ioctl_x86_set_debugregs(vcpu
, &dbgregs
);
3550 case KVM_GET_XSAVE
: {
3551 u
.xsave
= kzalloc(sizeof(struct kvm_xsave
), GFP_KERNEL
);
3556 kvm_vcpu_ioctl_x86_get_xsave(vcpu
, u
.xsave
);
3559 if (copy_to_user(argp
, u
.xsave
, sizeof(struct kvm_xsave
)))
3564 case KVM_SET_XSAVE
: {
3565 u
.xsave
= memdup_user(argp
, sizeof(*u
.xsave
));
3566 if (IS_ERR(u
.xsave
))
3567 return PTR_ERR(u
.xsave
);
3569 r
= kvm_vcpu_ioctl_x86_set_xsave(vcpu
, u
.xsave
);
3572 case KVM_GET_XCRS
: {
3573 u
.xcrs
= kzalloc(sizeof(struct kvm_xcrs
), GFP_KERNEL
);
3578 kvm_vcpu_ioctl_x86_get_xcrs(vcpu
, u
.xcrs
);
3581 if (copy_to_user(argp
, u
.xcrs
,
3582 sizeof(struct kvm_xcrs
)))
3587 case KVM_SET_XCRS
: {
3588 u
.xcrs
= memdup_user(argp
, sizeof(*u
.xcrs
));
3590 return PTR_ERR(u
.xcrs
);
3592 r
= kvm_vcpu_ioctl_x86_set_xcrs(vcpu
, u
.xcrs
);
3595 case KVM_SET_TSC_KHZ
: {
3599 user_tsc_khz
= (u32
)arg
;
3601 if (user_tsc_khz
>= kvm_max_guest_tsc_khz
)
3604 if (user_tsc_khz
== 0)
3605 user_tsc_khz
= tsc_khz
;
3607 kvm_set_tsc_khz(vcpu
, user_tsc_khz
);
3612 case KVM_GET_TSC_KHZ
: {
3613 r
= vcpu
->arch
.virtual_tsc_khz
;
3616 case KVM_KVMCLOCK_CTRL
: {
3617 r
= kvm_set_guest_paused(vcpu
);
3628 int kvm_arch_vcpu_fault(struct kvm_vcpu
*vcpu
, struct vm_fault
*vmf
)
3630 return VM_FAULT_SIGBUS
;
3633 static int kvm_vm_ioctl_set_tss_addr(struct kvm
*kvm
, unsigned long addr
)
3637 if (addr
> (unsigned int)(-3 * PAGE_SIZE
))
3639 ret
= kvm_x86_ops
->set_tss_addr(kvm
, addr
);
3643 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm
*kvm
,
3646 kvm
->arch
.ept_identity_map_addr
= ident_addr
;
3650 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm
*kvm
,
3651 u32 kvm_nr_mmu_pages
)
3653 if (kvm_nr_mmu_pages
< KVM_MIN_ALLOC_MMU_PAGES
)
3656 mutex_lock(&kvm
->slots_lock
);
3658 kvm_mmu_change_mmu_pages(kvm
, kvm_nr_mmu_pages
);
3659 kvm
->arch
.n_requested_mmu_pages
= kvm_nr_mmu_pages
;
3661 mutex_unlock(&kvm
->slots_lock
);
3665 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm
*kvm
)
3667 return kvm
->arch
.n_max_mmu_pages
;
3670 static int kvm_vm_ioctl_get_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3675 switch (chip
->chip_id
) {
3676 case KVM_IRQCHIP_PIC_MASTER
:
3677 memcpy(&chip
->chip
.pic
,
3678 &pic_irqchip(kvm
)->pics
[0],
3679 sizeof(struct kvm_pic_state
));
3681 case KVM_IRQCHIP_PIC_SLAVE
:
3682 memcpy(&chip
->chip
.pic
,
3683 &pic_irqchip(kvm
)->pics
[1],
3684 sizeof(struct kvm_pic_state
));
3686 case KVM_IRQCHIP_IOAPIC
:
3687 r
= kvm_get_ioapic(kvm
, &chip
->chip
.ioapic
);
3696 static int kvm_vm_ioctl_set_irqchip(struct kvm
*kvm
, struct kvm_irqchip
*chip
)
3701 switch (chip
->chip_id
) {
3702 case KVM_IRQCHIP_PIC_MASTER
:
3703 spin_lock(&pic_irqchip(kvm
)->lock
);
3704 memcpy(&pic_irqchip(kvm
)->pics
[0],
3706 sizeof(struct kvm_pic_state
));
3707 spin_unlock(&pic_irqchip(kvm
)->lock
);
3709 case KVM_IRQCHIP_PIC_SLAVE
:
3710 spin_lock(&pic_irqchip(kvm
)->lock
);
3711 memcpy(&pic_irqchip(kvm
)->pics
[1],
3713 sizeof(struct kvm_pic_state
));
3714 spin_unlock(&pic_irqchip(kvm
)->lock
);
3716 case KVM_IRQCHIP_IOAPIC
:
3717 r
= kvm_set_ioapic(kvm
, &chip
->chip
.ioapic
);
3723 kvm_pic_update_irq(pic_irqchip(kvm
));
3727 static int kvm_vm_ioctl_get_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3731 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3732 memcpy(ps
, &kvm
->arch
.vpit
->pit_state
, sizeof(struct kvm_pit_state
));
3733 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3737 static int kvm_vm_ioctl_set_pit(struct kvm
*kvm
, struct kvm_pit_state
*ps
)
3740 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3741 memcpy(&kvm
->arch
.vpit
->pit_state
, ps
, sizeof(struct kvm_pit_state
));
3742 for (i
= 0; i
< 3; i
++)
3743 kvm_pit_load_count(kvm
, i
, ps
->channels
[i
].count
, 0);
3744 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3748 static int kvm_vm_ioctl_get_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3752 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3753 memcpy(ps
->channels
, &kvm
->arch
.vpit
->pit_state
.channels
,
3754 sizeof(ps
->channels
));
3755 ps
->flags
= kvm
->arch
.vpit
->pit_state
.flags
;
3756 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3757 memset(&ps
->reserved
, 0, sizeof(ps
->reserved
));
3761 static int kvm_vm_ioctl_set_pit2(struct kvm
*kvm
, struct kvm_pit_state2
*ps
)
3763 int r
= 0, start
= 0;
3765 u32 prev_legacy
, cur_legacy
;
3766 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3767 prev_legacy
= kvm
->arch
.vpit
->pit_state
.flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3768 cur_legacy
= ps
->flags
& KVM_PIT_FLAGS_HPET_LEGACY
;
3769 if (!prev_legacy
&& cur_legacy
)
3771 memcpy(&kvm
->arch
.vpit
->pit_state
.channels
, &ps
->channels
,
3772 sizeof(kvm
->arch
.vpit
->pit_state
.channels
));
3773 kvm
->arch
.vpit
->pit_state
.flags
= ps
->flags
;
3774 for (i
= 0; i
< 3; i
++)
3775 kvm_pit_load_count(kvm
, i
, kvm
->arch
.vpit
->pit_state
.channels
[i
].count
, start
);
3776 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3780 static int kvm_vm_ioctl_reinject(struct kvm
*kvm
,
3781 struct kvm_reinject_control
*control
)
3783 if (!kvm
->arch
.vpit
)
3785 mutex_lock(&kvm
->arch
.vpit
->pit_state
.lock
);
3786 kvm
->arch
.vpit
->pit_state
.reinject
= control
->pit_reinject
;
3787 mutex_unlock(&kvm
->arch
.vpit
->pit_state
.lock
);
3792 * kvm_vm_ioctl_get_dirty_log - get and clear the log of dirty pages in a slot
3793 * @kvm: kvm instance
3794 * @log: slot id and address to which we copy the log
3796 * Steps 1-4 below provide general overview of dirty page logging. See
3797 * kvm_get_dirty_log_protect() function description for additional details.
3799 * We call kvm_get_dirty_log_protect() to handle steps 1-3, upon return we
3800 * always flush the TLB (step 4) even if previous step failed and the dirty
3801 * bitmap may be corrupt. Regardless of previous outcome the KVM logging API
3802 * does not preclude user space subsequent dirty log read. Flushing TLB ensures
3803 * writes will be marked dirty for next log read.
3805 * 1. Take a snapshot of the bit and clear it if needed.
3806 * 2. Write protect the corresponding page.
3807 * 3. Copy the snapshot to the userspace.
3808 * 4. Flush TLB's if needed.
3810 int kvm_vm_ioctl_get_dirty_log(struct kvm
*kvm
, struct kvm_dirty_log
*log
)
3812 bool is_dirty
= false;
3815 mutex_lock(&kvm
->slots_lock
);
3818 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
3820 if (kvm_x86_ops
->flush_log_dirty
)
3821 kvm_x86_ops
->flush_log_dirty(kvm
);
3823 r
= kvm_get_dirty_log_protect(kvm
, log
, &is_dirty
);
3826 * All the TLBs can be flushed out of mmu lock, see the comments in
3827 * kvm_mmu_slot_remove_write_access().
3829 lockdep_assert_held(&kvm
->slots_lock
);
3831 kvm_flush_remote_tlbs(kvm
);
3833 mutex_unlock(&kvm
->slots_lock
);
3837 int kvm_vm_ioctl_irq_line(struct kvm
*kvm
, struct kvm_irq_level
*irq_event
,
3840 if (!irqchip_in_kernel(kvm
))
3843 irq_event
->status
= kvm_set_irq(kvm
, KVM_USERSPACE_IRQ_SOURCE_ID
,
3844 irq_event
->irq
, irq_event
->level
,
3849 long kvm_arch_vm_ioctl(struct file
*filp
,
3850 unsigned int ioctl
, unsigned long arg
)
3852 struct kvm
*kvm
= filp
->private_data
;
3853 void __user
*argp
= (void __user
*)arg
;
3856 * This union makes it completely explicit to gcc-3.x
3857 * that these two variables' stack usage should be
3858 * combined, not added together.
3861 struct kvm_pit_state ps
;
3862 struct kvm_pit_state2 ps2
;
3863 struct kvm_pit_config pit_config
;
3867 case KVM_SET_TSS_ADDR
:
3868 r
= kvm_vm_ioctl_set_tss_addr(kvm
, arg
);
3870 case KVM_SET_IDENTITY_MAP_ADDR
: {
3874 if (copy_from_user(&ident_addr
, argp
, sizeof ident_addr
))
3876 r
= kvm_vm_ioctl_set_identity_map_addr(kvm
, ident_addr
);
3879 case KVM_SET_NR_MMU_PAGES
:
3880 r
= kvm_vm_ioctl_set_nr_mmu_pages(kvm
, arg
);
3882 case KVM_GET_NR_MMU_PAGES
:
3883 r
= kvm_vm_ioctl_get_nr_mmu_pages(kvm
);
3885 case KVM_CREATE_IRQCHIP
: {
3886 struct kvm_pic
*vpic
;
3888 mutex_lock(&kvm
->lock
);
3891 goto create_irqchip_unlock
;
3893 if (atomic_read(&kvm
->online_vcpus
))
3894 goto create_irqchip_unlock
;
3896 vpic
= kvm_create_pic(kvm
);
3898 r
= kvm_ioapic_init(kvm
);
3900 mutex_lock(&kvm
->slots_lock
);
3901 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3903 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3905 kvm_io_bus_unregister_dev(kvm
, KVM_PIO_BUS
,
3907 mutex_unlock(&kvm
->slots_lock
);
3909 goto create_irqchip_unlock
;
3912 goto create_irqchip_unlock
;
3914 kvm
->arch
.vpic
= vpic
;
3916 r
= kvm_setup_default_irq_routing(kvm
);
3918 mutex_lock(&kvm
->slots_lock
);
3919 mutex_lock(&kvm
->irq_lock
);
3920 kvm_ioapic_destroy(kvm
);
3921 kvm_destroy_pic(kvm
);
3922 mutex_unlock(&kvm
->irq_lock
);
3923 mutex_unlock(&kvm
->slots_lock
);
3925 create_irqchip_unlock
:
3926 mutex_unlock(&kvm
->lock
);
3929 case KVM_CREATE_PIT
:
3930 u
.pit_config
.flags
= KVM_PIT_SPEAKER_DUMMY
;
3932 case KVM_CREATE_PIT2
:
3934 if (copy_from_user(&u
.pit_config
, argp
,
3935 sizeof(struct kvm_pit_config
)))
3938 mutex_lock(&kvm
->slots_lock
);
3941 goto create_pit_unlock
;
3943 kvm
->arch
.vpit
= kvm_create_pit(kvm
, u
.pit_config
.flags
);
3947 mutex_unlock(&kvm
->slots_lock
);
3949 case KVM_GET_IRQCHIP
: {
3950 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3951 struct kvm_irqchip
*chip
;
3953 chip
= memdup_user(argp
, sizeof(*chip
));
3960 if (!irqchip_in_kernel(kvm
))
3961 goto get_irqchip_out
;
3962 r
= kvm_vm_ioctl_get_irqchip(kvm
, chip
);
3964 goto get_irqchip_out
;
3966 if (copy_to_user(argp
, chip
, sizeof *chip
))
3967 goto get_irqchip_out
;
3973 case KVM_SET_IRQCHIP
: {
3974 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3975 struct kvm_irqchip
*chip
;
3977 chip
= memdup_user(argp
, sizeof(*chip
));
3984 if (!irqchip_in_kernel(kvm
))
3985 goto set_irqchip_out
;
3986 r
= kvm_vm_ioctl_set_irqchip(kvm
, chip
);
3988 goto set_irqchip_out
;
3996 if (copy_from_user(&u
.ps
, argp
, sizeof(struct kvm_pit_state
)))
3999 if (!kvm
->arch
.vpit
)
4001 r
= kvm_vm_ioctl_get_pit(kvm
, &u
.ps
);
4005 if (copy_to_user(argp
, &u
.ps
, sizeof(struct kvm_pit_state
)))
4012 if (copy_from_user(&u
.ps
, argp
, sizeof u
.ps
))
4015 if (!kvm
->arch
.vpit
)
4017 r
= kvm_vm_ioctl_set_pit(kvm
, &u
.ps
);
4020 case KVM_GET_PIT2
: {
4022 if (!kvm
->arch
.vpit
)
4024 r
= kvm_vm_ioctl_get_pit2(kvm
, &u
.ps2
);
4028 if (copy_to_user(argp
, &u
.ps2
, sizeof(u
.ps2
)))
4033 case KVM_SET_PIT2
: {
4035 if (copy_from_user(&u
.ps2
, argp
, sizeof(u
.ps2
)))
4038 if (!kvm
->arch
.vpit
)
4040 r
= kvm_vm_ioctl_set_pit2(kvm
, &u
.ps2
);
4043 case KVM_REINJECT_CONTROL
: {
4044 struct kvm_reinject_control control
;
4046 if (copy_from_user(&control
, argp
, sizeof(control
)))
4048 r
= kvm_vm_ioctl_reinject(kvm
, &control
);
4051 case KVM_XEN_HVM_CONFIG
: {
4053 if (copy_from_user(&kvm
->arch
.xen_hvm_config
, argp
,
4054 sizeof(struct kvm_xen_hvm_config
)))
4057 if (kvm
->arch
.xen_hvm_config
.flags
)
4062 case KVM_SET_CLOCK
: {
4063 struct kvm_clock_data user_ns
;
4068 if (copy_from_user(&user_ns
, argp
, sizeof(user_ns
)))
4076 local_irq_disable();
4077 now_ns
= get_kernel_ns();
4078 delta
= user_ns
.clock
- now_ns
;
4080 kvm
->arch
.kvmclock_offset
= delta
;
4081 kvm_gen_update_masterclock(kvm
);
4084 case KVM_GET_CLOCK
: {
4085 struct kvm_clock_data user_ns
;
4088 local_irq_disable();
4089 now_ns
= get_kernel_ns();
4090 user_ns
.clock
= kvm
->arch
.kvmclock_offset
+ now_ns
;
4093 memset(&user_ns
.pad
, 0, sizeof(user_ns
.pad
));
4096 if (copy_to_user(argp
, &user_ns
, sizeof(user_ns
)))
4103 r
= kvm_vm_ioctl_assigned_device(kvm
, ioctl
, arg
);
4109 static void kvm_init_msr_list(void)
4114 /* skip the first msrs in the list. KVM-specific */
4115 for (i
= j
= KVM_SAVE_MSRS_BEGIN
; i
< ARRAY_SIZE(msrs_to_save
); i
++) {
4116 if (rdmsr_safe(msrs_to_save
[i
], &dummy
[0], &dummy
[1]) < 0)
4120 * Even MSRs that are valid in the host may not be exposed
4121 * to the guests in some cases.
4123 switch (msrs_to_save
[i
]) {
4124 case MSR_IA32_BNDCFGS
:
4125 if (!kvm_x86_ops
->mpx_supported())
4129 if (!kvm_x86_ops
->rdtscp_supported())
4137 msrs_to_save
[j
] = msrs_to_save
[i
];
4140 num_msrs_to_save
= j
;
4143 static int vcpu_mmio_write(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
,
4151 if (!(vcpu
->arch
.apic
&&
4152 !kvm_iodevice_write(vcpu
, &vcpu
->arch
.apic
->dev
, addr
, n
, v
))
4153 && kvm_io_bus_write(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4164 static int vcpu_mmio_read(struct kvm_vcpu
*vcpu
, gpa_t addr
, int len
, void *v
)
4171 if (!(vcpu
->arch
.apic
&&
4172 !kvm_iodevice_read(vcpu
, &vcpu
->arch
.apic
->dev
,
4174 && kvm_io_bus_read(vcpu
, KVM_MMIO_BUS
, addr
, n
, v
))
4176 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, n
, addr
, *(u64
*)v
);
4186 static void kvm_set_segment(struct kvm_vcpu
*vcpu
,
4187 struct kvm_segment
*var
, int seg
)
4189 kvm_x86_ops
->set_segment(vcpu
, var
, seg
);
4192 void kvm_get_segment(struct kvm_vcpu
*vcpu
,
4193 struct kvm_segment
*var
, int seg
)
4195 kvm_x86_ops
->get_segment(vcpu
, var
, seg
);
4198 gpa_t
translate_nested_gpa(struct kvm_vcpu
*vcpu
, gpa_t gpa
, u32 access
,
4199 struct x86_exception
*exception
)
4203 BUG_ON(!mmu_is_nested(vcpu
));
4205 /* NPT walks are always user-walks */
4206 access
|= PFERR_USER_MASK
;
4207 t_gpa
= vcpu
->arch
.mmu
.gva_to_gpa(vcpu
, gpa
, access
, exception
);
4212 gpa_t
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu
*vcpu
, gva_t gva
,
4213 struct x86_exception
*exception
)
4215 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4216 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4219 gpa_t
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu
*vcpu
, gva_t gva
,
4220 struct x86_exception
*exception
)
4222 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4223 access
|= PFERR_FETCH_MASK
;
4224 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4227 gpa_t
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu
*vcpu
, gva_t gva
,
4228 struct x86_exception
*exception
)
4230 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4231 access
|= PFERR_WRITE_MASK
;
4232 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4235 /* uses this to access any guest's mapped memory without checking CPL */
4236 gpa_t
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu
*vcpu
, gva_t gva
,
4237 struct x86_exception
*exception
)
4239 return vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, 0, exception
);
4242 static int kvm_read_guest_virt_helper(gva_t addr
, void *val
, unsigned int bytes
,
4243 struct kvm_vcpu
*vcpu
, u32 access
,
4244 struct x86_exception
*exception
)
4247 int r
= X86EMUL_CONTINUE
;
4250 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
,
4252 unsigned offset
= addr
& (PAGE_SIZE
-1);
4253 unsigned toread
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4256 if (gpa
== UNMAPPED_GVA
)
4257 return X86EMUL_PROPAGATE_FAULT
;
4258 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
, data
,
4261 r
= X86EMUL_IO_NEEDED
;
4273 /* used for instruction fetching */
4274 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4275 gva_t addr
, void *val
, unsigned int bytes
,
4276 struct x86_exception
*exception
)
4278 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4279 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4283 /* Inline kvm_read_guest_virt_helper for speed. */
4284 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
, access
|PFERR_FETCH_MASK
,
4286 if (unlikely(gpa
== UNMAPPED_GVA
))
4287 return X86EMUL_PROPAGATE_FAULT
;
4289 offset
= addr
& (PAGE_SIZE
-1);
4290 if (WARN_ON(offset
+ bytes
> PAGE_SIZE
))
4291 bytes
= (unsigned)PAGE_SIZE
- offset
;
4292 ret
= kvm_read_guest_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
, val
,
4294 if (unlikely(ret
< 0))
4295 return X86EMUL_IO_NEEDED
;
4297 return X86EMUL_CONTINUE
;
4300 int kvm_read_guest_virt(struct x86_emulate_ctxt
*ctxt
,
4301 gva_t addr
, void *val
, unsigned int bytes
,
4302 struct x86_exception
*exception
)
4304 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4305 u32 access
= (kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0;
4307 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, access
,
4310 EXPORT_SYMBOL_GPL(kvm_read_guest_virt
);
4312 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4313 gva_t addr
, void *val
, unsigned int bytes
,
4314 struct x86_exception
*exception
)
4316 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4317 return kvm_read_guest_virt_helper(addr
, val
, bytes
, vcpu
, 0, exception
);
4320 int kvm_write_guest_virt_system(struct x86_emulate_ctxt
*ctxt
,
4321 gva_t addr
, void *val
,
4323 struct x86_exception
*exception
)
4325 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4327 int r
= X86EMUL_CONTINUE
;
4330 gpa_t gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, addr
,
4333 unsigned offset
= addr
& (PAGE_SIZE
-1);
4334 unsigned towrite
= min(bytes
, (unsigned)PAGE_SIZE
- offset
);
4337 if (gpa
== UNMAPPED_GVA
)
4338 return X86EMUL_PROPAGATE_FAULT
;
4339 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, data
, towrite
);
4341 r
= X86EMUL_IO_NEEDED
;
4352 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system
);
4354 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu
*vcpu
, unsigned long gva
,
4355 gpa_t
*gpa
, struct x86_exception
*exception
,
4358 u32 access
= ((kvm_x86_ops
->get_cpl(vcpu
) == 3) ? PFERR_USER_MASK
: 0)
4359 | (write
? PFERR_WRITE_MASK
: 0);
4361 if (vcpu_match_mmio_gva(vcpu
, gva
)
4362 && !permission_fault(vcpu
, vcpu
->arch
.walk_mmu
,
4363 vcpu
->arch
.access
, access
)) {
4364 *gpa
= vcpu
->arch
.mmio_gfn
<< PAGE_SHIFT
|
4365 (gva
& (PAGE_SIZE
- 1));
4366 trace_vcpu_match_mmio(gva
, *gpa
, write
, false);
4370 *gpa
= vcpu
->arch
.walk_mmu
->gva_to_gpa(vcpu
, gva
, access
, exception
);
4372 if (*gpa
== UNMAPPED_GVA
)
4375 /* For APIC access vmexit */
4376 if ((*gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4379 if (vcpu_match_mmio_gpa(vcpu
, *gpa
)) {
4380 trace_vcpu_match_mmio(gva
, *gpa
, write
, true);
4387 int emulator_write_phys(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4388 const void *val
, int bytes
)
4392 ret
= kvm_write_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4395 kvm_mmu_pte_write(vcpu
, gpa
, val
, bytes
);
4399 struct read_write_emulator_ops
{
4400 int (*read_write_prepare
)(struct kvm_vcpu
*vcpu
, void *val
,
4402 int (*read_write_emulate
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4403 void *val
, int bytes
);
4404 int (*read_write_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4405 int bytes
, void *val
);
4406 int (*read_write_exit_mmio
)(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4407 void *val
, int bytes
);
4411 static int read_prepare(struct kvm_vcpu
*vcpu
, void *val
, int bytes
)
4413 if (vcpu
->mmio_read_completed
) {
4414 trace_kvm_mmio(KVM_TRACE_MMIO_READ
, bytes
,
4415 vcpu
->mmio_fragments
[0].gpa
, *(u64
*)val
);
4416 vcpu
->mmio_read_completed
= 0;
4423 static int read_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4424 void *val
, int bytes
)
4426 return !kvm_read_guest(vcpu
->kvm
, gpa
, val
, bytes
);
4429 static int write_emulate(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4430 void *val
, int bytes
)
4432 return emulator_write_phys(vcpu
, gpa
, val
, bytes
);
4435 static int write_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
, int bytes
, void *val
)
4437 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE
, bytes
, gpa
, *(u64
*)val
);
4438 return vcpu_mmio_write(vcpu
, gpa
, bytes
, val
);
4441 static int read_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4442 void *val
, int bytes
)
4444 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED
, bytes
, gpa
, 0);
4445 return X86EMUL_IO_NEEDED
;
4448 static int write_exit_mmio(struct kvm_vcpu
*vcpu
, gpa_t gpa
,
4449 void *val
, int bytes
)
4451 struct kvm_mmio_fragment
*frag
= &vcpu
->mmio_fragments
[0];
4453 memcpy(vcpu
->run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
4454 return X86EMUL_CONTINUE
;
4457 static const struct read_write_emulator_ops read_emultor
= {
4458 .read_write_prepare
= read_prepare
,
4459 .read_write_emulate
= read_emulate
,
4460 .read_write_mmio
= vcpu_mmio_read
,
4461 .read_write_exit_mmio
= read_exit_mmio
,
4464 static const struct read_write_emulator_ops write_emultor
= {
4465 .read_write_emulate
= write_emulate
,
4466 .read_write_mmio
= write_mmio
,
4467 .read_write_exit_mmio
= write_exit_mmio
,
4471 static int emulator_read_write_onepage(unsigned long addr
, void *val
,
4473 struct x86_exception
*exception
,
4474 struct kvm_vcpu
*vcpu
,
4475 const struct read_write_emulator_ops
*ops
)
4479 bool write
= ops
->write
;
4480 struct kvm_mmio_fragment
*frag
;
4482 ret
= vcpu_mmio_gva_to_gpa(vcpu
, addr
, &gpa
, exception
, write
);
4485 return X86EMUL_PROPAGATE_FAULT
;
4487 /* For APIC access vmexit */
4491 if (ops
->read_write_emulate(vcpu
, gpa
, val
, bytes
))
4492 return X86EMUL_CONTINUE
;
4496 * Is this MMIO handled locally?
4498 handled
= ops
->read_write_mmio(vcpu
, gpa
, bytes
, val
);
4499 if (handled
== bytes
)
4500 return X86EMUL_CONTINUE
;
4506 WARN_ON(vcpu
->mmio_nr_fragments
>= KVM_MAX_MMIO_FRAGMENTS
);
4507 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_nr_fragments
++];
4511 return X86EMUL_CONTINUE
;
4514 static int emulator_read_write(struct x86_emulate_ctxt
*ctxt
,
4516 void *val
, unsigned int bytes
,
4517 struct x86_exception
*exception
,
4518 const struct read_write_emulator_ops
*ops
)
4520 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4524 if (ops
->read_write_prepare
&&
4525 ops
->read_write_prepare(vcpu
, val
, bytes
))
4526 return X86EMUL_CONTINUE
;
4528 vcpu
->mmio_nr_fragments
= 0;
4530 /* Crossing a page boundary? */
4531 if (((addr
+ bytes
- 1) ^ addr
) & PAGE_MASK
) {
4534 now
= -addr
& ~PAGE_MASK
;
4535 rc
= emulator_read_write_onepage(addr
, val
, now
, exception
,
4538 if (rc
!= X86EMUL_CONTINUE
)
4541 if (ctxt
->mode
!= X86EMUL_MODE_PROT64
)
4547 rc
= emulator_read_write_onepage(addr
, val
, bytes
, exception
,
4549 if (rc
!= X86EMUL_CONTINUE
)
4552 if (!vcpu
->mmio_nr_fragments
)
4555 gpa
= vcpu
->mmio_fragments
[0].gpa
;
4557 vcpu
->mmio_needed
= 1;
4558 vcpu
->mmio_cur_fragment
= 0;
4560 vcpu
->run
->mmio
.len
= min(8u, vcpu
->mmio_fragments
[0].len
);
4561 vcpu
->run
->mmio
.is_write
= vcpu
->mmio_is_write
= ops
->write
;
4562 vcpu
->run
->exit_reason
= KVM_EXIT_MMIO
;
4563 vcpu
->run
->mmio
.phys_addr
= gpa
;
4565 return ops
->read_write_exit_mmio(vcpu
, gpa
, val
, bytes
);
4568 static int emulator_read_emulated(struct x86_emulate_ctxt
*ctxt
,
4572 struct x86_exception
*exception
)
4574 return emulator_read_write(ctxt
, addr
, val
, bytes
,
4575 exception
, &read_emultor
);
4578 static int emulator_write_emulated(struct x86_emulate_ctxt
*ctxt
,
4582 struct x86_exception
*exception
)
4584 return emulator_read_write(ctxt
, addr
, (void *)val
, bytes
,
4585 exception
, &write_emultor
);
4588 #define CMPXCHG_TYPE(t, ptr, old, new) \
4589 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4591 #ifdef CONFIG_X86_64
4592 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4594 # define CMPXCHG64(ptr, old, new) \
4595 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4598 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt
*ctxt
,
4603 struct x86_exception
*exception
)
4605 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4611 /* guests cmpxchg8b have to be emulated atomically */
4612 if (bytes
> 8 || (bytes
& (bytes
- 1)))
4615 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, addr
, NULL
);
4617 if (gpa
== UNMAPPED_GVA
||
4618 (gpa
& PAGE_MASK
) == APIC_DEFAULT_PHYS_BASE
)
4621 if (((gpa
+ bytes
- 1) & PAGE_MASK
) != (gpa
& PAGE_MASK
))
4624 page
= gfn_to_page(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4625 if (is_error_page(page
))
4628 kaddr
= kmap_atomic(page
);
4629 kaddr
+= offset_in_page(gpa
);
4632 exchanged
= CMPXCHG_TYPE(u8
, kaddr
, old
, new);
4635 exchanged
= CMPXCHG_TYPE(u16
, kaddr
, old
, new);
4638 exchanged
= CMPXCHG_TYPE(u32
, kaddr
, old
, new);
4641 exchanged
= CMPXCHG64(kaddr
, old
, new);
4646 kunmap_atomic(kaddr
);
4647 kvm_release_page_dirty(page
);
4650 return X86EMUL_CMPXCHG_FAILED
;
4652 mark_page_dirty(vcpu
->kvm
, gpa
>> PAGE_SHIFT
);
4653 kvm_mmu_pte_write(vcpu
, gpa
, new, bytes
);
4655 return X86EMUL_CONTINUE
;
4658 printk_once(KERN_WARNING
"kvm: emulating exchange as write\n");
4660 return emulator_write_emulated(ctxt
, addr
, new, bytes
, exception
);
4663 static int kernel_pio(struct kvm_vcpu
*vcpu
, void *pd
)
4665 /* TODO: String I/O for in kernel device */
4668 if (vcpu
->arch
.pio
.in
)
4669 r
= kvm_io_bus_read(vcpu
, KVM_PIO_BUS
, vcpu
->arch
.pio
.port
,
4670 vcpu
->arch
.pio
.size
, pd
);
4672 r
= kvm_io_bus_write(vcpu
, KVM_PIO_BUS
,
4673 vcpu
->arch
.pio
.port
, vcpu
->arch
.pio
.size
,
4678 static int emulator_pio_in_out(struct kvm_vcpu
*vcpu
, int size
,
4679 unsigned short port
, void *val
,
4680 unsigned int count
, bool in
)
4682 vcpu
->arch
.pio
.port
= port
;
4683 vcpu
->arch
.pio
.in
= in
;
4684 vcpu
->arch
.pio
.count
= count
;
4685 vcpu
->arch
.pio
.size
= size
;
4687 if (!kernel_pio(vcpu
, vcpu
->arch
.pio_data
)) {
4688 vcpu
->arch
.pio
.count
= 0;
4692 vcpu
->run
->exit_reason
= KVM_EXIT_IO
;
4693 vcpu
->run
->io
.direction
= in
? KVM_EXIT_IO_IN
: KVM_EXIT_IO_OUT
;
4694 vcpu
->run
->io
.size
= size
;
4695 vcpu
->run
->io
.data_offset
= KVM_PIO_PAGE_OFFSET
* PAGE_SIZE
;
4696 vcpu
->run
->io
.count
= count
;
4697 vcpu
->run
->io
.port
= port
;
4702 static int emulator_pio_in_emulated(struct x86_emulate_ctxt
*ctxt
,
4703 int size
, unsigned short port
, void *val
,
4706 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4709 if (vcpu
->arch
.pio
.count
)
4712 ret
= emulator_pio_in_out(vcpu
, size
, port
, val
, count
, true);
4715 memcpy(val
, vcpu
->arch
.pio_data
, size
* count
);
4716 trace_kvm_pio(KVM_PIO_IN
, port
, size
, count
, vcpu
->arch
.pio_data
);
4717 vcpu
->arch
.pio
.count
= 0;
4724 static int emulator_pio_out_emulated(struct x86_emulate_ctxt
*ctxt
,
4725 int size
, unsigned short port
,
4726 const void *val
, unsigned int count
)
4728 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4730 memcpy(vcpu
->arch
.pio_data
, val
, size
* count
);
4731 trace_kvm_pio(KVM_PIO_OUT
, port
, size
, count
, vcpu
->arch
.pio_data
);
4732 return emulator_pio_in_out(vcpu
, size
, port
, (void *)val
, count
, false);
4735 static unsigned long get_segment_base(struct kvm_vcpu
*vcpu
, int seg
)
4737 return kvm_x86_ops
->get_segment_base(vcpu
, seg
);
4740 static void emulator_invlpg(struct x86_emulate_ctxt
*ctxt
, ulong address
)
4742 kvm_mmu_invlpg(emul_to_vcpu(ctxt
), address
);
4745 int kvm_emulate_wbinvd_noskip(struct kvm_vcpu
*vcpu
)
4747 if (!need_emulate_wbinvd(vcpu
))
4748 return X86EMUL_CONTINUE
;
4750 if (kvm_x86_ops
->has_wbinvd_exit()) {
4751 int cpu
= get_cpu();
4753 cpumask_set_cpu(cpu
, vcpu
->arch
.wbinvd_dirty_mask
);
4754 smp_call_function_many(vcpu
->arch
.wbinvd_dirty_mask
,
4755 wbinvd_ipi
, NULL
, 1);
4757 cpumask_clear(vcpu
->arch
.wbinvd_dirty_mask
);
4760 return X86EMUL_CONTINUE
;
4763 int kvm_emulate_wbinvd(struct kvm_vcpu
*vcpu
)
4765 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
4766 return kvm_emulate_wbinvd_noskip(vcpu
);
4768 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd
);
4772 static void emulator_wbinvd(struct x86_emulate_ctxt
*ctxt
)
4774 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt
));
4777 static int emulator_get_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4778 unsigned long *dest
)
4780 return kvm_get_dr(emul_to_vcpu(ctxt
), dr
, dest
);
4783 static int emulator_set_dr(struct x86_emulate_ctxt
*ctxt
, int dr
,
4784 unsigned long value
)
4787 return __kvm_set_dr(emul_to_vcpu(ctxt
), dr
, value
);
4790 static u64
mk_cr_64(u64 curr_cr
, u32 new_val
)
4792 return (curr_cr
& ~((1ULL << 32) - 1)) | new_val
;
4795 static unsigned long emulator_get_cr(struct x86_emulate_ctxt
*ctxt
, int cr
)
4797 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4798 unsigned long value
;
4802 value
= kvm_read_cr0(vcpu
);
4805 value
= vcpu
->arch
.cr2
;
4808 value
= kvm_read_cr3(vcpu
);
4811 value
= kvm_read_cr4(vcpu
);
4814 value
= kvm_get_cr8(vcpu
);
4817 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4824 static int emulator_set_cr(struct x86_emulate_ctxt
*ctxt
, int cr
, ulong val
)
4826 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4831 res
= kvm_set_cr0(vcpu
, mk_cr_64(kvm_read_cr0(vcpu
), val
));
4834 vcpu
->arch
.cr2
= val
;
4837 res
= kvm_set_cr3(vcpu
, val
);
4840 res
= kvm_set_cr4(vcpu
, mk_cr_64(kvm_read_cr4(vcpu
), val
));
4843 res
= kvm_set_cr8(vcpu
, val
);
4846 kvm_err("%s: unexpected cr %u\n", __func__
, cr
);
4853 static int emulator_get_cpl(struct x86_emulate_ctxt
*ctxt
)
4855 return kvm_x86_ops
->get_cpl(emul_to_vcpu(ctxt
));
4858 static void emulator_get_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4860 kvm_x86_ops
->get_gdt(emul_to_vcpu(ctxt
), dt
);
4863 static void emulator_get_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4865 kvm_x86_ops
->get_idt(emul_to_vcpu(ctxt
), dt
);
4868 static void emulator_set_gdt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4870 kvm_x86_ops
->set_gdt(emul_to_vcpu(ctxt
), dt
);
4873 static void emulator_set_idt(struct x86_emulate_ctxt
*ctxt
, struct desc_ptr
*dt
)
4875 kvm_x86_ops
->set_idt(emul_to_vcpu(ctxt
), dt
);
4878 static unsigned long emulator_get_cached_segment_base(
4879 struct x86_emulate_ctxt
*ctxt
, int seg
)
4881 return get_segment_base(emul_to_vcpu(ctxt
), seg
);
4884 static bool emulator_get_segment(struct x86_emulate_ctxt
*ctxt
, u16
*selector
,
4885 struct desc_struct
*desc
, u32
*base3
,
4888 struct kvm_segment var
;
4890 kvm_get_segment(emul_to_vcpu(ctxt
), &var
, seg
);
4891 *selector
= var
.selector
;
4894 memset(desc
, 0, sizeof(*desc
));
4900 set_desc_limit(desc
, var
.limit
);
4901 set_desc_base(desc
, (unsigned long)var
.base
);
4902 #ifdef CONFIG_X86_64
4904 *base3
= var
.base
>> 32;
4906 desc
->type
= var
.type
;
4908 desc
->dpl
= var
.dpl
;
4909 desc
->p
= var
.present
;
4910 desc
->avl
= var
.avl
;
4918 static void emulator_set_segment(struct x86_emulate_ctxt
*ctxt
, u16 selector
,
4919 struct desc_struct
*desc
, u32 base3
,
4922 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
4923 struct kvm_segment var
;
4925 var
.selector
= selector
;
4926 var
.base
= get_desc_base(desc
);
4927 #ifdef CONFIG_X86_64
4928 var
.base
|= ((u64
)base3
) << 32;
4930 var
.limit
= get_desc_limit(desc
);
4932 var
.limit
= (var
.limit
<< 12) | 0xfff;
4933 var
.type
= desc
->type
;
4934 var
.dpl
= desc
->dpl
;
4939 var
.avl
= desc
->avl
;
4940 var
.present
= desc
->p
;
4941 var
.unusable
= !var
.present
;
4944 kvm_set_segment(vcpu
, &var
, seg
);
4948 static int emulator_get_msr(struct x86_emulate_ctxt
*ctxt
,
4949 u32 msr_index
, u64
*pdata
)
4951 return kvm_get_msr(emul_to_vcpu(ctxt
), msr_index
, pdata
);
4954 static int emulator_set_msr(struct x86_emulate_ctxt
*ctxt
,
4955 u32 msr_index
, u64 data
)
4957 struct msr_data msr
;
4960 msr
.index
= msr_index
;
4961 msr
.host_initiated
= false;
4962 return kvm_set_msr(emul_to_vcpu(ctxt
), &msr
);
4965 static int emulator_check_pmc(struct x86_emulate_ctxt
*ctxt
,
4968 return kvm_pmu_check_pmc(emul_to_vcpu(ctxt
), pmc
);
4971 static int emulator_read_pmc(struct x86_emulate_ctxt
*ctxt
,
4972 u32 pmc
, u64
*pdata
)
4974 return kvm_pmu_read_pmc(emul_to_vcpu(ctxt
), pmc
, pdata
);
4977 static void emulator_halt(struct x86_emulate_ctxt
*ctxt
)
4979 emul_to_vcpu(ctxt
)->arch
.halt_request
= 1;
4982 static void emulator_get_fpu(struct x86_emulate_ctxt
*ctxt
)
4985 kvm_load_guest_fpu(emul_to_vcpu(ctxt
));
4987 * CR0.TS may reference the host fpu state, not the guest fpu state,
4988 * so it may be clear at this point.
4993 static void emulator_put_fpu(struct x86_emulate_ctxt
*ctxt
)
4998 static int emulator_intercept(struct x86_emulate_ctxt
*ctxt
,
4999 struct x86_instruction_info
*info
,
5000 enum x86_intercept_stage stage
)
5002 return kvm_x86_ops
->check_intercept(emul_to_vcpu(ctxt
), info
, stage
);
5005 static void emulator_get_cpuid(struct x86_emulate_ctxt
*ctxt
,
5006 u32
*eax
, u32
*ebx
, u32
*ecx
, u32
*edx
)
5008 kvm_cpuid(emul_to_vcpu(ctxt
), eax
, ebx
, ecx
, edx
);
5011 static ulong
emulator_read_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
)
5013 return kvm_register_read(emul_to_vcpu(ctxt
), reg
);
5016 static void emulator_write_gpr(struct x86_emulate_ctxt
*ctxt
, unsigned reg
, ulong val
)
5018 kvm_register_write(emul_to_vcpu(ctxt
), reg
, val
);
5021 static void emulator_set_nmi_mask(struct x86_emulate_ctxt
*ctxt
, bool masked
)
5023 kvm_x86_ops
->set_nmi_mask(emul_to_vcpu(ctxt
), masked
);
5026 static const struct x86_emulate_ops emulate_ops
= {
5027 .read_gpr
= emulator_read_gpr
,
5028 .write_gpr
= emulator_write_gpr
,
5029 .read_std
= kvm_read_guest_virt_system
,
5030 .write_std
= kvm_write_guest_virt_system
,
5031 .fetch
= kvm_fetch_guest_virt
,
5032 .read_emulated
= emulator_read_emulated
,
5033 .write_emulated
= emulator_write_emulated
,
5034 .cmpxchg_emulated
= emulator_cmpxchg_emulated
,
5035 .invlpg
= emulator_invlpg
,
5036 .pio_in_emulated
= emulator_pio_in_emulated
,
5037 .pio_out_emulated
= emulator_pio_out_emulated
,
5038 .get_segment
= emulator_get_segment
,
5039 .set_segment
= emulator_set_segment
,
5040 .get_cached_segment_base
= emulator_get_cached_segment_base
,
5041 .get_gdt
= emulator_get_gdt
,
5042 .get_idt
= emulator_get_idt
,
5043 .set_gdt
= emulator_set_gdt
,
5044 .set_idt
= emulator_set_idt
,
5045 .get_cr
= emulator_get_cr
,
5046 .set_cr
= emulator_set_cr
,
5047 .cpl
= emulator_get_cpl
,
5048 .get_dr
= emulator_get_dr
,
5049 .set_dr
= emulator_set_dr
,
5050 .set_msr
= emulator_set_msr
,
5051 .get_msr
= emulator_get_msr
,
5052 .check_pmc
= emulator_check_pmc
,
5053 .read_pmc
= emulator_read_pmc
,
5054 .halt
= emulator_halt
,
5055 .wbinvd
= emulator_wbinvd
,
5056 .fix_hypercall
= emulator_fix_hypercall
,
5057 .get_fpu
= emulator_get_fpu
,
5058 .put_fpu
= emulator_put_fpu
,
5059 .intercept
= emulator_intercept
,
5060 .get_cpuid
= emulator_get_cpuid
,
5061 .set_nmi_mask
= emulator_set_nmi_mask
,
5064 static void toggle_interruptibility(struct kvm_vcpu
*vcpu
, u32 mask
)
5066 u32 int_shadow
= kvm_x86_ops
->get_interrupt_shadow(vcpu
);
5068 * an sti; sti; sequence only disable interrupts for the first
5069 * instruction. So, if the last instruction, be it emulated or
5070 * not, left the system with the INT_STI flag enabled, it
5071 * means that the last instruction is an sti. We should not
5072 * leave the flag on in this case. The same goes for mov ss
5074 if (int_shadow
& mask
)
5076 if (unlikely(int_shadow
|| mask
)) {
5077 kvm_x86_ops
->set_interrupt_shadow(vcpu
, mask
);
5079 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5083 static bool inject_emulated_exception(struct kvm_vcpu
*vcpu
)
5085 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5086 if (ctxt
->exception
.vector
== PF_VECTOR
)
5087 return kvm_propagate_fault(vcpu
, &ctxt
->exception
);
5089 if (ctxt
->exception
.error_code_valid
)
5090 kvm_queue_exception_e(vcpu
, ctxt
->exception
.vector
,
5091 ctxt
->exception
.error_code
);
5093 kvm_queue_exception(vcpu
, ctxt
->exception
.vector
);
5097 static void init_emulate_ctxt(struct kvm_vcpu
*vcpu
)
5099 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5102 kvm_x86_ops
->get_cs_db_l_bits(vcpu
, &cs_db
, &cs_l
);
5104 ctxt
->eflags
= kvm_get_rflags(vcpu
);
5105 ctxt
->eip
= kvm_rip_read(vcpu
);
5106 ctxt
->mode
= (!is_protmode(vcpu
)) ? X86EMUL_MODE_REAL
:
5107 (ctxt
->eflags
& X86_EFLAGS_VM
) ? X86EMUL_MODE_VM86
:
5108 (cs_l
&& is_long_mode(vcpu
)) ? X86EMUL_MODE_PROT64
:
5109 cs_db
? X86EMUL_MODE_PROT32
:
5110 X86EMUL_MODE_PROT16
;
5111 ctxt
->guest_mode
= is_guest_mode(vcpu
);
5113 init_decode_cache(ctxt
);
5114 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5117 int kvm_inject_realmode_interrupt(struct kvm_vcpu
*vcpu
, int irq
, int inc_eip
)
5119 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5122 init_emulate_ctxt(vcpu
);
5126 ctxt
->_eip
= ctxt
->eip
+ inc_eip
;
5127 ret
= emulate_int_real(ctxt
, irq
);
5129 if (ret
!= X86EMUL_CONTINUE
)
5130 return EMULATE_FAIL
;
5132 ctxt
->eip
= ctxt
->_eip
;
5133 kvm_rip_write(vcpu
, ctxt
->eip
);
5134 kvm_set_rflags(vcpu
, ctxt
->eflags
);
5136 if (irq
== NMI_VECTOR
)
5137 vcpu
->arch
.nmi_pending
= 0;
5139 vcpu
->arch
.interrupt
.pending
= false;
5141 return EMULATE_DONE
;
5143 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt
);
5145 static int handle_emulation_failure(struct kvm_vcpu
*vcpu
)
5147 int r
= EMULATE_DONE
;
5149 ++vcpu
->stat
.insn_emulation_fail
;
5150 trace_kvm_emulate_insn_failed(vcpu
);
5151 if (!is_guest_mode(vcpu
) && kvm_x86_ops
->get_cpl(vcpu
) == 0) {
5152 vcpu
->run
->exit_reason
= KVM_EXIT_INTERNAL_ERROR
;
5153 vcpu
->run
->internal
.suberror
= KVM_INTERNAL_ERROR_EMULATION
;
5154 vcpu
->run
->internal
.ndata
= 0;
5157 kvm_queue_exception(vcpu
, UD_VECTOR
);
5162 static bool reexecute_instruction(struct kvm_vcpu
*vcpu
, gva_t cr2
,
5163 bool write_fault_to_shadow_pgtable
,
5169 if (emulation_type
& EMULTYPE_NO_REEXECUTE
)
5172 if (!vcpu
->arch
.mmu
.direct_map
) {
5174 * Write permission should be allowed since only
5175 * write access need to be emulated.
5177 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5180 * If the mapping is invalid in guest, let cpu retry
5181 * it to generate fault.
5183 if (gpa
== UNMAPPED_GVA
)
5188 * Do not retry the unhandleable instruction if it faults on the
5189 * readonly host memory, otherwise it will goto a infinite loop:
5190 * retry instruction -> write #PF -> emulation fail -> retry
5191 * instruction -> ...
5193 pfn
= gfn_to_pfn(vcpu
->kvm
, gpa_to_gfn(gpa
));
5196 * If the instruction failed on the error pfn, it can not be fixed,
5197 * report the error to userspace.
5199 if (is_error_noslot_pfn(pfn
))
5202 kvm_release_pfn_clean(pfn
);
5204 /* The instructions are well-emulated on direct mmu. */
5205 if (vcpu
->arch
.mmu
.direct_map
) {
5206 unsigned int indirect_shadow_pages
;
5208 spin_lock(&vcpu
->kvm
->mmu_lock
);
5209 indirect_shadow_pages
= vcpu
->kvm
->arch
.indirect_shadow_pages
;
5210 spin_unlock(&vcpu
->kvm
->mmu_lock
);
5212 if (indirect_shadow_pages
)
5213 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5219 * if emulation was due to access to shadowed page table
5220 * and it failed try to unshadow page and re-enter the
5221 * guest to let CPU execute the instruction.
5223 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5226 * If the access faults on its page table, it can not
5227 * be fixed by unprotecting shadow page and it should
5228 * be reported to userspace.
5230 return !write_fault_to_shadow_pgtable
;
5233 static bool retry_instruction(struct x86_emulate_ctxt
*ctxt
,
5234 unsigned long cr2
, int emulation_type
)
5236 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
5237 unsigned long last_retry_eip
, last_retry_addr
, gpa
= cr2
;
5239 last_retry_eip
= vcpu
->arch
.last_retry_eip
;
5240 last_retry_addr
= vcpu
->arch
.last_retry_addr
;
5243 * If the emulation is caused by #PF and it is non-page_table
5244 * writing instruction, it means the VM-EXIT is caused by shadow
5245 * page protected, we can zap the shadow page and retry this
5246 * instruction directly.
5248 * Note: if the guest uses a non-page-table modifying instruction
5249 * on the PDE that points to the instruction, then we will unmap
5250 * the instruction and go to an infinite loop. So, we cache the
5251 * last retried eip and the last fault address, if we meet the eip
5252 * and the address again, we can break out of the potential infinite
5255 vcpu
->arch
.last_retry_eip
= vcpu
->arch
.last_retry_addr
= 0;
5257 if (!(emulation_type
& EMULTYPE_RETRY
))
5260 if (x86_page_table_writing_insn(ctxt
))
5263 if (ctxt
->eip
== last_retry_eip
&& last_retry_addr
== cr2
)
5266 vcpu
->arch
.last_retry_eip
= ctxt
->eip
;
5267 vcpu
->arch
.last_retry_addr
= cr2
;
5269 if (!vcpu
->arch
.mmu
.direct_map
)
5270 gpa
= kvm_mmu_gva_to_gpa_write(vcpu
, cr2
, NULL
);
5272 kvm_mmu_unprotect_page(vcpu
->kvm
, gpa_to_gfn(gpa
));
5277 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
);
5278 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
);
5280 static int kvm_vcpu_check_hw_bp(unsigned long addr
, u32 type
, u32 dr7
,
5289 for (i
= 0; i
< 4; i
++, enable
>>= 2, rwlen
>>= 4)
5290 if ((enable
& 3) && (rwlen
& 15) == type
&& db
[i
] == addr
)
5295 static void kvm_vcpu_check_singlestep(struct kvm_vcpu
*vcpu
, unsigned long rflags
, int *r
)
5297 struct kvm_run
*kvm_run
= vcpu
->run
;
5300 * rflags is the old, "raw" value of the flags. The new value has
5301 * not been saved yet.
5303 * This is correct even for TF set by the guest, because "the
5304 * processor will not generate this exception after the instruction
5305 * that sets the TF flag".
5307 if (unlikely(rflags
& X86_EFLAGS_TF
)) {
5308 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
) {
5309 kvm_run
->debug
.arch
.dr6
= DR6_BS
| DR6_FIXED_1
|
5311 kvm_run
->debug
.arch
.pc
= vcpu
->arch
.singlestep_rip
;
5312 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5313 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5314 *r
= EMULATE_USER_EXIT
;
5316 vcpu
->arch
.emulate_ctxt
.eflags
&= ~X86_EFLAGS_TF
;
5318 * "Certain debug exceptions may clear bit 0-3. The
5319 * remaining contents of the DR6 register are never
5320 * cleared by the processor".
5322 vcpu
->arch
.dr6
&= ~15;
5323 vcpu
->arch
.dr6
|= DR6_BS
| DR6_RTM
;
5324 kvm_queue_exception(vcpu
, DB_VECTOR
);
5329 static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu
*vcpu
, int *r
)
5331 if (unlikely(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) &&
5332 (vcpu
->arch
.guest_debug_dr7
& DR7_BP_EN_MASK
)) {
5333 struct kvm_run
*kvm_run
= vcpu
->run
;
5334 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5335 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5336 vcpu
->arch
.guest_debug_dr7
,
5340 kvm_run
->debug
.arch
.dr6
= dr6
| DR6_FIXED_1
| DR6_RTM
;
5341 kvm_run
->debug
.arch
.pc
= eip
;
5342 kvm_run
->debug
.arch
.exception
= DB_VECTOR
;
5343 kvm_run
->exit_reason
= KVM_EXIT_DEBUG
;
5344 *r
= EMULATE_USER_EXIT
;
5349 if (unlikely(vcpu
->arch
.dr7
& DR7_BP_EN_MASK
) &&
5350 !(kvm_get_rflags(vcpu
) & X86_EFLAGS_RF
)) {
5351 unsigned long eip
= kvm_get_linear_rip(vcpu
);
5352 u32 dr6
= kvm_vcpu_check_hw_bp(eip
, 0,
5357 vcpu
->arch
.dr6
&= ~15;
5358 vcpu
->arch
.dr6
|= dr6
| DR6_RTM
;
5359 kvm_queue_exception(vcpu
, DB_VECTOR
);
5368 int x86_emulate_instruction(struct kvm_vcpu
*vcpu
,
5375 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
5376 bool writeback
= true;
5377 bool write_fault_to_spt
= vcpu
->arch
.write_fault_to_shadow_pgtable
;
5380 * Clear write_fault_to_shadow_pgtable here to ensure it is
5383 vcpu
->arch
.write_fault_to_shadow_pgtable
= false;
5384 kvm_clear_exception_queue(vcpu
);
5386 if (!(emulation_type
& EMULTYPE_NO_DECODE
)) {
5387 init_emulate_ctxt(vcpu
);
5390 * We will reenter on the same instruction since
5391 * we do not set complete_userspace_io. This does not
5392 * handle watchpoints yet, those would be handled in
5395 if (kvm_vcpu_check_breakpoint(vcpu
, &r
))
5398 ctxt
->interruptibility
= 0;
5399 ctxt
->have_exception
= false;
5400 ctxt
->exception
.vector
= -1;
5401 ctxt
->perm_ok
= false;
5403 ctxt
->ud
= emulation_type
& EMULTYPE_TRAP_UD
;
5405 r
= x86_decode_insn(ctxt
, insn
, insn_len
);
5407 trace_kvm_emulate_insn_start(vcpu
);
5408 ++vcpu
->stat
.insn_emulation
;
5409 if (r
!= EMULATION_OK
) {
5410 if (emulation_type
& EMULTYPE_TRAP_UD
)
5411 return EMULATE_FAIL
;
5412 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5414 return EMULATE_DONE
;
5415 if (emulation_type
& EMULTYPE_SKIP
)
5416 return EMULATE_FAIL
;
5417 return handle_emulation_failure(vcpu
);
5421 if (emulation_type
& EMULTYPE_SKIP
) {
5422 kvm_rip_write(vcpu
, ctxt
->_eip
);
5423 if (ctxt
->eflags
& X86_EFLAGS_RF
)
5424 kvm_set_rflags(vcpu
, ctxt
->eflags
& ~X86_EFLAGS_RF
);
5425 return EMULATE_DONE
;
5428 if (retry_instruction(ctxt
, cr2
, emulation_type
))
5429 return EMULATE_DONE
;
5431 /* this is needed for vmware backdoor interface to work since it
5432 changes registers values during IO operation */
5433 if (vcpu
->arch
.emulate_regs_need_sync_from_vcpu
) {
5434 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= false;
5435 emulator_invalidate_register_cache(ctxt
);
5439 r
= x86_emulate_insn(ctxt
);
5441 if (r
== EMULATION_INTERCEPTED
)
5442 return EMULATE_DONE
;
5444 if (r
== EMULATION_FAILED
) {
5445 if (reexecute_instruction(vcpu
, cr2
, write_fault_to_spt
,
5447 return EMULATE_DONE
;
5449 return handle_emulation_failure(vcpu
);
5452 if (ctxt
->have_exception
) {
5454 if (inject_emulated_exception(vcpu
))
5456 } else if (vcpu
->arch
.pio
.count
) {
5457 if (!vcpu
->arch
.pio
.in
) {
5458 /* FIXME: return into emulator if single-stepping. */
5459 vcpu
->arch
.pio
.count
= 0;
5462 vcpu
->arch
.complete_userspace_io
= complete_emulated_pio
;
5464 r
= EMULATE_USER_EXIT
;
5465 } else if (vcpu
->mmio_needed
) {
5466 if (!vcpu
->mmio_is_write
)
5468 r
= EMULATE_USER_EXIT
;
5469 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
5470 } else if (r
== EMULATION_RESTART
)
5476 unsigned long rflags
= kvm_x86_ops
->get_rflags(vcpu
);
5477 toggle_interruptibility(vcpu
, ctxt
->interruptibility
);
5478 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
5479 kvm_rip_write(vcpu
, ctxt
->eip
);
5480 if (r
== EMULATE_DONE
)
5481 kvm_vcpu_check_singlestep(vcpu
, rflags
, &r
);
5482 if (!ctxt
->have_exception
||
5483 exception_type(ctxt
->exception
.vector
) == EXCPT_TRAP
)
5484 __kvm_set_rflags(vcpu
, ctxt
->eflags
);
5487 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
5488 * do nothing, and it will be requested again as soon as
5489 * the shadow expires. But we still need to check here,
5490 * because POPF has no interrupt shadow.
5492 if (unlikely((ctxt
->eflags
& ~rflags
) & X86_EFLAGS_IF
))
5493 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
5495 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= true;
5499 EXPORT_SYMBOL_GPL(x86_emulate_instruction
);
5501 int kvm_fast_pio_out(struct kvm_vcpu
*vcpu
, int size
, unsigned short port
)
5503 unsigned long val
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5504 int ret
= emulator_pio_out_emulated(&vcpu
->arch
.emulate_ctxt
,
5505 size
, port
, &val
, 1);
5506 /* do not return to emulator after return from userspace */
5507 vcpu
->arch
.pio
.count
= 0;
5510 EXPORT_SYMBOL_GPL(kvm_fast_pio_out
);
5512 static void tsc_bad(void *info
)
5514 __this_cpu_write(cpu_tsc_khz
, 0);
5517 static void tsc_khz_changed(void *data
)
5519 struct cpufreq_freqs
*freq
= data
;
5520 unsigned long khz
= 0;
5524 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5525 khz
= cpufreq_quick_get(raw_smp_processor_id());
5528 __this_cpu_write(cpu_tsc_khz
, khz
);
5531 static int kvmclock_cpufreq_notifier(struct notifier_block
*nb
, unsigned long val
,
5534 struct cpufreq_freqs
*freq
= data
;
5536 struct kvm_vcpu
*vcpu
;
5537 int i
, send_ipi
= 0;
5540 * We allow guests to temporarily run on slowing clocks,
5541 * provided we notify them after, or to run on accelerating
5542 * clocks, provided we notify them before. Thus time never
5545 * However, we have a problem. We can't atomically update
5546 * the frequency of a given CPU from this function; it is
5547 * merely a notifier, which can be called from any CPU.
5548 * Changing the TSC frequency at arbitrary points in time
5549 * requires a recomputation of local variables related to
5550 * the TSC for each VCPU. We must flag these local variables
5551 * to be updated and be sure the update takes place with the
5552 * new frequency before any guests proceed.
5554 * Unfortunately, the combination of hotplug CPU and frequency
5555 * change creates an intractable locking scenario; the order
5556 * of when these callouts happen is undefined with respect to
5557 * CPU hotplug, and they can race with each other. As such,
5558 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
5559 * undefined; you can actually have a CPU frequency change take
5560 * place in between the computation of X and the setting of the
5561 * variable. To protect against this problem, all updates of
5562 * the per_cpu tsc_khz variable are done in an interrupt
5563 * protected IPI, and all callers wishing to update the value
5564 * must wait for a synchronous IPI to complete (which is trivial
5565 * if the caller is on the CPU already). This establishes the
5566 * necessary total order on variable updates.
5568 * Note that because a guest time update may take place
5569 * anytime after the setting of the VCPU's request bit, the
5570 * correct TSC value must be set before the request. However,
5571 * to ensure the update actually makes it to any guest which
5572 * starts running in hardware virtualization between the set
5573 * and the acquisition of the spinlock, we must also ping the
5574 * CPU after setting the request bit.
5578 if (val
== CPUFREQ_PRECHANGE
&& freq
->old
> freq
->new)
5580 if (val
== CPUFREQ_POSTCHANGE
&& freq
->old
< freq
->new)
5583 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5585 spin_lock(&kvm_lock
);
5586 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
5587 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
5588 if (vcpu
->cpu
!= freq
->cpu
)
5590 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
5591 if (vcpu
->cpu
!= smp_processor_id())
5595 spin_unlock(&kvm_lock
);
5597 if (freq
->old
< freq
->new && send_ipi
) {
5599 * We upscale the frequency. Must make the guest
5600 * doesn't see old kvmclock values while running with
5601 * the new frequency, otherwise we risk the guest sees
5602 * time go backwards.
5604 * In case we update the frequency for another cpu
5605 * (which might be in guest context) send an interrupt
5606 * to kick the cpu out of guest context. Next time
5607 * guest context is entered kvmclock will be updated,
5608 * so the guest will not see stale values.
5610 smp_call_function_single(freq
->cpu
, tsc_khz_changed
, freq
, 1);
5615 static struct notifier_block kvmclock_cpufreq_notifier_block
= {
5616 .notifier_call
= kvmclock_cpufreq_notifier
5619 static int kvmclock_cpu_notifier(struct notifier_block
*nfb
,
5620 unsigned long action
, void *hcpu
)
5622 unsigned int cpu
= (unsigned long)hcpu
;
5626 case CPU_DOWN_FAILED
:
5627 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5629 case CPU_DOWN_PREPARE
:
5630 smp_call_function_single(cpu
, tsc_bad
, NULL
, 1);
5636 static struct notifier_block kvmclock_cpu_notifier_block
= {
5637 .notifier_call
= kvmclock_cpu_notifier
,
5638 .priority
= -INT_MAX
5641 static void kvm_timer_init(void)
5645 max_tsc_khz
= tsc_khz
;
5647 cpu_notifier_register_begin();
5648 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
)) {
5649 #ifdef CONFIG_CPU_FREQ
5650 struct cpufreq_policy policy
;
5651 memset(&policy
, 0, sizeof(policy
));
5653 cpufreq_get_policy(&policy
, cpu
);
5654 if (policy
.cpuinfo
.max_freq
)
5655 max_tsc_khz
= policy
.cpuinfo
.max_freq
;
5658 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block
,
5659 CPUFREQ_TRANSITION_NOTIFIER
);
5661 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz
);
5662 for_each_online_cpu(cpu
)
5663 smp_call_function_single(cpu
, tsc_khz_changed
, NULL
, 1);
5665 __register_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5666 cpu_notifier_register_done();
5670 static DEFINE_PER_CPU(struct kvm_vcpu
*, current_vcpu
);
5672 int kvm_is_in_guest(void)
5674 return __this_cpu_read(current_vcpu
) != NULL
;
5677 static int kvm_is_user_mode(void)
5681 if (__this_cpu_read(current_vcpu
))
5682 user_mode
= kvm_x86_ops
->get_cpl(__this_cpu_read(current_vcpu
));
5684 return user_mode
!= 0;
5687 static unsigned long kvm_get_guest_ip(void)
5689 unsigned long ip
= 0;
5691 if (__this_cpu_read(current_vcpu
))
5692 ip
= kvm_rip_read(__this_cpu_read(current_vcpu
));
5697 static struct perf_guest_info_callbacks kvm_guest_cbs
= {
5698 .is_in_guest
= kvm_is_in_guest
,
5699 .is_user_mode
= kvm_is_user_mode
,
5700 .get_guest_ip
= kvm_get_guest_ip
,
5703 void kvm_before_handle_nmi(struct kvm_vcpu
*vcpu
)
5705 __this_cpu_write(current_vcpu
, vcpu
);
5707 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi
);
5709 void kvm_after_handle_nmi(struct kvm_vcpu
*vcpu
)
5711 __this_cpu_write(current_vcpu
, NULL
);
5713 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi
);
5715 static void kvm_set_mmio_spte_mask(void)
5718 int maxphyaddr
= boot_cpu_data
.x86_phys_bits
;
5721 * Set the reserved bits and the present bit of an paging-structure
5722 * entry to generate page fault with PFER.RSV = 1.
5724 /* Mask the reserved physical address bits. */
5725 mask
= rsvd_bits(maxphyaddr
, 51);
5727 /* Bit 62 is always reserved for 32bit host. */
5728 mask
|= 0x3ull
<< 62;
5730 /* Set the present bit. */
5733 #ifdef CONFIG_X86_64
5735 * If reserved bit is not supported, clear the present bit to disable
5738 if (maxphyaddr
== 52)
5742 kvm_mmu_set_mmio_spte_mask(mask
);
5745 #ifdef CONFIG_X86_64
5746 static void pvclock_gtod_update_fn(struct work_struct
*work
)
5750 struct kvm_vcpu
*vcpu
;
5753 spin_lock(&kvm_lock
);
5754 list_for_each_entry(kvm
, &vm_list
, vm_list
)
5755 kvm_for_each_vcpu(i
, vcpu
, kvm
)
5756 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
5757 atomic_set(&kvm_guest_has_master_clock
, 0);
5758 spin_unlock(&kvm_lock
);
5761 static DECLARE_WORK(pvclock_gtod_work
, pvclock_gtod_update_fn
);
5764 * Notification about pvclock gtod data update.
5766 static int pvclock_gtod_notify(struct notifier_block
*nb
, unsigned long unused
,
5769 struct pvclock_gtod_data
*gtod
= &pvclock_gtod_data
;
5770 struct timekeeper
*tk
= priv
;
5772 update_pvclock_gtod(tk
);
5774 /* disable master clock if host does not trust, or does not
5775 * use, TSC clocksource
5777 if (gtod
->clock
.vclock_mode
!= VCLOCK_TSC
&&
5778 atomic_read(&kvm_guest_has_master_clock
) != 0)
5779 queue_work(system_long_wq
, &pvclock_gtod_work
);
5784 static struct notifier_block pvclock_gtod_notifier
= {
5785 .notifier_call
= pvclock_gtod_notify
,
5789 int kvm_arch_init(void *opaque
)
5792 struct kvm_x86_ops
*ops
= opaque
;
5795 printk(KERN_ERR
"kvm: already loaded the other module\n");
5800 if (!ops
->cpu_has_kvm_support()) {
5801 printk(KERN_ERR
"kvm: no hardware support\n");
5805 if (ops
->disabled_by_bios()) {
5806 printk(KERN_ERR
"kvm: disabled by bios\n");
5812 shared_msrs
= alloc_percpu(struct kvm_shared_msrs
);
5814 printk(KERN_ERR
"kvm: failed to allocate percpu kvm_shared_msrs\n");
5818 r
= kvm_mmu_module_init();
5820 goto out_free_percpu
;
5822 kvm_set_mmio_spte_mask();
5826 kvm_mmu_set_mask_ptes(PT_USER_MASK
, PT_ACCESSED_MASK
,
5827 PT_DIRTY_MASK
, PT64_NX_MASK
, 0);
5831 perf_register_guest_info_callbacks(&kvm_guest_cbs
);
5834 host_xcr0
= xgetbv(XCR_XFEATURE_ENABLED_MASK
);
5837 #ifdef CONFIG_X86_64
5838 pvclock_gtod_register_notifier(&pvclock_gtod_notifier
);
5844 free_percpu(shared_msrs
);
5849 void kvm_arch_exit(void)
5851 perf_unregister_guest_info_callbacks(&kvm_guest_cbs
);
5853 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC
))
5854 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block
,
5855 CPUFREQ_TRANSITION_NOTIFIER
);
5856 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block
);
5857 #ifdef CONFIG_X86_64
5858 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier
);
5861 kvm_mmu_module_exit();
5862 free_percpu(shared_msrs
);
5865 int kvm_vcpu_halt(struct kvm_vcpu
*vcpu
)
5867 ++vcpu
->stat
.halt_exits
;
5868 if (irqchip_in_kernel(vcpu
->kvm
)) {
5869 vcpu
->arch
.mp_state
= KVM_MP_STATE_HALTED
;
5872 vcpu
->run
->exit_reason
= KVM_EXIT_HLT
;
5876 EXPORT_SYMBOL_GPL(kvm_vcpu_halt
);
5878 int kvm_emulate_halt(struct kvm_vcpu
*vcpu
)
5880 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5881 return kvm_vcpu_halt(vcpu
);
5883 EXPORT_SYMBOL_GPL(kvm_emulate_halt
);
5885 int kvm_hv_hypercall(struct kvm_vcpu
*vcpu
)
5887 u64 param
, ingpa
, outgpa
, ret
;
5888 uint16_t code
, rep_idx
, rep_cnt
, res
= HV_STATUS_SUCCESS
, rep_done
= 0;
5889 bool fast
, longmode
;
5892 * hypercall generates UD from non zero cpl and real mode
5895 if (kvm_x86_ops
->get_cpl(vcpu
) != 0 || !is_protmode(vcpu
)) {
5896 kvm_queue_exception(vcpu
, UD_VECTOR
);
5900 longmode
= is_64_bit_mode(vcpu
);
5903 param
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDX
) << 32) |
5904 (kvm_register_read(vcpu
, VCPU_REGS_RAX
) & 0xffffffff);
5905 ingpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RBX
) << 32) |
5906 (kvm_register_read(vcpu
, VCPU_REGS_RCX
) & 0xffffffff);
5907 outgpa
= ((u64
)kvm_register_read(vcpu
, VCPU_REGS_RDI
) << 32) |
5908 (kvm_register_read(vcpu
, VCPU_REGS_RSI
) & 0xffffffff);
5910 #ifdef CONFIG_X86_64
5912 param
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5913 ingpa
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5914 outgpa
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
5918 code
= param
& 0xffff;
5919 fast
= (param
>> 16) & 0x1;
5920 rep_cnt
= (param
>> 32) & 0xfff;
5921 rep_idx
= (param
>> 48) & 0xfff;
5923 trace_kvm_hv_hypercall(code
, fast
, rep_cnt
, rep_idx
, ingpa
, outgpa
);
5926 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT
:
5927 kvm_vcpu_on_spin(vcpu
);
5930 res
= HV_STATUS_INVALID_HYPERCALL_CODE
;
5934 ret
= res
| (((u64
)rep_done
& 0xfff) << 32);
5936 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
5938 kvm_register_write(vcpu
, VCPU_REGS_RDX
, ret
>> 32);
5939 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
& 0xffffffff);
5946 * kvm_pv_kick_cpu_op: Kick a vcpu.
5948 * @apicid - apicid of vcpu to be kicked.
5950 static void kvm_pv_kick_cpu_op(struct kvm
*kvm
, unsigned long flags
, int apicid
)
5952 struct kvm_lapic_irq lapic_irq
;
5954 lapic_irq
.shorthand
= 0;
5955 lapic_irq
.dest_mode
= 0;
5956 lapic_irq
.dest_id
= apicid
;
5958 lapic_irq
.delivery_mode
= APIC_DM_REMRD
;
5959 kvm_irq_delivery_to_apic(kvm
, NULL
, &lapic_irq
, NULL
);
5962 int kvm_emulate_hypercall(struct kvm_vcpu
*vcpu
)
5964 unsigned long nr
, a0
, a1
, a2
, a3
, ret
;
5965 int op_64_bit
, r
= 1;
5967 kvm_x86_ops
->skip_emulated_instruction(vcpu
);
5969 if (kvm_hv_hypercall_enabled(vcpu
->kvm
))
5970 return kvm_hv_hypercall(vcpu
);
5972 nr
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
5973 a0
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
5974 a1
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
5975 a2
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
5976 a3
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
5978 trace_kvm_hypercall(nr
, a0
, a1
, a2
, a3
);
5980 op_64_bit
= is_64_bit_mode(vcpu
);
5989 if (kvm_x86_ops
->get_cpl(vcpu
) != 0) {
5995 case KVM_HC_VAPIC_POLL_IRQ
:
5998 case KVM_HC_KICK_CPU
:
5999 kvm_pv_kick_cpu_op(vcpu
->kvm
, a0
, a1
);
6009 kvm_register_write(vcpu
, VCPU_REGS_RAX
, ret
);
6010 ++vcpu
->stat
.hypercalls
;
6013 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall
);
6015 static int emulator_fix_hypercall(struct x86_emulate_ctxt
*ctxt
)
6017 struct kvm_vcpu
*vcpu
= emul_to_vcpu(ctxt
);
6018 char instruction
[3];
6019 unsigned long rip
= kvm_rip_read(vcpu
);
6021 kvm_x86_ops
->patch_hypercall(vcpu
, instruction
);
6023 return emulator_write_emulated(ctxt
, rip
, instruction
, 3, NULL
);
6027 * Check if userspace requested an interrupt window, and that the
6028 * interrupt window is open.
6030 * No need to exit to userspace if we already have an interrupt queued.
6032 static int dm_request_for_irq_injection(struct kvm_vcpu
*vcpu
)
6034 return (!irqchip_in_kernel(vcpu
->kvm
) && !kvm_cpu_has_interrupt(vcpu
) &&
6035 vcpu
->run
->request_interrupt_window
&&
6036 kvm_arch_interrupt_allowed(vcpu
));
6039 static void post_kvm_run_save(struct kvm_vcpu
*vcpu
)
6041 struct kvm_run
*kvm_run
= vcpu
->run
;
6043 kvm_run
->if_flag
= (kvm_get_rflags(vcpu
) & X86_EFLAGS_IF
) != 0;
6044 kvm_run
->cr8
= kvm_get_cr8(vcpu
);
6045 kvm_run
->apic_base
= kvm_get_apic_base(vcpu
);
6046 if (irqchip_in_kernel(vcpu
->kvm
))
6047 kvm_run
->ready_for_interrupt_injection
= 1;
6049 kvm_run
->ready_for_interrupt_injection
=
6050 kvm_arch_interrupt_allowed(vcpu
) &&
6051 !kvm_cpu_has_interrupt(vcpu
) &&
6052 !kvm_event_needs_reinjection(vcpu
);
6055 static void update_cr8_intercept(struct kvm_vcpu
*vcpu
)
6059 if (!kvm_x86_ops
->update_cr8_intercept
)
6062 if (!vcpu
->arch
.apic
)
6065 if (!vcpu
->arch
.apic
->vapic_addr
)
6066 max_irr
= kvm_lapic_find_highest_irr(vcpu
);
6073 tpr
= kvm_lapic_get_cr8(vcpu
);
6075 kvm_x86_ops
->update_cr8_intercept(vcpu
, tpr
, max_irr
);
6078 static int inject_pending_event(struct kvm_vcpu
*vcpu
, bool req_int_win
)
6082 /* try to reinject previous events if any */
6083 if (vcpu
->arch
.exception
.pending
) {
6084 trace_kvm_inj_exception(vcpu
->arch
.exception
.nr
,
6085 vcpu
->arch
.exception
.has_error_code
,
6086 vcpu
->arch
.exception
.error_code
);
6088 if (exception_type(vcpu
->arch
.exception
.nr
) == EXCPT_FAULT
)
6089 __kvm_set_rflags(vcpu
, kvm_get_rflags(vcpu
) |
6092 if (vcpu
->arch
.exception
.nr
== DB_VECTOR
&&
6093 (vcpu
->arch
.dr7
& DR7_GD
)) {
6094 vcpu
->arch
.dr7
&= ~DR7_GD
;
6095 kvm_update_dr7(vcpu
);
6098 kvm_x86_ops
->queue_exception(vcpu
, vcpu
->arch
.exception
.nr
,
6099 vcpu
->arch
.exception
.has_error_code
,
6100 vcpu
->arch
.exception
.error_code
,
6101 vcpu
->arch
.exception
.reinject
);
6105 if (vcpu
->arch
.nmi_injected
) {
6106 kvm_x86_ops
->set_nmi(vcpu
);
6110 if (vcpu
->arch
.interrupt
.pending
) {
6111 kvm_x86_ops
->set_irq(vcpu
);
6115 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6116 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6121 /* try to inject new event if pending */
6122 if (vcpu
->arch
.nmi_pending
&& kvm_x86_ops
->nmi_allowed(vcpu
)) {
6123 --vcpu
->arch
.nmi_pending
;
6124 vcpu
->arch
.nmi_injected
= true;
6125 kvm_x86_ops
->set_nmi(vcpu
);
6126 } else if (kvm_cpu_has_injectable_intr(vcpu
)) {
6128 * Because interrupts can be injected asynchronously, we are
6129 * calling check_nested_events again here to avoid a race condition.
6130 * See https://lkml.org/lkml/2014/7/2/60 for discussion about this
6131 * proposal and current concerns. Perhaps we should be setting
6132 * KVM_REQ_EVENT only on certain events and not unconditionally?
6134 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
) {
6135 r
= kvm_x86_ops
->check_nested_events(vcpu
, req_int_win
);
6139 if (kvm_x86_ops
->interrupt_allowed(vcpu
)) {
6140 kvm_queue_interrupt(vcpu
, kvm_cpu_get_interrupt(vcpu
),
6142 kvm_x86_ops
->set_irq(vcpu
);
6148 static void process_nmi(struct kvm_vcpu
*vcpu
)
6153 * x86 is limited to one NMI running, and one NMI pending after it.
6154 * If an NMI is already in progress, limit further NMIs to just one.
6155 * Otherwise, allow two (and we'll inject the first one immediately).
6157 if (kvm_x86_ops
->get_nmi_mask(vcpu
) || vcpu
->arch
.nmi_injected
)
6160 vcpu
->arch
.nmi_pending
+= atomic_xchg(&vcpu
->arch
.nmi_queued
, 0);
6161 vcpu
->arch
.nmi_pending
= min(vcpu
->arch
.nmi_pending
, limit
);
6162 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6165 static void vcpu_scan_ioapic(struct kvm_vcpu
*vcpu
)
6167 u64 eoi_exit_bitmap
[4];
6170 if (!kvm_apic_hw_enabled(vcpu
->arch
.apic
))
6173 memset(eoi_exit_bitmap
, 0, 32);
6176 kvm_ioapic_scan_entry(vcpu
, eoi_exit_bitmap
, tmr
);
6177 kvm_x86_ops
->load_eoi_exitmap(vcpu
, eoi_exit_bitmap
);
6178 kvm_apic_update_tmr(vcpu
, tmr
);
6181 static void kvm_vcpu_flush_tlb(struct kvm_vcpu
*vcpu
)
6183 ++vcpu
->stat
.tlb_flush
;
6184 kvm_x86_ops
->tlb_flush(vcpu
);
6187 void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu
*vcpu
)
6189 struct page
*page
= NULL
;
6191 if (!irqchip_in_kernel(vcpu
->kvm
))
6194 if (!kvm_x86_ops
->set_apic_access_page_addr
)
6197 page
= gfn_to_page(vcpu
->kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
);
6198 if (is_error_page(page
))
6200 kvm_x86_ops
->set_apic_access_page_addr(vcpu
, page_to_phys(page
));
6203 * Do not pin apic access page in memory, the MMU notifier
6204 * will call us again if it is migrated or swapped out.
6208 EXPORT_SYMBOL_GPL(kvm_vcpu_reload_apic_access_page
);
6210 void kvm_arch_mmu_notifier_invalidate_page(struct kvm
*kvm
,
6211 unsigned long address
)
6214 * The physical address of apic access page is stored in the VMCS.
6215 * Update it when it becomes invalid.
6217 if (address
== gfn_to_hva(kvm
, APIC_DEFAULT_PHYS_BASE
>> PAGE_SHIFT
))
6218 kvm_make_all_cpus_request(kvm
, KVM_REQ_APIC_PAGE_RELOAD
);
6222 * Returns 1 to let vcpu_run() continue the guest execution loop without
6223 * exiting to the userspace. Otherwise, the value will be returned to the
6226 static int vcpu_enter_guest(struct kvm_vcpu
*vcpu
)
6229 bool req_int_win
= !irqchip_in_kernel(vcpu
->kvm
) &&
6230 vcpu
->run
->request_interrupt_window
;
6231 bool req_immediate_exit
= false;
6233 if (vcpu
->requests
) {
6234 if (kvm_check_request(KVM_REQ_MMU_RELOAD
, vcpu
))
6235 kvm_mmu_unload(vcpu
);
6236 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER
, vcpu
))
6237 __kvm_migrate_timers(vcpu
);
6238 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
))
6239 kvm_gen_update_masterclock(vcpu
->kvm
);
6240 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE
, vcpu
))
6241 kvm_gen_kvmclock_update(vcpu
);
6242 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE
, vcpu
)) {
6243 r
= kvm_guest_time_update(vcpu
);
6247 if (kvm_check_request(KVM_REQ_MMU_SYNC
, vcpu
))
6248 kvm_mmu_sync_roots(vcpu
);
6249 if (kvm_check_request(KVM_REQ_TLB_FLUSH
, vcpu
))
6250 kvm_vcpu_flush_tlb(vcpu
);
6251 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS
, vcpu
)) {
6252 vcpu
->run
->exit_reason
= KVM_EXIT_TPR_ACCESS
;
6256 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT
, vcpu
)) {
6257 vcpu
->run
->exit_reason
= KVM_EXIT_SHUTDOWN
;
6261 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
)) {
6262 vcpu
->fpu_active
= 0;
6263 kvm_x86_ops
->fpu_deactivate(vcpu
);
6265 if (kvm_check_request(KVM_REQ_APF_HALT
, vcpu
)) {
6266 /* Page is swapped out. Do synthetic halt */
6267 vcpu
->arch
.apf
.halted
= true;
6271 if (kvm_check_request(KVM_REQ_STEAL_UPDATE
, vcpu
))
6272 record_steal_time(vcpu
);
6273 if (kvm_check_request(KVM_REQ_NMI
, vcpu
))
6275 if (kvm_check_request(KVM_REQ_PMU
, vcpu
))
6276 kvm_handle_pmu_event(vcpu
);
6277 if (kvm_check_request(KVM_REQ_PMI
, vcpu
))
6278 kvm_deliver_pmi(vcpu
);
6279 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC
, vcpu
))
6280 vcpu_scan_ioapic(vcpu
);
6281 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD
, vcpu
))
6282 kvm_vcpu_reload_apic_access_page(vcpu
);
6285 if (kvm_check_request(KVM_REQ_EVENT
, vcpu
) || req_int_win
) {
6286 kvm_apic_accept_events(vcpu
);
6287 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_INIT_RECEIVED
) {
6292 if (inject_pending_event(vcpu
, req_int_win
) != 0)
6293 req_immediate_exit
= true;
6294 /* enable NMI/IRQ window open exits if needed */
6296 if (vcpu
->arch
.nmi_pending
)
6297 kvm_x86_ops
->enable_nmi_window(vcpu
);
6298 if (kvm_cpu_has_injectable_intr(vcpu
) || req_int_win
)
6299 kvm_x86_ops
->enable_irq_window(vcpu
);
6302 if (kvm_lapic_enabled(vcpu
)) {
6304 * Update architecture specific hints for APIC
6305 * virtual interrupt delivery.
6307 if (kvm_x86_ops
->hwapic_irr_update
)
6308 kvm_x86_ops
->hwapic_irr_update(vcpu
,
6309 kvm_lapic_find_highest_irr(vcpu
));
6310 update_cr8_intercept(vcpu
);
6311 kvm_lapic_sync_to_vapic(vcpu
);
6315 r
= kvm_mmu_reload(vcpu
);
6317 goto cancel_injection
;
6322 kvm_x86_ops
->prepare_guest_switch(vcpu
);
6323 if (vcpu
->fpu_active
)
6324 kvm_load_guest_fpu(vcpu
);
6325 vcpu
->mode
= IN_GUEST_MODE
;
6327 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6329 /* We should set ->mode before check ->requests,
6330 * see the comment in make_all_cpus_request.
6332 smp_mb__after_srcu_read_unlock();
6334 local_irq_disable();
6336 if (vcpu
->mode
== EXITING_GUEST_MODE
|| vcpu
->requests
6337 || need_resched() || signal_pending(current
)) {
6338 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6342 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6344 goto cancel_injection
;
6347 kvm_load_guest_xcr0(vcpu
);
6349 if (req_immediate_exit
)
6350 smp_send_reschedule(vcpu
->cpu
);
6354 if (unlikely(vcpu
->arch
.switch_db_regs
)) {
6356 set_debugreg(vcpu
->arch
.eff_db
[0], 0);
6357 set_debugreg(vcpu
->arch
.eff_db
[1], 1);
6358 set_debugreg(vcpu
->arch
.eff_db
[2], 2);
6359 set_debugreg(vcpu
->arch
.eff_db
[3], 3);
6360 set_debugreg(vcpu
->arch
.dr6
, 6);
6361 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6364 trace_kvm_entry(vcpu
->vcpu_id
);
6365 wait_lapic_expire(vcpu
);
6366 kvm_x86_ops
->run(vcpu
);
6369 * Do this here before restoring debug registers on the host. And
6370 * since we do this before handling the vmexit, a DR access vmexit
6371 * can (a) read the correct value of the debug registers, (b) set
6372 * KVM_DEBUGREG_WONT_EXIT again.
6374 if (unlikely(vcpu
->arch
.switch_db_regs
& KVM_DEBUGREG_WONT_EXIT
)) {
6375 WARN_ON(vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
);
6376 kvm_x86_ops
->sync_dirty_debug_regs(vcpu
);
6377 kvm_update_dr0123(vcpu
);
6378 kvm_update_dr6(vcpu
);
6379 kvm_update_dr7(vcpu
);
6380 vcpu
->arch
.switch_db_regs
&= ~KVM_DEBUGREG_RELOAD
;
6384 * If the guest has used debug registers, at least dr7
6385 * will be disabled while returning to the host.
6386 * If we don't have active breakpoints in the host, we don't
6387 * care about the messed up debug address registers. But if
6388 * we have some of them active, restore the old state.
6390 if (hw_breakpoint_active())
6391 hw_breakpoint_restore();
6393 vcpu
->arch
.last_guest_tsc
= kvm_x86_ops
->read_l1_tsc(vcpu
,
6396 vcpu
->mode
= OUTSIDE_GUEST_MODE
;
6399 kvm_put_guest_xcr0(vcpu
);
6401 /* Interrupt is enabled by handle_external_intr() */
6402 kvm_x86_ops
->handle_external_intr(vcpu
);
6407 * We must have an instruction between local_irq_enable() and
6408 * kvm_guest_exit(), so the timer interrupt isn't delayed by
6409 * the interrupt shadow. The stat.exits increment will do nicely.
6410 * But we need to prevent reordering, hence this barrier():
6418 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6421 * Profile KVM exit RIPs:
6423 if (unlikely(prof_on
== KVM_PROFILING
)) {
6424 unsigned long rip
= kvm_rip_read(vcpu
);
6425 profile_hit(KVM_PROFILING
, (void *)rip
);
6428 if (unlikely(vcpu
->arch
.tsc_always_catchup
))
6429 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
6431 if (vcpu
->arch
.apic_attention
)
6432 kvm_lapic_sync_from_vapic(vcpu
);
6434 r
= kvm_x86_ops
->handle_exit(vcpu
);
6438 kvm_x86_ops
->cancel_injection(vcpu
);
6439 if (unlikely(vcpu
->arch
.apic_attention
))
6440 kvm_lapic_sync_from_vapic(vcpu
);
6445 static inline int vcpu_block(struct kvm
*kvm
, struct kvm_vcpu
*vcpu
)
6447 if (!kvm_arch_vcpu_runnable(vcpu
)) {
6448 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6449 kvm_vcpu_block(vcpu
);
6450 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6451 if (!kvm_check_request(KVM_REQ_UNHALT
, vcpu
))
6455 kvm_apic_accept_events(vcpu
);
6456 switch(vcpu
->arch
.mp_state
) {
6457 case KVM_MP_STATE_HALTED
:
6458 vcpu
->arch
.pv
.pv_unhalted
= false;
6459 vcpu
->arch
.mp_state
=
6460 KVM_MP_STATE_RUNNABLE
;
6461 case KVM_MP_STATE_RUNNABLE
:
6462 vcpu
->arch
.apf
.halted
= false;
6464 case KVM_MP_STATE_INIT_RECEIVED
:
6473 static int vcpu_run(struct kvm_vcpu
*vcpu
)
6476 struct kvm
*kvm
= vcpu
->kvm
;
6478 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6481 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
6482 !vcpu
->arch
.apf
.halted
)
6483 r
= vcpu_enter_guest(vcpu
);
6485 r
= vcpu_block(kvm
, vcpu
);
6489 clear_bit(KVM_REQ_PENDING_TIMER
, &vcpu
->requests
);
6490 if (kvm_cpu_has_pending_timer(vcpu
))
6491 kvm_inject_pending_timer_irqs(vcpu
);
6493 if (dm_request_for_irq_injection(vcpu
)) {
6495 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6496 ++vcpu
->stat
.request_irq_exits
;
6500 kvm_check_async_pf_completion(vcpu
);
6502 if (signal_pending(current
)) {
6504 vcpu
->run
->exit_reason
= KVM_EXIT_INTR
;
6505 ++vcpu
->stat
.signal_exits
;
6508 if (need_resched()) {
6509 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6511 vcpu
->srcu_idx
= srcu_read_lock(&kvm
->srcu
);
6515 srcu_read_unlock(&kvm
->srcu
, vcpu
->srcu_idx
);
6520 static inline int complete_emulated_io(struct kvm_vcpu
*vcpu
)
6523 vcpu
->srcu_idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6524 r
= emulate_instruction(vcpu
, EMULTYPE_NO_DECODE
);
6525 srcu_read_unlock(&vcpu
->kvm
->srcu
, vcpu
->srcu_idx
);
6526 if (r
!= EMULATE_DONE
)
6531 static int complete_emulated_pio(struct kvm_vcpu
*vcpu
)
6533 BUG_ON(!vcpu
->arch
.pio
.count
);
6535 return complete_emulated_io(vcpu
);
6539 * Implements the following, as a state machine:
6543 * for each mmio piece in the fragment
6551 * for each mmio piece in the fragment
6556 static int complete_emulated_mmio(struct kvm_vcpu
*vcpu
)
6558 struct kvm_run
*run
= vcpu
->run
;
6559 struct kvm_mmio_fragment
*frag
;
6562 BUG_ON(!vcpu
->mmio_needed
);
6564 /* Complete previous fragment */
6565 frag
= &vcpu
->mmio_fragments
[vcpu
->mmio_cur_fragment
];
6566 len
= min(8u, frag
->len
);
6567 if (!vcpu
->mmio_is_write
)
6568 memcpy(frag
->data
, run
->mmio
.data
, len
);
6570 if (frag
->len
<= 8) {
6571 /* Switch to the next fragment. */
6573 vcpu
->mmio_cur_fragment
++;
6575 /* Go forward to the next mmio piece. */
6581 if (vcpu
->mmio_cur_fragment
>= vcpu
->mmio_nr_fragments
) {
6582 vcpu
->mmio_needed
= 0;
6584 /* FIXME: return into emulator if single-stepping. */
6585 if (vcpu
->mmio_is_write
)
6587 vcpu
->mmio_read_completed
= 1;
6588 return complete_emulated_io(vcpu
);
6591 run
->exit_reason
= KVM_EXIT_MMIO
;
6592 run
->mmio
.phys_addr
= frag
->gpa
;
6593 if (vcpu
->mmio_is_write
)
6594 memcpy(run
->mmio
.data
, frag
->data
, min(8u, frag
->len
));
6595 run
->mmio
.len
= min(8u, frag
->len
);
6596 run
->mmio
.is_write
= vcpu
->mmio_is_write
;
6597 vcpu
->arch
.complete_userspace_io
= complete_emulated_mmio
;
6602 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu
*vcpu
, struct kvm_run
*kvm_run
)
6607 if (!tsk_used_math(current
) && init_fpu(current
))
6610 if (vcpu
->sigset_active
)
6611 sigprocmask(SIG_SETMASK
, &vcpu
->sigset
, &sigsaved
);
6613 if (unlikely(vcpu
->arch
.mp_state
== KVM_MP_STATE_UNINITIALIZED
)) {
6614 kvm_vcpu_block(vcpu
);
6615 kvm_apic_accept_events(vcpu
);
6616 clear_bit(KVM_REQ_UNHALT
, &vcpu
->requests
);
6621 /* re-sync apic's tpr */
6622 if (!irqchip_in_kernel(vcpu
->kvm
)) {
6623 if (kvm_set_cr8(vcpu
, kvm_run
->cr8
) != 0) {
6629 if (unlikely(vcpu
->arch
.complete_userspace_io
)) {
6630 int (*cui
)(struct kvm_vcpu
*) = vcpu
->arch
.complete_userspace_io
;
6631 vcpu
->arch
.complete_userspace_io
= NULL
;
6636 WARN_ON(vcpu
->arch
.pio
.count
|| vcpu
->mmio_needed
);
6641 post_kvm_run_save(vcpu
);
6642 if (vcpu
->sigset_active
)
6643 sigprocmask(SIG_SETMASK
, &sigsaved
, NULL
);
6648 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6650 if (vcpu
->arch
.emulate_regs_need_sync_to_vcpu
) {
6652 * We are here if userspace calls get_regs() in the middle of
6653 * instruction emulation. Registers state needs to be copied
6654 * back from emulation context to vcpu. Userspace shouldn't do
6655 * that usually, but some bad designed PV devices (vmware
6656 * backdoor interface) need this to work
6658 emulator_writeback_register_cache(&vcpu
->arch
.emulate_ctxt
);
6659 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6661 regs
->rax
= kvm_register_read(vcpu
, VCPU_REGS_RAX
);
6662 regs
->rbx
= kvm_register_read(vcpu
, VCPU_REGS_RBX
);
6663 regs
->rcx
= kvm_register_read(vcpu
, VCPU_REGS_RCX
);
6664 regs
->rdx
= kvm_register_read(vcpu
, VCPU_REGS_RDX
);
6665 regs
->rsi
= kvm_register_read(vcpu
, VCPU_REGS_RSI
);
6666 regs
->rdi
= kvm_register_read(vcpu
, VCPU_REGS_RDI
);
6667 regs
->rsp
= kvm_register_read(vcpu
, VCPU_REGS_RSP
);
6668 regs
->rbp
= kvm_register_read(vcpu
, VCPU_REGS_RBP
);
6669 #ifdef CONFIG_X86_64
6670 regs
->r8
= kvm_register_read(vcpu
, VCPU_REGS_R8
);
6671 regs
->r9
= kvm_register_read(vcpu
, VCPU_REGS_R9
);
6672 regs
->r10
= kvm_register_read(vcpu
, VCPU_REGS_R10
);
6673 regs
->r11
= kvm_register_read(vcpu
, VCPU_REGS_R11
);
6674 regs
->r12
= kvm_register_read(vcpu
, VCPU_REGS_R12
);
6675 regs
->r13
= kvm_register_read(vcpu
, VCPU_REGS_R13
);
6676 regs
->r14
= kvm_register_read(vcpu
, VCPU_REGS_R14
);
6677 regs
->r15
= kvm_register_read(vcpu
, VCPU_REGS_R15
);
6680 regs
->rip
= kvm_rip_read(vcpu
);
6681 regs
->rflags
= kvm_get_rflags(vcpu
);
6686 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu
*vcpu
, struct kvm_regs
*regs
)
6688 vcpu
->arch
.emulate_regs_need_sync_from_vcpu
= true;
6689 vcpu
->arch
.emulate_regs_need_sync_to_vcpu
= false;
6691 kvm_register_write(vcpu
, VCPU_REGS_RAX
, regs
->rax
);
6692 kvm_register_write(vcpu
, VCPU_REGS_RBX
, regs
->rbx
);
6693 kvm_register_write(vcpu
, VCPU_REGS_RCX
, regs
->rcx
);
6694 kvm_register_write(vcpu
, VCPU_REGS_RDX
, regs
->rdx
);
6695 kvm_register_write(vcpu
, VCPU_REGS_RSI
, regs
->rsi
);
6696 kvm_register_write(vcpu
, VCPU_REGS_RDI
, regs
->rdi
);
6697 kvm_register_write(vcpu
, VCPU_REGS_RSP
, regs
->rsp
);
6698 kvm_register_write(vcpu
, VCPU_REGS_RBP
, regs
->rbp
);
6699 #ifdef CONFIG_X86_64
6700 kvm_register_write(vcpu
, VCPU_REGS_R8
, regs
->r8
);
6701 kvm_register_write(vcpu
, VCPU_REGS_R9
, regs
->r9
);
6702 kvm_register_write(vcpu
, VCPU_REGS_R10
, regs
->r10
);
6703 kvm_register_write(vcpu
, VCPU_REGS_R11
, regs
->r11
);
6704 kvm_register_write(vcpu
, VCPU_REGS_R12
, regs
->r12
);
6705 kvm_register_write(vcpu
, VCPU_REGS_R13
, regs
->r13
);
6706 kvm_register_write(vcpu
, VCPU_REGS_R14
, regs
->r14
);
6707 kvm_register_write(vcpu
, VCPU_REGS_R15
, regs
->r15
);
6710 kvm_rip_write(vcpu
, regs
->rip
);
6711 kvm_set_rflags(vcpu
, regs
->rflags
);
6713 vcpu
->arch
.exception
.pending
= false;
6715 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6720 void kvm_get_cs_db_l_bits(struct kvm_vcpu
*vcpu
, int *db
, int *l
)
6722 struct kvm_segment cs
;
6724 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
6728 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits
);
6730 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu
*vcpu
,
6731 struct kvm_sregs
*sregs
)
6735 kvm_get_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6736 kvm_get_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6737 kvm_get_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6738 kvm_get_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6739 kvm_get_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6740 kvm_get_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6742 kvm_get_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6743 kvm_get_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6745 kvm_x86_ops
->get_idt(vcpu
, &dt
);
6746 sregs
->idt
.limit
= dt
.size
;
6747 sregs
->idt
.base
= dt
.address
;
6748 kvm_x86_ops
->get_gdt(vcpu
, &dt
);
6749 sregs
->gdt
.limit
= dt
.size
;
6750 sregs
->gdt
.base
= dt
.address
;
6752 sregs
->cr0
= kvm_read_cr0(vcpu
);
6753 sregs
->cr2
= vcpu
->arch
.cr2
;
6754 sregs
->cr3
= kvm_read_cr3(vcpu
);
6755 sregs
->cr4
= kvm_read_cr4(vcpu
);
6756 sregs
->cr8
= kvm_get_cr8(vcpu
);
6757 sregs
->efer
= vcpu
->arch
.efer
;
6758 sregs
->apic_base
= kvm_get_apic_base(vcpu
);
6760 memset(sregs
->interrupt_bitmap
, 0, sizeof sregs
->interrupt_bitmap
);
6762 if (vcpu
->arch
.interrupt
.pending
&& !vcpu
->arch
.interrupt
.soft
)
6763 set_bit(vcpu
->arch
.interrupt
.nr
,
6764 (unsigned long *)sregs
->interrupt_bitmap
);
6769 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu
*vcpu
,
6770 struct kvm_mp_state
*mp_state
)
6772 kvm_apic_accept_events(vcpu
);
6773 if (vcpu
->arch
.mp_state
== KVM_MP_STATE_HALTED
&&
6774 vcpu
->arch
.pv
.pv_unhalted
)
6775 mp_state
->mp_state
= KVM_MP_STATE_RUNNABLE
;
6777 mp_state
->mp_state
= vcpu
->arch
.mp_state
;
6782 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu
*vcpu
,
6783 struct kvm_mp_state
*mp_state
)
6785 if (!kvm_vcpu_has_lapic(vcpu
) &&
6786 mp_state
->mp_state
!= KVM_MP_STATE_RUNNABLE
)
6789 if (mp_state
->mp_state
== KVM_MP_STATE_SIPI_RECEIVED
) {
6790 vcpu
->arch
.mp_state
= KVM_MP_STATE_INIT_RECEIVED
;
6791 set_bit(KVM_APIC_SIPI
, &vcpu
->arch
.apic
->pending_events
);
6793 vcpu
->arch
.mp_state
= mp_state
->mp_state
;
6794 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6798 int kvm_task_switch(struct kvm_vcpu
*vcpu
, u16 tss_selector
, int idt_index
,
6799 int reason
, bool has_error_code
, u32 error_code
)
6801 struct x86_emulate_ctxt
*ctxt
= &vcpu
->arch
.emulate_ctxt
;
6804 init_emulate_ctxt(vcpu
);
6806 ret
= emulator_task_switch(ctxt
, tss_selector
, idt_index
, reason
,
6807 has_error_code
, error_code
);
6810 return EMULATE_FAIL
;
6812 kvm_rip_write(vcpu
, ctxt
->eip
);
6813 kvm_set_rflags(vcpu
, ctxt
->eflags
);
6814 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6815 return EMULATE_DONE
;
6817 EXPORT_SYMBOL_GPL(kvm_task_switch
);
6819 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu
*vcpu
,
6820 struct kvm_sregs
*sregs
)
6822 struct msr_data apic_base_msr
;
6823 int mmu_reset_needed
= 0;
6824 int pending_vec
, max_bits
, idx
;
6827 if (!guest_cpuid_has_xsave(vcpu
) && (sregs
->cr4
& X86_CR4_OSXSAVE
))
6830 dt
.size
= sregs
->idt
.limit
;
6831 dt
.address
= sregs
->idt
.base
;
6832 kvm_x86_ops
->set_idt(vcpu
, &dt
);
6833 dt
.size
= sregs
->gdt
.limit
;
6834 dt
.address
= sregs
->gdt
.base
;
6835 kvm_x86_ops
->set_gdt(vcpu
, &dt
);
6837 vcpu
->arch
.cr2
= sregs
->cr2
;
6838 mmu_reset_needed
|= kvm_read_cr3(vcpu
) != sregs
->cr3
;
6839 vcpu
->arch
.cr3
= sregs
->cr3
;
6840 __set_bit(VCPU_EXREG_CR3
, (ulong
*)&vcpu
->arch
.regs_avail
);
6842 kvm_set_cr8(vcpu
, sregs
->cr8
);
6844 mmu_reset_needed
|= vcpu
->arch
.efer
!= sregs
->efer
;
6845 kvm_x86_ops
->set_efer(vcpu
, sregs
->efer
);
6846 apic_base_msr
.data
= sregs
->apic_base
;
6847 apic_base_msr
.host_initiated
= true;
6848 kvm_set_apic_base(vcpu
, &apic_base_msr
);
6850 mmu_reset_needed
|= kvm_read_cr0(vcpu
) != sregs
->cr0
;
6851 kvm_x86_ops
->set_cr0(vcpu
, sregs
->cr0
);
6852 vcpu
->arch
.cr0
= sregs
->cr0
;
6854 mmu_reset_needed
|= kvm_read_cr4(vcpu
) != sregs
->cr4
;
6855 kvm_x86_ops
->set_cr4(vcpu
, sregs
->cr4
);
6856 if (sregs
->cr4
& X86_CR4_OSXSAVE
)
6857 kvm_update_cpuid(vcpu
);
6859 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6860 if (!is_long_mode(vcpu
) && is_pae(vcpu
)) {
6861 load_pdptrs(vcpu
, vcpu
->arch
.walk_mmu
, kvm_read_cr3(vcpu
));
6862 mmu_reset_needed
= 1;
6864 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6866 if (mmu_reset_needed
)
6867 kvm_mmu_reset_context(vcpu
);
6869 max_bits
= KVM_NR_INTERRUPTS
;
6870 pending_vec
= find_first_bit(
6871 (const unsigned long *)sregs
->interrupt_bitmap
, max_bits
);
6872 if (pending_vec
< max_bits
) {
6873 kvm_queue_interrupt(vcpu
, pending_vec
, false);
6874 pr_debug("Set back pending irq %d\n", pending_vec
);
6877 kvm_set_segment(vcpu
, &sregs
->cs
, VCPU_SREG_CS
);
6878 kvm_set_segment(vcpu
, &sregs
->ds
, VCPU_SREG_DS
);
6879 kvm_set_segment(vcpu
, &sregs
->es
, VCPU_SREG_ES
);
6880 kvm_set_segment(vcpu
, &sregs
->fs
, VCPU_SREG_FS
);
6881 kvm_set_segment(vcpu
, &sregs
->gs
, VCPU_SREG_GS
);
6882 kvm_set_segment(vcpu
, &sregs
->ss
, VCPU_SREG_SS
);
6884 kvm_set_segment(vcpu
, &sregs
->tr
, VCPU_SREG_TR
);
6885 kvm_set_segment(vcpu
, &sregs
->ldt
, VCPU_SREG_LDTR
);
6887 update_cr8_intercept(vcpu
);
6889 /* Older userspace won't unhalt the vcpu on reset. */
6890 if (kvm_vcpu_is_bsp(vcpu
) && kvm_rip_read(vcpu
) == 0xfff0 &&
6891 sregs
->cs
.selector
== 0xf000 && sregs
->cs
.base
== 0xffff0000 &&
6893 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
6895 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
6900 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu
*vcpu
,
6901 struct kvm_guest_debug
*dbg
)
6903 unsigned long rflags
;
6906 if (dbg
->control
& (KVM_GUESTDBG_INJECT_DB
| KVM_GUESTDBG_INJECT_BP
)) {
6908 if (vcpu
->arch
.exception
.pending
)
6910 if (dbg
->control
& KVM_GUESTDBG_INJECT_DB
)
6911 kvm_queue_exception(vcpu
, DB_VECTOR
);
6913 kvm_queue_exception(vcpu
, BP_VECTOR
);
6917 * Read rflags as long as potentially injected trace flags are still
6920 rflags
= kvm_get_rflags(vcpu
);
6922 vcpu
->guest_debug
= dbg
->control
;
6923 if (!(vcpu
->guest_debug
& KVM_GUESTDBG_ENABLE
))
6924 vcpu
->guest_debug
= 0;
6926 if (vcpu
->guest_debug
& KVM_GUESTDBG_USE_HW_BP
) {
6927 for (i
= 0; i
< KVM_NR_DB_REGS
; ++i
)
6928 vcpu
->arch
.eff_db
[i
] = dbg
->arch
.debugreg
[i
];
6929 vcpu
->arch
.guest_debug_dr7
= dbg
->arch
.debugreg
[7];
6931 for (i
= 0; i
< KVM_NR_DB_REGS
; i
++)
6932 vcpu
->arch
.eff_db
[i
] = vcpu
->arch
.db
[i
];
6934 kvm_update_dr7(vcpu
);
6936 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
6937 vcpu
->arch
.singlestep_rip
= kvm_rip_read(vcpu
) +
6938 get_segment_base(vcpu
, VCPU_SREG_CS
);
6941 * Trigger an rflags update that will inject or remove the trace
6944 kvm_set_rflags(vcpu
, rflags
);
6946 kvm_x86_ops
->update_db_bp_intercept(vcpu
);
6956 * Translate a guest virtual address to a guest physical address.
6958 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu
*vcpu
,
6959 struct kvm_translation
*tr
)
6961 unsigned long vaddr
= tr
->linear_address
;
6965 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
6966 gpa
= kvm_mmu_gva_to_gpa_system(vcpu
, vaddr
, NULL
);
6967 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
6968 tr
->physical_address
= gpa
;
6969 tr
->valid
= gpa
!= UNMAPPED_GVA
;
6976 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6978 struct i387_fxsave_struct
*fxsave
=
6979 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6981 memcpy(fpu
->fpr
, fxsave
->st_space
, 128);
6982 fpu
->fcw
= fxsave
->cwd
;
6983 fpu
->fsw
= fxsave
->swd
;
6984 fpu
->ftwx
= fxsave
->twd
;
6985 fpu
->last_opcode
= fxsave
->fop
;
6986 fpu
->last_ip
= fxsave
->rip
;
6987 fpu
->last_dp
= fxsave
->rdp
;
6988 memcpy(fpu
->xmm
, fxsave
->xmm_space
, sizeof fxsave
->xmm_space
);
6993 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu
*vcpu
, struct kvm_fpu
*fpu
)
6995 struct i387_fxsave_struct
*fxsave
=
6996 &vcpu
->arch
.guest_fpu
.state
->fxsave
;
6998 memcpy(fxsave
->st_space
, fpu
->fpr
, 128);
6999 fxsave
->cwd
= fpu
->fcw
;
7000 fxsave
->swd
= fpu
->fsw
;
7001 fxsave
->twd
= fpu
->ftwx
;
7002 fxsave
->fop
= fpu
->last_opcode
;
7003 fxsave
->rip
= fpu
->last_ip
;
7004 fxsave
->rdp
= fpu
->last_dp
;
7005 memcpy(fxsave
->xmm_space
, fpu
->xmm
, sizeof fxsave
->xmm_space
);
7010 int fx_init(struct kvm_vcpu
*vcpu
)
7014 err
= fpu_alloc(&vcpu
->arch
.guest_fpu
);
7018 fpu_finit(&vcpu
->arch
.guest_fpu
);
7020 vcpu
->arch
.guest_fpu
.state
->xsave
.xsave_hdr
.xcomp_bv
=
7021 host_xcr0
| XSTATE_COMPACTION_ENABLED
;
7024 * Ensure guest xcr0 is valid for loading
7026 vcpu
->arch
.xcr0
= XSTATE_FP
;
7028 vcpu
->arch
.cr0
|= X86_CR0_ET
;
7032 EXPORT_SYMBOL_GPL(fx_init
);
7034 static void fx_free(struct kvm_vcpu
*vcpu
)
7036 fpu_free(&vcpu
->arch
.guest_fpu
);
7039 void kvm_load_guest_fpu(struct kvm_vcpu
*vcpu
)
7041 if (vcpu
->guest_fpu_loaded
)
7045 * Restore all possible states in the guest,
7046 * and assume host would use all available bits.
7047 * Guest xcr0 would be loaded later.
7049 vcpu
->guest_fpu_loaded
= 1;
7050 __kernel_fpu_begin();
7051 fpu_restore_checking(&vcpu
->arch
.guest_fpu
);
7055 void kvm_put_guest_fpu(struct kvm_vcpu
*vcpu
)
7057 if (!vcpu
->guest_fpu_loaded
)
7060 vcpu
->guest_fpu_loaded
= 0;
7061 fpu_save_init(&vcpu
->arch
.guest_fpu
);
7063 ++vcpu
->stat
.fpu_reload
;
7064 if (!vcpu
->arch
.eager_fpu
)
7065 kvm_make_request(KVM_REQ_DEACTIVATE_FPU
, vcpu
);
7070 void kvm_arch_vcpu_free(struct kvm_vcpu
*vcpu
)
7072 kvmclock_reset(vcpu
);
7074 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7076 kvm_x86_ops
->vcpu_free(vcpu
);
7079 struct kvm_vcpu
*kvm_arch_vcpu_create(struct kvm
*kvm
,
7082 struct kvm_vcpu
*vcpu
;
7084 if (check_tsc_unstable() && atomic_read(&kvm
->online_vcpus
) != 0)
7085 printk_once(KERN_WARNING
7086 "kvm: SMP vm created on host with unstable TSC; "
7087 "guest TSC will not be reliable\n");
7089 vcpu
= kvm_x86_ops
->vcpu_create(kvm
, id
);
7092 * Activate fpu unconditionally in case the guest needs eager FPU. It will be
7093 * deactivated soon if it doesn't.
7095 kvm_x86_ops
->fpu_activate(vcpu
);
7099 int kvm_arch_vcpu_setup(struct kvm_vcpu
*vcpu
)
7103 vcpu
->arch
.mtrr_state
.have_fixed
= 1;
7104 r
= vcpu_load(vcpu
);
7107 kvm_vcpu_reset(vcpu
);
7108 kvm_mmu_setup(vcpu
);
7114 void kvm_arch_vcpu_postcreate(struct kvm_vcpu
*vcpu
)
7116 struct msr_data msr
;
7117 struct kvm
*kvm
= vcpu
->kvm
;
7119 if (vcpu_load(vcpu
))
7122 msr
.index
= MSR_IA32_TSC
;
7123 msr
.host_initiated
= true;
7124 kvm_write_tsc(vcpu
, &msr
);
7127 schedule_delayed_work(&kvm
->arch
.kvmclock_sync_work
,
7128 KVMCLOCK_SYNC_PERIOD
);
7131 void kvm_arch_vcpu_destroy(struct kvm_vcpu
*vcpu
)
7134 vcpu
->arch
.apf
.msr_val
= 0;
7136 r
= vcpu_load(vcpu
);
7138 kvm_mmu_unload(vcpu
);
7142 kvm_x86_ops
->vcpu_free(vcpu
);
7145 void kvm_vcpu_reset(struct kvm_vcpu
*vcpu
)
7147 atomic_set(&vcpu
->arch
.nmi_queued
, 0);
7148 vcpu
->arch
.nmi_pending
= 0;
7149 vcpu
->arch
.nmi_injected
= false;
7150 kvm_clear_interrupt_queue(vcpu
);
7151 kvm_clear_exception_queue(vcpu
);
7153 memset(vcpu
->arch
.db
, 0, sizeof(vcpu
->arch
.db
));
7154 kvm_update_dr0123(vcpu
);
7155 vcpu
->arch
.dr6
= DR6_INIT
;
7156 kvm_update_dr6(vcpu
);
7157 vcpu
->arch
.dr7
= DR7_FIXED_1
;
7158 kvm_update_dr7(vcpu
);
7162 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7163 vcpu
->arch
.apf
.msr_val
= 0;
7164 vcpu
->arch
.st
.msr_val
= 0;
7166 kvmclock_reset(vcpu
);
7168 kvm_clear_async_pf_completion_queue(vcpu
);
7169 kvm_async_pf_hash_reset(vcpu
);
7170 vcpu
->arch
.apf
.halted
= false;
7172 kvm_pmu_reset(vcpu
);
7174 memset(vcpu
->arch
.regs
, 0, sizeof(vcpu
->arch
.regs
));
7175 vcpu
->arch
.regs_avail
= ~0;
7176 vcpu
->arch
.regs_dirty
= ~0;
7178 kvm_x86_ops
->vcpu_reset(vcpu
);
7181 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu
*vcpu
, u8 vector
)
7183 struct kvm_segment cs
;
7185 kvm_get_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7186 cs
.selector
= vector
<< 8;
7187 cs
.base
= vector
<< 12;
7188 kvm_set_segment(vcpu
, &cs
, VCPU_SREG_CS
);
7189 kvm_rip_write(vcpu
, 0);
7192 int kvm_arch_hardware_enable(void)
7195 struct kvm_vcpu
*vcpu
;
7200 bool stable
, backwards_tsc
= false;
7202 kvm_shared_msr_cpu_online();
7203 ret
= kvm_x86_ops
->hardware_enable();
7207 local_tsc
= native_read_tsc();
7208 stable
= !check_tsc_unstable();
7209 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7210 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7211 if (!stable
&& vcpu
->cpu
== smp_processor_id())
7212 kvm_make_request(KVM_REQ_CLOCK_UPDATE
, vcpu
);
7213 if (stable
&& vcpu
->arch
.last_host_tsc
> local_tsc
) {
7214 backwards_tsc
= true;
7215 if (vcpu
->arch
.last_host_tsc
> max_tsc
)
7216 max_tsc
= vcpu
->arch
.last_host_tsc
;
7222 * Sometimes, even reliable TSCs go backwards. This happens on
7223 * platforms that reset TSC during suspend or hibernate actions, but
7224 * maintain synchronization. We must compensate. Fortunately, we can
7225 * detect that condition here, which happens early in CPU bringup,
7226 * before any KVM threads can be running. Unfortunately, we can't
7227 * bring the TSCs fully up to date with real time, as we aren't yet far
7228 * enough into CPU bringup that we know how much real time has actually
7229 * elapsed; our helper function, get_kernel_ns() will be using boot
7230 * variables that haven't been updated yet.
7232 * So we simply find the maximum observed TSC above, then record the
7233 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
7234 * the adjustment will be applied. Note that we accumulate
7235 * adjustments, in case multiple suspend cycles happen before some VCPU
7236 * gets a chance to run again. In the event that no KVM threads get a
7237 * chance to run, we will miss the entire elapsed period, as we'll have
7238 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
7239 * loose cycle time. This isn't too big a deal, since the loss will be
7240 * uniform across all VCPUs (not to mention the scenario is extremely
7241 * unlikely). It is possible that a second hibernate recovery happens
7242 * much faster than a first, causing the observed TSC here to be
7243 * smaller; this would require additional padding adjustment, which is
7244 * why we set last_host_tsc to the local tsc observed here.
7246 * N.B. - this code below runs only on platforms with reliable TSC,
7247 * as that is the only way backwards_tsc is set above. Also note
7248 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
7249 * have the same delta_cyc adjustment applied if backwards_tsc
7250 * is detected. Note further, this adjustment is only done once,
7251 * as we reset last_host_tsc on all VCPUs to stop this from being
7252 * called multiple times (one for each physical CPU bringup).
7254 * Platforms with unreliable TSCs don't have to deal with this, they
7255 * will be compensated by the logic in vcpu_load, which sets the TSC to
7256 * catchup mode. This will catchup all VCPUs to real time, but cannot
7257 * guarantee that they stay in perfect synchronization.
7259 if (backwards_tsc
) {
7260 u64 delta_cyc
= max_tsc
- local_tsc
;
7261 backwards_tsc_observed
= true;
7262 list_for_each_entry(kvm
, &vm_list
, vm_list
) {
7263 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7264 vcpu
->arch
.tsc_offset_adjustment
+= delta_cyc
;
7265 vcpu
->arch
.last_host_tsc
= local_tsc
;
7266 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE
, vcpu
);
7270 * We have to disable TSC offset matching.. if you were
7271 * booting a VM while issuing an S4 host suspend....
7272 * you may have some problem. Solving this issue is
7273 * left as an exercise to the reader.
7275 kvm
->arch
.last_tsc_nsec
= 0;
7276 kvm
->arch
.last_tsc_write
= 0;
7283 void kvm_arch_hardware_disable(void)
7285 kvm_x86_ops
->hardware_disable();
7286 drop_user_return_notifiers();
7289 int kvm_arch_hardware_setup(void)
7293 r
= kvm_x86_ops
->hardware_setup();
7297 kvm_init_msr_list();
7301 void kvm_arch_hardware_unsetup(void)
7303 kvm_x86_ops
->hardware_unsetup();
7306 void kvm_arch_check_processor_compat(void *rtn
)
7308 kvm_x86_ops
->check_processor_compatibility(rtn
);
7311 bool kvm_vcpu_compatible(struct kvm_vcpu
*vcpu
)
7313 return irqchip_in_kernel(vcpu
->kvm
) == (vcpu
->arch
.apic
!= NULL
);
7316 struct static_key kvm_no_apic_vcpu __read_mostly
;
7318 int kvm_arch_vcpu_init(struct kvm_vcpu
*vcpu
)
7324 BUG_ON(vcpu
->kvm
== NULL
);
7327 vcpu
->arch
.pv
.pv_unhalted
= false;
7328 vcpu
->arch
.emulate_ctxt
.ops
= &emulate_ops
;
7329 if (!irqchip_in_kernel(kvm
) || kvm_vcpu_is_reset_bsp(vcpu
))
7330 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7332 vcpu
->arch
.mp_state
= KVM_MP_STATE_UNINITIALIZED
;
7334 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
7339 vcpu
->arch
.pio_data
= page_address(page
);
7341 kvm_set_tsc_khz(vcpu
, max_tsc_khz
);
7343 r
= kvm_mmu_create(vcpu
);
7345 goto fail_free_pio_data
;
7347 if (irqchip_in_kernel(kvm
)) {
7348 r
= kvm_create_lapic(vcpu
);
7350 goto fail_mmu_destroy
;
7352 static_key_slow_inc(&kvm_no_apic_vcpu
);
7354 vcpu
->arch
.mce_banks
= kzalloc(KVM_MAX_MCE_BANKS
* sizeof(u64
) * 4,
7356 if (!vcpu
->arch
.mce_banks
) {
7358 goto fail_free_lapic
;
7360 vcpu
->arch
.mcg_cap
= KVM_MAX_MCE_BANKS
;
7362 if (!zalloc_cpumask_var(&vcpu
->arch
.wbinvd_dirty_mask
, GFP_KERNEL
)) {
7364 goto fail_free_mce_banks
;
7369 goto fail_free_wbinvd_dirty_mask
;
7371 vcpu
->arch
.ia32_tsc_adjust_msr
= 0x0;
7372 vcpu
->arch
.pv_time_enabled
= false;
7374 vcpu
->arch
.guest_supported_xcr0
= 0;
7375 vcpu
->arch
.guest_xstate_size
= XSAVE_HDR_SIZE
+ XSAVE_HDR_OFFSET
;
7377 vcpu
->arch
.maxphyaddr
= cpuid_query_maxphyaddr(vcpu
);
7379 kvm_async_pf_hash_reset(vcpu
);
7383 fail_free_wbinvd_dirty_mask
:
7384 free_cpumask_var(vcpu
->arch
.wbinvd_dirty_mask
);
7385 fail_free_mce_banks
:
7386 kfree(vcpu
->arch
.mce_banks
);
7388 kvm_free_lapic(vcpu
);
7390 kvm_mmu_destroy(vcpu
);
7392 free_page((unsigned long)vcpu
->arch
.pio_data
);
7397 void kvm_arch_vcpu_uninit(struct kvm_vcpu
*vcpu
)
7401 kvm_pmu_destroy(vcpu
);
7402 kfree(vcpu
->arch
.mce_banks
);
7403 kvm_free_lapic(vcpu
);
7404 idx
= srcu_read_lock(&vcpu
->kvm
->srcu
);
7405 kvm_mmu_destroy(vcpu
);
7406 srcu_read_unlock(&vcpu
->kvm
->srcu
, idx
);
7407 free_page((unsigned long)vcpu
->arch
.pio_data
);
7408 if (!irqchip_in_kernel(vcpu
->kvm
))
7409 static_key_slow_dec(&kvm_no_apic_vcpu
);
7412 void kvm_arch_sched_in(struct kvm_vcpu
*vcpu
, int cpu
)
7414 kvm_x86_ops
->sched_in(vcpu
, cpu
);
7417 int kvm_arch_init_vm(struct kvm
*kvm
, unsigned long type
)
7422 INIT_HLIST_HEAD(&kvm
->arch
.mask_notifier_list
);
7423 INIT_LIST_HEAD(&kvm
->arch
.active_mmu_pages
);
7424 INIT_LIST_HEAD(&kvm
->arch
.zapped_obsolete_pages
);
7425 INIT_LIST_HEAD(&kvm
->arch
.assigned_dev_head
);
7426 atomic_set(&kvm
->arch
.noncoherent_dma_count
, 0);
7428 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
7429 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID
, &kvm
->arch
.irq_sources_bitmap
);
7430 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
7431 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID
,
7432 &kvm
->arch
.irq_sources_bitmap
);
7434 raw_spin_lock_init(&kvm
->arch
.tsc_write_lock
);
7435 mutex_init(&kvm
->arch
.apic_map_lock
);
7436 spin_lock_init(&kvm
->arch
.pvclock_gtod_sync_lock
);
7438 pvclock_update_vm_gtod_copy(kvm
);
7440 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_update_work
, kvmclock_update_fn
);
7441 INIT_DELAYED_WORK(&kvm
->arch
.kvmclock_sync_work
, kvmclock_sync_fn
);
7446 static void kvm_unload_vcpu_mmu(struct kvm_vcpu
*vcpu
)
7449 r
= vcpu_load(vcpu
);
7451 kvm_mmu_unload(vcpu
);
7455 static void kvm_free_vcpus(struct kvm
*kvm
)
7458 struct kvm_vcpu
*vcpu
;
7461 * Unpin any mmu pages first.
7463 kvm_for_each_vcpu(i
, vcpu
, kvm
) {
7464 kvm_clear_async_pf_completion_queue(vcpu
);
7465 kvm_unload_vcpu_mmu(vcpu
);
7467 kvm_for_each_vcpu(i
, vcpu
, kvm
)
7468 kvm_arch_vcpu_free(vcpu
);
7470 mutex_lock(&kvm
->lock
);
7471 for (i
= 0; i
< atomic_read(&kvm
->online_vcpus
); i
++)
7472 kvm
->vcpus
[i
] = NULL
;
7474 atomic_set(&kvm
->online_vcpus
, 0);
7475 mutex_unlock(&kvm
->lock
);
7478 void kvm_arch_sync_events(struct kvm
*kvm
)
7480 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_sync_work
);
7481 cancel_delayed_work_sync(&kvm
->arch
.kvmclock_update_work
);
7482 kvm_free_all_assigned_devices(kvm
);
7486 void kvm_arch_destroy_vm(struct kvm
*kvm
)
7488 if (current
->mm
== kvm
->mm
) {
7490 * Free memory regions allocated on behalf of userspace,
7491 * unless the the memory map has changed due to process exit
7494 struct kvm_userspace_memory_region mem
;
7495 memset(&mem
, 0, sizeof(mem
));
7496 mem
.slot
= APIC_ACCESS_PAGE_PRIVATE_MEMSLOT
;
7497 kvm_set_memory_region(kvm
, &mem
);
7499 mem
.slot
= IDENTITY_PAGETABLE_PRIVATE_MEMSLOT
;
7500 kvm_set_memory_region(kvm
, &mem
);
7502 mem
.slot
= TSS_PRIVATE_MEMSLOT
;
7503 kvm_set_memory_region(kvm
, &mem
);
7505 kvm_iommu_unmap_guest(kvm
);
7506 kfree(kvm
->arch
.vpic
);
7507 kfree(kvm
->arch
.vioapic
);
7508 kvm_free_vcpus(kvm
);
7509 kfree(rcu_dereference_check(kvm
->arch
.apic_map
, 1));
7512 void kvm_arch_free_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*free
,
7513 struct kvm_memory_slot
*dont
)
7517 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7518 if (!dont
|| free
->arch
.rmap
[i
] != dont
->arch
.rmap
[i
]) {
7519 kvfree(free
->arch
.rmap
[i
]);
7520 free
->arch
.rmap
[i
] = NULL
;
7525 if (!dont
|| free
->arch
.lpage_info
[i
- 1] !=
7526 dont
->arch
.lpage_info
[i
- 1]) {
7527 kvfree(free
->arch
.lpage_info
[i
- 1]);
7528 free
->arch
.lpage_info
[i
- 1] = NULL
;
7533 int kvm_arch_create_memslot(struct kvm
*kvm
, struct kvm_memory_slot
*slot
,
7534 unsigned long npages
)
7538 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7543 lpages
= gfn_to_index(slot
->base_gfn
+ npages
- 1,
7544 slot
->base_gfn
, level
) + 1;
7546 slot
->arch
.rmap
[i
] =
7547 kvm_kvzalloc(lpages
* sizeof(*slot
->arch
.rmap
[i
]));
7548 if (!slot
->arch
.rmap
[i
])
7553 slot
->arch
.lpage_info
[i
- 1] = kvm_kvzalloc(lpages
*
7554 sizeof(*slot
->arch
.lpage_info
[i
- 1]));
7555 if (!slot
->arch
.lpage_info
[i
- 1])
7558 if (slot
->base_gfn
& (KVM_PAGES_PER_HPAGE(level
) - 1))
7559 slot
->arch
.lpage_info
[i
- 1][0].write_count
= 1;
7560 if ((slot
->base_gfn
+ npages
) & (KVM_PAGES_PER_HPAGE(level
) - 1))
7561 slot
->arch
.lpage_info
[i
- 1][lpages
- 1].write_count
= 1;
7562 ugfn
= slot
->userspace_addr
>> PAGE_SHIFT
;
7564 * If the gfn and userspace address are not aligned wrt each
7565 * other, or if explicitly asked to, disable large page
7566 * support for this slot
7568 if ((slot
->base_gfn
^ ugfn
) & (KVM_PAGES_PER_HPAGE(level
) - 1) ||
7569 !kvm_largepages_enabled()) {
7572 for (j
= 0; j
< lpages
; ++j
)
7573 slot
->arch
.lpage_info
[i
- 1][j
].write_count
= 1;
7580 for (i
= 0; i
< KVM_NR_PAGE_SIZES
; ++i
) {
7581 kvfree(slot
->arch
.rmap
[i
]);
7582 slot
->arch
.rmap
[i
] = NULL
;
7586 kvfree(slot
->arch
.lpage_info
[i
- 1]);
7587 slot
->arch
.lpage_info
[i
- 1] = NULL
;
7592 void kvm_arch_memslots_updated(struct kvm
*kvm
)
7595 * memslots->generation has been incremented.
7596 * mmio generation may have reached its maximum value.
7598 kvm_mmu_invalidate_mmio_sptes(kvm
);
7601 int kvm_arch_prepare_memory_region(struct kvm
*kvm
,
7602 struct kvm_memory_slot
*memslot
,
7603 struct kvm_userspace_memory_region
*mem
,
7604 enum kvm_mr_change change
)
7607 * Only private memory slots need to be mapped here since
7608 * KVM_SET_MEMORY_REGION ioctl is no longer supported.
7610 if ((memslot
->id
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_CREATE
)) {
7611 unsigned long userspace_addr
;
7614 * MAP_SHARED to prevent internal slot pages from being moved
7617 userspace_addr
= vm_mmap(NULL
, 0, memslot
->npages
* PAGE_SIZE
,
7618 PROT_READ
| PROT_WRITE
,
7619 MAP_SHARED
| MAP_ANONYMOUS
, 0);
7621 if (IS_ERR((void *)userspace_addr
))
7622 return PTR_ERR((void *)userspace_addr
);
7624 memslot
->userspace_addr
= userspace_addr
;
7630 static void kvm_mmu_slot_apply_flags(struct kvm
*kvm
,
7631 struct kvm_memory_slot
*new)
7633 /* Still write protect RO slot */
7634 if (new->flags
& KVM_MEM_READONLY
) {
7635 kvm_mmu_slot_remove_write_access(kvm
, new);
7640 * Call kvm_x86_ops dirty logging hooks when they are valid.
7642 * kvm_x86_ops->slot_disable_log_dirty is called when:
7644 * - KVM_MR_CREATE with dirty logging is disabled
7645 * - KVM_MR_FLAGS_ONLY with dirty logging is disabled in new flag
7647 * The reason is, in case of PML, we need to set D-bit for any slots
7648 * with dirty logging disabled in order to eliminate unnecessary GPA
7649 * logging in PML buffer (and potential PML buffer full VMEXT). This
7650 * guarantees leaving PML enabled during guest's lifetime won't have
7651 * any additonal overhead from PML when guest is running with dirty
7652 * logging disabled for memory slots.
7654 * kvm_x86_ops->slot_enable_log_dirty is called when switching new slot
7655 * to dirty logging mode.
7657 * If kvm_x86_ops dirty logging hooks are invalid, use write protect.
7659 * In case of write protect:
7661 * Write protect all pages for dirty logging.
7663 * All the sptes including the large sptes which point to this
7664 * slot are set to readonly. We can not create any new large
7665 * spte on this slot until the end of the logging.
7667 * See the comments in fast_page_fault().
7669 if (new->flags
& KVM_MEM_LOG_DIRTY_PAGES
) {
7670 if (kvm_x86_ops
->slot_enable_log_dirty
)
7671 kvm_x86_ops
->slot_enable_log_dirty(kvm
, new);
7673 kvm_mmu_slot_remove_write_access(kvm
, new);
7675 if (kvm_x86_ops
->slot_disable_log_dirty
)
7676 kvm_x86_ops
->slot_disable_log_dirty(kvm
, new);
7680 void kvm_arch_commit_memory_region(struct kvm
*kvm
,
7681 struct kvm_userspace_memory_region
*mem
,
7682 const struct kvm_memory_slot
*old
,
7683 enum kvm_mr_change change
)
7685 struct kvm_memory_slot
*new;
7686 int nr_mmu_pages
= 0;
7688 if ((mem
->slot
>= KVM_USER_MEM_SLOTS
) && (change
== KVM_MR_DELETE
)) {
7691 ret
= vm_munmap(old
->userspace_addr
,
7692 old
->npages
* PAGE_SIZE
);
7695 "kvm_vm_ioctl_set_memory_region: "
7696 "failed to munmap memory\n");
7699 if (!kvm
->arch
.n_requested_mmu_pages
)
7700 nr_mmu_pages
= kvm_mmu_calculate_mmu_pages(kvm
);
7703 kvm_mmu_change_mmu_pages(kvm
, nr_mmu_pages
);
7705 /* It's OK to get 'new' slot here as it has already been installed */
7706 new = id_to_memslot(kvm
->memslots
, mem
->slot
);
7709 * Dirty logging tracks sptes in 4k granularity, meaning that large
7710 * sptes have to be split. If live migration is successful, the guest
7711 * in the source machine will be destroyed and large sptes will be
7712 * created in the destination. However, if the guest continues to run
7713 * in the source machine (for example if live migration fails), small
7714 * sptes will remain around and cause bad performance.
7716 * Scan sptes if dirty logging has been stopped, dropping those
7717 * which can be collapsed into a single large-page spte. Later
7718 * page faults will create the large-page sptes.
7720 if ((change
!= KVM_MR_DELETE
) &&
7721 (old
->flags
& KVM_MEM_LOG_DIRTY_PAGES
) &&
7722 !(new->flags
& KVM_MEM_LOG_DIRTY_PAGES
))
7723 kvm_mmu_zap_collapsible_sptes(kvm
, new);
7726 * Set up write protection and/or dirty logging for the new slot.
7728 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of old slot have
7729 * been zapped so no dirty logging staff is needed for old slot. For
7730 * KVM_MR_FLAGS_ONLY, the old slot is essentially the same one as the
7731 * new and it's also covered when dealing with the new slot.
7733 if (change
!= KVM_MR_DELETE
)
7734 kvm_mmu_slot_apply_flags(kvm
, new);
7737 void kvm_arch_flush_shadow_all(struct kvm
*kvm
)
7739 kvm_mmu_invalidate_zap_all_pages(kvm
);
7742 void kvm_arch_flush_shadow_memslot(struct kvm
*kvm
,
7743 struct kvm_memory_slot
*slot
)
7745 kvm_mmu_invalidate_zap_all_pages(kvm
);
7748 int kvm_arch_vcpu_runnable(struct kvm_vcpu
*vcpu
)
7750 if (is_guest_mode(vcpu
) && kvm_x86_ops
->check_nested_events
)
7751 kvm_x86_ops
->check_nested_events(vcpu
, false);
7753 return (vcpu
->arch
.mp_state
== KVM_MP_STATE_RUNNABLE
&&
7754 !vcpu
->arch
.apf
.halted
)
7755 || !list_empty_careful(&vcpu
->async_pf
.done
)
7756 || kvm_apic_has_events(vcpu
)
7757 || vcpu
->arch
.pv
.pv_unhalted
7758 || atomic_read(&vcpu
->arch
.nmi_queued
) ||
7759 (kvm_arch_interrupt_allowed(vcpu
) &&
7760 kvm_cpu_has_interrupt(vcpu
));
7763 int kvm_arch_vcpu_should_kick(struct kvm_vcpu
*vcpu
)
7765 return kvm_vcpu_exiting_guest_mode(vcpu
) == IN_GUEST_MODE
;
7768 int kvm_arch_interrupt_allowed(struct kvm_vcpu
*vcpu
)
7770 return kvm_x86_ops
->interrupt_allowed(vcpu
);
7773 unsigned long kvm_get_linear_rip(struct kvm_vcpu
*vcpu
)
7775 if (is_64_bit_mode(vcpu
))
7776 return kvm_rip_read(vcpu
);
7777 return (u32
)(get_segment_base(vcpu
, VCPU_SREG_CS
) +
7778 kvm_rip_read(vcpu
));
7780 EXPORT_SYMBOL_GPL(kvm_get_linear_rip
);
7782 bool kvm_is_linear_rip(struct kvm_vcpu
*vcpu
, unsigned long linear_rip
)
7784 return kvm_get_linear_rip(vcpu
) == linear_rip
;
7786 EXPORT_SYMBOL_GPL(kvm_is_linear_rip
);
7788 unsigned long kvm_get_rflags(struct kvm_vcpu
*vcpu
)
7790 unsigned long rflags
;
7792 rflags
= kvm_x86_ops
->get_rflags(vcpu
);
7793 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
)
7794 rflags
&= ~X86_EFLAGS_TF
;
7797 EXPORT_SYMBOL_GPL(kvm_get_rflags
);
7799 static void __kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
7801 if (vcpu
->guest_debug
& KVM_GUESTDBG_SINGLESTEP
&&
7802 kvm_is_linear_rip(vcpu
, vcpu
->arch
.singlestep_rip
))
7803 rflags
|= X86_EFLAGS_TF
;
7804 kvm_x86_ops
->set_rflags(vcpu
, rflags
);
7807 void kvm_set_rflags(struct kvm_vcpu
*vcpu
, unsigned long rflags
)
7809 __kvm_set_rflags(vcpu
, rflags
);
7810 kvm_make_request(KVM_REQ_EVENT
, vcpu
);
7812 EXPORT_SYMBOL_GPL(kvm_set_rflags
);
7814 void kvm_arch_async_page_ready(struct kvm_vcpu
*vcpu
, struct kvm_async_pf
*work
)
7818 if ((vcpu
->arch
.mmu
.direct_map
!= work
->arch
.direct_map
) ||
7822 r
= kvm_mmu_reload(vcpu
);
7826 if (!vcpu
->arch
.mmu
.direct_map
&&
7827 work
->arch
.cr3
!= vcpu
->arch
.mmu
.get_cr3(vcpu
))
7830 vcpu
->arch
.mmu
.page_fault(vcpu
, work
->gva
, 0, true);
7833 static inline u32
kvm_async_pf_hash_fn(gfn_t gfn
)
7835 return hash_32(gfn
& 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU
));
7838 static inline u32
kvm_async_pf_next_probe(u32 key
)
7840 return (key
+ 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU
) - 1);
7843 static void kvm_add_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7845 u32 key
= kvm_async_pf_hash_fn(gfn
);
7847 while (vcpu
->arch
.apf
.gfns
[key
] != ~0)
7848 key
= kvm_async_pf_next_probe(key
);
7850 vcpu
->arch
.apf
.gfns
[key
] = gfn
;
7853 static u32
kvm_async_pf_gfn_slot(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7856 u32 key
= kvm_async_pf_hash_fn(gfn
);
7858 for (i
= 0; i
< roundup_pow_of_two(ASYNC_PF_PER_VCPU
) &&
7859 (vcpu
->arch
.apf
.gfns
[key
] != gfn
&&
7860 vcpu
->arch
.apf
.gfns
[key
] != ~0); i
++)
7861 key
= kvm_async_pf_next_probe(key
);
7866 bool kvm_find_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7868 return vcpu
->arch
.apf
.gfns
[kvm_async_pf_gfn_slot(vcpu
, gfn
)] == gfn
;
7871 static void kvm_del_async_pf_gfn(struct kvm_vcpu
*vcpu
, gfn_t gfn
)
7875 i
= j
= kvm_async_pf_gfn_slot(vcpu
, gfn
);
7877 vcpu
->arch
.apf
.gfns
[i
] = ~0;
7879 j
= kvm_async_pf_next_probe(j
);
7880 if (vcpu
->arch
.apf
.gfns
[j
] == ~0)
7882 k
= kvm_async_pf_hash_fn(vcpu
->arch
.apf
.gfns
[j
]);
7884 * k lies cyclically in ]i,j]
7886 * |....j i.k.| or |.k..j i...|
7888 } while ((i
<= j
) ? (i
< k
&& k
<= j
) : (i
< k
|| k
<= j
));
7889 vcpu
->arch
.apf
.gfns
[i
] = vcpu
->arch
.apf
.gfns
[j
];
7894 static int apf_put_user(struct kvm_vcpu
*vcpu
, u32 val
)
7897 return kvm_write_guest_cached(vcpu
->kvm
, &vcpu
->arch
.apf
.data
, &val
,
7901 void kvm_arch_async_page_not_present(struct kvm_vcpu
*vcpu
,
7902 struct kvm_async_pf
*work
)
7904 struct x86_exception fault
;
7906 trace_kvm_async_pf_not_present(work
->arch
.token
, work
->gva
);
7907 kvm_add_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7909 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) ||
7910 (vcpu
->arch
.apf
.send_user_only
&&
7911 kvm_x86_ops
->get_cpl(vcpu
) == 0))
7912 kvm_make_request(KVM_REQ_APF_HALT
, vcpu
);
7913 else if (!apf_put_user(vcpu
, KVM_PV_REASON_PAGE_NOT_PRESENT
)) {
7914 fault
.vector
= PF_VECTOR
;
7915 fault
.error_code_valid
= true;
7916 fault
.error_code
= 0;
7917 fault
.nested_page_fault
= false;
7918 fault
.address
= work
->arch
.token
;
7919 kvm_inject_page_fault(vcpu
, &fault
);
7923 void kvm_arch_async_page_present(struct kvm_vcpu
*vcpu
,
7924 struct kvm_async_pf
*work
)
7926 struct x86_exception fault
;
7928 trace_kvm_async_pf_ready(work
->arch
.token
, work
->gva
);
7929 if (work
->wakeup_all
)
7930 work
->arch
.token
= ~0; /* broadcast wakeup */
7932 kvm_del_async_pf_gfn(vcpu
, work
->arch
.gfn
);
7934 if ((vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
) &&
7935 !apf_put_user(vcpu
, KVM_PV_REASON_PAGE_READY
)) {
7936 fault
.vector
= PF_VECTOR
;
7937 fault
.error_code_valid
= true;
7938 fault
.error_code
= 0;
7939 fault
.nested_page_fault
= false;
7940 fault
.address
= work
->arch
.token
;
7941 kvm_inject_page_fault(vcpu
, &fault
);
7943 vcpu
->arch
.apf
.halted
= false;
7944 vcpu
->arch
.mp_state
= KVM_MP_STATE_RUNNABLE
;
7947 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu
*vcpu
)
7949 if (!(vcpu
->arch
.apf
.msr_val
& KVM_ASYNC_PF_ENABLED
))
7952 return !kvm_event_needs_reinjection(vcpu
) &&
7953 kvm_x86_ops
->interrupt_allowed(vcpu
);
7956 void kvm_arch_register_noncoherent_dma(struct kvm
*kvm
)
7958 atomic_inc(&kvm
->arch
.noncoherent_dma_count
);
7960 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma
);
7962 void kvm_arch_unregister_noncoherent_dma(struct kvm
*kvm
)
7964 atomic_dec(&kvm
->arch
.noncoherent_dma_count
);
7966 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma
);
7968 bool kvm_arch_has_noncoherent_dma(struct kvm
*kvm
)
7970 return atomic_read(&kvm
->arch
.noncoherent_dma_count
);
7972 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma
);
7974 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit
);
7975 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq
);
7976 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault
);
7977 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr
);
7978 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr
);
7979 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun
);
7980 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit
);
7981 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject
);
7982 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit
);
7983 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga
);
7984 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit
);
7985 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts
);
7986 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset
);
7987 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window
);
7988 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full
);