btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
[linux/fpc-iii.git] / fs / btrfs / ctree.c
blob844c883a716968b78ed3e7a66691b2b72fc4623a
1 /*
2 * Copyright (C) 2007,2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
21 #include <linux/rbtree.h>
22 #include "ctree.h"
23 #include "disk-io.h"
24 #include "transaction.h"
25 #include "print-tree.h"
26 #include "locking.h"
28 static int split_node(struct btrfs_trans_handle *trans, struct btrfs_root
29 *root, struct btrfs_path *path, int level);
30 static int split_leaf(struct btrfs_trans_handle *trans, struct btrfs_root
31 *root, struct btrfs_key *ins_key,
32 struct btrfs_path *path, int data_size, int extend);
33 static int push_node_left(struct btrfs_trans_handle *trans,
34 struct btrfs_root *root, struct extent_buffer *dst,
35 struct extent_buffer *src, int empty);
36 static int balance_node_right(struct btrfs_trans_handle *trans,
37 struct btrfs_root *root,
38 struct extent_buffer *dst_buf,
39 struct extent_buffer *src_buf);
40 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
41 int level, int slot);
42 static int tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
43 struct extent_buffer *eb);
45 struct btrfs_path *btrfs_alloc_path(void)
47 struct btrfs_path *path;
48 path = kmem_cache_zalloc(btrfs_path_cachep, GFP_NOFS);
49 return path;
53 * set all locked nodes in the path to blocking locks. This should
54 * be done before scheduling
56 noinline void btrfs_set_path_blocking(struct btrfs_path *p)
58 int i;
59 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
60 if (!p->nodes[i] || !p->locks[i])
61 continue;
62 btrfs_set_lock_blocking_rw(p->nodes[i], p->locks[i]);
63 if (p->locks[i] == BTRFS_READ_LOCK)
64 p->locks[i] = BTRFS_READ_LOCK_BLOCKING;
65 else if (p->locks[i] == BTRFS_WRITE_LOCK)
66 p->locks[i] = BTRFS_WRITE_LOCK_BLOCKING;
71 * reset all the locked nodes in the patch to spinning locks.
73 * held is used to keep lockdep happy, when lockdep is enabled
74 * we set held to a blocking lock before we go around and
75 * retake all the spinlocks in the path. You can safely use NULL
76 * for held
78 noinline void btrfs_clear_path_blocking(struct btrfs_path *p,
79 struct extent_buffer *held, int held_rw)
81 int i;
83 if (held) {
84 btrfs_set_lock_blocking_rw(held, held_rw);
85 if (held_rw == BTRFS_WRITE_LOCK)
86 held_rw = BTRFS_WRITE_LOCK_BLOCKING;
87 else if (held_rw == BTRFS_READ_LOCK)
88 held_rw = BTRFS_READ_LOCK_BLOCKING;
90 btrfs_set_path_blocking(p);
92 for (i = BTRFS_MAX_LEVEL - 1; i >= 0; i--) {
93 if (p->nodes[i] && p->locks[i]) {
94 btrfs_clear_lock_blocking_rw(p->nodes[i], p->locks[i]);
95 if (p->locks[i] == BTRFS_WRITE_LOCK_BLOCKING)
96 p->locks[i] = BTRFS_WRITE_LOCK;
97 else if (p->locks[i] == BTRFS_READ_LOCK_BLOCKING)
98 p->locks[i] = BTRFS_READ_LOCK;
102 if (held)
103 btrfs_clear_lock_blocking_rw(held, held_rw);
106 /* this also releases the path */
107 void btrfs_free_path(struct btrfs_path *p)
109 if (!p)
110 return;
111 btrfs_release_path(p);
112 kmem_cache_free(btrfs_path_cachep, p);
116 * path release drops references on the extent buffers in the path
117 * and it drops any locks held by this path
119 * It is safe to call this on paths that no locks or extent buffers held.
121 noinline void btrfs_release_path(struct btrfs_path *p)
123 int i;
125 for (i = 0; i < BTRFS_MAX_LEVEL; i++) {
126 p->slots[i] = 0;
127 if (!p->nodes[i])
128 continue;
129 if (p->locks[i]) {
130 btrfs_tree_unlock_rw(p->nodes[i], p->locks[i]);
131 p->locks[i] = 0;
133 free_extent_buffer(p->nodes[i]);
134 p->nodes[i] = NULL;
139 * safely gets a reference on the root node of a tree. A lock
140 * is not taken, so a concurrent writer may put a different node
141 * at the root of the tree. See btrfs_lock_root_node for the
142 * looping required.
144 * The extent buffer returned by this has a reference taken, so
145 * it won't disappear. It may stop being the root of the tree
146 * at any time because there are no locks held.
148 struct extent_buffer *btrfs_root_node(struct btrfs_root *root)
150 struct extent_buffer *eb;
152 while (1) {
153 rcu_read_lock();
154 eb = rcu_dereference(root->node);
157 * RCU really hurts here, we could free up the root node because
158 * it was cow'ed but we may not get the new root node yet so do
159 * the inc_not_zero dance and if it doesn't work then
160 * synchronize_rcu and try again.
162 if (atomic_inc_not_zero(&eb->refs)) {
163 rcu_read_unlock();
164 break;
166 rcu_read_unlock();
167 synchronize_rcu();
169 return eb;
172 /* loop around taking references on and locking the root node of the
173 * tree until you end up with a lock on the root. A locked buffer
174 * is returned, with a reference held.
176 struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root)
178 struct extent_buffer *eb;
180 while (1) {
181 eb = btrfs_root_node(root);
182 btrfs_tree_lock(eb);
183 if (eb == root->node)
184 break;
185 btrfs_tree_unlock(eb);
186 free_extent_buffer(eb);
188 return eb;
191 /* loop around taking references on and locking the root node of the
192 * tree until you end up with a lock on the root. A locked buffer
193 * is returned, with a reference held.
195 static struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root)
197 struct extent_buffer *eb;
199 while (1) {
200 eb = btrfs_root_node(root);
201 btrfs_tree_read_lock(eb);
202 if (eb == root->node)
203 break;
204 btrfs_tree_read_unlock(eb);
205 free_extent_buffer(eb);
207 return eb;
210 /* cowonly root (everything not a reference counted cow subvolume), just get
211 * put onto a simple dirty list. transaction.c walks this to make sure they
212 * get properly updated on disk.
214 static void add_root_to_dirty_list(struct btrfs_root *root)
216 if (test_bit(BTRFS_ROOT_DIRTY, &root->state) ||
217 !test_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state))
218 return;
220 spin_lock(&root->fs_info->trans_lock);
221 if (!test_and_set_bit(BTRFS_ROOT_DIRTY, &root->state)) {
222 /* Want the extent tree to be the last on the list */
223 if (root->objectid == BTRFS_EXTENT_TREE_OBJECTID)
224 list_move_tail(&root->dirty_list,
225 &root->fs_info->dirty_cowonly_roots);
226 else
227 list_move(&root->dirty_list,
228 &root->fs_info->dirty_cowonly_roots);
230 spin_unlock(&root->fs_info->trans_lock);
234 * used by snapshot creation to make a copy of a root for a tree with
235 * a given objectid. The buffer with the new root node is returned in
236 * cow_ret, and this func returns zero on success or a negative error code.
238 int btrfs_copy_root(struct btrfs_trans_handle *trans,
239 struct btrfs_root *root,
240 struct extent_buffer *buf,
241 struct extent_buffer **cow_ret, u64 new_root_objectid)
243 struct extent_buffer *cow;
244 int ret = 0;
245 int level;
246 struct btrfs_disk_key disk_key;
248 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
249 trans->transid != root->fs_info->running_transaction->transid);
250 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
251 trans->transid != root->last_trans);
253 level = btrfs_header_level(buf);
254 if (level == 0)
255 btrfs_item_key(buf, &disk_key, 0);
256 else
257 btrfs_node_key(buf, &disk_key, 0);
259 cow = btrfs_alloc_tree_block(trans, root, 0, new_root_objectid,
260 &disk_key, level, buf->start, 0);
261 if (IS_ERR(cow))
262 return PTR_ERR(cow);
264 copy_extent_buffer(cow, buf, 0, 0, cow->len);
265 btrfs_set_header_bytenr(cow, cow->start);
266 btrfs_set_header_generation(cow, trans->transid);
267 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
268 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
269 BTRFS_HEADER_FLAG_RELOC);
270 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
271 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
272 else
273 btrfs_set_header_owner(cow, new_root_objectid);
275 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
276 BTRFS_FSID_SIZE);
278 WARN_ON(btrfs_header_generation(buf) > trans->transid);
279 if (new_root_objectid == BTRFS_TREE_RELOC_OBJECTID)
280 ret = btrfs_inc_ref(trans, root, cow, 1);
281 else
282 ret = btrfs_inc_ref(trans, root, cow, 0);
284 if (ret)
285 return ret;
287 btrfs_mark_buffer_dirty(cow);
288 *cow_ret = cow;
289 return 0;
292 enum mod_log_op {
293 MOD_LOG_KEY_REPLACE,
294 MOD_LOG_KEY_ADD,
295 MOD_LOG_KEY_REMOVE,
296 MOD_LOG_KEY_REMOVE_WHILE_FREEING,
297 MOD_LOG_KEY_REMOVE_WHILE_MOVING,
298 MOD_LOG_MOVE_KEYS,
299 MOD_LOG_ROOT_REPLACE,
302 struct tree_mod_move {
303 int dst_slot;
304 int nr_items;
307 struct tree_mod_root {
308 u64 logical;
309 u8 level;
312 struct tree_mod_elem {
313 struct rb_node node;
314 u64 index; /* shifted logical */
315 u64 seq;
316 enum mod_log_op op;
318 /* this is used for MOD_LOG_KEY_* and MOD_LOG_MOVE_KEYS operations */
319 int slot;
321 /* this is used for MOD_LOG_KEY* and MOD_LOG_ROOT_REPLACE */
322 u64 generation;
324 /* those are used for op == MOD_LOG_KEY_{REPLACE,REMOVE} */
325 struct btrfs_disk_key key;
326 u64 blockptr;
328 /* this is used for op == MOD_LOG_MOVE_KEYS */
329 struct tree_mod_move move;
331 /* this is used for op == MOD_LOG_ROOT_REPLACE */
332 struct tree_mod_root old_root;
335 static inline void tree_mod_log_read_lock(struct btrfs_fs_info *fs_info)
337 read_lock(&fs_info->tree_mod_log_lock);
340 static inline void tree_mod_log_read_unlock(struct btrfs_fs_info *fs_info)
342 read_unlock(&fs_info->tree_mod_log_lock);
345 static inline void tree_mod_log_write_lock(struct btrfs_fs_info *fs_info)
347 write_lock(&fs_info->tree_mod_log_lock);
350 static inline void tree_mod_log_write_unlock(struct btrfs_fs_info *fs_info)
352 write_unlock(&fs_info->tree_mod_log_lock);
356 * Pull a new tree mod seq number for our operation.
358 static inline u64 btrfs_inc_tree_mod_seq(struct btrfs_fs_info *fs_info)
360 return atomic64_inc_return(&fs_info->tree_mod_seq);
364 * This adds a new blocker to the tree mod log's blocker list if the @elem
365 * passed does not already have a sequence number set. So when a caller expects
366 * to record tree modifications, it should ensure to set elem->seq to zero
367 * before calling btrfs_get_tree_mod_seq.
368 * Returns a fresh, unused tree log modification sequence number, even if no new
369 * blocker was added.
371 u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
372 struct seq_list *elem)
374 tree_mod_log_write_lock(fs_info);
375 spin_lock(&fs_info->tree_mod_seq_lock);
376 if (!elem->seq) {
377 elem->seq = btrfs_inc_tree_mod_seq(fs_info);
378 list_add_tail(&elem->list, &fs_info->tree_mod_seq_list);
380 spin_unlock(&fs_info->tree_mod_seq_lock);
381 tree_mod_log_write_unlock(fs_info);
383 return elem->seq;
386 void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
387 struct seq_list *elem)
389 struct rb_root *tm_root;
390 struct rb_node *node;
391 struct rb_node *next;
392 struct seq_list *cur_elem;
393 struct tree_mod_elem *tm;
394 u64 min_seq = (u64)-1;
395 u64 seq_putting = elem->seq;
397 if (!seq_putting)
398 return;
400 spin_lock(&fs_info->tree_mod_seq_lock);
401 list_del(&elem->list);
402 elem->seq = 0;
404 list_for_each_entry(cur_elem, &fs_info->tree_mod_seq_list, list) {
405 if (cur_elem->seq < min_seq) {
406 if (seq_putting > cur_elem->seq) {
408 * blocker with lower sequence number exists, we
409 * cannot remove anything from the log
411 spin_unlock(&fs_info->tree_mod_seq_lock);
412 return;
414 min_seq = cur_elem->seq;
417 spin_unlock(&fs_info->tree_mod_seq_lock);
420 * anything that's lower than the lowest existing (read: blocked)
421 * sequence number can be removed from the tree.
423 tree_mod_log_write_lock(fs_info);
424 tm_root = &fs_info->tree_mod_log;
425 for (node = rb_first(tm_root); node; node = next) {
426 next = rb_next(node);
427 tm = container_of(node, struct tree_mod_elem, node);
428 if (tm->seq > min_seq)
429 continue;
430 rb_erase(node, tm_root);
431 kfree(tm);
433 tree_mod_log_write_unlock(fs_info);
437 * key order of the log:
438 * index -> sequence
440 * the index is the shifted logical of the *new* root node for root replace
441 * operations, or the shifted logical of the affected block for all other
442 * operations.
444 * Note: must be called with write lock (tree_mod_log_write_lock).
446 static noinline int
447 __tree_mod_log_insert(struct btrfs_fs_info *fs_info, struct tree_mod_elem *tm)
449 struct rb_root *tm_root;
450 struct rb_node **new;
451 struct rb_node *parent = NULL;
452 struct tree_mod_elem *cur;
454 BUG_ON(!tm);
456 tm->seq = btrfs_inc_tree_mod_seq(fs_info);
458 tm_root = &fs_info->tree_mod_log;
459 new = &tm_root->rb_node;
460 while (*new) {
461 cur = container_of(*new, struct tree_mod_elem, node);
462 parent = *new;
463 if (cur->index < tm->index)
464 new = &((*new)->rb_left);
465 else if (cur->index > tm->index)
466 new = &((*new)->rb_right);
467 else if (cur->seq < tm->seq)
468 new = &((*new)->rb_left);
469 else if (cur->seq > tm->seq)
470 new = &((*new)->rb_right);
471 else
472 return -EEXIST;
475 rb_link_node(&tm->node, parent, new);
476 rb_insert_color(&tm->node, tm_root);
477 return 0;
481 * Determines if logging can be omitted. Returns 1 if it can. Otherwise, it
482 * returns zero with the tree_mod_log_lock acquired. The caller must hold
483 * this until all tree mod log insertions are recorded in the rb tree and then
484 * call tree_mod_log_write_unlock() to release.
486 static inline int tree_mod_dont_log(struct btrfs_fs_info *fs_info,
487 struct extent_buffer *eb) {
488 smp_mb();
489 if (list_empty(&(fs_info)->tree_mod_seq_list))
490 return 1;
491 if (eb && btrfs_header_level(eb) == 0)
492 return 1;
494 tree_mod_log_write_lock(fs_info);
495 if (list_empty(&(fs_info)->tree_mod_seq_list)) {
496 tree_mod_log_write_unlock(fs_info);
497 return 1;
500 return 0;
503 /* Similar to tree_mod_dont_log, but doesn't acquire any locks. */
504 static inline int tree_mod_need_log(const struct btrfs_fs_info *fs_info,
505 struct extent_buffer *eb)
507 smp_mb();
508 if (list_empty(&(fs_info)->tree_mod_seq_list))
509 return 0;
510 if (eb && btrfs_header_level(eb) == 0)
511 return 0;
513 return 1;
516 static struct tree_mod_elem *
517 alloc_tree_mod_elem(struct extent_buffer *eb, int slot,
518 enum mod_log_op op, gfp_t flags)
520 struct tree_mod_elem *tm;
522 tm = kzalloc(sizeof(*tm), flags);
523 if (!tm)
524 return NULL;
526 tm->index = eb->start >> PAGE_CACHE_SHIFT;
527 if (op != MOD_LOG_KEY_ADD) {
528 btrfs_node_key(eb, &tm->key, slot);
529 tm->blockptr = btrfs_node_blockptr(eb, slot);
531 tm->op = op;
532 tm->slot = slot;
533 tm->generation = btrfs_node_ptr_generation(eb, slot);
534 RB_CLEAR_NODE(&tm->node);
536 return tm;
539 static noinline int
540 tree_mod_log_insert_key(struct btrfs_fs_info *fs_info,
541 struct extent_buffer *eb, int slot,
542 enum mod_log_op op, gfp_t flags)
544 struct tree_mod_elem *tm;
545 int ret;
547 if (!tree_mod_need_log(fs_info, eb))
548 return 0;
550 tm = alloc_tree_mod_elem(eb, slot, op, flags);
551 if (!tm)
552 return -ENOMEM;
554 if (tree_mod_dont_log(fs_info, eb)) {
555 kfree(tm);
556 return 0;
559 ret = __tree_mod_log_insert(fs_info, tm);
560 tree_mod_log_write_unlock(fs_info);
561 if (ret)
562 kfree(tm);
564 return ret;
567 static noinline int
568 tree_mod_log_insert_move(struct btrfs_fs_info *fs_info,
569 struct extent_buffer *eb, int dst_slot, int src_slot,
570 int nr_items, gfp_t flags)
572 struct tree_mod_elem *tm = NULL;
573 struct tree_mod_elem **tm_list = NULL;
574 int ret = 0;
575 int i;
576 int locked = 0;
578 if (!tree_mod_need_log(fs_info, eb))
579 return 0;
581 tm_list = kcalloc(nr_items, sizeof(struct tree_mod_elem *), flags);
582 if (!tm_list)
583 return -ENOMEM;
585 tm = kzalloc(sizeof(*tm), flags);
586 if (!tm) {
587 ret = -ENOMEM;
588 goto free_tms;
591 tm->index = eb->start >> PAGE_CACHE_SHIFT;
592 tm->slot = src_slot;
593 tm->move.dst_slot = dst_slot;
594 tm->move.nr_items = nr_items;
595 tm->op = MOD_LOG_MOVE_KEYS;
597 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
598 tm_list[i] = alloc_tree_mod_elem(eb, i + dst_slot,
599 MOD_LOG_KEY_REMOVE_WHILE_MOVING, flags);
600 if (!tm_list[i]) {
601 ret = -ENOMEM;
602 goto free_tms;
606 if (tree_mod_dont_log(fs_info, eb))
607 goto free_tms;
608 locked = 1;
611 * When we override something during the move, we log these removals.
612 * This can only happen when we move towards the beginning of the
613 * buffer, i.e. dst_slot < src_slot.
615 for (i = 0; i + dst_slot < src_slot && i < nr_items; i++) {
616 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
617 if (ret)
618 goto free_tms;
621 ret = __tree_mod_log_insert(fs_info, tm);
622 if (ret)
623 goto free_tms;
624 tree_mod_log_write_unlock(fs_info);
625 kfree(tm_list);
627 return 0;
628 free_tms:
629 for (i = 0; i < nr_items; i++) {
630 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
631 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
632 kfree(tm_list[i]);
634 if (locked)
635 tree_mod_log_write_unlock(fs_info);
636 kfree(tm_list);
637 kfree(tm);
639 return ret;
642 static inline int
643 __tree_mod_log_free_eb(struct btrfs_fs_info *fs_info,
644 struct tree_mod_elem **tm_list,
645 int nritems)
647 int i, j;
648 int ret;
650 for (i = nritems - 1; i >= 0; i--) {
651 ret = __tree_mod_log_insert(fs_info, tm_list[i]);
652 if (ret) {
653 for (j = nritems - 1; j > i; j--)
654 rb_erase(&tm_list[j]->node,
655 &fs_info->tree_mod_log);
656 return ret;
660 return 0;
663 static noinline int
664 tree_mod_log_insert_root(struct btrfs_fs_info *fs_info,
665 struct extent_buffer *old_root,
666 struct extent_buffer *new_root, gfp_t flags,
667 int log_removal)
669 struct tree_mod_elem *tm = NULL;
670 struct tree_mod_elem **tm_list = NULL;
671 int nritems = 0;
672 int ret = 0;
673 int i;
675 if (!tree_mod_need_log(fs_info, NULL))
676 return 0;
678 if (log_removal && btrfs_header_level(old_root) > 0) {
679 nritems = btrfs_header_nritems(old_root);
680 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *),
681 flags);
682 if (!tm_list) {
683 ret = -ENOMEM;
684 goto free_tms;
686 for (i = 0; i < nritems; i++) {
687 tm_list[i] = alloc_tree_mod_elem(old_root, i,
688 MOD_LOG_KEY_REMOVE_WHILE_FREEING, flags);
689 if (!tm_list[i]) {
690 ret = -ENOMEM;
691 goto free_tms;
696 tm = kzalloc(sizeof(*tm), flags);
697 if (!tm) {
698 ret = -ENOMEM;
699 goto free_tms;
702 tm->index = new_root->start >> PAGE_CACHE_SHIFT;
703 tm->old_root.logical = old_root->start;
704 tm->old_root.level = btrfs_header_level(old_root);
705 tm->generation = btrfs_header_generation(old_root);
706 tm->op = MOD_LOG_ROOT_REPLACE;
708 if (tree_mod_dont_log(fs_info, NULL))
709 goto free_tms;
711 if (tm_list)
712 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
713 if (!ret)
714 ret = __tree_mod_log_insert(fs_info, tm);
716 tree_mod_log_write_unlock(fs_info);
717 if (ret)
718 goto free_tms;
719 kfree(tm_list);
721 return ret;
723 free_tms:
724 if (tm_list) {
725 for (i = 0; i < nritems; i++)
726 kfree(tm_list[i]);
727 kfree(tm_list);
729 kfree(tm);
731 return ret;
734 static struct tree_mod_elem *
735 __tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq,
736 int smallest)
738 struct rb_root *tm_root;
739 struct rb_node *node;
740 struct tree_mod_elem *cur = NULL;
741 struct tree_mod_elem *found = NULL;
742 u64 index = start >> PAGE_CACHE_SHIFT;
744 tree_mod_log_read_lock(fs_info);
745 tm_root = &fs_info->tree_mod_log;
746 node = tm_root->rb_node;
747 while (node) {
748 cur = container_of(node, struct tree_mod_elem, node);
749 if (cur->index < index) {
750 node = node->rb_left;
751 } else if (cur->index > index) {
752 node = node->rb_right;
753 } else if (cur->seq < min_seq) {
754 node = node->rb_left;
755 } else if (!smallest) {
756 /* we want the node with the highest seq */
757 if (found)
758 BUG_ON(found->seq > cur->seq);
759 found = cur;
760 node = node->rb_left;
761 } else if (cur->seq > min_seq) {
762 /* we want the node with the smallest seq */
763 if (found)
764 BUG_ON(found->seq < cur->seq);
765 found = cur;
766 node = node->rb_right;
767 } else {
768 found = cur;
769 break;
772 tree_mod_log_read_unlock(fs_info);
774 return found;
778 * this returns the element from the log with the smallest time sequence
779 * value that's in the log (the oldest log item). any element with a time
780 * sequence lower than min_seq will be ignored.
782 static struct tree_mod_elem *
783 tree_mod_log_search_oldest(struct btrfs_fs_info *fs_info, u64 start,
784 u64 min_seq)
786 return __tree_mod_log_search(fs_info, start, min_seq, 1);
790 * this returns the element from the log with the largest time sequence
791 * value that's in the log (the most recent log item). any element with
792 * a time sequence lower than min_seq will be ignored.
794 static struct tree_mod_elem *
795 tree_mod_log_search(struct btrfs_fs_info *fs_info, u64 start, u64 min_seq)
797 return __tree_mod_log_search(fs_info, start, min_seq, 0);
800 static noinline int
801 tree_mod_log_eb_copy(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
802 struct extent_buffer *src, unsigned long dst_offset,
803 unsigned long src_offset, int nr_items)
805 int ret = 0;
806 struct tree_mod_elem **tm_list = NULL;
807 struct tree_mod_elem **tm_list_add, **tm_list_rem;
808 int i;
809 int locked = 0;
811 if (!tree_mod_need_log(fs_info, NULL))
812 return 0;
814 if (btrfs_header_level(dst) == 0 && btrfs_header_level(src) == 0)
815 return 0;
817 tm_list = kcalloc(nr_items * 2, sizeof(struct tree_mod_elem *),
818 GFP_NOFS);
819 if (!tm_list)
820 return -ENOMEM;
822 tm_list_add = tm_list;
823 tm_list_rem = tm_list + nr_items;
824 for (i = 0; i < nr_items; i++) {
825 tm_list_rem[i] = alloc_tree_mod_elem(src, i + src_offset,
826 MOD_LOG_KEY_REMOVE, GFP_NOFS);
827 if (!tm_list_rem[i]) {
828 ret = -ENOMEM;
829 goto free_tms;
832 tm_list_add[i] = alloc_tree_mod_elem(dst, i + dst_offset,
833 MOD_LOG_KEY_ADD, GFP_NOFS);
834 if (!tm_list_add[i]) {
835 ret = -ENOMEM;
836 goto free_tms;
840 if (tree_mod_dont_log(fs_info, NULL))
841 goto free_tms;
842 locked = 1;
844 for (i = 0; i < nr_items; i++) {
845 ret = __tree_mod_log_insert(fs_info, tm_list_rem[i]);
846 if (ret)
847 goto free_tms;
848 ret = __tree_mod_log_insert(fs_info, tm_list_add[i]);
849 if (ret)
850 goto free_tms;
853 tree_mod_log_write_unlock(fs_info);
854 kfree(tm_list);
856 return 0;
858 free_tms:
859 for (i = 0; i < nr_items * 2; i++) {
860 if (tm_list[i] && !RB_EMPTY_NODE(&tm_list[i]->node))
861 rb_erase(&tm_list[i]->node, &fs_info->tree_mod_log);
862 kfree(tm_list[i]);
864 if (locked)
865 tree_mod_log_write_unlock(fs_info);
866 kfree(tm_list);
868 return ret;
871 static inline void
872 tree_mod_log_eb_move(struct btrfs_fs_info *fs_info, struct extent_buffer *dst,
873 int dst_offset, int src_offset, int nr_items)
875 int ret;
876 ret = tree_mod_log_insert_move(fs_info, dst, dst_offset, src_offset,
877 nr_items, GFP_NOFS);
878 BUG_ON(ret < 0);
881 static noinline void
882 tree_mod_log_set_node_key(struct btrfs_fs_info *fs_info,
883 struct extent_buffer *eb, int slot, int atomic)
885 int ret;
887 ret = tree_mod_log_insert_key(fs_info, eb, slot,
888 MOD_LOG_KEY_REPLACE,
889 atomic ? GFP_ATOMIC : GFP_NOFS);
890 BUG_ON(ret < 0);
893 static noinline int
894 tree_mod_log_free_eb(struct btrfs_fs_info *fs_info, struct extent_buffer *eb)
896 struct tree_mod_elem **tm_list = NULL;
897 int nritems = 0;
898 int i;
899 int ret = 0;
901 if (btrfs_header_level(eb) == 0)
902 return 0;
904 if (!tree_mod_need_log(fs_info, NULL))
905 return 0;
907 nritems = btrfs_header_nritems(eb);
908 tm_list = kcalloc(nritems, sizeof(struct tree_mod_elem *), GFP_NOFS);
909 if (!tm_list)
910 return -ENOMEM;
912 for (i = 0; i < nritems; i++) {
913 tm_list[i] = alloc_tree_mod_elem(eb, i,
914 MOD_LOG_KEY_REMOVE_WHILE_FREEING, GFP_NOFS);
915 if (!tm_list[i]) {
916 ret = -ENOMEM;
917 goto free_tms;
921 if (tree_mod_dont_log(fs_info, eb))
922 goto free_tms;
924 ret = __tree_mod_log_free_eb(fs_info, tm_list, nritems);
925 tree_mod_log_write_unlock(fs_info);
926 if (ret)
927 goto free_tms;
928 kfree(tm_list);
930 return 0;
932 free_tms:
933 for (i = 0; i < nritems; i++)
934 kfree(tm_list[i]);
935 kfree(tm_list);
937 return ret;
940 static noinline void
941 tree_mod_log_set_root_pointer(struct btrfs_root *root,
942 struct extent_buffer *new_root_node,
943 int log_removal)
945 int ret;
946 ret = tree_mod_log_insert_root(root->fs_info, root->node,
947 new_root_node, GFP_NOFS, log_removal);
948 BUG_ON(ret < 0);
952 * check if the tree block can be shared by multiple trees
954 int btrfs_block_can_be_shared(struct btrfs_root *root,
955 struct extent_buffer *buf)
958 * Tree blocks not in refernece counted trees and tree roots
959 * are never shared. If a block was allocated after the last
960 * snapshot and the block was not allocated by tree relocation,
961 * we know the block is not shared.
963 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
964 buf != root->node && buf != root->commit_root &&
965 (btrfs_header_generation(buf) <=
966 btrfs_root_last_snapshot(&root->root_item) ||
967 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)))
968 return 1;
969 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
970 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
971 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
972 return 1;
973 #endif
974 return 0;
977 static noinline int update_ref_for_cow(struct btrfs_trans_handle *trans,
978 struct btrfs_root *root,
979 struct extent_buffer *buf,
980 struct extent_buffer *cow,
981 int *last_ref)
983 u64 refs;
984 u64 owner;
985 u64 flags;
986 u64 new_flags = 0;
987 int ret;
990 * Backrefs update rules:
992 * Always use full backrefs for extent pointers in tree block
993 * allocated by tree relocation.
995 * If a shared tree block is no longer referenced by its owner
996 * tree (btrfs_header_owner(buf) == root->root_key.objectid),
997 * use full backrefs for extent pointers in tree block.
999 * If a tree block is been relocating
1000 * (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID),
1001 * use full backrefs for extent pointers in tree block.
1002 * The reason for this is some operations (such as drop tree)
1003 * are only allowed for blocks use full backrefs.
1006 if (btrfs_block_can_be_shared(root, buf)) {
1007 ret = btrfs_lookup_extent_info(trans, root, buf->start,
1008 btrfs_header_level(buf), 1,
1009 &refs, &flags);
1010 if (ret)
1011 return ret;
1012 if (refs == 0) {
1013 ret = -EROFS;
1014 btrfs_std_error(root->fs_info, ret);
1015 return ret;
1017 } else {
1018 refs = 1;
1019 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1020 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1021 flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
1022 else
1023 flags = 0;
1026 owner = btrfs_header_owner(buf);
1027 BUG_ON(owner == BTRFS_TREE_RELOC_OBJECTID &&
1028 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
1030 if (refs > 1) {
1031 if ((owner == root->root_key.objectid ||
1032 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) &&
1033 !(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) {
1034 ret = btrfs_inc_ref(trans, root, buf, 1);
1035 BUG_ON(ret); /* -ENOMEM */
1037 if (root->root_key.objectid ==
1038 BTRFS_TREE_RELOC_OBJECTID) {
1039 ret = btrfs_dec_ref(trans, root, buf, 0);
1040 BUG_ON(ret); /* -ENOMEM */
1041 ret = btrfs_inc_ref(trans, root, cow, 1);
1042 BUG_ON(ret); /* -ENOMEM */
1044 new_flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
1045 } else {
1047 if (root->root_key.objectid ==
1048 BTRFS_TREE_RELOC_OBJECTID)
1049 ret = btrfs_inc_ref(trans, root, cow, 1);
1050 else
1051 ret = btrfs_inc_ref(trans, root, cow, 0);
1052 BUG_ON(ret); /* -ENOMEM */
1054 if (new_flags != 0) {
1055 int level = btrfs_header_level(buf);
1057 ret = btrfs_set_disk_extent_flags(trans, root,
1058 buf->start,
1059 buf->len,
1060 new_flags, level, 0);
1061 if (ret)
1062 return ret;
1064 } else {
1065 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
1066 if (root->root_key.objectid ==
1067 BTRFS_TREE_RELOC_OBJECTID)
1068 ret = btrfs_inc_ref(trans, root, cow, 1);
1069 else
1070 ret = btrfs_inc_ref(trans, root, cow, 0);
1071 BUG_ON(ret); /* -ENOMEM */
1072 ret = btrfs_dec_ref(trans, root, buf, 1);
1073 BUG_ON(ret); /* -ENOMEM */
1075 clean_tree_block(trans, root->fs_info, buf);
1076 *last_ref = 1;
1078 return 0;
1082 * does the dirty work in cow of a single block. The parent block (if
1083 * supplied) is updated to point to the new cow copy. The new buffer is marked
1084 * dirty and returned locked. If you modify the block it needs to be marked
1085 * dirty again.
1087 * search_start -- an allocation hint for the new block
1089 * empty_size -- a hint that you plan on doing more cow. This is the size in
1090 * bytes the allocator should try to find free next to the block it returns.
1091 * This is just a hint and may be ignored by the allocator.
1093 static noinline int __btrfs_cow_block(struct btrfs_trans_handle *trans,
1094 struct btrfs_root *root,
1095 struct extent_buffer *buf,
1096 struct extent_buffer *parent, int parent_slot,
1097 struct extent_buffer **cow_ret,
1098 u64 search_start, u64 empty_size)
1100 struct btrfs_disk_key disk_key;
1101 struct extent_buffer *cow;
1102 int level, ret;
1103 int last_ref = 0;
1104 int unlock_orig = 0;
1105 u64 parent_start;
1107 if (*cow_ret == buf)
1108 unlock_orig = 1;
1110 btrfs_assert_tree_locked(buf);
1112 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1113 trans->transid != root->fs_info->running_transaction->transid);
1114 WARN_ON(test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
1115 trans->transid != root->last_trans);
1117 level = btrfs_header_level(buf);
1119 if (level == 0)
1120 btrfs_item_key(buf, &disk_key, 0);
1121 else
1122 btrfs_node_key(buf, &disk_key, 0);
1124 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
1125 if (parent)
1126 parent_start = parent->start;
1127 else
1128 parent_start = 0;
1129 } else
1130 parent_start = 0;
1132 cow = btrfs_alloc_tree_block(trans, root, parent_start,
1133 root->root_key.objectid, &disk_key, level,
1134 search_start, empty_size);
1135 if (IS_ERR(cow))
1136 return PTR_ERR(cow);
1138 /* cow is set to blocking by btrfs_init_new_buffer */
1140 copy_extent_buffer(cow, buf, 0, 0, cow->len);
1141 btrfs_set_header_bytenr(cow, cow->start);
1142 btrfs_set_header_generation(cow, trans->transid);
1143 btrfs_set_header_backref_rev(cow, BTRFS_MIXED_BACKREF_REV);
1144 btrfs_clear_header_flag(cow, BTRFS_HEADER_FLAG_WRITTEN |
1145 BTRFS_HEADER_FLAG_RELOC);
1146 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1147 btrfs_set_header_flag(cow, BTRFS_HEADER_FLAG_RELOC);
1148 else
1149 btrfs_set_header_owner(cow, root->root_key.objectid);
1151 write_extent_buffer(cow, root->fs_info->fsid, btrfs_header_fsid(),
1152 BTRFS_FSID_SIZE);
1154 ret = update_ref_for_cow(trans, root, buf, cow, &last_ref);
1155 if (ret) {
1156 btrfs_abort_transaction(trans, root, ret);
1157 return ret;
1160 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state)) {
1161 ret = btrfs_reloc_cow_block(trans, root, buf, cow);
1162 if (ret)
1163 return ret;
1166 if (buf == root->node) {
1167 WARN_ON(parent && parent != buf);
1168 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
1169 btrfs_header_backref_rev(buf) < BTRFS_MIXED_BACKREF_REV)
1170 parent_start = buf->start;
1171 else
1172 parent_start = 0;
1174 extent_buffer_get(cow);
1175 tree_mod_log_set_root_pointer(root, cow, 1);
1176 rcu_assign_pointer(root->node, cow);
1178 btrfs_free_tree_block(trans, root, buf, parent_start,
1179 last_ref);
1180 free_extent_buffer(buf);
1181 add_root_to_dirty_list(root);
1182 } else {
1183 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1184 parent_start = parent->start;
1185 else
1186 parent_start = 0;
1188 WARN_ON(trans->transid != btrfs_header_generation(parent));
1189 tree_mod_log_insert_key(root->fs_info, parent, parent_slot,
1190 MOD_LOG_KEY_REPLACE, GFP_NOFS);
1191 btrfs_set_node_blockptr(parent, parent_slot,
1192 cow->start);
1193 btrfs_set_node_ptr_generation(parent, parent_slot,
1194 trans->transid);
1195 btrfs_mark_buffer_dirty(parent);
1196 if (last_ref) {
1197 ret = tree_mod_log_free_eb(root->fs_info, buf);
1198 if (ret) {
1199 btrfs_abort_transaction(trans, root, ret);
1200 return ret;
1203 btrfs_free_tree_block(trans, root, buf, parent_start,
1204 last_ref);
1206 if (unlock_orig)
1207 btrfs_tree_unlock(buf);
1208 free_extent_buffer_stale(buf);
1209 btrfs_mark_buffer_dirty(cow);
1210 *cow_ret = cow;
1211 return 0;
1215 * returns the logical address of the oldest predecessor of the given root.
1216 * entries older than time_seq are ignored.
1218 static struct tree_mod_elem *
1219 __tree_mod_log_oldest_root(struct btrfs_fs_info *fs_info,
1220 struct extent_buffer *eb_root, u64 time_seq)
1222 struct tree_mod_elem *tm;
1223 struct tree_mod_elem *found = NULL;
1224 u64 root_logical = eb_root->start;
1225 int looped = 0;
1227 if (!time_seq)
1228 return NULL;
1231 * the very last operation that's logged for a root is the replacement
1232 * operation (if it is replaced at all). this has the index of the *new*
1233 * root, making it the very first operation that's logged for this root.
1235 while (1) {
1236 tm = tree_mod_log_search_oldest(fs_info, root_logical,
1237 time_seq);
1238 if (!looped && !tm)
1239 return NULL;
1241 * if there are no tree operation for the oldest root, we simply
1242 * return it. this should only happen if that (old) root is at
1243 * level 0.
1245 if (!tm)
1246 break;
1249 * if there's an operation that's not a root replacement, we
1250 * found the oldest version of our root. normally, we'll find a
1251 * MOD_LOG_KEY_REMOVE_WHILE_FREEING operation here.
1253 if (tm->op != MOD_LOG_ROOT_REPLACE)
1254 break;
1256 found = tm;
1257 root_logical = tm->old_root.logical;
1258 looped = 1;
1261 /* if there's no old root to return, return what we found instead */
1262 if (!found)
1263 found = tm;
1265 return found;
1269 * tm is a pointer to the first operation to rewind within eb. then, all
1270 * previous operations will be rewinded (until we reach something older than
1271 * time_seq).
1273 static void
1274 __tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct extent_buffer *eb,
1275 u64 time_seq, struct tree_mod_elem *first_tm)
1277 u32 n;
1278 struct rb_node *next;
1279 struct tree_mod_elem *tm = first_tm;
1280 unsigned long o_dst;
1281 unsigned long o_src;
1282 unsigned long p_size = sizeof(struct btrfs_key_ptr);
1284 n = btrfs_header_nritems(eb);
1285 tree_mod_log_read_lock(fs_info);
1286 while (tm && tm->seq >= time_seq) {
1288 * all the operations are recorded with the operator used for
1289 * the modification. as we're going backwards, we do the
1290 * opposite of each operation here.
1292 switch (tm->op) {
1293 case MOD_LOG_KEY_REMOVE_WHILE_FREEING:
1294 BUG_ON(tm->slot < n);
1295 /* Fallthrough */
1296 case MOD_LOG_KEY_REMOVE_WHILE_MOVING:
1297 case MOD_LOG_KEY_REMOVE:
1298 btrfs_set_node_key(eb, &tm->key, tm->slot);
1299 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1300 btrfs_set_node_ptr_generation(eb, tm->slot,
1301 tm->generation);
1302 n++;
1303 break;
1304 case MOD_LOG_KEY_REPLACE:
1305 BUG_ON(tm->slot >= n);
1306 btrfs_set_node_key(eb, &tm->key, tm->slot);
1307 btrfs_set_node_blockptr(eb, tm->slot, tm->blockptr);
1308 btrfs_set_node_ptr_generation(eb, tm->slot,
1309 tm->generation);
1310 break;
1311 case MOD_LOG_KEY_ADD:
1312 /* if a move operation is needed it's in the log */
1313 n--;
1314 break;
1315 case MOD_LOG_MOVE_KEYS:
1316 o_dst = btrfs_node_key_ptr_offset(tm->slot);
1317 o_src = btrfs_node_key_ptr_offset(tm->move.dst_slot);
1318 memmove_extent_buffer(eb, o_dst, o_src,
1319 tm->move.nr_items * p_size);
1320 break;
1321 case MOD_LOG_ROOT_REPLACE:
1323 * this operation is special. for roots, this must be
1324 * handled explicitly before rewinding.
1325 * for non-roots, this operation may exist if the node
1326 * was a root: root A -> child B; then A gets empty and
1327 * B is promoted to the new root. in the mod log, we'll
1328 * have a root-replace operation for B, a tree block
1329 * that is no root. we simply ignore that operation.
1331 break;
1333 next = rb_next(&tm->node);
1334 if (!next)
1335 break;
1336 tm = container_of(next, struct tree_mod_elem, node);
1337 if (tm->index != first_tm->index)
1338 break;
1340 tree_mod_log_read_unlock(fs_info);
1341 btrfs_set_header_nritems(eb, n);
1345 * Called with eb read locked. If the buffer cannot be rewinded, the same buffer
1346 * is returned. If rewind operations happen, a fresh buffer is returned. The
1347 * returned buffer is always read-locked. If the returned buffer is not the
1348 * input buffer, the lock on the input buffer is released and the input buffer
1349 * is freed (its refcount is decremented).
1351 static struct extent_buffer *
1352 tree_mod_log_rewind(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
1353 struct extent_buffer *eb, u64 time_seq)
1355 struct extent_buffer *eb_rewin;
1356 struct tree_mod_elem *tm;
1358 if (!time_seq)
1359 return eb;
1361 if (btrfs_header_level(eb) == 0)
1362 return eb;
1364 tm = tree_mod_log_search(fs_info, eb->start, time_seq);
1365 if (!tm)
1366 return eb;
1368 btrfs_set_path_blocking(path);
1369 btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1371 if (tm->op == MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1372 BUG_ON(tm->slot != 0);
1373 eb_rewin = alloc_dummy_extent_buffer(fs_info, eb->start);
1374 if (!eb_rewin) {
1375 btrfs_tree_read_unlock_blocking(eb);
1376 free_extent_buffer(eb);
1377 return NULL;
1379 btrfs_set_header_bytenr(eb_rewin, eb->start);
1380 btrfs_set_header_backref_rev(eb_rewin,
1381 btrfs_header_backref_rev(eb));
1382 btrfs_set_header_owner(eb_rewin, btrfs_header_owner(eb));
1383 btrfs_set_header_level(eb_rewin, btrfs_header_level(eb));
1384 } else {
1385 eb_rewin = btrfs_clone_extent_buffer(eb);
1386 if (!eb_rewin) {
1387 btrfs_tree_read_unlock_blocking(eb);
1388 free_extent_buffer(eb);
1389 return NULL;
1393 btrfs_clear_path_blocking(path, NULL, BTRFS_READ_LOCK);
1394 btrfs_tree_read_unlock_blocking(eb);
1395 free_extent_buffer(eb);
1397 extent_buffer_get(eb_rewin);
1398 btrfs_tree_read_lock(eb_rewin);
1399 __tree_mod_log_rewind(fs_info, eb_rewin, time_seq, tm);
1400 WARN_ON(btrfs_header_nritems(eb_rewin) >
1401 BTRFS_NODEPTRS_PER_BLOCK(fs_info->tree_root));
1403 return eb_rewin;
1407 * get_old_root() rewinds the state of @root's root node to the given @time_seq
1408 * value. If there are no changes, the current root->root_node is returned. If
1409 * anything changed in between, there's a fresh buffer allocated on which the
1410 * rewind operations are done. In any case, the returned buffer is read locked.
1411 * Returns NULL on error (with no locks held).
1413 static inline struct extent_buffer *
1414 get_old_root(struct btrfs_root *root, u64 time_seq)
1416 struct tree_mod_elem *tm;
1417 struct extent_buffer *eb = NULL;
1418 struct extent_buffer *eb_root;
1419 struct extent_buffer *old;
1420 struct tree_mod_root *old_root = NULL;
1421 u64 old_generation = 0;
1422 u64 logical;
1424 eb_root = btrfs_read_lock_root_node(root);
1425 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1426 if (!tm)
1427 return eb_root;
1429 if (tm->op == MOD_LOG_ROOT_REPLACE) {
1430 old_root = &tm->old_root;
1431 old_generation = tm->generation;
1432 logical = old_root->logical;
1433 } else {
1434 logical = eb_root->start;
1437 tm = tree_mod_log_search(root->fs_info, logical, time_seq);
1438 if (old_root && tm && tm->op != MOD_LOG_KEY_REMOVE_WHILE_FREEING) {
1439 btrfs_tree_read_unlock(eb_root);
1440 free_extent_buffer(eb_root);
1441 old = read_tree_block(root, logical, 0);
1442 if (WARN_ON(!old || !extent_buffer_uptodate(old))) {
1443 free_extent_buffer(old);
1444 btrfs_warn(root->fs_info,
1445 "failed to read tree block %llu from get_old_root", logical);
1446 } else {
1447 eb = btrfs_clone_extent_buffer(old);
1448 free_extent_buffer(old);
1450 } else if (old_root) {
1451 btrfs_tree_read_unlock(eb_root);
1452 free_extent_buffer(eb_root);
1453 eb = alloc_dummy_extent_buffer(root->fs_info, logical);
1454 } else {
1455 btrfs_set_lock_blocking_rw(eb_root, BTRFS_READ_LOCK);
1456 eb = btrfs_clone_extent_buffer(eb_root);
1457 btrfs_tree_read_unlock_blocking(eb_root);
1458 free_extent_buffer(eb_root);
1461 if (!eb)
1462 return NULL;
1463 extent_buffer_get(eb);
1464 btrfs_tree_read_lock(eb);
1465 if (old_root) {
1466 btrfs_set_header_bytenr(eb, eb->start);
1467 btrfs_set_header_backref_rev(eb, BTRFS_MIXED_BACKREF_REV);
1468 btrfs_set_header_owner(eb, btrfs_header_owner(eb_root));
1469 btrfs_set_header_level(eb, old_root->level);
1470 btrfs_set_header_generation(eb, old_generation);
1472 if (tm)
1473 __tree_mod_log_rewind(root->fs_info, eb, time_seq, tm);
1474 else
1475 WARN_ON(btrfs_header_level(eb) != 0);
1476 WARN_ON(btrfs_header_nritems(eb) > BTRFS_NODEPTRS_PER_BLOCK(root));
1478 return eb;
1481 int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq)
1483 struct tree_mod_elem *tm;
1484 int level;
1485 struct extent_buffer *eb_root = btrfs_root_node(root);
1487 tm = __tree_mod_log_oldest_root(root->fs_info, eb_root, time_seq);
1488 if (tm && tm->op == MOD_LOG_ROOT_REPLACE) {
1489 level = tm->old_root.level;
1490 } else {
1491 level = btrfs_header_level(eb_root);
1493 free_extent_buffer(eb_root);
1495 return level;
1498 static inline int should_cow_block(struct btrfs_trans_handle *trans,
1499 struct btrfs_root *root,
1500 struct extent_buffer *buf)
1502 if (btrfs_test_is_dummy_root(root))
1503 return 0;
1505 /* ensure we can see the force_cow */
1506 smp_rmb();
1509 * We do not need to cow a block if
1510 * 1) this block is not created or changed in this transaction;
1511 * 2) this block does not belong to TREE_RELOC tree;
1512 * 3) the root is not forced COW.
1514 * What is forced COW:
1515 * when we create snapshot during commiting the transaction,
1516 * after we've finished coping src root, we must COW the shared
1517 * block to ensure the metadata consistency.
1519 if (btrfs_header_generation(buf) == trans->transid &&
1520 !btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN) &&
1521 !(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1522 btrfs_header_flag(buf, BTRFS_HEADER_FLAG_RELOC)) &&
1523 !test_bit(BTRFS_ROOT_FORCE_COW, &root->state))
1524 return 0;
1525 return 1;
1529 * cows a single block, see __btrfs_cow_block for the real work.
1530 * This version of it has extra checks so that a block isn't cow'd more than
1531 * once per transaction, as long as it hasn't been written yet
1533 noinline int btrfs_cow_block(struct btrfs_trans_handle *trans,
1534 struct btrfs_root *root, struct extent_buffer *buf,
1535 struct extent_buffer *parent, int parent_slot,
1536 struct extent_buffer **cow_ret)
1538 u64 search_start;
1539 int ret;
1541 if (trans->transaction != root->fs_info->running_transaction)
1542 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1543 trans->transid,
1544 root->fs_info->running_transaction->transid);
1546 if (trans->transid != root->fs_info->generation)
1547 WARN(1, KERN_CRIT "trans %llu running %llu\n",
1548 trans->transid, root->fs_info->generation);
1550 if (!should_cow_block(trans, root, buf)) {
1551 trans->dirty = true;
1552 *cow_ret = buf;
1553 return 0;
1556 search_start = buf->start & ~((u64)(1024 * 1024 * 1024) - 1);
1558 if (parent)
1559 btrfs_set_lock_blocking(parent);
1560 btrfs_set_lock_blocking(buf);
1562 ret = __btrfs_cow_block(trans, root, buf, parent,
1563 parent_slot, cow_ret, search_start, 0);
1565 trace_btrfs_cow_block(root, buf, *cow_ret);
1567 return ret;
1571 * helper function for defrag to decide if two blocks pointed to by a
1572 * node are actually close by
1574 static int close_blocks(u64 blocknr, u64 other, u32 blocksize)
1576 if (blocknr < other && other - (blocknr + blocksize) < 32768)
1577 return 1;
1578 if (blocknr > other && blocknr - (other + blocksize) < 32768)
1579 return 1;
1580 return 0;
1584 * compare two keys in a memcmp fashion
1586 static int comp_keys(struct btrfs_disk_key *disk, struct btrfs_key *k2)
1588 struct btrfs_key k1;
1590 btrfs_disk_key_to_cpu(&k1, disk);
1592 return btrfs_comp_cpu_keys(&k1, k2);
1596 * same as comp_keys only with two btrfs_key's
1598 int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2)
1600 if (k1->objectid > k2->objectid)
1601 return 1;
1602 if (k1->objectid < k2->objectid)
1603 return -1;
1604 if (k1->type > k2->type)
1605 return 1;
1606 if (k1->type < k2->type)
1607 return -1;
1608 if (k1->offset > k2->offset)
1609 return 1;
1610 if (k1->offset < k2->offset)
1611 return -1;
1612 return 0;
1616 * this is used by the defrag code to go through all the
1617 * leaves pointed to by a node and reallocate them so that
1618 * disk order is close to key order
1620 int btrfs_realloc_node(struct btrfs_trans_handle *trans,
1621 struct btrfs_root *root, struct extent_buffer *parent,
1622 int start_slot, u64 *last_ret,
1623 struct btrfs_key *progress)
1625 struct extent_buffer *cur;
1626 u64 blocknr;
1627 u64 gen;
1628 u64 search_start = *last_ret;
1629 u64 last_block = 0;
1630 u64 other;
1631 u32 parent_nritems;
1632 int end_slot;
1633 int i;
1634 int err = 0;
1635 int parent_level;
1636 int uptodate;
1637 u32 blocksize;
1638 int progress_passed = 0;
1639 struct btrfs_disk_key disk_key;
1641 parent_level = btrfs_header_level(parent);
1643 WARN_ON(trans->transaction != root->fs_info->running_transaction);
1644 WARN_ON(trans->transid != root->fs_info->generation);
1646 parent_nritems = btrfs_header_nritems(parent);
1647 blocksize = root->nodesize;
1648 end_slot = parent_nritems - 1;
1650 if (parent_nritems <= 1)
1651 return 0;
1653 btrfs_set_lock_blocking(parent);
1655 for (i = start_slot; i <= end_slot; i++) {
1656 int close = 1;
1658 btrfs_node_key(parent, &disk_key, i);
1659 if (!progress_passed && comp_keys(&disk_key, progress) < 0)
1660 continue;
1662 progress_passed = 1;
1663 blocknr = btrfs_node_blockptr(parent, i);
1664 gen = btrfs_node_ptr_generation(parent, i);
1665 if (last_block == 0)
1666 last_block = blocknr;
1668 if (i > 0) {
1669 other = btrfs_node_blockptr(parent, i - 1);
1670 close = close_blocks(blocknr, other, blocksize);
1672 if (!close && i < end_slot) {
1673 other = btrfs_node_blockptr(parent, i + 1);
1674 close = close_blocks(blocknr, other, blocksize);
1676 if (close) {
1677 last_block = blocknr;
1678 continue;
1681 cur = btrfs_find_tree_block(root->fs_info, blocknr);
1682 if (cur)
1683 uptodate = btrfs_buffer_uptodate(cur, gen, 0);
1684 else
1685 uptodate = 0;
1686 if (!cur || !uptodate) {
1687 if (!cur) {
1688 cur = read_tree_block(root, blocknr, gen);
1689 if (!cur || !extent_buffer_uptodate(cur)) {
1690 free_extent_buffer(cur);
1691 return -EIO;
1693 } else if (!uptodate) {
1694 err = btrfs_read_buffer(cur, gen);
1695 if (err) {
1696 free_extent_buffer(cur);
1697 return err;
1701 if (search_start == 0)
1702 search_start = last_block;
1704 btrfs_tree_lock(cur);
1705 btrfs_set_lock_blocking(cur);
1706 err = __btrfs_cow_block(trans, root, cur, parent, i,
1707 &cur, search_start,
1708 min(16 * blocksize,
1709 (end_slot - i) * blocksize));
1710 if (err) {
1711 btrfs_tree_unlock(cur);
1712 free_extent_buffer(cur);
1713 break;
1715 search_start = cur->start;
1716 last_block = cur->start;
1717 *last_ret = search_start;
1718 btrfs_tree_unlock(cur);
1719 free_extent_buffer(cur);
1721 return err;
1725 * The leaf data grows from end-to-front in the node.
1726 * this returns the address of the start of the last item,
1727 * which is the stop of the leaf data stack
1729 static inline unsigned int leaf_data_end(struct btrfs_root *root,
1730 struct extent_buffer *leaf)
1732 u32 nr = btrfs_header_nritems(leaf);
1733 if (nr == 0)
1734 return BTRFS_LEAF_DATA_SIZE(root);
1735 return btrfs_item_offset_nr(leaf, nr - 1);
1740 * search for key in the extent_buffer. The items start at offset p,
1741 * and they are item_size apart. There are 'max' items in p.
1743 * the slot in the array is returned via slot, and it points to
1744 * the place where you would insert key if it is not found in
1745 * the array.
1747 * slot may point to max if the key is bigger than all of the keys
1749 static noinline int generic_bin_search(struct extent_buffer *eb,
1750 unsigned long p,
1751 int item_size, struct btrfs_key *key,
1752 int max, int *slot)
1754 int low = 0;
1755 int high = max;
1756 int mid;
1757 int ret;
1758 struct btrfs_disk_key *tmp = NULL;
1759 struct btrfs_disk_key unaligned;
1760 unsigned long offset;
1761 char *kaddr = NULL;
1762 unsigned long map_start = 0;
1763 unsigned long map_len = 0;
1764 int err;
1766 while (low < high) {
1767 mid = (low + high) / 2;
1768 offset = p + mid * item_size;
1770 if (!kaddr || offset < map_start ||
1771 (offset + sizeof(struct btrfs_disk_key)) >
1772 map_start + map_len) {
1774 err = map_private_extent_buffer(eb, offset,
1775 sizeof(struct btrfs_disk_key),
1776 &kaddr, &map_start, &map_len);
1778 if (!err) {
1779 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1780 map_start);
1781 } else {
1782 read_extent_buffer(eb, &unaligned,
1783 offset, sizeof(unaligned));
1784 tmp = &unaligned;
1787 } else {
1788 tmp = (struct btrfs_disk_key *)(kaddr + offset -
1789 map_start);
1791 ret = comp_keys(tmp, key);
1793 if (ret < 0)
1794 low = mid + 1;
1795 else if (ret > 0)
1796 high = mid;
1797 else {
1798 *slot = mid;
1799 return 0;
1802 *slot = low;
1803 return 1;
1807 * simple bin_search frontend that does the right thing for
1808 * leaves vs nodes
1810 static int bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1811 int level, int *slot)
1813 if (level == 0)
1814 return generic_bin_search(eb,
1815 offsetof(struct btrfs_leaf, items),
1816 sizeof(struct btrfs_item),
1817 key, btrfs_header_nritems(eb),
1818 slot);
1819 else
1820 return generic_bin_search(eb,
1821 offsetof(struct btrfs_node, ptrs),
1822 sizeof(struct btrfs_key_ptr),
1823 key, btrfs_header_nritems(eb),
1824 slot);
1827 int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
1828 int level, int *slot)
1830 return bin_search(eb, key, level, slot);
1833 static void root_add_used(struct btrfs_root *root, u32 size)
1835 spin_lock(&root->accounting_lock);
1836 btrfs_set_root_used(&root->root_item,
1837 btrfs_root_used(&root->root_item) + size);
1838 spin_unlock(&root->accounting_lock);
1841 static void root_sub_used(struct btrfs_root *root, u32 size)
1843 spin_lock(&root->accounting_lock);
1844 btrfs_set_root_used(&root->root_item,
1845 btrfs_root_used(&root->root_item) - size);
1846 spin_unlock(&root->accounting_lock);
1849 /* given a node and slot number, this reads the blocks it points to. The
1850 * extent buffer is returned with a reference taken (but unlocked).
1851 * NULL is returned on error.
1853 static noinline struct extent_buffer *read_node_slot(struct btrfs_root *root,
1854 struct extent_buffer *parent, int slot)
1856 int level = btrfs_header_level(parent);
1857 struct extent_buffer *eb;
1859 if (slot < 0)
1860 return NULL;
1861 if (slot >= btrfs_header_nritems(parent))
1862 return NULL;
1864 BUG_ON(level == 0);
1866 eb = read_tree_block(root, btrfs_node_blockptr(parent, slot),
1867 btrfs_node_ptr_generation(parent, slot));
1868 if (eb && !extent_buffer_uptodate(eb)) {
1869 free_extent_buffer(eb);
1870 eb = NULL;
1873 return eb;
1877 * node level balancing, used to make sure nodes are in proper order for
1878 * item deletion. We balance from the top down, so we have to make sure
1879 * that a deletion won't leave an node completely empty later on.
1881 static noinline int balance_level(struct btrfs_trans_handle *trans,
1882 struct btrfs_root *root,
1883 struct btrfs_path *path, int level)
1885 struct extent_buffer *right = NULL;
1886 struct extent_buffer *mid;
1887 struct extent_buffer *left = NULL;
1888 struct extent_buffer *parent = NULL;
1889 int ret = 0;
1890 int wret;
1891 int pslot;
1892 int orig_slot = path->slots[level];
1893 u64 orig_ptr;
1895 if (level == 0)
1896 return 0;
1898 mid = path->nodes[level];
1900 WARN_ON(path->locks[level] != BTRFS_WRITE_LOCK &&
1901 path->locks[level] != BTRFS_WRITE_LOCK_BLOCKING);
1902 WARN_ON(btrfs_header_generation(mid) != trans->transid);
1904 orig_ptr = btrfs_node_blockptr(mid, orig_slot);
1906 if (level < BTRFS_MAX_LEVEL - 1) {
1907 parent = path->nodes[level + 1];
1908 pslot = path->slots[level + 1];
1912 * deal with the case where there is only one pointer in the root
1913 * by promoting the node below to a root
1915 if (!parent) {
1916 struct extent_buffer *child;
1918 if (btrfs_header_nritems(mid) != 1)
1919 return 0;
1921 /* promote the child to a root */
1922 child = read_node_slot(root, mid, 0);
1923 if (!child) {
1924 ret = -EROFS;
1925 btrfs_std_error(root->fs_info, ret);
1926 goto enospc;
1929 btrfs_tree_lock(child);
1930 btrfs_set_lock_blocking(child);
1931 ret = btrfs_cow_block(trans, root, child, mid, 0, &child);
1932 if (ret) {
1933 btrfs_tree_unlock(child);
1934 free_extent_buffer(child);
1935 goto enospc;
1938 tree_mod_log_set_root_pointer(root, child, 1);
1939 rcu_assign_pointer(root->node, child);
1941 add_root_to_dirty_list(root);
1942 btrfs_tree_unlock(child);
1944 path->locks[level] = 0;
1945 path->nodes[level] = NULL;
1946 clean_tree_block(trans, root->fs_info, mid);
1947 btrfs_tree_unlock(mid);
1948 /* once for the path */
1949 free_extent_buffer(mid);
1951 root_sub_used(root, mid->len);
1952 btrfs_free_tree_block(trans, root, mid, 0, 1);
1953 /* once for the root ptr */
1954 free_extent_buffer_stale(mid);
1955 return 0;
1957 if (btrfs_header_nritems(mid) >
1958 BTRFS_NODEPTRS_PER_BLOCK(root) / 4)
1959 return 0;
1961 left = read_node_slot(root, parent, pslot - 1);
1962 if (left) {
1963 btrfs_tree_lock(left);
1964 btrfs_set_lock_blocking(left);
1965 wret = btrfs_cow_block(trans, root, left,
1966 parent, pslot - 1, &left);
1967 if (wret) {
1968 ret = wret;
1969 goto enospc;
1972 right = read_node_slot(root, parent, pslot + 1);
1973 if (right) {
1974 btrfs_tree_lock(right);
1975 btrfs_set_lock_blocking(right);
1976 wret = btrfs_cow_block(trans, root, right,
1977 parent, pslot + 1, &right);
1978 if (wret) {
1979 ret = wret;
1980 goto enospc;
1984 /* first, try to make some room in the middle buffer */
1985 if (left) {
1986 orig_slot += btrfs_header_nritems(left);
1987 wret = push_node_left(trans, root, left, mid, 1);
1988 if (wret < 0)
1989 ret = wret;
1993 * then try to empty the right most buffer into the middle
1995 if (right) {
1996 wret = push_node_left(trans, root, mid, right, 1);
1997 if (wret < 0 && wret != -ENOSPC)
1998 ret = wret;
1999 if (btrfs_header_nritems(right) == 0) {
2000 clean_tree_block(trans, root->fs_info, right);
2001 btrfs_tree_unlock(right);
2002 del_ptr(root, path, level + 1, pslot + 1);
2003 root_sub_used(root, right->len);
2004 btrfs_free_tree_block(trans, root, right, 0, 1);
2005 free_extent_buffer_stale(right);
2006 right = NULL;
2007 } else {
2008 struct btrfs_disk_key right_key;
2009 btrfs_node_key(right, &right_key, 0);
2010 tree_mod_log_set_node_key(root->fs_info, parent,
2011 pslot + 1, 0);
2012 btrfs_set_node_key(parent, &right_key, pslot + 1);
2013 btrfs_mark_buffer_dirty(parent);
2016 if (btrfs_header_nritems(mid) == 1) {
2018 * we're not allowed to leave a node with one item in the
2019 * tree during a delete. A deletion from lower in the tree
2020 * could try to delete the only pointer in this node.
2021 * So, pull some keys from the left.
2022 * There has to be a left pointer at this point because
2023 * otherwise we would have pulled some pointers from the
2024 * right
2026 if (!left) {
2027 ret = -EROFS;
2028 btrfs_std_error(root->fs_info, ret);
2029 goto enospc;
2031 wret = balance_node_right(trans, root, mid, left);
2032 if (wret < 0) {
2033 ret = wret;
2034 goto enospc;
2036 if (wret == 1) {
2037 wret = push_node_left(trans, root, left, mid, 1);
2038 if (wret < 0)
2039 ret = wret;
2041 BUG_ON(wret == 1);
2043 if (btrfs_header_nritems(mid) == 0) {
2044 clean_tree_block(trans, root->fs_info, mid);
2045 btrfs_tree_unlock(mid);
2046 del_ptr(root, path, level + 1, pslot);
2047 root_sub_used(root, mid->len);
2048 btrfs_free_tree_block(trans, root, mid, 0, 1);
2049 free_extent_buffer_stale(mid);
2050 mid = NULL;
2051 } else {
2052 /* update the parent key to reflect our changes */
2053 struct btrfs_disk_key mid_key;
2054 btrfs_node_key(mid, &mid_key, 0);
2055 tree_mod_log_set_node_key(root->fs_info, parent,
2056 pslot, 0);
2057 btrfs_set_node_key(parent, &mid_key, pslot);
2058 btrfs_mark_buffer_dirty(parent);
2061 /* update the path */
2062 if (left) {
2063 if (btrfs_header_nritems(left) > orig_slot) {
2064 extent_buffer_get(left);
2065 /* left was locked after cow */
2066 path->nodes[level] = left;
2067 path->slots[level + 1] -= 1;
2068 path->slots[level] = orig_slot;
2069 if (mid) {
2070 btrfs_tree_unlock(mid);
2071 free_extent_buffer(mid);
2073 } else {
2074 orig_slot -= btrfs_header_nritems(left);
2075 path->slots[level] = orig_slot;
2078 /* double check we haven't messed things up */
2079 if (orig_ptr !=
2080 btrfs_node_blockptr(path->nodes[level], path->slots[level]))
2081 BUG();
2082 enospc:
2083 if (right) {
2084 btrfs_tree_unlock(right);
2085 free_extent_buffer(right);
2087 if (left) {
2088 if (path->nodes[level] != left)
2089 btrfs_tree_unlock(left);
2090 free_extent_buffer(left);
2092 return ret;
2095 /* Node balancing for insertion. Here we only split or push nodes around
2096 * when they are completely full. This is also done top down, so we
2097 * have to be pessimistic.
2099 static noinline int push_nodes_for_insert(struct btrfs_trans_handle *trans,
2100 struct btrfs_root *root,
2101 struct btrfs_path *path, int level)
2103 struct extent_buffer *right = NULL;
2104 struct extent_buffer *mid;
2105 struct extent_buffer *left = NULL;
2106 struct extent_buffer *parent = NULL;
2107 int ret = 0;
2108 int wret;
2109 int pslot;
2110 int orig_slot = path->slots[level];
2112 if (level == 0)
2113 return 1;
2115 mid = path->nodes[level];
2116 WARN_ON(btrfs_header_generation(mid) != trans->transid);
2118 if (level < BTRFS_MAX_LEVEL - 1) {
2119 parent = path->nodes[level + 1];
2120 pslot = path->slots[level + 1];
2123 if (!parent)
2124 return 1;
2126 left = read_node_slot(root, parent, pslot - 1);
2128 /* first, try to make some room in the middle buffer */
2129 if (left) {
2130 u32 left_nr;
2132 btrfs_tree_lock(left);
2133 btrfs_set_lock_blocking(left);
2135 left_nr = btrfs_header_nritems(left);
2136 if (left_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2137 wret = 1;
2138 } else {
2139 ret = btrfs_cow_block(trans, root, left, parent,
2140 pslot - 1, &left);
2141 if (ret)
2142 wret = 1;
2143 else {
2144 wret = push_node_left(trans, root,
2145 left, mid, 0);
2148 if (wret < 0)
2149 ret = wret;
2150 if (wret == 0) {
2151 struct btrfs_disk_key disk_key;
2152 orig_slot += left_nr;
2153 btrfs_node_key(mid, &disk_key, 0);
2154 tree_mod_log_set_node_key(root->fs_info, parent,
2155 pslot, 0);
2156 btrfs_set_node_key(parent, &disk_key, pslot);
2157 btrfs_mark_buffer_dirty(parent);
2158 if (btrfs_header_nritems(left) > orig_slot) {
2159 path->nodes[level] = left;
2160 path->slots[level + 1] -= 1;
2161 path->slots[level] = orig_slot;
2162 btrfs_tree_unlock(mid);
2163 free_extent_buffer(mid);
2164 } else {
2165 orig_slot -=
2166 btrfs_header_nritems(left);
2167 path->slots[level] = orig_slot;
2168 btrfs_tree_unlock(left);
2169 free_extent_buffer(left);
2171 return 0;
2173 btrfs_tree_unlock(left);
2174 free_extent_buffer(left);
2176 right = read_node_slot(root, parent, pslot + 1);
2179 * then try to empty the right most buffer into the middle
2181 if (right) {
2182 u32 right_nr;
2184 btrfs_tree_lock(right);
2185 btrfs_set_lock_blocking(right);
2187 right_nr = btrfs_header_nritems(right);
2188 if (right_nr >= BTRFS_NODEPTRS_PER_BLOCK(root) - 1) {
2189 wret = 1;
2190 } else {
2191 ret = btrfs_cow_block(trans, root, right,
2192 parent, pslot + 1,
2193 &right);
2194 if (ret)
2195 wret = 1;
2196 else {
2197 wret = balance_node_right(trans, root,
2198 right, mid);
2201 if (wret < 0)
2202 ret = wret;
2203 if (wret == 0) {
2204 struct btrfs_disk_key disk_key;
2206 btrfs_node_key(right, &disk_key, 0);
2207 tree_mod_log_set_node_key(root->fs_info, parent,
2208 pslot + 1, 0);
2209 btrfs_set_node_key(parent, &disk_key, pslot + 1);
2210 btrfs_mark_buffer_dirty(parent);
2212 if (btrfs_header_nritems(mid) <= orig_slot) {
2213 path->nodes[level] = right;
2214 path->slots[level + 1] += 1;
2215 path->slots[level] = orig_slot -
2216 btrfs_header_nritems(mid);
2217 btrfs_tree_unlock(mid);
2218 free_extent_buffer(mid);
2219 } else {
2220 btrfs_tree_unlock(right);
2221 free_extent_buffer(right);
2223 return 0;
2225 btrfs_tree_unlock(right);
2226 free_extent_buffer(right);
2228 return 1;
2232 * readahead one full node of leaves, finding things that are close
2233 * to the block in 'slot', and triggering ra on them.
2235 static void reada_for_search(struct btrfs_root *root,
2236 struct btrfs_path *path,
2237 int level, int slot, u64 objectid)
2239 struct extent_buffer *node;
2240 struct btrfs_disk_key disk_key;
2241 u32 nritems;
2242 u64 search;
2243 u64 target;
2244 u64 nread = 0;
2245 u64 gen;
2246 int direction = path->reada;
2247 struct extent_buffer *eb;
2248 u32 nr;
2249 u32 blocksize;
2250 u32 nscan = 0;
2252 if (level != 1)
2253 return;
2255 if (!path->nodes[level])
2256 return;
2258 node = path->nodes[level];
2260 search = btrfs_node_blockptr(node, slot);
2261 blocksize = root->nodesize;
2262 eb = btrfs_find_tree_block(root->fs_info, search);
2263 if (eb) {
2264 free_extent_buffer(eb);
2265 return;
2268 target = search;
2270 nritems = btrfs_header_nritems(node);
2271 nr = slot;
2273 while (1) {
2274 if (direction < 0) {
2275 if (nr == 0)
2276 break;
2277 nr--;
2278 } else if (direction > 0) {
2279 nr++;
2280 if (nr >= nritems)
2281 break;
2283 if (path->reada < 0 && objectid) {
2284 btrfs_node_key(node, &disk_key, nr);
2285 if (btrfs_disk_key_objectid(&disk_key) != objectid)
2286 break;
2288 search = btrfs_node_blockptr(node, nr);
2289 if ((search <= target && target - search <= 65536) ||
2290 (search > target && search - target <= 65536)) {
2291 gen = btrfs_node_ptr_generation(node, nr);
2292 readahead_tree_block(root, search);
2293 nread += blocksize;
2295 nscan++;
2296 if ((nread > 65536 || nscan > 32))
2297 break;
2301 static noinline void reada_for_balance(struct btrfs_root *root,
2302 struct btrfs_path *path, int level)
2304 int slot;
2305 int nritems;
2306 struct extent_buffer *parent;
2307 struct extent_buffer *eb;
2308 u64 gen;
2309 u64 block1 = 0;
2310 u64 block2 = 0;
2312 parent = path->nodes[level + 1];
2313 if (!parent)
2314 return;
2316 nritems = btrfs_header_nritems(parent);
2317 slot = path->slots[level + 1];
2319 if (slot > 0) {
2320 block1 = btrfs_node_blockptr(parent, slot - 1);
2321 gen = btrfs_node_ptr_generation(parent, slot - 1);
2322 eb = btrfs_find_tree_block(root->fs_info, block1);
2324 * if we get -eagain from btrfs_buffer_uptodate, we
2325 * don't want to return eagain here. That will loop
2326 * forever
2328 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2329 block1 = 0;
2330 free_extent_buffer(eb);
2332 if (slot + 1 < nritems) {
2333 block2 = btrfs_node_blockptr(parent, slot + 1);
2334 gen = btrfs_node_ptr_generation(parent, slot + 1);
2335 eb = btrfs_find_tree_block(root->fs_info, block2);
2336 if (eb && btrfs_buffer_uptodate(eb, gen, 1) != 0)
2337 block2 = 0;
2338 free_extent_buffer(eb);
2341 if (block1)
2342 readahead_tree_block(root, block1);
2343 if (block2)
2344 readahead_tree_block(root, block2);
2349 * when we walk down the tree, it is usually safe to unlock the higher layers
2350 * in the tree. The exceptions are when our path goes through slot 0, because
2351 * operations on the tree might require changing key pointers higher up in the
2352 * tree.
2354 * callers might also have set path->keep_locks, which tells this code to keep
2355 * the lock if the path points to the last slot in the block. This is part of
2356 * walking through the tree, and selecting the next slot in the higher block.
2358 * lowest_unlock sets the lowest level in the tree we're allowed to unlock. so
2359 * if lowest_unlock is 1, level 0 won't be unlocked
2361 static noinline void unlock_up(struct btrfs_path *path, int level,
2362 int lowest_unlock, int min_write_lock_level,
2363 int *write_lock_level)
2365 int i;
2366 int skip_level = level;
2367 int no_skips = 0;
2368 struct extent_buffer *t;
2370 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2371 if (!path->nodes[i])
2372 break;
2373 if (!path->locks[i])
2374 break;
2375 if (!no_skips && path->slots[i] == 0) {
2376 skip_level = i + 1;
2377 continue;
2379 if (!no_skips && path->keep_locks) {
2380 u32 nritems;
2381 t = path->nodes[i];
2382 nritems = btrfs_header_nritems(t);
2383 if (nritems < 1 || path->slots[i] >= nritems - 1) {
2384 skip_level = i + 1;
2385 continue;
2388 if (skip_level < i && i >= lowest_unlock)
2389 no_skips = 1;
2391 t = path->nodes[i];
2392 if (i >= lowest_unlock && i > skip_level && path->locks[i]) {
2393 btrfs_tree_unlock_rw(t, path->locks[i]);
2394 path->locks[i] = 0;
2395 if (write_lock_level &&
2396 i > min_write_lock_level &&
2397 i <= *write_lock_level) {
2398 *write_lock_level = i - 1;
2405 * This releases any locks held in the path starting at level and
2406 * going all the way up to the root.
2408 * btrfs_search_slot will keep the lock held on higher nodes in a few
2409 * corner cases, such as COW of the block at slot zero in the node. This
2410 * ignores those rules, and it should only be called when there are no
2411 * more updates to be done higher up in the tree.
2413 noinline void btrfs_unlock_up_safe(struct btrfs_path *path, int level)
2415 int i;
2417 if (path->keep_locks)
2418 return;
2420 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
2421 if (!path->nodes[i])
2422 continue;
2423 if (!path->locks[i])
2424 continue;
2425 btrfs_tree_unlock_rw(path->nodes[i], path->locks[i]);
2426 path->locks[i] = 0;
2431 * helper function for btrfs_search_slot. The goal is to find a block
2432 * in cache without setting the path to blocking. If we find the block
2433 * we return zero and the path is unchanged.
2435 * If we can't find the block, we set the path blocking and do some
2436 * reada. -EAGAIN is returned and the search must be repeated.
2438 static int
2439 read_block_for_search(struct btrfs_trans_handle *trans,
2440 struct btrfs_root *root, struct btrfs_path *p,
2441 struct extent_buffer **eb_ret, int level, int slot,
2442 struct btrfs_key *key, u64 time_seq)
2444 u64 blocknr;
2445 u64 gen;
2446 struct extent_buffer *b = *eb_ret;
2447 struct extent_buffer *tmp;
2448 int ret;
2450 blocknr = btrfs_node_blockptr(b, slot);
2451 gen = btrfs_node_ptr_generation(b, slot);
2453 tmp = btrfs_find_tree_block(root->fs_info, blocknr);
2454 if (tmp) {
2455 /* first we do an atomic uptodate check */
2456 if (btrfs_buffer_uptodate(tmp, gen, 1) > 0) {
2457 *eb_ret = tmp;
2458 return 0;
2461 /* the pages were up to date, but we failed
2462 * the generation number check. Do a full
2463 * read for the generation number that is correct.
2464 * We must do this without dropping locks so
2465 * we can trust our generation number
2467 btrfs_set_path_blocking(p);
2469 /* now we're allowed to do a blocking uptodate check */
2470 ret = btrfs_read_buffer(tmp, gen);
2471 if (!ret) {
2472 *eb_ret = tmp;
2473 return 0;
2475 free_extent_buffer(tmp);
2476 btrfs_release_path(p);
2477 return -EIO;
2481 * reduce lock contention at high levels
2482 * of the btree by dropping locks before
2483 * we read. Don't release the lock on the current
2484 * level because we need to walk this node to figure
2485 * out which blocks to read.
2487 btrfs_unlock_up_safe(p, level + 1);
2488 btrfs_set_path_blocking(p);
2490 free_extent_buffer(tmp);
2491 if (p->reada)
2492 reada_for_search(root, p, level, slot, key->objectid);
2494 btrfs_release_path(p);
2496 ret = -EAGAIN;
2497 tmp = read_tree_block(root, blocknr, 0);
2498 if (tmp) {
2500 * If the read above didn't mark this buffer up to date,
2501 * it will never end up being up to date. Set ret to EIO now
2502 * and give up so that our caller doesn't loop forever
2503 * on our EAGAINs.
2505 if (!btrfs_buffer_uptodate(tmp, 0, 0))
2506 ret = -EIO;
2507 free_extent_buffer(tmp);
2509 return ret;
2513 * helper function for btrfs_search_slot. This does all of the checks
2514 * for node-level blocks and does any balancing required based on
2515 * the ins_len.
2517 * If no extra work was required, zero is returned. If we had to
2518 * drop the path, -EAGAIN is returned and btrfs_search_slot must
2519 * start over
2521 static int
2522 setup_nodes_for_search(struct btrfs_trans_handle *trans,
2523 struct btrfs_root *root, struct btrfs_path *p,
2524 struct extent_buffer *b, int level, int ins_len,
2525 int *write_lock_level)
2527 int ret;
2528 if ((p->search_for_split || ins_len > 0) && btrfs_header_nritems(b) >=
2529 BTRFS_NODEPTRS_PER_BLOCK(root) - 3) {
2530 int sret;
2532 if (*write_lock_level < level + 1) {
2533 *write_lock_level = level + 1;
2534 btrfs_release_path(p);
2535 goto again;
2538 btrfs_set_path_blocking(p);
2539 reada_for_balance(root, p, level);
2540 sret = split_node(trans, root, p, level);
2541 btrfs_clear_path_blocking(p, NULL, 0);
2543 BUG_ON(sret > 0);
2544 if (sret) {
2545 ret = sret;
2546 goto done;
2548 b = p->nodes[level];
2549 } else if (ins_len < 0 && btrfs_header_nritems(b) <
2550 BTRFS_NODEPTRS_PER_BLOCK(root) / 2) {
2551 int sret;
2553 if (*write_lock_level < level + 1) {
2554 *write_lock_level = level + 1;
2555 btrfs_release_path(p);
2556 goto again;
2559 btrfs_set_path_blocking(p);
2560 reada_for_balance(root, p, level);
2561 sret = balance_level(trans, root, p, level);
2562 btrfs_clear_path_blocking(p, NULL, 0);
2564 if (sret) {
2565 ret = sret;
2566 goto done;
2568 b = p->nodes[level];
2569 if (!b) {
2570 btrfs_release_path(p);
2571 goto again;
2573 BUG_ON(btrfs_header_nritems(b) == 1);
2575 return 0;
2577 again:
2578 ret = -EAGAIN;
2579 done:
2580 return ret;
2583 static void key_search_validate(struct extent_buffer *b,
2584 struct btrfs_key *key,
2585 int level)
2587 #ifdef CONFIG_BTRFS_ASSERT
2588 struct btrfs_disk_key disk_key;
2590 btrfs_cpu_key_to_disk(&disk_key, key);
2592 if (level == 0)
2593 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2594 offsetof(struct btrfs_leaf, items[0].key),
2595 sizeof(disk_key)));
2596 else
2597 ASSERT(!memcmp_extent_buffer(b, &disk_key,
2598 offsetof(struct btrfs_node, ptrs[0].key),
2599 sizeof(disk_key)));
2600 #endif
2603 static int key_search(struct extent_buffer *b, struct btrfs_key *key,
2604 int level, int *prev_cmp, int *slot)
2606 if (*prev_cmp != 0) {
2607 *prev_cmp = bin_search(b, key, level, slot);
2608 return *prev_cmp;
2611 key_search_validate(b, key, level);
2612 *slot = 0;
2614 return 0;
2617 int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2618 u64 iobjectid, u64 ioff, u8 key_type,
2619 struct btrfs_key *found_key)
2621 int ret;
2622 struct btrfs_key key;
2623 struct extent_buffer *eb;
2625 ASSERT(path);
2626 ASSERT(found_key);
2628 key.type = key_type;
2629 key.objectid = iobjectid;
2630 key.offset = ioff;
2632 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
2633 if (ret < 0)
2634 return ret;
2636 eb = path->nodes[0];
2637 if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
2638 ret = btrfs_next_leaf(fs_root, path);
2639 if (ret)
2640 return ret;
2641 eb = path->nodes[0];
2644 btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
2645 if (found_key->type != key.type ||
2646 found_key->objectid != key.objectid)
2647 return 1;
2649 return 0;
2653 * look for key in the tree. path is filled in with nodes along the way
2654 * if key is found, we return zero and you can find the item in the leaf
2655 * level of the path (level 0)
2657 * If the key isn't found, the path points to the slot where it should
2658 * be inserted, and 1 is returned. If there are other errors during the
2659 * search a negative error number is returned.
2661 * if ins_len > 0, nodes and leaves will be split as we walk down the
2662 * tree. if ins_len < 0, nodes will be merged as we walk down the tree (if
2663 * possible)
2665 int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2666 *root, struct btrfs_key *key, struct btrfs_path *p, int
2667 ins_len, int cow)
2669 struct extent_buffer *b;
2670 int slot;
2671 int ret;
2672 int err;
2673 int level;
2674 int lowest_unlock = 1;
2675 int root_lock;
2676 /* everything at write_lock_level or lower must be write locked */
2677 int write_lock_level = 0;
2678 u8 lowest_level = 0;
2679 int min_write_lock_level;
2680 int prev_cmp;
2682 lowest_level = p->lowest_level;
2683 WARN_ON(lowest_level && ins_len > 0);
2684 WARN_ON(p->nodes[0] != NULL);
2685 BUG_ON(!cow && ins_len);
2687 if (ins_len < 0) {
2688 lowest_unlock = 2;
2690 /* when we are removing items, we might have to go up to level
2691 * two as we update tree pointers Make sure we keep write
2692 * for those levels as well
2694 write_lock_level = 2;
2695 } else if (ins_len > 0) {
2697 * for inserting items, make sure we have a write lock on
2698 * level 1 so we can update keys
2700 write_lock_level = 1;
2703 if (!cow)
2704 write_lock_level = -1;
2706 if (cow && (p->keep_locks || p->lowest_level))
2707 write_lock_level = BTRFS_MAX_LEVEL;
2709 min_write_lock_level = write_lock_level;
2711 again:
2712 prev_cmp = -1;
2714 * we try very hard to do read locks on the root
2716 root_lock = BTRFS_READ_LOCK;
2717 level = 0;
2718 if (p->search_commit_root) {
2720 * the commit roots are read only
2721 * so we always do read locks
2723 if (p->need_commit_sem)
2724 down_read(&root->fs_info->commit_root_sem);
2725 b = root->commit_root;
2726 extent_buffer_get(b);
2727 level = btrfs_header_level(b);
2728 if (p->need_commit_sem)
2729 up_read(&root->fs_info->commit_root_sem);
2730 if (!p->skip_locking)
2731 btrfs_tree_read_lock(b);
2732 } else {
2733 if (p->skip_locking) {
2734 b = btrfs_root_node(root);
2735 level = btrfs_header_level(b);
2736 } else {
2737 /* we don't know the level of the root node
2738 * until we actually have it read locked
2740 b = btrfs_read_lock_root_node(root);
2741 level = btrfs_header_level(b);
2742 if (level <= write_lock_level) {
2743 /* whoops, must trade for write lock */
2744 btrfs_tree_read_unlock(b);
2745 free_extent_buffer(b);
2746 b = btrfs_lock_root_node(root);
2747 root_lock = BTRFS_WRITE_LOCK;
2749 /* the level might have changed, check again */
2750 level = btrfs_header_level(b);
2754 p->nodes[level] = b;
2755 if (!p->skip_locking)
2756 p->locks[level] = root_lock;
2758 while (b) {
2759 level = btrfs_header_level(b);
2762 * setup the path here so we can release it under lock
2763 * contention with the cow code
2765 if (cow) {
2767 * if we don't really need to cow this block
2768 * then we don't want to set the path blocking,
2769 * so we test it here
2771 if (!should_cow_block(trans, root, b)) {
2772 trans->dirty = true;
2773 goto cow_done;
2777 * must have write locks on this node and the
2778 * parent
2780 if (level > write_lock_level ||
2781 (level + 1 > write_lock_level &&
2782 level + 1 < BTRFS_MAX_LEVEL &&
2783 p->nodes[level + 1])) {
2784 write_lock_level = level + 1;
2785 btrfs_release_path(p);
2786 goto again;
2789 btrfs_set_path_blocking(p);
2790 err = btrfs_cow_block(trans, root, b,
2791 p->nodes[level + 1],
2792 p->slots[level + 1], &b);
2793 if (err) {
2794 ret = err;
2795 goto done;
2798 cow_done:
2799 p->nodes[level] = b;
2800 btrfs_clear_path_blocking(p, NULL, 0);
2803 * we have a lock on b and as long as we aren't changing
2804 * the tree, there is no way to for the items in b to change.
2805 * It is safe to drop the lock on our parent before we
2806 * go through the expensive btree search on b.
2808 * If we're inserting or deleting (ins_len != 0), then we might
2809 * be changing slot zero, which may require changing the parent.
2810 * So, we can't drop the lock until after we know which slot
2811 * we're operating on.
2813 if (!ins_len && !p->keep_locks) {
2814 int u = level + 1;
2816 if (u < BTRFS_MAX_LEVEL && p->locks[u]) {
2817 btrfs_tree_unlock_rw(p->nodes[u], p->locks[u]);
2818 p->locks[u] = 0;
2822 ret = key_search(b, key, level, &prev_cmp, &slot);
2824 if (level != 0) {
2825 int dec = 0;
2826 if (ret && slot > 0) {
2827 dec = 1;
2828 slot -= 1;
2830 p->slots[level] = slot;
2831 err = setup_nodes_for_search(trans, root, p, b, level,
2832 ins_len, &write_lock_level);
2833 if (err == -EAGAIN)
2834 goto again;
2835 if (err) {
2836 ret = err;
2837 goto done;
2839 b = p->nodes[level];
2840 slot = p->slots[level];
2843 * slot 0 is special, if we change the key
2844 * we have to update the parent pointer
2845 * which means we must have a write lock
2846 * on the parent
2848 if (slot == 0 && ins_len &&
2849 write_lock_level < level + 1) {
2850 write_lock_level = level + 1;
2851 btrfs_release_path(p);
2852 goto again;
2855 unlock_up(p, level, lowest_unlock,
2856 min_write_lock_level, &write_lock_level);
2858 if (level == lowest_level) {
2859 if (dec)
2860 p->slots[level]++;
2861 goto done;
2864 err = read_block_for_search(trans, root, p,
2865 &b, level, slot, key, 0);
2866 if (err == -EAGAIN)
2867 goto again;
2868 if (err) {
2869 ret = err;
2870 goto done;
2873 if (!p->skip_locking) {
2874 level = btrfs_header_level(b);
2875 if (level <= write_lock_level) {
2876 err = btrfs_try_tree_write_lock(b);
2877 if (!err) {
2878 btrfs_set_path_blocking(p);
2879 btrfs_tree_lock(b);
2880 btrfs_clear_path_blocking(p, b,
2881 BTRFS_WRITE_LOCK);
2883 p->locks[level] = BTRFS_WRITE_LOCK;
2884 } else {
2885 err = btrfs_tree_read_lock_atomic(b);
2886 if (!err) {
2887 btrfs_set_path_blocking(p);
2888 btrfs_tree_read_lock(b);
2889 btrfs_clear_path_blocking(p, b,
2890 BTRFS_READ_LOCK);
2892 p->locks[level] = BTRFS_READ_LOCK;
2894 p->nodes[level] = b;
2896 } else {
2897 p->slots[level] = slot;
2898 if (ins_len > 0 &&
2899 btrfs_leaf_free_space(root, b) < ins_len) {
2900 if (write_lock_level < 1) {
2901 write_lock_level = 1;
2902 btrfs_release_path(p);
2903 goto again;
2906 btrfs_set_path_blocking(p);
2907 err = split_leaf(trans, root, key,
2908 p, ins_len, ret == 0);
2909 btrfs_clear_path_blocking(p, NULL, 0);
2911 BUG_ON(err > 0);
2912 if (err) {
2913 ret = err;
2914 goto done;
2917 if (!p->search_for_split)
2918 unlock_up(p, level, lowest_unlock,
2919 min_write_lock_level, &write_lock_level);
2920 goto done;
2923 ret = 1;
2924 done:
2926 * we don't really know what they plan on doing with the path
2927 * from here on, so for now just mark it as blocking
2929 if (!p->leave_spinning)
2930 btrfs_set_path_blocking(p);
2931 if (ret < 0 && !p->skip_release_on_error)
2932 btrfs_release_path(p);
2933 return ret;
2937 * Like btrfs_search_slot, this looks for a key in the given tree. It uses the
2938 * current state of the tree together with the operations recorded in the tree
2939 * modification log to search for the key in a previous version of this tree, as
2940 * denoted by the time_seq parameter.
2942 * Naturally, there is no support for insert, delete or cow operations.
2944 * The resulting path and return value will be set up as if we called
2945 * btrfs_search_slot at that point in time with ins_len and cow both set to 0.
2947 int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2948 struct btrfs_path *p, u64 time_seq)
2950 struct extent_buffer *b;
2951 int slot;
2952 int ret;
2953 int err;
2954 int level;
2955 int lowest_unlock = 1;
2956 u8 lowest_level = 0;
2957 int prev_cmp = -1;
2959 lowest_level = p->lowest_level;
2960 WARN_ON(p->nodes[0] != NULL);
2962 if (p->search_commit_root) {
2963 BUG_ON(time_seq);
2964 return btrfs_search_slot(NULL, root, key, p, 0, 0);
2967 again:
2968 b = get_old_root(root, time_seq);
2969 level = btrfs_header_level(b);
2970 p->locks[level] = BTRFS_READ_LOCK;
2972 while (b) {
2973 level = btrfs_header_level(b);
2974 p->nodes[level] = b;
2975 btrfs_clear_path_blocking(p, NULL, 0);
2978 * we have a lock on b and as long as we aren't changing
2979 * the tree, there is no way to for the items in b to change.
2980 * It is safe to drop the lock on our parent before we
2981 * go through the expensive btree search on b.
2983 btrfs_unlock_up_safe(p, level + 1);
2986 * Since we can unwind eb's we want to do a real search every
2987 * time.
2989 prev_cmp = -1;
2990 ret = key_search(b, key, level, &prev_cmp, &slot);
2992 if (level != 0) {
2993 int dec = 0;
2994 if (ret && slot > 0) {
2995 dec = 1;
2996 slot -= 1;
2998 p->slots[level] = slot;
2999 unlock_up(p, level, lowest_unlock, 0, NULL);
3001 if (level == lowest_level) {
3002 if (dec)
3003 p->slots[level]++;
3004 goto done;
3007 err = read_block_for_search(NULL, root, p, &b, level,
3008 slot, key, time_seq);
3009 if (err == -EAGAIN)
3010 goto again;
3011 if (err) {
3012 ret = err;
3013 goto done;
3016 level = btrfs_header_level(b);
3017 err = btrfs_tree_read_lock_atomic(b);
3018 if (!err) {
3019 btrfs_set_path_blocking(p);
3020 btrfs_tree_read_lock(b);
3021 btrfs_clear_path_blocking(p, b,
3022 BTRFS_READ_LOCK);
3024 b = tree_mod_log_rewind(root->fs_info, p, b, time_seq);
3025 if (!b) {
3026 ret = -ENOMEM;
3027 goto done;
3029 p->locks[level] = BTRFS_READ_LOCK;
3030 p->nodes[level] = b;
3031 } else {
3032 p->slots[level] = slot;
3033 unlock_up(p, level, lowest_unlock, 0, NULL);
3034 goto done;
3037 ret = 1;
3038 done:
3039 if (!p->leave_spinning)
3040 btrfs_set_path_blocking(p);
3041 if (ret < 0)
3042 btrfs_release_path(p);
3044 return ret;
3048 * helper to use instead of search slot if no exact match is needed but
3049 * instead the next or previous item should be returned.
3050 * When find_higher is true, the next higher item is returned, the next lower
3051 * otherwise.
3052 * When return_any and find_higher are both true, and no higher item is found,
3053 * return the next lower instead.
3054 * When return_any is true and find_higher is false, and no lower item is found,
3055 * return the next higher instead.
3056 * It returns 0 if any item is found, 1 if none is found (tree empty), and
3057 * < 0 on error
3059 int btrfs_search_slot_for_read(struct btrfs_root *root,
3060 struct btrfs_key *key, struct btrfs_path *p,
3061 int find_higher, int return_any)
3063 int ret;
3064 struct extent_buffer *leaf;
3066 again:
3067 ret = btrfs_search_slot(NULL, root, key, p, 0, 0);
3068 if (ret <= 0)
3069 return ret;
3071 * a return value of 1 means the path is at the position where the
3072 * item should be inserted. Normally this is the next bigger item,
3073 * but in case the previous item is the last in a leaf, path points
3074 * to the first free slot in the previous leaf, i.e. at an invalid
3075 * item.
3077 leaf = p->nodes[0];
3079 if (find_higher) {
3080 if (p->slots[0] >= btrfs_header_nritems(leaf)) {
3081 ret = btrfs_next_leaf(root, p);
3082 if (ret <= 0)
3083 return ret;
3084 if (!return_any)
3085 return 1;
3087 * no higher item found, return the next
3088 * lower instead
3090 return_any = 0;
3091 find_higher = 0;
3092 btrfs_release_path(p);
3093 goto again;
3095 } else {
3096 if (p->slots[0] == 0) {
3097 ret = btrfs_prev_leaf(root, p);
3098 if (ret < 0)
3099 return ret;
3100 if (!ret) {
3101 leaf = p->nodes[0];
3102 if (p->slots[0] == btrfs_header_nritems(leaf))
3103 p->slots[0]--;
3104 return 0;
3106 if (!return_any)
3107 return 1;
3109 * no lower item found, return the next
3110 * higher instead
3112 return_any = 0;
3113 find_higher = 1;
3114 btrfs_release_path(p);
3115 goto again;
3116 } else {
3117 --p->slots[0];
3120 return 0;
3124 * adjust the pointers going up the tree, starting at level
3125 * making sure the right key of each node is points to 'key'.
3126 * This is used after shifting pointers to the left, so it stops
3127 * fixing up pointers when a given leaf/node is not in slot 0 of the
3128 * higher levels
3131 static void fixup_low_keys(struct btrfs_fs_info *fs_info,
3132 struct btrfs_path *path,
3133 struct btrfs_disk_key *key, int level)
3135 int i;
3136 struct extent_buffer *t;
3138 for (i = level; i < BTRFS_MAX_LEVEL; i++) {
3139 int tslot = path->slots[i];
3140 if (!path->nodes[i])
3141 break;
3142 t = path->nodes[i];
3143 tree_mod_log_set_node_key(fs_info, t, tslot, 1);
3144 btrfs_set_node_key(t, key, tslot);
3145 btrfs_mark_buffer_dirty(path->nodes[i]);
3146 if (tslot != 0)
3147 break;
3152 * update item key.
3154 * This function isn't completely safe. It's the caller's responsibility
3155 * that the new key won't break the order
3157 void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
3158 struct btrfs_path *path,
3159 struct btrfs_key *new_key)
3161 struct btrfs_disk_key disk_key;
3162 struct extent_buffer *eb;
3163 int slot;
3165 eb = path->nodes[0];
3166 slot = path->slots[0];
3167 if (slot > 0) {
3168 btrfs_item_key(eb, &disk_key, slot - 1);
3169 BUG_ON(comp_keys(&disk_key, new_key) >= 0);
3171 if (slot < btrfs_header_nritems(eb) - 1) {
3172 btrfs_item_key(eb, &disk_key, slot + 1);
3173 BUG_ON(comp_keys(&disk_key, new_key) <= 0);
3176 btrfs_cpu_key_to_disk(&disk_key, new_key);
3177 btrfs_set_item_key(eb, &disk_key, slot);
3178 btrfs_mark_buffer_dirty(eb);
3179 if (slot == 0)
3180 fixup_low_keys(fs_info, path, &disk_key, 1);
3184 * try to push data from one node into the next node left in the
3185 * tree.
3187 * returns 0 if some ptrs were pushed left, < 0 if there was some horrible
3188 * error, and > 0 if there was no room in the left hand block.
3190 static int push_node_left(struct btrfs_trans_handle *trans,
3191 struct btrfs_root *root, struct extent_buffer *dst,
3192 struct extent_buffer *src, int empty)
3194 int push_items = 0;
3195 int src_nritems;
3196 int dst_nritems;
3197 int ret = 0;
3199 src_nritems = btrfs_header_nritems(src);
3200 dst_nritems = btrfs_header_nritems(dst);
3201 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3202 WARN_ON(btrfs_header_generation(src) != trans->transid);
3203 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3205 if (!empty && src_nritems <= 8)
3206 return 1;
3208 if (push_items <= 0)
3209 return 1;
3211 if (empty) {
3212 push_items = min(src_nritems, push_items);
3213 if (push_items < src_nritems) {
3214 /* leave at least 8 pointers in the node if
3215 * we aren't going to empty it
3217 if (src_nritems - push_items < 8) {
3218 if (push_items <= 8)
3219 return 1;
3220 push_items -= 8;
3223 } else
3224 push_items = min(src_nritems - 8, push_items);
3226 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, dst_nritems, 0,
3227 push_items);
3228 if (ret) {
3229 btrfs_abort_transaction(trans, root, ret);
3230 return ret;
3232 copy_extent_buffer(dst, src,
3233 btrfs_node_key_ptr_offset(dst_nritems),
3234 btrfs_node_key_ptr_offset(0),
3235 push_items * sizeof(struct btrfs_key_ptr));
3237 if (push_items < src_nritems) {
3239 * don't call tree_mod_log_eb_move here, key removal was already
3240 * fully logged by tree_mod_log_eb_copy above.
3242 memmove_extent_buffer(src, btrfs_node_key_ptr_offset(0),
3243 btrfs_node_key_ptr_offset(push_items),
3244 (src_nritems - push_items) *
3245 sizeof(struct btrfs_key_ptr));
3247 btrfs_set_header_nritems(src, src_nritems - push_items);
3248 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3249 btrfs_mark_buffer_dirty(src);
3250 btrfs_mark_buffer_dirty(dst);
3252 return ret;
3256 * try to push data from one node into the next node right in the
3257 * tree.
3259 * returns 0 if some ptrs were pushed, < 0 if there was some horrible
3260 * error, and > 0 if there was no room in the right hand block.
3262 * this will only push up to 1/2 the contents of the left node over
3264 static int balance_node_right(struct btrfs_trans_handle *trans,
3265 struct btrfs_root *root,
3266 struct extent_buffer *dst,
3267 struct extent_buffer *src)
3269 int push_items = 0;
3270 int max_push;
3271 int src_nritems;
3272 int dst_nritems;
3273 int ret = 0;
3275 WARN_ON(btrfs_header_generation(src) != trans->transid);
3276 WARN_ON(btrfs_header_generation(dst) != trans->transid);
3278 src_nritems = btrfs_header_nritems(src);
3279 dst_nritems = btrfs_header_nritems(dst);
3280 push_items = BTRFS_NODEPTRS_PER_BLOCK(root) - dst_nritems;
3281 if (push_items <= 0)
3282 return 1;
3284 if (src_nritems < 4)
3285 return 1;
3287 max_push = src_nritems / 2 + 1;
3288 /* don't try to empty the node */
3289 if (max_push >= src_nritems)
3290 return 1;
3292 if (max_push < push_items)
3293 push_items = max_push;
3295 tree_mod_log_eb_move(root->fs_info, dst, push_items, 0, dst_nritems);
3296 memmove_extent_buffer(dst, btrfs_node_key_ptr_offset(push_items),
3297 btrfs_node_key_ptr_offset(0),
3298 (dst_nritems) *
3299 sizeof(struct btrfs_key_ptr));
3301 ret = tree_mod_log_eb_copy(root->fs_info, dst, src, 0,
3302 src_nritems - push_items, push_items);
3303 if (ret) {
3304 btrfs_abort_transaction(trans, root, ret);
3305 return ret;
3307 copy_extent_buffer(dst, src,
3308 btrfs_node_key_ptr_offset(0),
3309 btrfs_node_key_ptr_offset(src_nritems - push_items),
3310 push_items * sizeof(struct btrfs_key_ptr));
3312 btrfs_set_header_nritems(src, src_nritems - push_items);
3313 btrfs_set_header_nritems(dst, dst_nritems + push_items);
3315 btrfs_mark_buffer_dirty(src);
3316 btrfs_mark_buffer_dirty(dst);
3318 return ret;
3322 * helper function to insert a new root level in the tree.
3323 * A new node is allocated, and a single item is inserted to
3324 * point to the existing root
3326 * returns zero on success or < 0 on failure.
3328 static noinline int insert_new_root(struct btrfs_trans_handle *trans,
3329 struct btrfs_root *root,
3330 struct btrfs_path *path, int level)
3332 u64 lower_gen;
3333 struct extent_buffer *lower;
3334 struct extent_buffer *c;
3335 struct extent_buffer *old;
3336 struct btrfs_disk_key lower_key;
3338 BUG_ON(path->nodes[level]);
3339 BUG_ON(path->nodes[level-1] != root->node);
3341 lower = path->nodes[level-1];
3342 if (level == 1)
3343 btrfs_item_key(lower, &lower_key, 0);
3344 else
3345 btrfs_node_key(lower, &lower_key, 0);
3347 c = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3348 &lower_key, level, root->node->start, 0);
3349 if (IS_ERR(c))
3350 return PTR_ERR(c);
3352 root_add_used(root, root->nodesize);
3354 memset_extent_buffer(c, 0, 0, sizeof(struct btrfs_header));
3355 btrfs_set_header_nritems(c, 1);
3356 btrfs_set_header_level(c, level);
3357 btrfs_set_header_bytenr(c, c->start);
3358 btrfs_set_header_generation(c, trans->transid);
3359 btrfs_set_header_backref_rev(c, BTRFS_MIXED_BACKREF_REV);
3360 btrfs_set_header_owner(c, root->root_key.objectid);
3362 write_extent_buffer(c, root->fs_info->fsid, btrfs_header_fsid(),
3363 BTRFS_FSID_SIZE);
3365 write_extent_buffer(c, root->fs_info->chunk_tree_uuid,
3366 btrfs_header_chunk_tree_uuid(c), BTRFS_UUID_SIZE);
3368 btrfs_set_node_key(c, &lower_key, 0);
3369 btrfs_set_node_blockptr(c, 0, lower->start);
3370 lower_gen = btrfs_header_generation(lower);
3371 WARN_ON(lower_gen != trans->transid);
3373 btrfs_set_node_ptr_generation(c, 0, lower_gen);
3375 btrfs_mark_buffer_dirty(c);
3377 old = root->node;
3378 tree_mod_log_set_root_pointer(root, c, 0);
3379 rcu_assign_pointer(root->node, c);
3381 /* the super has an extra ref to root->node */
3382 free_extent_buffer(old);
3384 add_root_to_dirty_list(root);
3385 extent_buffer_get(c);
3386 path->nodes[level] = c;
3387 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
3388 path->slots[level] = 0;
3389 return 0;
3393 * worker function to insert a single pointer in a node.
3394 * the node should have enough room for the pointer already
3396 * slot and level indicate where you want the key to go, and
3397 * blocknr is the block the key points to.
3399 static void insert_ptr(struct btrfs_trans_handle *trans,
3400 struct btrfs_root *root, struct btrfs_path *path,
3401 struct btrfs_disk_key *key, u64 bytenr,
3402 int slot, int level)
3404 struct extent_buffer *lower;
3405 int nritems;
3406 int ret;
3408 BUG_ON(!path->nodes[level]);
3409 btrfs_assert_tree_locked(path->nodes[level]);
3410 lower = path->nodes[level];
3411 nritems = btrfs_header_nritems(lower);
3412 BUG_ON(slot > nritems);
3413 BUG_ON(nritems == BTRFS_NODEPTRS_PER_BLOCK(root));
3414 if (slot != nritems) {
3415 if (level)
3416 tree_mod_log_eb_move(root->fs_info, lower, slot + 1,
3417 slot, nritems - slot);
3418 memmove_extent_buffer(lower,
3419 btrfs_node_key_ptr_offset(slot + 1),
3420 btrfs_node_key_ptr_offset(slot),
3421 (nritems - slot) * sizeof(struct btrfs_key_ptr));
3423 if (level) {
3424 ret = tree_mod_log_insert_key(root->fs_info, lower, slot,
3425 MOD_LOG_KEY_ADD, GFP_NOFS);
3426 BUG_ON(ret < 0);
3428 btrfs_set_node_key(lower, key, slot);
3429 btrfs_set_node_blockptr(lower, slot, bytenr);
3430 WARN_ON(trans->transid == 0);
3431 btrfs_set_node_ptr_generation(lower, slot, trans->transid);
3432 btrfs_set_header_nritems(lower, nritems + 1);
3433 btrfs_mark_buffer_dirty(lower);
3437 * split the node at the specified level in path in two.
3438 * The path is corrected to point to the appropriate node after the split
3440 * Before splitting this tries to make some room in the node by pushing
3441 * left and right, if either one works, it returns right away.
3443 * returns 0 on success and < 0 on failure
3445 static noinline int split_node(struct btrfs_trans_handle *trans,
3446 struct btrfs_root *root,
3447 struct btrfs_path *path, int level)
3449 struct extent_buffer *c;
3450 struct extent_buffer *split;
3451 struct btrfs_disk_key disk_key;
3452 int mid;
3453 int ret;
3454 u32 c_nritems;
3456 c = path->nodes[level];
3457 WARN_ON(btrfs_header_generation(c) != trans->transid);
3458 if (c == root->node) {
3460 * trying to split the root, lets make a new one
3462 * tree mod log: We don't log_removal old root in
3463 * insert_new_root, because that root buffer will be kept as a
3464 * normal node. We are going to log removal of half of the
3465 * elements below with tree_mod_log_eb_copy. We're holding a
3466 * tree lock on the buffer, which is why we cannot race with
3467 * other tree_mod_log users.
3469 ret = insert_new_root(trans, root, path, level + 1);
3470 if (ret)
3471 return ret;
3472 } else {
3473 ret = push_nodes_for_insert(trans, root, path, level);
3474 c = path->nodes[level];
3475 if (!ret && btrfs_header_nritems(c) <
3476 BTRFS_NODEPTRS_PER_BLOCK(root) - 3)
3477 return 0;
3478 if (ret < 0)
3479 return ret;
3482 c_nritems = btrfs_header_nritems(c);
3483 mid = (c_nritems + 1) / 2;
3484 btrfs_node_key(c, &disk_key, mid);
3486 split = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
3487 &disk_key, level, c->start, 0);
3488 if (IS_ERR(split))
3489 return PTR_ERR(split);
3491 root_add_used(root, root->nodesize);
3493 memset_extent_buffer(split, 0, 0, sizeof(struct btrfs_header));
3494 btrfs_set_header_level(split, btrfs_header_level(c));
3495 btrfs_set_header_bytenr(split, split->start);
3496 btrfs_set_header_generation(split, trans->transid);
3497 btrfs_set_header_backref_rev(split, BTRFS_MIXED_BACKREF_REV);
3498 btrfs_set_header_owner(split, root->root_key.objectid);
3499 write_extent_buffer(split, root->fs_info->fsid,
3500 btrfs_header_fsid(), BTRFS_FSID_SIZE);
3501 write_extent_buffer(split, root->fs_info->chunk_tree_uuid,
3502 btrfs_header_chunk_tree_uuid(split),
3503 BTRFS_UUID_SIZE);
3505 ret = tree_mod_log_eb_copy(root->fs_info, split, c, 0,
3506 mid, c_nritems - mid);
3507 if (ret) {
3508 btrfs_abort_transaction(trans, root, ret);
3509 return ret;
3511 copy_extent_buffer(split, c,
3512 btrfs_node_key_ptr_offset(0),
3513 btrfs_node_key_ptr_offset(mid),
3514 (c_nritems - mid) * sizeof(struct btrfs_key_ptr));
3515 btrfs_set_header_nritems(split, c_nritems - mid);
3516 btrfs_set_header_nritems(c, mid);
3517 ret = 0;
3519 btrfs_mark_buffer_dirty(c);
3520 btrfs_mark_buffer_dirty(split);
3522 insert_ptr(trans, root, path, &disk_key, split->start,
3523 path->slots[level + 1] + 1, level + 1);
3525 if (path->slots[level] >= mid) {
3526 path->slots[level] -= mid;
3527 btrfs_tree_unlock(c);
3528 free_extent_buffer(c);
3529 path->nodes[level] = split;
3530 path->slots[level + 1] += 1;
3531 } else {
3532 btrfs_tree_unlock(split);
3533 free_extent_buffer(split);
3535 return ret;
3539 * how many bytes are required to store the items in a leaf. start
3540 * and nr indicate which items in the leaf to check. This totals up the
3541 * space used both by the item structs and the item data
3543 static int leaf_space_used(struct extent_buffer *l, int start, int nr)
3545 struct btrfs_item *start_item;
3546 struct btrfs_item *end_item;
3547 struct btrfs_map_token token;
3548 int data_len;
3549 int nritems = btrfs_header_nritems(l);
3550 int end = min(nritems, start + nr) - 1;
3552 if (!nr)
3553 return 0;
3554 btrfs_init_map_token(&token);
3555 start_item = btrfs_item_nr(start);
3556 end_item = btrfs_item_nr(end);
3557 data_len = btrfs_token_item_offset(l, start_item, &token) +
3558 btrfs_token_item_size(l, start_item, &token);
3559 data_len = data_len - btrfs_token_item_offset(l, end_item, &token);
3560 data_len += sizeof(struct btrfs_item) * nr;
3561 WARN_ON(data_len < 0);
3562 return data_len;
3566 * The space between the end of the leaf items and
3567 * the start of the leaf data. IOW, how much room
3568 * the leaf has left for both items and data
3570 noinline int btrfs_leaf_free_space(struct btrfs_root *root,
3571 struct extent_buffer *leaf)
3573 int nritems = btrfs_header_nritems(leaf);
3574 int ret;
3575 ret = BTRFS_LEAF_DATA_SIZE(root) - leaf_space_used(leaf, 0, nritems);
3576 if (ret < 0) {
3577 btrfs_crit(root->fs_info,
3578 "leaf free space ret %d, leaf data size %lu, used %d nritems %d",
3579 ret, (unsigned long) BTRFS_LEAF_DATA_SIZE(root),
3580 leaf_space_used(leaf, 0, nritems), nritems);
3582 return ret;
3586 * min slot controls the lowest index we're willing to push to the
3587 * right. We'll push up to and including min_slot, but no lower
3589 static noinline int __push_leaf_right(struct btrfs_trans_handle *trans,
3590 struct btrfs_root *root,
3591 struct btrfs_path *path,
3592 int data_size, int empty,
3593 struct extent_buffer *right,
3594 int free_space, u32 left_nritems,
3595 u32 min_slot)
3597 struct extent_buffer *left = path->nodes[0];
3598 struct extent_buffer *upper = path->nodes[1];
3599 struct btrfs_map_token token;
3600 struct btrfs_disk_key disk_key;
3601 int slot;
3602 u32 i;
3603 int push_space = 0;
3604 int push_items = 0;
3605 struct btrfs_item *item;
3606 u32 nr;
3607 u32 right_nritems;
3608 u32 data_end;
3609 u32 this_item_size;
3611 btrfs_init_map_token(&token);
3613 if (empty)
3614 nr = 0;
3615 else
3616 nr = max_t(u32, 1, min_slot);
3618 if (path->slots[0] >= left_nritems)
3619 push_space += data_size;
3621 slot = path->slots[1];
3622 i = left_nritems - 1;
3623 while (i >= nr) {
3624 item = btrfs_item_nr(i);
3626 if (!empty && push_items > 0) {
3627 if (path->slots[0] > i)
3628 break;
3629 if (path->slots[0] == i) {
3630 int space = btrfs_leaf_free_space(root, left);
3631 if (space + push_space * 2 > free_space)
3632 break;
3636 if (path->slots[0] == i)
3637 push_space += data_size;
3639 this_item_size = btrfs_item_size(left, item);
3640 if (this_item_size + sizeof(*item) + push_space > free_space)
3641 break;
3643 push_items++;
3644 push_space += this_item_size + sizeof(*item);
3645 if (i == 0)
3646 break;
3647 i--;
3650 if (push_items == 0)
3651 goto out_unlock;
3653 WARN_ON(!empty && push_items == left_nritems);
3655 /* push left to right */
3656 right_nritems = btrfs_header_nritems(right);
3658 push_space = btrfs_item_end_nr(left, left_nritems - push_items);
3659 push_space -= leaf_data_end(root, left);
3661 /* make room in the right data area */
3662 data_end = leaf_data_end(root, right);
3663 memmove_extent_buffer(right,
3664 btrfs_leaf_data(right) + data_end - push_space,
3665 btrfs_leaf_data(right) + data_end,
3666 BTRFS_LEAF_DATA_SIZE(root) - data_end);
3668 /* copy from the left data area */
3669 copy_extent_buffer(right, left, btrfs_leaf_data(right) +
3670 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3671 btrfs_leaf_data(left) + leaf_data_end(root, left),
3672 push_space);
3674 memmove_extent_buffer(right, btrfs_item_nr_offset(push_items),
3675 btrfs_item_nr_offset(0),
3676 right_nritems * sizeof(struct btrfs_item));
3678 /* copy the items from left to right */
3679 copy_extent_buffer(right, left, btrfs_item_nr_offset(0),
3680 btrfs_item_nr_offset(left_nritems - push_items),
3681 push_items * sizeof(struct btrfs_item));
3683 /* update the item pointers */
3684 right_nritems += push_items;
3685 btrfs_set_header_nritems(right, right_nritems);
3686 push_space = BTRFS_LEAF_DATA_SIZE(root);
3687 for (i = 0; i < right_nritems; i++) {
3688 item = btrfs_item_nr(i);
3689 push_space -= btrfs_token_item_size(right, item, &token);
3690 btrfs_set_token_item_offset(right, item, push_space, &token);
3693 left_nritems -= push_items;
3694 btrfs_set_header_nritems(left, left_nritems);
3696 if (left_nritems)
3697 btrfs_mark_buffer_dirty(left);
3698 else
3699 clean_tree_block(trans, root->fs_info, left);
3701 btrfs_mark_buffer_dirty(right);
3703 btrfs_item_key(right, &disk_key, 0);
3704 btrfs_set_node_key(upper, &disk_key, slot + 1);
3705 btrfs_mark_buffer_dirty(upper);
3707 /* then fixup the leaf pointer in the path */
3708 if (path->slots[0] >= left_nritems) {
3709 path->slots[0] -= left_nritems;
3710 if (btrfs_header_nritems(path->nodes[0]) == 0)
3711 clean_tree_block(trans, root->fs_info, path->nodes[0]);
3712 btrfs_tree_unlock(path->nodes[0]);
3713 free_extent_buffer(path->nodes[0]);
3714 path->nodes[0] = right;
3715 path->slots[1] += 1;
3716 } else {
3717 btrfs_tree_unlock(right);
3718 free_extent_buffer(right);
3720 return 0;
3722 out_unlock:
3723 btrfs_tree_unlock(right);
3724 free_extent_buffer(right);
3725 return 1;
3729 * push some data in the path leaf to the right, trying to free up at
3730 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3732 * returns 1 if the push failed because the other node didn't have enough
3733 * room, 0 if everything worked out and < 0 if there were major errors.
3735 * this will push starting from min_slot to the end of the leaf. It won't
3736 * push any slot lower than min_slot
3738 static int push_leaf_right(struct btrfs_trans_handle *trans, struct btrfs_root
3739 *root, struct btrfs_path *path,
3740 int min_data_size, int data_size,
3741 int empty, u32 min_slot)
3743 struct extent_buffer *left = path->nodes[0];
3744 struct extent_buffer *right;
3745 struct extent_buffer *upper;
3746 int slot;
3747 int free_space;
3748 u32 left_nritems;
3749 int ret;
3751 if (!path->nodes[1])
3752 return 1;
3754 slot = path->slots[1];
3755 upper = path->nodes[1];
3756 if (slot >= btrfs_header_nritems(upper) - 1)
3757 return 1;
3759 btrfs_assert_tree_locked(path->nodes[1]);
3761 right = read_node_slot(root, upper, slot + 1);
3762 if (right == NULL)
3763 return 1;
3765 btrfs_tree_lock(right);
3766 btrfs_set_lock_blocking(right);
3768 free_space = btrfs_leaf_free_space(root, right);
3769 if (free_space < data_size)
3770 goto out_unlock;
3772 /* cow and double check */
3773 ret = btrfs_cow_block(trans, root, right, upper,
3774 slot + 1, &right);
3775 if (ret)
3776 goto out_unlock;
3778 free_space = btrfs_leaf_free_space(root, right);
3779 if (free_space < data_size)
3780 goto out_unlock;
3782 left_nritems = btrfs_header_nritems(left);
3783 if (left_nritems == 0)
3784 goto out_unlock;
3786 if (path->slots[0] == left_nritems && !empty) {
3787 /* Key greater than all keys in the leaf, right neighbor has
3788 * enough room for it and we're not emptying our leaf to delete
3789 * it, therefore use right neighbor to insert the new item and
3790 * no need to touch/dirty our left leaft. */
3791 btrfs_tree_unlock(left);
3792 free_extent_buffer(left);
3793 path->nodes[0] = right;
3794 path->slots[0] = 0;
3795 path->slots[1]++;
3796 return 0;
3799 return __push_leaf_right(trans, root, path, min_data_size, empty,
3800 right, free_space, left_nritems, min_slot);
3801 out_unlock:
3802 btrfs_tree_unlock(right);
3803 free_extent_buffer(right);
3804 return 1;
3808 * push some data in the path leaf to the left, trying to free up at
3809 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3811 * max_slot can put a limit on how far into the leaf we'll push items. The
3812 * item at 'max_slot' won't be touched. Use (u32)-1 to make us do all the
3813 * items
3815 static noinline int __push_leaf_left(struct btrfs_trans_handle *trans,
3816 struct btrfs_root *root,
3817 struct btrfs_path *path, int data_size,
3818 int empty, struct extent_buffer *left,
3819 int free_space, u32 right_nritems,
3820 u32 max_slot)
3822 struct btrfs_disk_key disk_key;
3823 struct extent_buffer *right = path->nodes[0];
3824 int i;
3825 int push_space = 0;
3826 int push_items = 0;
3827 struct btrfs_item *item;
3828 u32 old_left_nritems;
3829 u32 nr;
3830 int ret = 0;
3831 u32 this_item_size;
3832 u32 old_left_item_size;
3833 struct btrfs_map_token token;
3835 btrfs_init_map_token(&token);
3837 if (empty)
3838 nr = min(right_nritems, max_slot);
3839 else
3840 nr = min(right_nritems - 1, max_slot);
3842 for (i = 0; i < nr; i++) {
3843 item = btrfs_item_nr(i);
3845 if (!empty && push_items > 0) {
3846 if (path->slots[0] < i)
3847 break;
3848 if (path->slots[0] == i) {
3849 int space = btrfs_leaf_free_space(root, right);
3850 if (space + push_space * 2 > free_space)
3851 break;
3855 if (path->slots[0] == i)
3856 push_space += data_size;
3858 this_item_size = btrfs_item_size(right, item);
3859 if (this_item_size + sizeof(*item) + push_space > free_space)
3860 break;
3862 push_items++;
3863 push_space += this_item_size + sizeof(*item);
3866 if (push_items == 0) {
3867 ret = 1;
3868 goto out;
3870 WARN_ON(!empty && push_items == btrfs_header_nritems(right));
3872 /* push data from right to left */
3873 copy_extent_buffer(left, right,
3874 btrfs_item_nr_offset(btrfs_header_nritems(left)),
3875 btrfs_item_nr_offset(0),
3876 push_items * sizeof(struct btrfs_item));
3878 push_space = BTRFS_LEAF_DATA_SIZE(root) -
3879 btrfs_item_offset_nr(right, push_items - 1);
3881 copy_extent_buffer(left, right, btrfs_leaf_data(left) +
3882 leaf_data_end(root, left) - push_space,
3883 btrfs_leaf_data(right) +
3884 btrfs_item_offset_nr(right, push_items - 1),
3885 push_space);
3886 old_left_nritems = btrfs_header_nritems(left);
3887 BUG_ON(old_left_nritems <= 0);
3889 old_left_item_size = btrfs_item_offset_nr(left, old_left_nritems - 1);
3890 for (i = old_left_nritems; i < old_left_nritems + push_items; i++) {
3891 u32 ioff;
3893 item = btrfs_item_nr(i);
3895 ioff = btrfs_token_item_offset(left, item, &token);
3896 btrfs_set_token_item_offset(left, item,
3897 ioff - (BTRFS_LEAF_DATA_SIZE(root) - old_left_item_size),
3898 &token);
3900 btrfs_set_header_nritems(left, old_left_nritems + push_items);
3902 /* fixup right node */
3903 if (push_items > right_nritems)
3904 WARN(1, KERN_CRIT "push items %d nr %u\n", push_items,
3905 right_nritems);
3907 if (push_items < right_nritems) {
3908 push_space = btrfs_item_offset_nr(right, push_items - 1) -
3909 leaf_data_end(root, right);
3910 memmove_extent_buffer(right, btrfs_leaf_data(right) +
3911 BTRFS_LEAF_DATA_SIZE(root) - push_space,
3912 btrfs_leaf_data(right) +
3913 leaf_data_end(root, right), push_space);
3915 memmove_extent_buffer(right, btrfs_item_nr_offset(0),
3916 btrfs_item_nr_offset(push_items),
3917 (btrfs_header_nritems(right) - push_items) *
3918 sizeof(struct btrfs_item));
3920 right_nritems -= push_items;
3921 btrfs_set_header_nritems(right, right_nritems);
3922 push_space = BTRFS_LEAF_DATA_SIZE(root);
3923 for (i = 0; i < right_nritems; i++) {
3924 item = btrfs_item_nr(i);
3926 push_space = push_space - btrfs_token_item_size(right,
3927 item, &token);
3928 btrfs_set_token_item_offset(right, item, push_space, &token);
3931 btrfs_mark_buffer_dirty(left);
3932 if (right_nritems)
3933 btrfs_mark_buffer_dirty(right);
3934 else
3935 clean_tree_block(trans, root->fs_info, right);
3937 btrfs_item_key(right, &disk_key, 0);
3938 fixup_low_keys(root->fs_info, path, &disk_key, 1);
3940 /* then fixup the leaf pointer in the path */
3941 if (path->slots[0] < push_items) {
3942 path->slots[0] += old_left_nritems;
3943 btrfs_tree_unlock(path->nodes[0]);
3944 free_extent_buffer(path->nodes[0]);
3945 path->nodes[0] = left;
3946 path->slots[1] -= 1;
3947 } else {
3948 btrfs_tree_unlock(left);
3949 free_extent_buffer(left);
3950 path->slots[0] -= push_items;
3952 BUG_ON(path->slots[0] < 0);
3953 return ret;
3954 out:
3955 btrfs_tree_unlock(left);
3956 free_extent_buffer(left);
3957 return ret;
3961 * push some data in the path leaf to the left, trying to free up at
3962 * least data_size bytes. returns zero if the push worked, nonzero otherwise
3964 * max_slot can put a limit on how far into the leaf we'll push items. The
3965 * item at 'max_slot' won't be touched. Use (u32)-1 to make us push all the
3966 * items
3968 static int push_leaf_left(struct btrfs_trans_handle *trans, struct btrfs_root
3969 *root, struct btrfs_path *path, int min_data_size,
3970 int data_size, int empty, u32 max_slot)
3972 struct extent_buffer *right = path->nodes[0];
3973 struct extent_buffer *left;
3974 int slot;
3975 int free_space;
3976 u32 right_nritems;
3977 int ret = 0;
3979 slot = path->slots[1];
3980 if (slot == 0)
3981 return 1;
3982 if (!path->nodes[1])
3983 return 1;
3985 right_nritems = btrfs_header_nritems(right);
3986 if (right_nritems == 0)
3987 return 1;
3989 btrfs_assert_tree_locked(path->nodes[1]);
3991 left = read_node_slot(root, path->nodes[1], slot - 1);
3992 if (left == NULL)
3993 return 1;
3995 btrfs_tree_lock(left);
3996 btrfs_set_lock_blocking(left);
3998 free_space = btrfs_leaf_free_space(root, left);
3999 if (free_space < data_size) {
4000 ret = 1;
4001 goto out;
4004 /* cow and double check */
4005 ret = btrfs_cow_block(trans, root, left,
4006 path->nodes[1], slot - 1, &left);
4007 if (ret) {
4008 /* we hit -ENOSPC, but it isn't fatal here */
4009 if (ret == -ENOSPC)
4010 ret = 1;
4011 goto out;
4014 free_space = btrfs_leaf_free_space(root, left);
4015 if (free_space < data_size) {
4016 ret = 1;
4017 goto out;
4020 return __push_leaf_left(trans, root, path, min_data_size,
4021 empty, left, free_space, right_nritems,
4022 max_slot);
4023 out:
4024 btrfs_tree_unlock(left);
4025 free_extent_buffer(left);
4026 return ret;
4030 * split the path's leaf in two, making sure there is at least data_size
4031 * available for the resulting leaf level of the path.
4033 static noinline void copy_for_split(struct btrfs_trans_handle *trans,
4034 struct btrfs_root *root,
4035 struct btrfs_path *path,
4036 struct extent_buffer *l,
4037 struct extent_buffer *right,
4038 int slot, int mid, int nritems)
4040 int data_copy_size;
4041 int rt_data_off;
4042 int i;
4043 struct btrfs_disk_key disk_key;
4044 struct btrfs_map_token token;
4046 btrfs_init_map_token(&token);
4048 nritems = nritems - mid;
4049 btrfs_set_header_nritems(right, nritems);
4050 data_copy_size = btrfs_item_end_nr(l, mid) - leaf_data_end(root, l);
4052 copy_extent_buffer(right, l, btrfs_item_nr_offset(0),
4053 btrfs_item_nr_offset(mid),
4054 nritems * sizeof(struct btrfs_item));
4056 copy_extent_buffer(right, l,
4057 btrfs_leaf_data(right) + BTRFS_LEAF_DATA_SIZE(root) -
4058 data_copy_size, btrfs_leaf_data(l) +
4059 leaf_data_end(root, l), data_copy_size);
4061 rt_data_off = BTRFS_LEAF_DATA_SIZE(root) -
4062 btrfs_item_end_nr(l, mid);
4064 for (i = 0; i < nritems; i++) {
4065 struct btrfs_item *item = btrfs_item_nr(i);
4066 u32 ioff;
4068 ioff = btrfs_token_item_offset(right, item, &token);
4069 btrfs_set_token_item_offset(right, item,
4070 ioff + rt_data_off, &token);
4073 btrfs_set_header_nritems(l, mid);
4074 btrfs_item_key(right, &disk_key, 0);
4075 insert_ptr(trans, root, path, &disk_key, right->start,
4076 path->slots[1] + 1, 1);
4078 btrfs_mark_buffer_dirty(right);
4079 btrfs_mark_buffer_dirty(l);
4080 BUG_ON(path->slots[0] != slot);
4082 if (mid <= slot) {
4083 btrfs_tree_unlock(path->nodes[0]);
4084 free_extent_buffer(path->nodes[0]);
4085 path->nodes[0] = right;
4086 path->slots[0] -= mid;
4087 path->slots[1] += 1;
4088 } else {
4089 btrfs_tree_unlock(right);
4090 free_extent_buffer(right);
4093 BUG_ON(path->slots[0] < 0);
4097 * double splits happen when we need to insert a big item in the middle
4098 * of a leaf. A double split can leave us with 3 mostly empty leaves:
4099 * leaf: [ slots 0 - N] [ our target ] [ N + 1 - total in leaf ]
4100 * A B C
4102 * We avoid this by trying to push the items on either side of our target
4103 * into the adjacent leaves. If all goes well we can avoid the double split
4104 * completely.
4106 static noinline int push_for_double_split(struct btrfs_trans_handle *trans,
4107 struct btrfs_root *root,
4108 struct btrfs_path *path,
4109 int data_size)
4111 int ret;
4112 int progress = 0;
4113 int slot;
4114 u32 nritems;
4115 int space_needed = data_size;
4117 slot = path->slots[0];
4118 if (slot < btrfs_header_nritems(path->nodes[0]))
4119 space_needed -= btrfs_leaf_free_space(root, path->nodes[0]);
4122 * try to push all the items after our slot into the
4123 * right leaf
4125 ret = push_leaf_right(trans, root, path, 1, space_needed, 0, slot);
4126 if (ret < 0)
4127 return ret;
4129 if (ret == 0)
4130 progress++;
4132 nritems = btrfs_header_nritems(path->nodes[0]);
4134 * our goal is to get our slot at the start or end of a leaf. If
4135 * we've done so we're done
4137 if (path->slots[0] == 0 || path->slots[0] == nritems)
4138 return 0;
4140 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4141 return 0;
4143 /* try to push all the items before our slot into the next leaf */
4144 slot = path->slots[0];
4145 ret = push_leaf_left(trans, root, path, 1, space_needed, 0, slot);
4146 if (ret < 0)
4147 return ret;
4149 if (ret == 0)
4150 progress++;
4152 if (progress)
4153 return 0;
4154 return 1;
4158 * split the path's leaf in two, making sure there is at least data_size
4159 * available for the resulting leaf level of the path.
4161 * returns 0 if all went well and < 0 on failure.
4163 static noinline int split_leaf(struct btrfs_trans_handle *trans,
4164 struct btrfs_root *root,
4165 struct btrfs_key *ins_key,
4166 struct btrfs_path *path, int data_size,
4167 int extend)
4169 struct btrfs_disk_key disk_key;
4170 struct extent_buffer *l;
4171 u32 nritems;
4172 int mid;
4173 int slot;
4174 struct extent_buffer *right;
4175 struct btrfs_fs_info *fs_info = root->fs_info;
4176 int ret = 0;
4177 int wret;
4178 int split;
4179 int num_doubles = 0;
4180 int tried_avoid_double = 0;
4182 l = path->nodes[0];
4183 slot = path->slots[0];
4184 if (extend && data_size + btrfs_item_size_nr(l, slot) +
4185 sizeof(struct btrfs_item) > BTRFS_LEAF_DATA_SIZE(root))
4186 return -EOVERFLOW;
4188 /* first try to make some room by pushing left and right */
4189 if (data_size && path->nodes[1]) {
4190 int space_needed = data_size;
4192 if (slot < btrfs_header_nritems(l))
4193 space_needed -= btrfs_leaf_free_space(root, l);
4195 wret = push_leaf_right(trans, root, path, space_needed,
4196 space_needed, 0, 0);
4197 if (wret < 0)
4198 return wret;
4199 if (wret) {
4200 wret = push_leaf_left(trans, root, path, space_needed,
4201 space_needed, 0, (u32)-1);
4202 if (wret < 0)
4203 return wret;
4205 l = path->nodes[0];
4207 /* did the pushes work? */
4208 if (btrfs_leaf_free_space(root, l) >= data_size)
4209 return 0;
4212 if (!path->nodes[1]) {
4213 ret = insert_new_root(trans, root, path, 1);
4214 if (ret)
4215 return ret;
4217 again:
4218 split = 1;
4219 l = path->nodes[0];
4220 slot = path->slots[0];
4221 nritems = btrfs_header_nritems(l);
4222 mid = (nritems + 1) / 2;
4224 if (mid <= slot) {
4225 if (nritems == 1 ||
4226 leaf_space_used(l, mid, nritems - mid) + data_size >
4227 BTRFS_LEAF_DATA_SIZE(root)) {
4228 if (slot >= nritems) {
4229 split = 0;
4230 } else {
4231 mid = slot;
4232 if (mid != nritems &&
4233 leaf_space_used(l, mid, nritems - mid) +
4234 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4235 if (data_size && !tried_avoid_double)
4236 goto push_for_double;
4237 split = 2;
4241 } else {
4242 if (leaf_space_used(l, 0, mid) + data_size >
4243 BTRFS_LEAF_DATA_SIZE(root)) {
4244 if (!extend && data_size && slot == 0) {
4245 split = 0;
4246 } else if ((extend || !data_size) && slot == 0) {
4247 mid = 1;
4248 } else {
4249 mid = slot;
4250 if (mid != nritems &&
4251 leaf_space_used(l, mid, nritems - mid) +
4252 data_size > BTRFS_LEAF_DATA_SIZE(root)) {
4253 if (data_size && !tried_avoid_double)
4254 goto push_for_double;
4255 split = 2;
4261 if (split == 0)
4262 btrfs_cpu_key_to_disk(&disk_key, ins_key);
4263 else
4264 btrfs_item_key(l, &disk_key, mid);
4266 right = btrfs_alloc_tree_block(trans, root, 0, root->root_key.objectid,
4267 &disk_key, 0, l->start, 0);
4268 if (IS_ERR(right))
4269 return PTR_ERR(right);
4271 root_add_used(root, root->nodesize);
4273 memset_extent_buffer(right, 0, 0, sizeof(struct btrfs_header));
4274 btrfs_set_header_bytenr(right, right->start);
4275 btrfs_set_header_generation(right, trans->transid);
4276 btrfs_set_header_backref_rev(right, BTRFS_MIXED_BACKREF_REV);
4277 btrfs_set_header_owner(right, root->root_key.objectid);
4278 btrfs_set_header_level(right, 0);
4279 write_extent_buffer(right, fs_info->fsid,
4280 btrfs_header_fsid(), BTRFS_FSID_SIZE);
4282 write_extent_buffer(right, fs_info->chunk_tree_uuid,
4283 btrfs_header_chunk_tree_uuid(right),
4284 BTRFS_UUID_SIZE);
4286 if (split == 0) {
4287 if (mid <= slot) {
4288 btrfs_set_header_nritems(right, 0);
4289 insert_ptr(trans, root, path, &disk_key, right->start,
4290 path->slots[1] + 1, 1);
4291 btrfs_tree_unlock(path->nodes[0]);
4292 free_extent_buffer(path->nodes[0]);
4293 path->nodes[0] = right;
4294 path->slots[0] = 0;
4295 path->slots[1] += 1;
4296 } else {
4297 btrfs_set_header_nritems(right, 0);
4298 insert_ptr(trans, root, path, &disk_key, right->start,
4299 path->slots[1], 1);
4300 btrfs_tree_unlock(path->nodes[0]);
4301 free_extent_buffer(path->nodes[0]);
4302 path->nodes[0] = right;
4303 path->slots[0] = 0;
4304 if (path->slots[1] == 0)
4305 fixup_low_keys(fs_info, path, &disk_key, 1);
4307 btrfs_mark_buffer_dirty(right);
4308 return ret;
4311 copy_for_split(trans, root, path, l, right, slot, mid, nritems);
4313 if (split == 2) {
4314 BUG_ON(num_doubles != 0);
4315 num_doubles++;
4316 goto again;
4319 return 0;
4321 push_for_double:
4322 push_for_double_split(trans, root, path, data_size);
4323 tried_avoid_double = 1;
4324 if (btrfs_leaf_free_space(root, path->nodes[0]) >= data_size)
4325 return 0;
4326 goto again;
4329 static noinline int setup_leaf_for_split(struct btrfs_trans_handle *trans,
4330 struct btrfs_root *root,
4331 struct btrfs_path *path, int ins_len)
4333 struct btrfs_key key;
4334 struct extent_buffer *leaf;
4335 struct btrfs_file_extent_item *fi;
4336 u64 extent_len = 0;
4337 u32 item_size;
4338 int ret;
4340 leaf = path->nodes[0];
4341 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4343 BUG_ON(key.type != BTRFS_EXTENT_DATA_KEY &&
4344 key.type != BTRFS_EXTENT_CSUM_KEY);
4346 if (btrfs_leaf_free_space(root, leaf) >= ins_len)
4347 return 0;
4349 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4350 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4351 fi = btrfs_item_ptr(leaf, path->slots[0],
4352 struct btrfs_file_extent_item);
4353 extent_len = btrfs_file_extent_num_bytes(leaf, fi);
4355 btrfs_release_path(path);
4357 path->keep_locks = 1;
4358 path->search_for_split = 1;
4359 ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
4360 path->search_for_split = 0;
4361 if (ret > 0)
4362 ret = -EAGAIN;
4363 if (ret < 0)
4364 goto err;
4366 ret = -EAGAIN;
4367 leaf = path->nodes[0];
4368 /* if our item isn't there, return now */
4369 if (item_size != btrfs_item_size_nr(leaf, path->slots[0]))
4370 goto err;
4372 /* the leaf has changed, it now has room. return now */
4373 if (btrfs_leaf_free_space(root, path->nodes[0]) >= ins_len)
4374 goto err;
4376 if (key.type == BTRFS_EXTENT_DATA_KEY) {
4377 fi = btrfs_item_ptr(leaf, path->slots[0],
4378 struct btrfs_file_extent_item);
4379 if (extent_len != btrfs_file_extent_num_bytes(leaf, fi))
4380 goto err;
4383 btrfs_set_path_blocking(path);
4384 ret = split_leaf(trans, root, &key, path, ins_len, 1);
4385 if (ret)
4386 goto err;
4388 path->keep_locks = 0;
4389 btrfs_unlock_up_safe(path, 1);
4390 return 0;
4391 err:
4392 path->keep_locks = 0;
4393 return ret;
4396 static noinline int split_item(struct btrfs_trans_handle *trans,
4397 struct btrfs_root *root,
4398 struct btrfs_path *path,
4399 struct btrfs_key *new_key,
4400 unsigned long split_offset)
4402 struct extent_buffer *leaf;
4403 struct btrfs_item *item;
4404 struct btrfs_item *new_item;
4405 int slot;
4406 char *buf;
4407 u32 nritems;
4408 u32 item_size;
4409 u32 orig_offset;
4410 struct btrfs_disk_key disk_key;
4412 leaf = path->nodes[0];
4413 BUG_ON(btrfs_leaf_free_space(root, leaf) < sizeof(struct btrfs_item));
4415 btrfs_set_path_blocking(path);
4417 item = btrfs_item_nr(path->slots[0]);
4418 orig_offset = btrfs_item_offset(leaf, item);
4419 item_size = btrfs_item_size(leaf, item);
4421 buf = kmalloc(item_size, GFP_NOFS);
4422 if (!buf)
4423 return -ENOMEM;
4425 read_extent_buffer(leaf, buf, btrfs_item_ptr_offset(leaf,
4426 path->slots[0]), item_size);
4428 slot = path->slots[0] + 1;
4429 nritems = btrfs_header_nritems(leaf);
4430 if (slot != nritems) {
4431 /* shift the items */
4432 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + 1),
4433 btrfs_item_nr_offset(slot),
4434 (nritems - slot) * sizeof(struct btrfs_item));
4437 btrfs_cpu_key_to_disk(&disk_key, new_key);
4438 btrfs_set_item_key(leaf, &disk_key, slot);
4440 new_item = btrfs_item_nr(slot);
4442 btrfs_set_item_offset(leaf, new_item, orig_offset);
4443 btrfs_set_item_size(leaf, new_item, item_size - split_offset);
4445 btrfs_set_item_offset(leaf, item,
4446 orig_offset + item_size - split_offset);
4447 btrfs_set_item_size(leaf, item, split_offset);
4449 btrfs_set_header_nritems(leaf, nritems + 1);
4451 /* write the data for the start of the original item */
4452 write_extent_buffer(leaf, buf,
4453 btrfs_item_ptr_offset(leaf, path->slots[0]),
4454 split_offset);
4456 /* write the data for the new item */
4457 write_extent_buffer(leaf, buf + split_offset,
4458 btrfs_item_ptr_offset(leaf, slot),
4459 item_size - split_offset);
4460 btrfs_mark_buffer_dirty(leaf);
4462 BUG_ON(btrfs_leaf_free_space(root, leaf) < 0);
4463 kfree(buf);
4464 return 0;
4468 * This function splits a single item into two items,
4469 * giving 'new_key' to the new item and splitting the
4470 * old one at split_offset (from the start of the item).
4472 * The path may be released by this operation. After
4473 * the split, the path is pointing to the old item. The
4474 * new item is going to be in the same node as the old one.
4476 * Note, the item being split must be smaller enough to live alone on
4477 * a tree block with room for one extra struct btrfs_item
4479 * This allows us to split the item in place, keeping a lock on the
4480 * leaf the entire time.
4482 int btrfs_split_item(struct btrfs_trans_handle *trans,
4483 struct btrfs_root *root,
4484 struct btrfs_path *path,
4485 struct btrfs_key *new_key,
4486 unsigned long split_offset)
4488 int ret;
4489 ret = setup_leaf_for_split(trans, root, path,
4490 sizeof(struct btrfs_item));
4491 if (ret)
4492 return ret;
4494 ret = split_item(trans, root, path, new_key, split_offset);
4495 return ret;
4499 * This function duplicate a item, giving 'new_key' to the new item.
4500 * It guarantees both items live in the same tree leaf and the new item
4501 * is contiguous with the original item.
4503 * This allows us to split file extent in place, keeping a lock on the
4504 * leaf the entire time.
4506 int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
4507 struct btrfs_root *root,
4508 struct btrfs_path *path,
4509 struct btrfs_key *new_key)
4511 struct extent_buffer *leaf;
4512 int ret;
4513 u32 item_size;
4515 leaf = path->nodes[0];
4516 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
4517 ret = setup_leaf_for_split(trans, root, path,
4518 item_size + sizeof(struct btrfs_item));
4519 if (ret)
4520 return ret;
4522 path->slots[0]++;
4523 setup_items_for_insert(root, path, new_key, &item_size,
4524 item_size, item_size +
4525 sizeof(struct btrfs_item), 1);
4526 leaf = path->nodes[0];
4527 memcpy_extent_buffer(leaf,
4528 btrfs_item_ptr_offset(leaf, path->slots[0]),
4529 btrfs_item_ptr_offset(leaf, path->slots[0] - 1),
4530 item_size);
4531 return 0;
4535 * make the item pointed to by the path smaller. new_size indicates
4536 * how small to make it, and from_end tells us if we just chop bytes
4537 * off the end of the item or if we shift the item to chop bytes off
4538 * the front.
4540 void btrfs_truncate_item(struct btrfs_root *root, struct btrfs_path *path,
4541 u32 new_size, int from_end)
4543 int slot;
4544 struct extent_buffer *leaf;
4545 struct btrfs_item *item;
4546 u32 nritems;
4547 unsigned int data_end;
4548 unsigned int old_data_start;
4549 unsigned int old_size;
4550 unsigned int size_diff;
4551 int i;
4552 struct btrfs_map_token token;
4554 btrfs_init_map_token(&token);
4556 leaf = path->nodes[0];
4557 slot = path->slots[0];
4559 old_size = btrfs_item_size_nr(leaf, slot);
4560 if (old_size == new_size)
4561 return;
4563 nritems = btrfs_header_nritems(leaf);
4564 data_end = leaf_data_end(root, leaf);
4566 old_data_start = btrfs_item_offset_nr(leaf, slot);
4568 size_diff = old_size - new_size;
4570 BUG_ON(slot < 0);
4571 BUG_ON(slot >= nritems);
4574 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4576 /* first correct the data pointers */
4577 for (i = slot; i < nritems; i++) {
4578 u32 ioff;
4579 item = btrfs_item_nr(i);
4581 ioff = btrfs_token_item_offset(leaf, item, &token);
4582 btrfs_set_token_item_offset(leaf, item,
4583 ioff + size_diff, &token);
4586 /* shift the data */
4587 if (from_end) {
4588 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4589 data_end + size_diff, btrfs_leaf_data(leaf) +
4590 data_end, old_data_start + new_size - data_end);
4591 } else {
4592 struct btrfs_disk_key disk_key;
4593 u64 offset;
4595 btrfs_item_key(leaf, &disk_key, slot);
4597 if (btrfs_disk_key_type(&disk_key) == BTRFS_EXTENT_DATA_KEY) {
4598 unsigned long ptr;
4599 struct btrfs_file_extent_item *fi;
4601 fi = btrfs_item_ptr(leaf, slot,
4602 struct btrfs_file_extent_item);
4603 fi = (struct btrfs_file_extent_item *)(
4604 (unsigned long)fi - size_diff);
4606 if (btrfs_file_extent_type(leaf, fi) ==
4607 BTRFS_FILE_EXTENT_INLINE) {
4608 ptr = btrfs_item_ptr_offset(leaf, slot);
4609 memmove_extent_buffer(leaf, ptr,
4610 (unsigned long)fi,
4611 BTRFS_FILE_EXTENT_INLINE_DATA_START);
4615 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4616 data_end + size_diff, btrfs_leaf_data(leaf) +
4617 data_end, old_data_start - data_end);
4619 offset = btrfs_disk_key_offset(&disk_key);
4620 btrfs_set_disk_key_offset(&disk_key, offset + size_diff);
4621 btrfs_set_item_key(leaf, &disk_key, slot);
4622 if (slot == 0)
4623 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4626 item = btrfs_item_nr(slot);
4627 btrfs_set_item_size(leaf, item, new_size);
4628 btrfs_mark_buffer_dirty(leaf);
4630 if (btrfs_leaf_free_space(root, leaf) < 0) {
4631 btrfs_print_leaf(root, leaf);
4632 BUG();
4637 * make the item pointed to by the path bigger, data_size is the added size.
4639 void btrfs_extend_item(struct btrfs_root *root, struct btrfs_path *path,
4640 u32 data_size)
4642 int slot;
4643 struct extent_buffer *leaf;
4644 struct btrfs_item *item;
4645 u32 nritems;
4646 unsigned int data_end;
4647 unsigned int old_data;
4648 unsigned int old_size;
4649 int i;
4650 struct btrfs_map_token token;
4652 btrfs_init_map_token(&token);
4654 leaf = path->nodes[0];
4656 nritems = btrfs_header_nritems(leaf);
4657 data_end = leaf_data_end(root, leaf);
4659 if (btrfs_leaf_free_space(root, leaf) < data_size) {
4660 btrfs_print_leaf(root, leaf);
4661 BUG();
4663 slot = path->slots[0];
4664 old_data = btrfs_item_end_nr(leaf, slot);
4666 BUG_ON(slot < 0);
4667 if (slot >= nritems) {
4668 btrfs_print_leaf(root, leaf);
4669 btrfs_crit(root->fs_info, "slot %d too large, nritems %d",
4670 slot, nritems);
4671 BUG_ON(1);
4675 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4677 /* first correct the data pointers */
4678 for (i = slot; i < nritems; i++) {
4679 u32 ioff;
4680 item = btrfs_item_nr(i);
4682 ioff = btrfs_token_item_offset(leaf, item, &token);
4683 btrfs_set_token_item_offset(leaf, item,
4684 ioff - data_size, &token);
4687 /* shift the data */
4688 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4689 data_end - data_size, btrfs_leaf_data(leaf) +
4690 data_end, old_data - data_end);
4692 data_end = old_data;
4693 old_size = btrfs_item_size_nr(leaf, slot);
4694 item = btrfs_item_nr(slot);
4695 btrfs_set_item_size(leaf, item, old_size + data_size);
4696 btrfs_mark_buffer_dirty(leaf);
4698 if (btrfs_leaf_free_space(root, leaf) < 0) {
4699 btrfs_print_leaf(root, leaf);
4700 BUG();
4705 * this is a helper for btrfs_insert_empty_items, the main goal here is
4706 * to save stack depth by doing the bulk of the work in a function
4707 * that doesn't call btrfs_search_slot
4709 void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
4710 struct btrfs_key *cpu_key, u32 *data_size,
4711 u32 total_data, u32 total_size, int nr)
4713 struct btrfs_item *item;
4714 int i;
4715 u32 nritems;
4716 unsigned int data_end;
4717 struct btrfs_disk_key disk_key;
4718 struct extent_buffer *leaf;
4719 int slot;
4720 struct btrfs_map_token token;
4722 if (path->slots[0] == 0) {
4723 btrfs_cpu_key_to_disk(&disk_key, cpu_key);
4724 fixup_low_keys(root->fs_info, path, &disk_key, 1);
4726 btrfs_unlock_up_safe(path, 1);
4728 btrfs_init_map_token(&token);
4730 leaf = path->nodes[0];
4731 slot = path->slots[0];
4733 nritems = btrfs_header_nritems(leaf);
4734 data_end = leaf_data_end(root, leaf);
4736 if (btrfs_leaf_free_space(root, leaf) < total_size) {
4737 btrfs_print_leaf(root, leaf);
4738 btrfs_crit(root->fs_info, "not enough freespace need %u have %d",
4739 total_size, btrfs_leaf_free_space(root, leaf));
4740 BUG();
4743 if (slot != nritems) {
4744 unsigned int old_data = btrfs_item_end_nr(leaf, slot);
4746 if (old_data < data_end) {
4747 btrfs_print_leaf(root, leaf);
4748 btrfs_crit(root->fs_info, "slot %d old_data %d data_end %d",
4749 slot, old_data, data_end);
4750 BUG_ON(1);
4753 * item0..itemN ... dataN.offset..dataN.size .. data0.size
4755 /* first correct the data pointers */
4756 for (i = slot; i < nritems; i++) {
4757 u32 ioff;
4759 item = btrfs_item_nr( i);
4760 ioff = btrfs_token_item_offset(leaf, item, &token);
4761 btrfs_set_token_item_offset(leaf, item,
4762 ioff - total_data, &token);
4764 /* shift the items */
4765 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot + nr),
4766 btrfs_item_nr_offset(slot),
4767 (nritems - slot) * sizeof(struct btrfs_item));
4769 /* shift the data */
4770 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4771 data_end - total_data, btrfs_leaf_data(leaf) +
4772 data_end, old_data - data_end);
4773 data_end = old_data;
4776 /* setup the item for the new data */
4777 for (i = 0; i < nr; i++) {
4778 btrfs_cpu_key_to_disk(&disk_key, cpu_key + i);
4779 btrfs_set_item_key(leaf, &disk_key, slot + i);
4780 item = btrfs_item_nr(slot + i);
4781 btrfs_set_token_item_offset(leaf, item,
4782 data_end - data_size[i], &token);
4783 data_end -= data_size[i];
4784 btrfs_set_token_item_size(leaf, item, data_size[i], &token);
4787 btrfs_set_header_nritems(leaf, nritems + nr);
4788 btrfs_mark_buffer_dirty(leaf);
4790 if (btrfs_leaf_free_space(root, leaf) < 0) {
4791 btrfs_print_leaf(root, leaf);
4792 BUG();
4797 * Given a key and some data, insert items into the tree.
4798 * This does all the path init required, making room in the tree if needed.
4800 int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
4801 struct btrfs_root *root,
4802 struct btrfs_path *path,
4803 struct btrfs_key *cpu_key, u32 *data_size,
4804 int nr)
4806 int ret = 0;
4807 int slot;
4808 int i;
4809 u32 total_size = 0;
4810 u32 total_data = 0;
4812 for (i = 0; i < nr; i++)
4813 total_data += data_size[i];
4815 total_size = total_data + (nr * sizeof(struct btrfs_item));
4816 ret = btrfs_search_slot(trans, root, cpu_key, path, total_size, 1);
4817 if (ret == 0)
4818 return -EEXIST;
4819 if (ret < 0)
4820 return ret;
4822 slot = path->slots[0];
4823 BUG_ON(slot < 0);
4825 setup_items_for_insert(root, path, cpu_key, data_size,
4826 total_data, total_size, nr);
4827 return 0;
4831 * Given a key and some data, insert an item into the tree.
4832 * This does all the path init required, making room in the tree if needed.
4834 int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
4835 *root, struct btrfs_key *cpu_key, void *data, u32
4836 data_size)
4838 int ret = 0;
4839 struct btrfs_path *path;
4840 struct extent_buffer *leaf;
4841 unsigned long ptr;
4843 path = btrfs_alloc_path();
4844 if (!path)
4845 return -ENOMEM;
4846 ret = btrfs_insert_empty_item(trans, root, path, cpu_key, data_size);
4847 if (!ret) {
4848 leaf = path->nodes[0];
4849 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
4850 write_extent_buffer(leaf, data, ptr, data_size);
4851 btrfs_mark_buffer_dirty(leaf);
4853 btrfs_free_path(path);
4854 return ret;
4858 * delete the pointer from a given node.
4860 * the tree should have been previously balanced so the deletion does not
4861 * empty a node.
4863 static void del_ptr(struct btrfs_root *root, struct btrfs_path *path,
4864 int level, int slot)
4866 struct extent_buffer *parent = path->nodes[level];
4867 u32 nritems;
4868 int ret;
4870 nritems = btrfs_header_nritems(parent);
4871 if (slot != nritems - 1) {
4872 if (level)
4873 tree_mod_log_eb_move(root->fs_info, parent, slot,
4874 slot + 1, nritems - slot - 1);
4875 memmove_extent_buffer(parent,
4876 btrfs_node_key_ptr_offset(slot),
4877 btrfs_node_key_ptr_offset(slot + 1),
4878 sizeof(struct btrfs_key_ptr) *
4879 (nritems - slot - 1));
4880 } else if (level) {
4881 ret = tree_mod_log_insert_key(root->fs_info, parent, slot,
4882 MOD_LOG_KEY_REMOVE, GFP_NOFS);
4883 BUG_ON(ret < 0);
4886 nritems--;
4887 btrfs_set_header_nritems(parent, nritems);
4888 if (nritems == 0 && parent == root->node) {
4889 BUG_ON(btrfs_header_level(root->node) != 1);
4890 /* just turn the root into a leaf and break */
4891 btrfs_set_header_level(root->node, 0);
4892 } else if (slot == 0) {
4893 struct btrfs_disk_key disk_key;
4895 btrfs_node_key(parent, &disk_key, 0);
4896 fixup_low_keys(root->fs_info, path, &disk_key, level + 1);
4898 btrfs_mark_buffer_dirty(parent);
4902 * a helper function to delete the leaf pointed to by path->slots[1] and
4903 * path->nodes[1].
4905 * This deletes the pointer in path->nodes[1] and frees the leaf
4906 * block extent. zero is returned if it all worked out, < 0 otherwise.
4908 * The path must have already been setup for deleting the leaf, including
4909 * all the proper balancing. path->nodes[1] must be locked.
4911 static noinline void btrfs_del_leaf(struct btrfs_trans_handle *trans,
4912 struct btrfs_root *root,
4913 struct btrfs_path *path,
4914 struct extent_buffer *leaf)
4916 WARN_ON(btrfs_header_generation(leaf) != trans->transid);
4917 del_ptr(root, path, 1, path->slots[1]);
4920 * btrfs_free_extent is expensive, we want to make sure we
4921 * aren't holding any locks when we call it
4923 btrfs_unlock_up_safe(path, 0);
4925 root_sub_used(root, leaf->len);
4927 extent_buffer_get(leaf);
4928 btrfs_free_tree_block(trans, root, leaf, 0, 1);
4929 free_extent_buffer_stale(leaf);
4932 * delete the item at the leaf level in path. If that empties
4933 * the leaf, remove it from the tree
4935 int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
4936 struct btrfs_path *path, int slot, int nr)
4938 struct extent_buffer *leaf;
4939 struct btrfs_item *item;
4940 int last_off;
4941 int dsize = 0;
4942 int ret = 0;
4943 int wret;
4944 int i;
4945 u32 nritems;
4946 struct btrfs_map_token token;
4948 btrfs_init_map_token(&token);
4950 leaf = path->nodes[0];
4951 last_off = btrfs_item_offset_nr(leaf, slot + nr - 1);
4953 for (i = 0; i < nr; i++)
4954 dsize += btrfs_item_size_nr(leaf, slot + i);
4956 nritems = btrfs_header_nritems(leaf);
4958 if (slot + nr != nritems) {
4959 int data_end = leaf_data_end(root, leaf);
4961 memmove_extent_buffer(leaf, btrfs_leaf_data(leaf) +
4962 data_end + dsize,
4963 btrfs_leaf_data(leaf) + data_end,
4964 last_off - data_end);
4966 for (i = slot + nr; i < nritems; i++) {
4967 u32 ioff;
4969 item = btrfs_item_nr(i);
4970 ioff = btrfs_token_item_offset(leaf, item, &token);
4971 btrfs_set_token_item_offset(leaf, item,
4972 ioff + dsize, &token);
4975 memmove_extent_buffer(leaf, btrfs_item_nr_offset(slot),
4976 btrfs_item_nr_offset(slot + nr),
4977 sizeof(struct btrfs_item) *
4978 (nritems - slot - nr));
4980 btrfs_set_header_nritems(leaf, nritems - nr);
4981 nritems -= nr;
4983 /* delete the leaf if we've emptied it */
4984 if (nritems == 0) {
4985 if (leaf == root->node) {
4986 btrfs_set_header_level(leaf, 0);
4987 } else {
4988 btrfs_set_path_blocking(path);
4989 clean_tree_block(trans, root->fs_info, leaf);
4990 btrfs_del_leaf(trans, root, path, leaf);
4992 } else {
4993 int used = leaf_space_used(leaf, 0, nritems);
4994 if (slot == 0) {
4995 struct btrfs_disk_key disk_key;
4997 btrfs_item_key(leaf, &disk_key, 0);
4998 fixup_low_keys(root->fs_info, path, &disk_key, 1);
5001 /* delete the leaf if it is mostly empty */
5002 if (used < BTRFS_LEAF_DATA_SIZE(root) / 3) {
5003 /* push_leaf_left fixes the path.
5004 * make sure the path still points to our leaf
5005 * for possible call to del_ptr below
5007 slot = path->slots[1];
5008 extent_buffer_get(leaf);
5010 btrfs_set_path_blocking(path);
5011 wret = push_leaf_left(trans, root, path, 1, 1,
5012 1, (u32)-1);
5013 if (wret < 0 && wret != -ENOSPC)
5014 ret = wret;
5016 if (path->nodes[0] == leaf &&
5017 btrfs_header_nritems(leaf)) {
5018 wret = push_leaf_right(trans, root, path, 1,
5019 1, 1, 0);
5020 if (wret < 0 && wret != -ENOSPC)
5021 ret = wret;
5024 if (btrfs_header_nritems(leaf) == 0) {
5025 path->slots[1] = slot;
5026 btrfs_del_leaf(trans, root, path, leaf);
5027 free_extent_buffer(leaf);
5028 ret = 0;
5029 } else {
5030 /* if we're still in the path, make sure
5031 * we're dirty. Otherwise, one of the
5032 * push_leaf functions must have already
5033 * dirtied this buffer
5035 if (path->nodes[0] == leaf)
5036 btrfs_mark_buffer_dirty(leaf);
5037 free_extent_buffer(leaf);
5039 } else {
5040 btrfs_mark_buffer_dirty(leaf);
5043 return ret;
5047 * search the tree again to find a leaf with lesser keys
5048 * returns 0 if it found something or 1 if there are no lesser leaves.
5049 * returns < 0 on io errors.
5051 * This may release the path, and so you may lose any locks held at the
5052 * time you call it.
5054 int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path)
5056 struct btrfs_key key;
5057 struct btrfs_disk_key found_key;
5058 int ret;
5060 btrfs_item_key_to_cpu(path->nodes[0], &key, 0);
5062 if (key.offset > 0) {
5063 key.offset--;
5064 } else if (key.type > 0) {
5065 key.type--;
5066 key.offset = (u64)-1;
5067 } else if (key.objectid > 0) {
5068 key.objectid--;
5069 key.type = (u8)-1;
5070 key.offset = (u64)-1;
5071 } else {
5072 return 1;
5075 btrfs_release_path(path);
5076 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5077 if (ret < 0)
5078 return ret;
5079 btrfs_item_key(path->nodes[0], &found_key, 0);
5080 ret = comp_keys(&found_key, &key);
5082 * We might have had an item with the previous key in the tree right
5083 * before we released our path. And after we released our path, that
5084 * item might have been pushed to the first slot (0) of the leaf we
5085 * were holding due to a tree balance. Alternatively, an item with the
5086 * previous key can exist as the only element of a leaf (big fat item).
5087 * Therefore account for these 2 cases, so that our callers (like
5088 * btrfs_previous_item) don't miss an existing item with a key matching
5089 * the previous key we computed above.
5091 if (ret <= 0)
5092 return 0;
5093 return 1;
5097 * A helper function to walk down the tree starting at min_key, and looking
5098 * for nodes or leaves that are have a minimum transaction id.
5099 * This is used by the btree defrag code, and tree logging
5101 * This does not cow, but it does stuff the starting key it finds back
5102 * into min_key, so you can call btrfs_search_slot with cow=1 on the
5103 * key and get a writable path.
5105 * This does lock as it descends, and path->keep_locks should be set
5106 * to 1 by the caller.
5108 * This honors path->lowest_level to prevent descent past a given level
5109 * of the tree.
5111 * min_trans indicates the oldest transaction that you are interested
5112 * in walking through. Any nodes or leaves older than min_trans are
5113 * skipped over (without reading them).
5115 * returns zero if something useful was found, < 0 on error and 1 if there
5116 * was nothing in the tree that matched the search criteria.
5118 int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
5119 struct btrfs_path *path,
5120 u64 min_trans)
5122 struct extent_buffer *cur;
5123 struct btrfs_key found_key;
5124 int slot;
5125 int sret;
5126 u32 nritems;
5127 int level;
5128 int ret = 1;
5129 int keep_locks = path->keep_locks;
5131 path->keep_locks = 1;
5132 again:
5133 cur = btrfs_read_lock_root_node(root);
5134 level = btrfs_header_level(cur);
5135 WARN_ON(path->nodes[level]);
5136 path->nodes[level] = cur;
5137 path->locks[level] = BTRFS_READ_LOCK;
5139 if (btrfs_header_generation(cur) < min_trans) {
5140 ret = 1;
5141 goto out;
5143 while (1) {
5144 nritems = btrfs_header_nritems(cur);
5145 level = btrfs_header_level(cur);
5146 sret = bin_search(cur, min_key, level, &slot);
5148 /* at the lowest level, we're done, setup the path and exit */
5149 if (level == path->lowest_level) {
5150 if (slot >= nritems)
5151 goto find_next_key;
5152 ret = 0;
5153 path->slots[level] = slot;
5154 btrfs_item_key_to_cpu(cur, &found_key, slot);
5155 goto out;
5157 if (sret && slot > 0)
5158 slot--;
5160 * check this node pointer against the min_trans parameters.
5161 * If it is too old, old, skip to the next one.
5163 while (slot < nritems) {
5164 u64 gen;
5166 gen = btrfs_node_ptr_generation(cur, slot);
5167 if (gen < min_trans) {
5168 slot++;
5169 continue;
5171 break;
5173 find_next_key:
5175 * we didn't find a candidate key in this node, walk forward
5176 * and find another one
5178 if (slot >= nritems) {
5179 path->slots[level] = slot;
5180 btrfs_set_path_blocking(path);
5181 sret = btrfs_find_next_key(root, path, min_key, level,
5182 min_trans);
5183 if (sret == 0) {
5184 btrfs_release_path(path);
5185 goto again;
5186 } else {
5187 goto out;
5190 /* save our key for returning back */
5191 btrfs_node_key_to_cpu(cur, &found_key, slot);
5192 path->slots[level] = slot;
5193 if (level == path->lowest_level) {
5194 ret = 0;
5195 goto out;
5197 btrfs_set_path_blocking(path);
5198 cur = read_node_slot(root, cur, slot);
5199 BUG_ON(!cur); /* -ENOMEM */
5201 btrfs_tree_read_lock(cur);
5203 path->locks[level - 1] = BTRFS_READ_LOCK;
5204 path->nodes[level - 1] = cur;
5205 unlock_up(path, level, 1, 0, NULL);
5206 btrfs_clear_path_blocking(path, NULL, 0);
5208 out:
5209 path->keep_locks = keep_locks;
5210 if (ret == 0) {
5211 btrfs_unlock_up_safe(path, path->lowest_level + 1);
5212 btrfs_set_path_blocking(path);
5213 memcpy(min_key, &found_key, sizeof(found_key));
5215 return ret;
5218 static void tree_move_down(struct btrfs_root *root,
5219 struct btrfs_path *path,
5220 int *level, int root_level)
5222 BUG_ON(*level == 0);
5223 path->nodes[*level - 1] = read_node_slot(root, path->nodes[*level],
5224 path->slots[*level]);
5225 path->slots[*level - 1] = 0;
5226 (*level)--;
5229 static int tree_move_next_or_upnext(struct btrfs_root *root,
5230 struct btrfs_path *path,
5231 int *level, int root_level)
5233 int ret = 0;
5234 int nritems;
5235 nritems = btrfs_header_nritems(path->nodes[*level]);
5237 path->slots[*level]++;
5239 while (path->slots[*level] >= nritems) {
5240 if (*level == root_level)
5241 return -1;
5243 /* move upnext */
5244 path->slots[*level] = 0;
5245 free_extent_buffer(path->nodes[*level]);
5246 path->nodes[*level] = NULL;
5247 (*level)++;
5248 path->slots[*level]++;
5250 nritems = btrfs_header_nritems(path->nodes[*level]);
5251 ret = 1;
5253 return ret;
5257 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
5258 * or down.
5260 static int tree_advance(struct btrfs_root *root,
5261 struct btrfs_path *path,
5262 int *level, int root_level,
5263 int allow_down,
5264 struct btrfs_key *key)
5266 int ret;
5268 if (*level == 0 || !allow_down) {
5269 ret = tree_move_next_or_upnext(root, path, level, root_level);
5270 } else {
5271 tree_move_down(root, path, level, root_level);
5272 ret = 0;
5274 if (ret >= 0) {
5275 if (*level == 0)
5276 btrfs_item_key_to_cpu(path->nodes[*level], key,
5277 path->slots[*level]);
5278 else
5279 btrfs_node_key_to_cpu(path->nodes[*level], key,
5280 path->slots[*level]);
5282 return ret;
5285 static int tree_compare_item(struct btrfs_root *left_root,
5286 struct btrfs_path *left_path,
5287 struct btrfs_path *right_path,
5288 char *tmp_buf)
5290 int cmp;
5291 int len1, len2;
5292 unsigned long off1, off2;
5294 len1 = btrfs_item_size_nr(left_path->nodes[0], left_path->slots[0]);
5295 len2 = btrfs_item_size_nr(right_path->nodes[0], right_path->slots[0]);
5296 if (len1 != len2)
5297 return 1;
5299 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
5300 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
5301 right_path->slots[0]);
5303 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
5305 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
5306 if (cmp)
5307 return 1;
5308 return 0;
5311 #define ADVANCE 1
5312 #define ADVANCE_ONLY_NEXT -1
5315 * This function compares two trees and calls the provided callback for
5316 * every changed/new/deleted item it finds.
5317 * If shared tree blocks are encountered, whole subtrees are skipped, making
5318 * the compare pretty fast on snapshotted subvolumes.
5320 * This currently works on commit roots only. As commit roots are read only,
5321 * we don't do any locking. The commit roots are protected with transactions.
5322 * Transactions are ended and rejoined when a commit is tried in between.
5324 * This function checks for modifications done to the trees while comparing.
5325 * If it detects a change, it aborts immediately.
5327 int btrfs_compare_trees(struct btrfs_root *left_root,
5328 struct btrfs_root *right_root,
5329 btrfs_changed_cb_t changed_cb, void *ctx)
5331 int ret;
5332 int cmp;
5333 struct btrfs_path *left_path = NULL;
5334 struct btrfs_path *right_path = NULL;
5335 struct btrfs_key left_key;
5336 struct btrfs_key right_key;
5337 char *tmp_buf = NULL;
5338 int left_root_level;
5339 int right_root_level;
5340 int left_level;
5341 int right_level;
5342 int left_end_reached;
5343 int right_end_reached;
5344 int advance_left;
5345 int advance_right;
5346 u64 left_blockptr;
5347 u64 right_blockptr;
5348 u64 left_gen;
5349 u64 right_gen;
5351 left_path = btrfs_alloc_path();
5352 if (!left_path) {
5353 ret = -ENOMEM;
5354 goto out;
5356 right_path = btrfs_alloc_path();
5357 if (!right_path) {
5358 ret = -ENOMEM;
5359 goto out;
5362 tmp_buf = kmalloc(left_root->nodesize, GFP_NOFS);
5363 if (!tmp_buf) {
5364 ret = -ENOMEM;
5365 goto out;
5368 left_path->search_commit_root = 1;
5369 left_path->skip_locking = 1;
5370 right_path->search_commit_root = 1;
5371 right_path->skip_locking = 1;
5374 * Strategy: Go to the first items of both trees. Then do
5376 * If both trees are at level 0
5377 * Compare keys of current items
5378 * If left < right treat left item as new, advance left tree
5379 * and repeat
5380 * If left > right treat right item as deleted, advance right tree
5381 * and repeat
5382 * If left == right do deep compare of items, treat as changed if
5383 * needed, advance both trees and repeat
5384 * If both trees are at the same level but not at level 0
5385 * Compare keys of current nodes/leafs
5386 * If left < right advance left tree and repeat
5387 * If left > right advance right tree and repeat
5388 * If left == right compare blockptrs of the next nodes/leafs
5389 * If they match advance both trees but stay at the same level
5390 * and repeat
5391 * If they don't match advance both trees while allowing to go
5392 * deeper and repeat
5393 * If tree levels are different
5394 * Advance the tree that needs it and repeat
5396 * Advancing a tree means:
5397 * If we are at level 0, try to go to the next slot. If that's not
5398 * possible, go one level up and repeat. Stop when we found a level
5399 * where we could go to the next slot. We may at this point be on a
5400 * node or a leaf.
5402 * If we are not at level 0 and not on shared tree blocks, go one
5403 * level deeper.
5405 * If we are not at level 0 and on shared tree blocks, go one slot to
5406 * the right if possible or go up and right.
5409 down_read(&left_root->fs_info->commit_root_sem);
5410 left_level = btrfs_header_level(left_root->commit_root);
5411 left_root_level = left_level;
5412 left_path->nodes[left_level] = left_root->commit_root;
5413 extent_buffer_get(left_path->nodes[left_level]);
5415 right_level = btrfs_header_level(right_root->commit_root);
5416 right_root_level = right_level;
5417 right_path->nodes[right_level] = right_root->commit_root;
5418 extent_buffer_get(right_path->nodes[right_level]);
5419 up_read(&left_root->fs_info->commit_root_sem);
5421 if (left_level == 0)
5422 btrfs_item_key_to_cpu(left_path->nodes[left_level],
5423 &left_key, left_path->slots[left_level]);
5424 else
5425 btrfs_node_key_to_cpu(left_path->nodes[left_level],
5426 &left_key, left_path->slots[left_level]);
5427 if (right_level == 0)
5428 btrfs_item_key_to_cpu(right_path->nodes[right_level],
5429 &right_key, right_path->slots[right_level]);
5430 else
5431 btrfs_node_key_to_cpu(right_path->nodes[right_level],
5432 &right_key, right_path->slots[right_level]);
5434 left_end_reached = right_end_reached = 0;
5435 advance_left = advance_right = 0;
5437 while (1) {
5438 if (advance_left && !left_end_reached) {
5439 ret = tree_advance(left_root, left_path, &left_level,
5440 left_root_level,
5441 advance_left != ADVANCE_ONLY_NEXT,
5442 &left_key);
5443 if (ret < 0)
5444 left_end_reached = ADVANCE;
5445 advance_left = 0;
5447 if (advance_right && !right_end_reached) {
5448 ret = tree_advance(right_root, right_path, &right_level,
5449 right_root_level,
5450 advance_right != ADVANCE_ONLY_NEXT,
5451 &right_key);
5452 if (ret < 0)
5453 right_end_reached = ADVANCE;
5454 advance_right = 0;
5457 if (left_end_reached && right_end_reached) {
5458 ret = 0;
5459 goto out;
5460 } else if (left_end_reached) {
5461 if (right_level == 0) {
5462 ret = changed_cb(left_root, right_root,
5463 left_path, right_path,
5464 &right_key,
5465 BTRFS_COMPARE_TREE_DELETED,
5466 ctx);
5467 if (ret < 0)
5468 goto out;
5470 advance_right = ADVANCE;
5471 continue;
5472 } else if (right_end_reached) {
5473 if (left_level == 0) {
5474 ret = changed_cb(left_root, right_root,
5475 left_path, right_path,
5476 &left_key,
5477 BTRFS_COMPARE_TREE_NEW,
5478 ctx);
5479 if (ret < 0)
5480 goto out;
5482 advance_left = ADVANCE;
5483 continue;
5486 if (left_level == 0 && right_level == 0) {
5487 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5488 if (cmp < 0) {
5489 ret = changed_cb(left_root, right_root,
5490 left_path, right_path,
5491 &left_key,
5492 BTRFS_COMPARE_TREE_NEW,
5493 ctx);
5494 if (ret < 0)
5495 goto out;
5496 advance_left = ADVANCE;
5497 } else if (cmp > 0) {
5498 ret = changed_cb(left_root, right_root,
5499 left_path, right_path,
5500 &right_key,
5501 BTRFS_COMPARE_TREE_DELETED,
5502 ctx);
5503 if (ret < 0)
5504 goto out;
5505 advance_right = ADVANCE;
5506 } else {
5507 enum btrfs_compare_tree_result result;
5509 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
5510 ret = tree_compare_item(left_root, left_path,
5511 right_path, tmp_buf);
5512 if (ret)
5513 result = BTRFS_COMPARE_TREE_CHANGED;
5514 else
5515 result = BTRFS_COMPARE_TREE_SAME;
5516 ret = changed_cb(left_root, right_root,
5517 left_path, right_path,
5518 &left_key, result, ctx);
5519 if (ret < 0)
5520 goto out;
5521 advance_left = ADVANCE;
5522 advance_right = ADVANCE;
5524 } else if (left_level == right_level) {
5525 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
5526 if (cmp < 0) {
5527 advance_left = ADVANCE;
5528 } else if (cmp > 0) {
5529 advance_right = ADVANCE;
5530 } else {
5531 left_blockptr = btrfs_node_blockptr(
5532 left_path->nodes[left_level],
5533 left_path->slots[left_level]);
5534 right_blockptr = btrfs_node_blockptr(
5535 right_path->nodes[right_level],
5536 right_path->slots[right_level]);
5537 left_gen = btrfs_node_ptr_generation(
5538 left_path->nodes[left_level],
5539 left_path->slots[left_level]);
5540 right_gen = btrfs_node_ptr_generation(
5541 right_path->nodes[right_level],
5542 right_path->slots[right_level]);
5543 if (left_blockptr == right_blockptr &&
5544 left_gen == right_gen) {
5546 * As we're on a shared block, don't
5547 * allow to go deeper.
5549 advance_left = ADVANCE_ONLY_NEXT;
5550 advance_right = ADVANCE_ONLY_NEXT;
5551 } else {
5552 advance_left = ADVANCE;
5553 advance_right = ADVANCE;
5556 } else if (left_level < right_level) {
5557 advance_right = ADVANCE;
5558 } else {
5559 advance_left = ADVANCE;
5563 out:
5564 btrfs_free_path(left_path);
5565 btrfs_free_path(right_path);
5566 kfree(tmp_buf);
5567 return ret;
5571 * this is similar to btrfs_next_leaf, but does not try to preserve
5572 * and fixup the path. It looks for and returns the next key in the
5573 * tree based on the current path and the min_trans parameters.
5575 * 0 is returned if another key is found, < 0 if there are any errors
5576 * and 1 is returned if there are no higher keys in the tree
5578 * path->keep_locks should be set to 1 on the search made before
5579 * calling this function.
5581 int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
5582 struct btrfs_key *key, int level, u64 min_trans)
5584 int slot;
5585 struct extent_buffer *c;
5587 WARN_ON(!path->keep_locks);
5588 while (level < BTRFS_MAX_LEVEL) {
5589 if (!path->nodes[level])
5590 return 1;
5592 slot = path->slots[level] + 1;
5593 c = path->nodes[level];
5594 next:
5595 if (slot >= btrfs_header_nritems(c)) {
5596 int ret;
5597 int orig_lowest;
5598 struct btrfs_key cur_key;
5599 if (level + 1 >= BTRFS_MAX_LEVEL ||
5600 !path->nodes[level + 1])
5601 return 1;
5603 if (path->locks[level + 1]) {
5604 level++;
5605 continue;
5608 slot = btrfs_header_nritems(c) - 1;
5609 if (level == 0)
5610 btrfs_item_key_to_cpu(c, &cur_key, slot);
5611 else
5612 btrfs_node_key_to_cpu(c, &cur_key, slot);
5614 orig_lowest = path->lowest_level;
5615 btrfs_release_path(path);
5616 path->lowest_level = level;
5617 ret = btrfs_search_slot(NULL, root, &cur_key, path,
5618 0, 0);
5619 path->lowest_level = orig_lowest;
5620 if (ret < 0)
5621 return ret;
5623 c = path->nodes[level];
5624 slot = path->slots[level];
5625 if (ret == 0)
5626 slot++;
5627 goto next;
5630 if (level == 0)
5631 btrfs_item_key_to_cpu(c, key, slot);
5632 else {
5633 u64 gen = btrfs_node_ptr_generation(c, slot);
5635 if (gen < min_trans) {
5636 slot++;
5637 goto next;
5639 btrfs_node_key_to_cpu(c, key, slot);
5641 return 0;
5643 return 1;
5647 * search the tree again to find a leaf with greater keys
5648 * returns 0 if it found something or 1 if there are no greater leaves.
5649 * returns < 0 on io errors.
5651 int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
5653 return btrfs_next_old_leaf(root, path, 0);
5656 int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
5657 u64 time_seq)
5659 int slot;
5660 int level;
5661 struct extent_buffer *c;
5662 struct extent_buffer *next;
5663 struct btrfs_key key;
5664 u32 nritems;
5665 int ret;
5666 int old_spinning = path->leave_spinning;
5667 int next_rw_lock = 0;
5669 nritems = btrfs_header_nritems(path->nodes[0]);
5670 if (nritems == 0)
5671 return 1;
5673 btrfs_item_key_to_cpu(path->nodes[0], &key, nritems - 1);
5674 again:
5675 level = 1;
5676 next = NULL;
5677 next_rw_lock = 0;
5678 btrfs_release_path(path);
5680 path->keep_locks = 1;
5681 path->leave_spinning = 1;
5683 if (time_seq)
5684 ret = btrfs_search_old_slot(root, &key, path, time_seq);
5685 else
5686 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5687 path->keep_locks = 0;
5689 if (ret < 0)
5690 return ret;
5692 nritems = btrfs_header_nritems(path->nodes[0]);
5694 * by releasing the path above we dropped all our locks. A balance
5695 * could have added more items next to the key that used to be
5696 * at the very end of the block. So, check again here and
5697 * advance the path if there are now more items available.
5699 if (nritems > 0 && path->slots[0] < nritems - 1) {
5700 if (ret == 0)
5701 path->slots[0]++;
5702 ret = 0;
5703 goto done;
5706 * So the above check misses one case:
5707 * - after releasing the path above, someone has removed the item that
5708 * used to be at the very end of the block, and balance between leafs
5709 * gets another one with bigger key.offset to replace it.
5711 * This one should be returned as well, or we can get leaf corruption
5712 * later(esp. in __btrfs_drop_extents()).
5714 * And a bit more explanation about this check,
5715 * with ret > 0, the key isn't found, the path points to the slot
5716 * where it should be inserted, so the path->slots[0] item must be the
5717 * bigger one.
5719 if (nritems > 0 && ret > 0 && path->slots[0] == nritems - 1) {
5720 ret = 0;
5721 goto done;
5724 while (level < BTRFS_MAX_LEVEL) {
5725 if (!path->nodes[level]) {
5726 ret = 1;
5727 goto done;
5730 slot = path->slots[level] + 1;
5731 c = path->nodes[level];
5732 if (slot >= btrfs_header_nritems(c)) {
5733 level++;
5734 if (level == BTRFS_MAX_LEVEL) {
5735 ret = 1;
5736 goto done;
5738 continue;
5741 if (next) {
5742 btrfs_tree_unlock_rw(next, next_rw_lock);
5743 free_extent_buffer(next);
5746 next = c;
5747 next_rw_lock = path->locks[level];
5748 ret = read_block_for_search(NULL, root, path, &next, level,
5749 slot, &key, 0);
5750 if (ret == -EAGAIN)
5751 goto again;
5753 if (ret < 0) {
5754 btrfs_release_path(path);
5755 goto done;
5758 if (!path->skip_locking) {
5759 ret = btrfs_try_tree_read_lock(next);
5760 if (!ret && time_seq) {
5762 * If we don't get the lock, we may be racing
5763 * with push_leaf_left, holding that lock while
5764 * itself waiting for the leaf we've currently
5765 * locked. To solve this situation, we give up
5766 * on our lock and cycle.
5768 free_extent_buffer(next);
5769 btrfs_release_path(path);
5770 cond_resched();
5771 goto again;
5773 if (!ret) {
5774 btrfs_set_path_blocking(path);
5775 btrfs_tree_read_lock(next);
5776 btrfs_clear_path_blocking(path, next,
5777 BTRFS_READ_LOCK);
5779 next_rw_lock = BTRFS_READ_LOCK;
5781 break;
5783 path->slots[level] = slot;
5784 while (1) {
5785 level--;
5786 c = path->nodes[level];
5787 if (path->locks[level])
5788 btrfs_tree_unlock_rw(c, path->locks[level]);
5790 free_extent_buffer(c);
5791 path->nodes[level] = next;
5792 path->slots[level] = 0;
5793 if (!path->skip_locking)
5794 path->locks[level] = next_rw_lock;
5795 if (!level)
5796 break;
5798 ret = read_block_for_search(NULL, root, path, &next, level,
5799 0, &key, 0);
5800 if (ret == -EAGAIN)
5801 goto again;
5803 if (ret < 0) {
5804 btrfs_release_path(path);
5805 goto done;
5808 if (!path->skip_locking) {
5809 ret = btrfs_try_tree_read_lock(next);
5810 if (!ret) {
5811 btrfs_set_path_blocking(path);
5812 btrfs_tree_read_lock(next);
5813 btrfs_clear_path_blocking(path, next,
5814 BTRFS_READ_LOCK);
5816 next_rw_lock = BTRFS_READ_LOCK;
5819 ret = 0;
5820 done:
5821 unlock_up(path, 0, 1, 0, NULL);
5822 path->leave_spinning = old_spinning;
5823 if (!old_spinning)
5824 btrfs_set_path_blocking(path);
5826 return ret;
5830 * this uses btrfs_prev_leaf to walk backwards in the tree, and keeps
5831 * searching until it gets past min_objectid or finds an item of 'type'
5833 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5835 int btrfs_previous_item(struct btrfs_root *root,
5836 struct btrfs_path *path, u64 min_objectid,
5837 int type)
5839 struct btrfs_key found_key;
5840 struct extent_buffer *leaf;
5841 u32 nritems;
5842 int ret;
5844 while (1) {
5845 if (path->slots[0] == 0) {
5846 btrfs_set_path_blocking(path);
5847 ret = btrfs_prev_leaf(root, path);
5848 if (ret != 0)
5849 return ret;
5850 } else {
5851 path->slots[0]--;
5853 leaf = path->nodes[0];
5854 nritems = btrfs_header_nritems(leaf);
5855 if (nritems == 0)
5856 return 1;
5857 if (path->slots[0] == nritems)
5858 path->slots[0]--;
5860 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5861 if (found_key.objectid < min_objectid)
5862 break;
5863 if (found_key.type == type)
5864 return 0;
5865 if (found_key.objectid == min_objectid &&
5866 found_key.type < type)
5867 break;
5869 return 1;
5873 * search in extent tree to find a previous Metadata/Data extent item with
5874 * min objecitd.
5876 * returns 0 if something is found, 1 if nothing was found and < 0 on error
5878 int btrfs_previous_extent_item(struct btrfs_root *root,
5879 struct btrfs_path *path, u64 min_objectid)
5881 struct btrfs_key found_key;
5882 struct extent_buffer *leaf;
5883 u32 nritems;
5884 int ret;
5886 while (1) {
5887 if (path->slots[0] == 0) {
5888 btrfs_set_path_blocking(path);
5889 ret = btrfs_prev_leaf(root, path);
5890 if (ret != 0)
5891 return ret;
5892 } else {
5893 path->slots[0]--;
5895 leaf = path->nodes[0];
5896 nritems = btrfs_header_nritems(leaf);
5897 if (nritems == 0)
5898 return 1;
5899 if (path->slots[0] == nritems)
5900 path->slots[0]--;
5902 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5903 if (found_key.objectid < min_objectid)
5904 break;
5905 if (found_key.type == BTRFS_EXTENT_ITEM_KEY ||
5906 found_key.type == BTRFS_METADATA_ITEM_KEY)
5907 return 0;
5908 if (found_key.objectid == min_objectid &&
5909 found_key.type < BTRFS_EXTENT_ITEM_KEY)
5910 break;
5912 return 1;