btrfs: account for non-CoW'd blocks in btrfs_abort_transaction
[linux/fpc-iii.git] / mm / hugetlb.c
blob9d724c0383d24d51f039e93582d1b8b27268a2cb
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
38 int hugepages_treat_as_movable;
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
44 * Minimum page order among possible hugepage sizes, set to a proper value
45 * at boot time.
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
49 __initdata LIST_HEAD(huge_boot_pages);
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
57 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58 * free_huge_pages, and surplus_huge_pages.
60 DEFINE_SPINLOCK(hugetlb_lock);
63 * Serializes faults on the same logical page. This is used to
64 * prevent spurious OOMs when the hugepage pool is fully utilized.
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
74 bool free = (spool->count == 0) && (spool->used_hpages == 0);
76 spin_unlock(&spool->lock);
78 /* If no pages are used, and no other handles to the subpool
79 * remain, give up any reservations mased on minimum size and
80 * free the subpool */
81 if (free) {
82 if (spool->min_hpages != -1)
83 hugetlb_acct_memory(spool->hstate,
84 -spool->min_hpages);
85 kfree(spool);
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90 long min_hpages)
92 struct hugepage_subpool *spool;
94 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95 if (!spool)
96 return NULL;
98 spin_lock_init(&spool->lock);
99 spool->count = 1;
100 spool->max_hpages = max_hpages;
101 spool->hstate = h;
102 spool->min_hpages = min_hpages;
104 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105 kfree(spool);
106 return NULL;
108 spool->rsv_hpages = min_hpages;
110 return spool;
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
115 spin_lock(&spool->lock);
116 BUG_ON(!spool->count);
117 spool->count--;
118 unlock_or_release_subpool(spool);
122 * Subpool accounting for allocating and reserving pages.
123 * Return -ENOMEM if there are not enough resources to satisfy the
124 * the request. Otherwise, return the number of pages by which the
125 * global pools must be adjusted (upward). The returned value may
126 * only be different than the passed value (delta) in the case where
127 * a subpool minimum size must be manitained.
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130 long delta)
132 long ret = delta;
134 if (!spool)
135 return ret;
137 spin_lock(&spool->lock);
139 if (spool->max_hpages != -1) { /* maximum size accounting */
140 if ((spool->used_hpages + delta) <= spool->max_hpages)
141 spool->used_hpages += delta;
142 else {
143 ret = -ENOMEM;
144 goto unlock_ret;
148 if (spool->min_hpages != -1) { /* minimum size accounting */
149 if (delta > spool->rsv_hpages) {
151 * Asking for more reserves than those already taken on
152 * behalf of subpool. Return difference.
154 ret = delta - spool->rsv_hpages;
155 spool->rsv_hpages = 0;
156 } else {
157 ret = 0; /* reserves already accounted for */
158 spool->rsv_hpages -= delta;
162 unlock_ret:
163 spin_unlock(&spool->lock);
164 return ret;
168 * Subpool accounting for freeing and unreserving pages.
169 * Return the number of global page reservations that must be dropped.
170 * The return value may only be different than the passed value (delta)
171 * in the case where a subpool minimum size must be maintained.
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174 long delta)
176 long ret = delta;
178 if (!spool)
179 return delta;
181 spin_lock(&spool->lock);
183 if (spool->max_hpages != -1) /* maximum size accounting */
184 spool->used_hpages -= delta;
186 if (spool->min_hpages != -1) { /* minimum size accounting */
187 if (spool->rsv_hpages + delta <= spool->min_hpages)
188 ret = 0;
189 else
190 ret = spool->rsv_hpages + delta - spool->min_hpages;
192 spool->rsv_hpages += delta;
193 if (spool->rsv_hpages > spool->min_hpages)
194 spool->rsv_hpages = spool->min_hpages;
198 * If hugetlbfs_put_super couldn't free spool due to an outstanding
199 * quota reference, free it now.
201 unlock_or_release_subpool(spool);
203 return ret;
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
208 return HUGETLBFS_SB(inode->i_sb)->spool;
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
213 return subpool_inode(file_inode(vma->vm_file));
217 * Region tracking -- allows tracking of reservations and instantiated pages
218 * across the pages in a mapping.
220 * The region data structures are embedded into a resv_map and
221 * protected by a resv_map's lock
223 struct file_region {
224 struct list_head link;
225 long from;
226 long to;
229 static long region_add(struct resv_map *resv, long f, long t)
231 struct list_head *head = &resv->regions;
232 struct file_region *rg, *nrg, *trg;
234 spin_lock(&resv->lock);
235 /* Locate the region we are either in or before. */
236 list_for_each_entry(rg, head, link)
237 if (f <= rg->to)
238 break;
240 /* Round our left edge to the current segment if it encloses us. */
241 if (f > rg->from)
242 f = rg->from;
244 /* Check for and consume any regions we now overlap with. */
245 nrg = rg;
246 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
247 if (&rg->link == head)
248 break;
249 if (rg->from > t)
250 break;
252 /* If this area reaches higher then extend our area to
253 * include it completely. If this is not the first area
254 * which we intend to reuse, free it. */
255 if (rg->to > t)
256 t = rg->to;
257 if (rg != nrg) {
258 list_del(&rg->link);
259 kfree(rg);
262 nrg->from = f;
263 nrg->to = t;
264 spin_unlock(&resv->lock);
265 return 0;
268 static long region_chg(struct resv_map *resv, long f, long t)
270 struct list_head *head = &resv->regions;
271 struct file_region *rg, *nrg = NULL;
272 long chg = 0;
274 retry:
275 spin_lock(&resv->lock);
276 /* Locate the region we are before or in. */
277 list_for_each_entry(rg, head, link)
278 if (f <= rg->to)
279 break;
281 /* If we are below the current region then a new region is required.
282 * Subtle, allocate a new region at the position but make it zero
283 * size such that we can guarantee to record the reservation. */
284 if (&rg->link == head || t < rg->from) {
285 if (!nrg) {
286 spin_unlock(&resv->lock);
287 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
288 if (!nrg)
289 return -ENOMEM;
291 nrg->from = f;
292 nrg->to = f;
293 INIT_LIST_HEAD(&nrg->link);
294 goto retry;
297 list_add(&nrg->link, rg->link.prev);
298 chg = t - f;
299 goto out_nrg;
302 /* Round our left edge to the current segment if it encloses us. */
303 if (f > rg->from)
304 f = rg->from;
305 chg = t - f;
307 /* Check for and consume any regions we now overlap with. */
308 list_for_each_entry(rg, rg->link.prev, link) {
309 if (&rg->link == head)
310 break;
311 if (rg->from > t)
312 goto out;
314 /* We overlap with this area, if it extends further than
315 * us then we must extend ourselves. Account for its
316 * existing reservation. */
317 if (rg->to > t) {
318 chg += rg->to - t;
319 t = rg->to;
321 chg -= rg->to - rg->from;
324 out:
325 spin_unlock(&resv->lock);
326 /* We already know we raced and no longer need the new region */
327 kfree(nrg);
328 return chg;
329 out_nrg:
330 spin_unlock(&resv->lock);
331 return chg;
334 static long region_truncate(struct resv_map *resv, long end)
336 struct list_head *head = &resv->regions;
337 struct file_region *rg, *trg;
338 long chg = 0;
340 spin_lock(&resv->lock);
341 /* Locate the region we are either in or before. */
342 list_for_each_entry(rg, head, link)
343 if (end <= rg->to)
344 break;
345 if (&rg->link == head)
346 goto out;
348 /* If we are in the middle of a region then adjust it. */
349 if (end > rg->from) {
350 chg = rg->to - end;
351 rg->to = end;
352 rg = list_entry(rg->link.next, typeof(*rg), link);
355 /* Drop any remaining regions. */
356 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
357 if (&rg->link == head)
358 break;
359 chg += rg->to - rg->from;
360 list_del(&rg->link);
361 kfree(rg);
364 out:
365 spin_unlock(&resv->lock);
366 return chg;
369 static long region_count(struct resv_map *resv, long f, long t)
371 struct list_head *head = &resv->regions;
372 struct file_region *rg;
373 long chg = 0;
375 spin_lock(&resv->lock);
376 /* Locate each segment we overlap with, and count that overlap. */
377 list_for_each_entry(rg, head, link) {
378 long seg_from;
379 long seg_to;
381 if (rg->to <= f)
382 continue;
383 if (rg->from >= t)
384 break;
386 seg_from = max(rg->from, f);
387 seg_to = min(rg->to, t);
389 chg += seg_to - seg_from;
391 spin_unlock(&resv->lock);
393 return chg;
397 * Convert the address within this vma to the page offset within
398 * the mapping, in pagecache page units; huge pages here.
400 static pgoff_t vma_hugecache_offset(struct hstate *h,
401 struct vm_area_struct *vma, unsigned long address)
403 return ((address - vma->vm_start) >> huge_page_shift(h)) +
404 (vma->vm_pgoff >> huge_page_order(h));
407 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
408 unsigned long address)
410 return vma_hugecache_offset(hstate_vma(vma), vma, address);
414 * Return the size of the pages allocated when backing a VMA. In the majority
415 * cases this will be same size as used by the page table entries.
417 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
419 struct hstate *hstate;
421 if (!is_vm_hugetlb_page(vma))
422 return PAGE_SIZE;
424 hstate = hstate_vma(vma);
426 return 1UL << huge_page_shift(hstate);
428 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
431 * Return the page size being used by the MMU to back a VMA. In the majority
432 * of cases, the page size used by the kernel matches the MMU size. On
433 * architectures where it differs, an architecture-specific version of this
434 * function is required.
436 #ifndef vma_mmu_pagesize
437 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
439 return vma_kernel_pagesize(vma);
441 #endif
444 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
445 * bits of the reservation map pointer, which are always clear due to
446 * alignment.
448 #define HPAGE_RESV_OWNER (1UL << 0)
449 #define HPAGE_RESV_UNMAPPED (1UL << 1)
450 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
453 * These helpers are used to track how many pages are reserved for
454 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
455 * is guaranteed to have their future faults succeed.
457 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
458 * the reserve counters are updated with the hugetlb_lock held. It is safe
459 * to reset the VMA at fork() time as it is not in use yet and there is no
460 * chance of the global counters getting corrupted as a result of the values.
462 * The private mapping reservation is represented in a subtly different
463 * manner to a shared mapping. A shared mapping has a region map associated
464 * with the underlying file, this region map represents the backing file
465 * pages which have ever had a reservation assigned which this persists even
466 * after the page is instantiated. A private mapping has a region map
467 * associated with the original mmap which is attached to all VMAs which
468 * reference it, this region map represents those offsets which have consumed
469 * reservation ie. where pages have been instantiated.
471 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
473 return (unsigned long)vma->vm_private_data;
476 static void set_vma_private_data(struct vm_area_struct *vma,
477 unsigned long value)
479 vma->vm_private_data = (void *)value;
482 struct resv_map *resv_map_alloc(void)
484 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
485 if (!resv_map)
486 return NULL;
488 kref_init(&resv_map->refs);
489 spin_lock_init(&resv_map->lock);
490 INIT_LIST_HEAD(&resv_map->regions);
492 return resv_map;
495 void resv_map_release(struct kref *ref)
497 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
499 /* Clear out any active regions before we release the map. */
500 region_truncate(resv_map, 0);
501 kfree(resv_map);
504 static inline struct resv_map *inode_resv_map(struct inode *inode)
506 return inode->i_mapping->private_data;
509 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
511 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
512 if (vma->vm_flags & VM_MAYSHARE) {
513 struct address_space *mapping = vma->vm_file->f_mapping;
514 struct inode *inode = mapping->host;
516 return inode_resv_map(inode);
518 } else {
519 return (struct resv_map *)(get_vma_private_data(vma) &
520 ~HPAGE_RESV_MASK);
524 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
526 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
527 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
529 set_vma_private_data(vma, (get_vma_private_data(vma) &
530 HPAGE_RESV_MASK) | (unsigned long)map);
533 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
535 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
536 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
538 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
541 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
543 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
545 return (get_vma_private_data(vma) & flag) != 0;
548 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
549 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
551 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
552 if (!(vma->vm_flags & VM_MAYSHARE))
553 vma->vm_private_data = (void *)0;
556 /* Returns true if the VMA has associated reserve pages */
557 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
559 if (vma->vm_flags & VM_NORESERVE) {
561 * This address is already reserved by other process(chg == 0),
562 * so, we should decrement reserved count. Without decrementing,
563 * reserve count remains after releasing inode, because this
564 * allocated page will go into page cache and is regarded as
565 * coming from reserved pool in releasing step. Currently, we
566 * don't have any other solution to deal with this situation
567 * properly, so add work-around here.
569 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
570 return 1;
571 else
572 return 0;
575 /* Shared mappings always use reserves */
576 if (vma->vm_flags & VM_MAYSHARE)
577 return 1;
580 * Only the process that called mmap() has reserves for
581 * private mappings.
583 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
584 return 1;
586 return 0;
589 static void enqueue_huge_page(struct hstate *h, struct page *page)
591 int nid = page_to_nid(page);
592 list_move(&page->lru, &h->hugepage_freelists[nid]);
593 h->free_huge_pages++;
594 h->free_huge_pages_node[nid]++;
597 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
599 struct page *page;
601 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
602 if (!is_migrate_isolate_page(page))
603 break;
605 * if 'non-isolated free hugepage' not found on the list,
606 * the allocation fails.
608 if (&h->hugepage_freelists[nid] == &page->lru)
609 return NULL;
610 list_move(&page->lru, &h->hugepage_activelist);
611 set_page_refcounted(page);
612 h->free_huge_pages--;
613 h->free_huge_pages_node[nid]--;
614 return page;
617 /* Movability of hugepages depends on migration support. */
618 static inline gfp_t htlb_alloc_mask(struct hstate *h)
620 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
621 return GFP_HIGHUSER_MOVABLE;
622 else
623 return GFP_HIGHUSER;
626 static struct page *dequeue_huge_page_vma(struct hstate *h,
627 struct vm_area_struct *vma,
628 unsigned long address, int avoid_reserve,
629 long chg)
631 struct page *page = NULL;
632 struct mempolicy *mpol;
633 nodemask_t *nodemask;
634 struct zonelist *zonelist;
635 struct zone *zone;
636 struct zoneref *z;
637 unsigned int cpuset_mems_cookie;
640 * A child process with MAP_PRIVATE mappings created by their parent
641 * have no page reserves. This check ensures that reservations are
642 * not "stolen". The child may still get SIGKILLed
644 if (!vma_has_reserves(vma, chg) &&
645 h->free_huge_pages - h->resv_huge_pages == 0)
646 goto err;
648 /* If reserves cannot be used, ensure enough pages are in the pool */
649 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
650 goto err;
652 retry_cpuset:
653 cpuset_mems_cookie = read_mems_allowed_begin();
654 zonelist = huge_zonelist(vma, address,
655 htlb_alloc_mask(h), &mpol, &nodemask);
657 for_each_zone_zonelist_nodemask(zone, z, zonelist,
658 MAX_NR_ZONES - 1, nodemask) {
659 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
660 page = dequeue_huge_page_node(h, zone_to_nid(zone));
661 if (page) {
662 if (avoid_reserve)
663 break;
664 if (!vma_has_reserves(vma, chg))
665 break;
667 SetPagePrivate(page);
668 h->resv_huge_pages--;
669 break;
674 mpol_cond_put(mpol);
675 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
676 goto retry_cpuset;
677 return page;
679 err:
680 return NULL;
684 * common helper functions for hstate_next_node_to_{alloc|free}.
685 * We may have allocated or freed a huge page based on a different
686 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
687 * be outside of *nodes_allowed. Ensure that we use an allowed
688 * node for alloc or free.
690 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
692 nid = next_node(nid, *nodes_allowed);
693 if (nid == MAX_NUMNODES)
694 nid = first_node(*nodes_allowed);
695 VM_BUG_ON(nid >= MAX_NUMNODES);
697 return nid;
700 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
702 if (!node_isset(nid, *nodes_allowed))
703 nid = next_node_allowed(nid, nodes_allowed);
704 return nid;
708 * returns the previously saved node ["this node"] from which to
709 * allocate a persistent huge page for the pool and advance the
710 * next node from which to allocate, handling wrap at end of node
711 * mask.
713 static int hstate_next_node_to_alloc(struct hstate *h,
714 nodemask_t *nodes_allowed)
716 int nid;
718 VM_BUG_ON(!nodes_allowed);
720 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
721 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
723 return nid;
727 * helper for free_pool_huge_page() - return the previously saved
728 * node ["this node"] from which to free a huge page. Advance the
729 * next node id whether or not we find a free huge page to free so
730 * that the next attempt to free addresses the next node.
732 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
734 int nid;
736 VM_BUG_ON(!nodes_allowed);
738 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
739 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
741 return nid;
744 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
745 for (nr_nodes = nodes_weight(*mask); \
746 nr_nodes > 0 && \
747 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
748 nr_nodes--)
750 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
751 for (nr_nodes = nodes_weight(*mask); \
752 nr_nodes > 0 && \
753 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
754 nr_nodes--)
756 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
757 static void destroy_compound_gigantic_page(struct page *page,
758 unsigned int order)
760 int i;
761 int nr_pages = 1 << order;
762 struct page *p = page + 1;
764 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
765 __ClearPageTail(p);
766 set_page_refcounted(p);
767 p->first_page = NULL;
770 set_compound_order(page, 0);
771 __ClearPageHead(page);
774 static void free_gigantic_page(struct page *page, unsigned int order)
776 free_contig_range(page_to_pfn(page), 1 << order);
779 static int __alloc_gigantic_page(unsigned long start_pfn,
780 unsigned long nr_pages)
782 unsigned long end_pfn = start_pfn + nr_pages;
783 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
786 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
787 unsigned long nr_pages)
789 unsigned long i, end_pfn = start_pfn + nr_pages;
790 struct page *page;
792 for (i = start_pfn; i < end_pfn; i++) {
793 if (!pfn_valid(i))
794 return false;
796 page = pfn_to_page(i);
798 if (PageReserved(page))
799 return false;
801 if (page_count(page) > 0)
802 return false;
804 if (PageHuge(page))
805 return false;
808 return true;
811 static bool zone_spans_last_pfn(const struct zone *zone,
812 unsigned long start_pfn, unsigned long nr_pages)
814 unsigned long last_pfn = start_pfn + nr_pages - 1;
815 return zone_spans_pfn(zone, last_pfn);
818 static struct page *alloc_gigantic_page(int nid, unsigned int order)
820 unsigned long nr_pages = 1 << order;
821 unsigned long ret, pfn, flags;
822 struct zone *z;
824 z = NODE_DATA(nid)->node_zones;
825 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
826 spin_lock_irqsave(&z->lock, flags);
828 pfn = ALIGN(z->zone_start_pfn, nr_pages);
829 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
830 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
832 * We release the zone lock here because
833 * alloc_contig_range() will also lock the zone
834 * at some point. If there's an allocation
835 * spinning on this lock, it may win the race
836 * and cause alloc_contig_range() to fail...
838 spin_unlock_irqrestore(&z->lock, flags);
839 ret = __alloc_gigantic_page(pfn, nr_pages);
840 if (!ret)
841 return pfn_to_page(pfn);
842 spin_lock_irqsave(&z->lock, flags);
844 pfn += nr_pages;
847 spin_unlock_irqrestore(&z->lock, flags);
850 return NULL;
853 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
854 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
856 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
858 struct page *page;
860 page = alloc_gigantic_page(nid, huge_page_order(h));
861 if (page) {
862 prep_compound_gigantic_page(page, huge_page_order(h));
863 prep_new_huge_page(h, page, nid);
866 return page;
869 static int alloc_fresh_gigantic_page(struct hstate *h,
870 nodemask_t *nodes_allowed)
872 struct page *page = NULL;
873 int nr_nodes, node;
875 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
876 page = alloc_fresh_gigantic_page_node(h, node);
877 if (page)
878 return 1;
881 return 0;
884 static inline bool gigantic_page_supported(void) { return true; }
885 #else
886 static inline bool gigantic_page_supported(void) { return false; }
887 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
888 static inline void destroy_compound_gigantic_page(struct page *page,
889 unsigned int order) { }
890 static inline int alloc_fresh_gigantic_page(struct hstate *h,
891 nodemask_t *nodes_allowed) { return 0; }
892 #endif
894 static void update_and_free_page(struct hstate *h, struct page *page)
896 int i;
898 if (hstate_is_gigantic(h) && !gigantic_page_supported())
899 return;
901 h->nr_huge_pages--;
902 h->nr_huge_pages_node[page_to_nid(page)]--;
903 for (i = 0; i < pages_per_huge_page(h); i++) {
904 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
905 1 << PG_referenced | 1 << PG_dirty |
906 1 << PG_active | 1 << PG_private |
907 1 << PG_writeback);
909 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
910 set_compound_page_dtor(page, NULL);
911 set_page_refcounted(page);
912 if (hstate_is_gigantic(h)) {
913 destroy_compound_gigantic_page(page, huge_page_order(h));
914 free_gigantic_page(page, huge_page_order(h));
915 } else {
916 arch_release_hugepage(page);
917 __free_pages(page, huge_page_order(h));
921 struct hstate *size_to_hstate(unsigned long size)
923 struct hstate *h;
925 for_each_hstate(h) {
926 if (huge_page_size(h) == size)
927 return h;
929 return NULL;
933 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
934 * to hstate->hugepage_activelist.)
936 * This function can be called for tail pages, but never returns true for them.
938 bool page_huge_active(struct page *page)
940 VM_BUG_ON_PAGE(!PageHuge(page), page);
941 return PageHead(page) && PagePrivate(&page[1]);
944 /* never called for tail page */
945 static void set_page_huge_active(struct page *page)
947 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
948 SetPagePrivate(&page[1]);
951 static void clear_page_huge_active(struct page *page)
953 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
954 ClearPagePrivate(&page[1]);
957 void free_huge_page(struct page *page)
960 * Can't pass hstate in here because it is called from the
961 * compound page destructor.
963 struct hstate *h = page_hstate(page);
964 int nid = page_to_nid(page);
965 struct hugepage_subpool *spool =
966 (struct hugepage_subpool *)page_private(page);
967 bool restore_reserve;
969 set_page_private(page, 0);
970 page->mapping = NULL;
971 BUG_ON(page_count(page));
972 BUG_ON(page_mapcount(page));
973 restore_reserve = PagePrivate(page);
974 ClearPagePrivate(page);
977 * A return code of zero implies that the subpool will be under its
978 * minimum size if the reservation is not restored after page is free.
979 * Therefore, force restore_reserve operation.
981 if (hugepage_subpool_put_pages(spool, 1) == 0)
982 restore_reserve = true;
984 spin_lock(&hugetlb_lock);
985 clear_page_huge_active(page);
986 hugetlb_cgroup_uncharge_page(hstate_index(h),
987 pages_per_huge_page(h), page);
988 if (restore_reserve)
989 h->resv_huge_pages++;
991 if (h->surplus_huge_pages_node[nid]) {
992 /* remove the page from active list */
993 list_del(&page->lru);
994 update_and_free_page(h, page);
995 h->surplus_huge_pages--;
996 h->surplus_huge_pages_node[nid]--;
997 } else {
998 arch_clear_hugepage_flags(page);
999 enqueue_huge_page(h, page);
1001 spin_unlock(&hugetlb_lock);
1004 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1006 INIT_LIST_HEAD(&page->lru);
1007 set_compound_page_dtor(page, free_huge_page);
1008 spin_lock(&hugetlb_lock);
1009 set_hugetlb_cgroup(page, NULL);
1010 h->nr_huge_pages++;
1011 h->nr_huge_pages_node[nid]++;
1012 spin_unlock(&hugetlb_lock);
1013 put_page(page); /* free it into the hugepage allocator */
1016 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1018 int i;
1019 int nr_pages = 1 << order;
1020 struct page *p = page + 1;
1022 /* we rely on prep_new_huge_page to set the destructor */
1023 set_compound_order(page, order);
1024 __SetPageHead(page);
1025 __ClearPageReserved(page);
1026 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1028 * For gigantic hugepages allocated through bootmem at
1029 * boot, it's safer to be consistent with the not-gigantic
1030 * hugepages and clear the PG_reserved bit from all tail pages
1031 * too. Otherwse drivers using get_user_pages() to access tail
1032 * pages may get the reference counting wrong if they see
1033 * PG_reserved set on a tail page (despite the head page not
1034 * having PG_reserved set). Enforcing this consistency between
1035 * head and tail pages allows drivers to optimize away a check
1036 * on the head page when they need know if put_page() is needed
1037 * after get_user_pages().
1039 __ClearPageReserved(p);
1040 set_page_count(p, 0);
1041 p->first_page = page;
1042 /* Make sure p->first_page is always valid for PageTail() */
1043 smp_wmb();
1044 __SetPageTail(p);
1049 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1050 * transparent huge pages. See the PageTransHuge() documentation for more
1051 * details.
1053 int PageHuge(struct page *page)
1055 if (!PageCompound(page))
1056 return 0;
1058 page = compound_head(page);
1059 return get_compound_page_dtor(page) == free_huge_page;
1061 EXPORT_SYMBOL_GPL(PageHuge);
1064 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1065 * normal or transparent huge pages.
1067 int PageHeadHuge(struct page *page_head)
1069 if (!PageHead(page_head))
1070 return 0;
1072 return get_compound_page_dtor(page_head) == free_huge_page;
1075 pgoff_t __basepage_index(struct page *page)
1077 struct page *page_head = compound_head(page);
1078 pgoff_t index = page_index(page_head);
1079 unsigned long compound_idx;
1081 if (!PageHuge(page_head))
1082 return page_index(page);
1084 if (compound_order(page_head) >= MAX_ORDER)
1085 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1086 else
1087 compound_idx = page - page_head;
1089 return (index << compound_order(page_head)) + compound_idx;
1092 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1094 struct page *page;
1096 page = alloc_pages_exact_node(nid,
1097 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1098 __GFP_REPEAT|__GFP_NOWARN,
1099 huge_page_order(h));
1100 if (page) {
1101 if (arch_prepare_hugepage(page)) {
1102 __free_pages(page, huge_page_order(h));
1103 return NULL;
1105 prep_new_huge_page(h, page, nid);
1108 return page;
1111 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1113 struct page *page;
1114 int nr_nodes, node;
1115 int ret = 0;
1117 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1118 page = alloc_fresh_huge_page_node(h, node);
1119 if (page) {
1120 ret = 1;
1121 break;
1125 if (ret)
1126 count_vm_event(HTLB_BUDDY_PGALLOC);
1127 else
1128 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1130 return ret;
1134 * Free huge page from pool from next node to free.
1135 * Attempt to keep persistent huge pages more or less
1136 * balanced over allowed nodes.
1137 * Called with hugetlb_lock locked.
1139 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1140 bool acct_surplus)
1142 int nr_nodes, node;
1143 int ret = 0;
1145 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1147 * If we're returning unused surplus pages, only examine
1148 * nodes with surplus pages.
1150 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1151 !list_empty(&h->hugepage_freelists[node])) {
1152 struct page *page =
1153 list_entry(h->hugepage_freelists[node].next,
1154 struct page, lru);
1155 list_del(&page->lru);
1156 h->free_huge_pages--;
1157 h->free_huge_pages_node[node]--;
1158 if (acct_surplus) {
1159 h->surplus_huge_pages--;
1160 h->surplus_huge_pages_node[node]--;
1162 update_and_free_page(h, page);
1163 ret = 1;
1164 break;
1168 return ret;
1172 * Dissolve a given free hugepage into free buddy pages. This function does
1173 * nothing for in-use (including surplus) hugepages.
1175 static void dissolve_free_huge_page(struct page *page)
1177 spin_lock(&hugetlb_lock);
1178 if (PageHuge(page) && !page_count(page)) {
1179 struct hstate *h = page_hstate(page);
1180 int nid = page_to_nid(page);
1181 list_del(&page->lru);
1182 h->free_huge_pages--;
1183 h->free_huge_pages_node[nid]--;
1184 update_and_free_page(h, page);
1186 spin_unlock(&hugetlb_lock);
1190 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1191 * make specified memory blocks removable from the system.
1192 * Note that start_pfn should aligned with (minimum) hugepage size.
1194 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1196 unsigned long pfn;
1198 if (!hugepages_supported())
1199 return;
1201 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1202 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1203 dissolve_free_huge_page(pfn_to_page(pfn));
1206 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1208 struct page *page;
1209 unsigned int r_nid;
1211 if (hstate_is_gigantic(h))
1212 return NULL;
1215 * Assume we will successfully allocate the surplus page to
1216 * prevent racing processes from causing the surplus to exceed
1217 * overcommit
1219 * This however introduces a different race, where a process B
1220 * tries to grow the static hugepage pool while alloc_pages() is
1221 * called by process A. B will only examine the per-node
1222 * counters in determining if surplus huge pages can be
1223 * converted to normal huge pages in adjust_pool_surplus(). A
1224 * won't be able to increment the per-node counter, until the
1225 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1226 * no more huge pages can be converted from surplus to normal
1227 * state (and doesn't try to convert again). Thus, we have a
1228 * case where a surplus huge page exists, the pool is grown, and
1229 * the surplus huge page still exists after, even though it
1230 * should just have been converted to a normal huge page. This
1231 * does not leak memory, though, as the hugepage will be freed
1232 * once it is out of use. It also does not allow the counters to
1233 * go out of whack in adjust_pool_surplus() as we don't modify
1234 * the node values until we've gotten the hugepage and only the
1235 * per-node value is checked there.
1237 spin_lock(&hugetlb_lock);
1238 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1239 spin_unlock(&hugetlb_lock);
1240 return NULL;
1241 } else {
1242 h->nr_huge_pages++;
1243 h->surplus_huge_pages++;
1245 spin_unlock(&hugetlb_lock);
1247 if (nid == NUMA_NO_NODE)
1248 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1249 __GFP_REPEAT|__GFP_NOWARN,
1250 huge_page_order(h));
1251 else
1252 page = alloc_pages_exact_node(nid,
1253 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1254 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1256 if (page && arch_prepare_hugepage(page)) {
1257 __free_pages(page, huge_page_order(h));
1258 page = NULL;
1261 spin_lock(&hugetlb_lock);
1262 if (page) {
1263 INIT_LIST_HEAD(&page->lru);
1264 r_nid = page_to_nid(page);
1265 set_compound_page_dtor(page, free_huge_page);
1266 set_hugetlb_cgroup(page, NULL);
1268 * We incremented the global counters already
1270 h->nr_huge_pages_node[r_nid]++;
1271 h->surplus_huge_pages_node[r_nid]++;
1272 __count_vm_event(HTLB_BUDDY_PGALLOC);
1273 } else {
1274 h->nr_huge_pages--;
1275 h->surplus_huge_pages--;
1276 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1278 spin_unlock(&hugetlb_lock);
1280 return page;
1284 * This allocation function is useful in the context where vma is irrelevant.
1285 * E.g. soft-offlining uses this function because it only cares physical
1286 * address of error page.
1288 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1290 struct page *page = NULL;
1292 spin_lock(&hugetlb_lock);
1293 if (h->free_huge_pages - h->resv_huge_pages > 0)
1294 page = dequeue_huge_page_node(h, nid);
1295 spin_unlock(&hugetlb_lock);
1297 if (!page)
1298 page = alloc_buddy_huge_page(h, nid);
1300 return page;
1304 * Increase the hugetlb pool such that it can accommodate a reservation
1305 * of size 'delta'.
1307 static int gather_surplus_pages(struct hstate *h, int delta)
1309 struct list_head surplus_list;
1310 struct page *page, *tmp;
1311 int ret, i;
1312 int needed, allocated;
1313 bool alloc_ok = true;
1315 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1316 if (needed <= 0) {
1317 h->resv_huge_pages += delta;
1318 return 0;
1321 allocated = 0;
1322 INIT_LIST_HEAD(&surplus_list);
1324 ret = -ENOMEM;
1325 retry:
1326 spin_unlock(&hugetlb_lock);
1327 for (i = 0; i < needed; i++) {
1328 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1329 if (!page) {
1330 alloc_ok = false;
1331 break;
1333 list_add(&page->lru, &surplus_list);
1335 allocated += i;
1338 * After retaking hugetlb_lock, we need to recalculate 'needed'
1339 * because either resv_huge_pages or free_huge_pages may have changed.
1341 spin_lock(&hugetlb_lock);
1342 needed = (h->resv_huge_pages + delta) -
1343 (h->free_huge_pages + allocated);
1344 if (needed > 0) {
1345 if (alloc_ok)
1346 goto retry;
1348 * We were not able to allocate enough pages to
1349 * satisfy the entire reservation so we free what
1350 * we've allocated so far.
1352 goto free;
1355 * The surplus_list now contains _at_least_ the number of extra pages
1356 * needed to accommodate the reservation. Add the appropriate number
1357 * of pages to the hugetlb pool and free the extras back to the buddy
1358 * allocator. Commit the entire reservation here to prevent another
1359 * process from stealing the pages as they are added to the pool but
1360 * before they are reserved.
1362 needed += allocated;
1363 h->resv_huge_pages += delta;
1364 ret = 0;
1366 /* Free the needed pages to the hugetlb pool */
1367 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1368 if ((--needed) < 0)
1369 break;
1371 * This page is now managed by the hugetlb allocator and has
1372 * no users -- drop the buddy allocator's reference.
1374 put_page_testzero(page);
1375 VM_BUG_ON_PAGE(page_count(page), page);
1376 enqueue_huge_page(h, page);
1378 free:
1379 spin_unlock(&hugetlb_lock);
1381 /* Free unnecessary surplus pages to the buddy allocator */
1382 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1383 put_page(page);
1384 spin_lock(&hugetlb_lock);
1386 return ret;
1390 * When releasing a hugetlb pool reservation, any surplus pages that were
1391 * allocated to satisfy the reservation must be explicitly freed if they were
1392 * never used.
1393 * Called with hugetlb_lock held.
1395 static void return_unused_surplus_pages(struct hstate *h,
1396 unsigned long unused_resv_pages)
1398 unsigned long nr_pages;
1400 /* Uncommit the reservation */
1401 h->resv_huge_pages -= unused_resv_pages;
1403 /* Cannot return gigantic pages currently */
1404 if (hstate_is_gigantic(h))
1405 return;
1407 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1410 * We want to release as many surplus pages as possible, spread
1411 * evenly across all nodes with memory. Iterate across these nodes
1412 * until we can no longer free unreserved surplus pages. This occurs
1413 * when the nodes with surplus pages have no free pages.
1414 * free_pool_huge_page() will balance the the freed pages across the
1415 * on-line nodes with memory and will handle the hstate accounting.
1417 while (nr_pages--) {
1418 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1419 break;
1420 cond_resched_lock(&hugetlb_lock);
1425 * Determine if the huge page at addr within the vma has an associated
1426 * reservation. Where it does not we will need to logically increase
1427 * reservation and actually increase subpool usage before an allocation
1428 * can occur. Where any new reservation would be required the
1429 * reservation change is prepared, but not committed. Once the page
1430 * has been allocated from the subpool and instantiated the change should
1431 * be committed via vma_commit_reservation. No action is required on
1432 * failure.
1434 static long vma_needs_reservation(struct hstate *h,
1435 struct vm_area_struct *vma, unsigned long addr)
1437 struct resv_map *resv;
1438 pgoff_t idx;
1439 long chg;
1441 resv = vma_resv_map(vma);
1442 if (!resv)
1443 return 1;
1445 idx = vma_hugecache_offset(h, vma, addr);
1446 chg = region_chg(resv, idx, idx + 1);
1448 if (vma->vm_flags & VM_MAYSHARE)
1449 return chg;
1450 else
1451 return chg < 0 ? chg : 0;
1453 static void vma_commit_reservation(struct hstate *h,
1454 struct vm_area_struct *vma, unsigned long addr)
1456 struct resv_map *resv;
1457 pgoff_t idx;
1459 resv = vma_resv_map(vma);
1460 if (!resv)
1461 return;
1463 idx = vma_hugecache_offset(h, vma, addr);
1464 region_add(resv, idx, idx + 1);
1467 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1468 unsigned long addr, int avoid_reserve)
1470 struct hugepage_subpool *spool = subpool_vma(vma);
1471 struct hstate *h = hstate_vma(vma);
1472 struct page *page;
1473 long chg;
1474 int ret, idx;
1475 struct hugetlb_cgroup *h_cg;
1477 idx = hstate_index(h);
1479 * Processes that did not create the mapping will have no
1480 * reserves and will not have accounted against subpool
1481 * limit. Check that the subpool limit can be made before
1482 * satisfying the allocation MAP_NORESERVE mappings may also
1483 * need pages and subpool limit allocated allocated if no reserve
1484 * mapping overlaps.
1486 chg = vma_needs_reservation(h, vma, addr);
1487 if (chg < 0)
1488 return ERR_PTR(-ENOMEM);
1489 if (chg || avoid_reserve)
1490 if (hugepage_subpool_get_pages(spool, 1) < 0)
1491 return ERR_PTR(-ENOSPC);
1493 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1494 if (ret)
1495 goto out_subpool_put;
1497 spin_lock(&hugetlb_lock);
1498 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1499 if (!page) {
1500 spin_unlock(&hugetlb_lock);
1501 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1502 if (!page)
1503 goto out_uncharge_cgroup;
1505 spin_lock(&hugetlb_lock);
1506 list_move(&page->lru, &h->hugepage_activelist);
1507 /* Fall through */
1509 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1510 spin_unlock(&hugetlb_lock);
1512 set_page_private(page, (unsigned long)spool);
1514 vma_commit_reservation(h, vma, addr);
1515 return page;
1517 out_uncharge_cgroup:
1518 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1519 out_subpool_put:
1520 if (chg || avoid_reserve)
1521 hugepage_subpool_put_pages(spool, 1);
1522 return ERR_PTR(-ENOSPC);
1526 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1527 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1528 * where no ERR_VALUE is expected to be returned.
1530 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1531 unsigned long addr, int avoid_reserve)
1533 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1534 if (IS_ERR(page))
1535 page = NULL;
1536 return page;
1539 int __weak alloc_bootmem_huge_page(struct hstate *h)
1541 struct huge_bootmem_page *m;
1542 int nr_nodes, node;
1544 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1545 void *addr;
1547 addr = memblock_virt_alloc_try_nid_nopanic(
1548 huge_page_size(h), huge_page_size(h),
1549 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1550 if (addr) {
1552 * Use the beginning of the huge page to store the
1553 * huge_bootmem_page struct (until gather_bootmem
1554 * puts them into the mem_map).
1556 m = addr;
1557 goto found;
1560 return 0;
1562 found:
1563 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1564 /* Put them into a private list first because mem_map is not up yet */
1565 list_add(&m->list, &huge_boot_pages);
1566 m->hstate = h;
1567 return 1;
1570 static void __init prep_compound_huge_page(struct page *page,
1571 unsigned int order)
1573 if (unlikely(order > (MAX_ORDER - 1)))
1574 prep_compound_gigantic_page(page, order);
1575 else
1576 prep_compound_page(page, order);
1579 /* Put bootmem huge pages into the standard lists after mem_map is up */
1580 static void __init gather_bootmem_prealloc(void)
1582 struct huge_bootmem_page *m;
1584 list_for_each_entry(m, &huge_boot_pages, list) {
1585 struct hstate *h = m->hstate;
1586 struct page *page;
1588 #ifdef CONFIG_HIGHMEM
1589 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1590 memblock_free_late(__pa(m),
1591 sizeof(struct huge_bootmem_page));
1592 #else
1593 page = virt_to_page(m);
1594 #endif
1595 WARN_ON(page_count(page) != 1);
1596 prep_compound_huge_page(page, h->order);
1597 WARN_ON(PageReserved(page));
1598 prep_new_huge_page(h, page, page_to_nid(page));
1600 * If we had gigantic hugepages allocated at boot time, we need
1601 * to restore the 'stolen' pages to totalram_pages in order to
1602 * fix confusing memory reports from free(1) and another
1603 * side-effects, like CommitLimit going negative.
1605 if (hstate_is_gigantic(h))
1606 adjust_managed_page_count(page, 1 << h->order);
1610 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1612 unsigned long i;
1614 for (i = 0; i < h->max_huge_pages; ++i) {
1615 if (hstate_is_gigantic(h)) {
1616 if (!alloc_bootmem_huge_page(h))
1617 break;
1618 } else if (!alloc_fresh_huge_page(h,
1619 &node_states[N_MEMORY]))
1620 break;
1622 h->max_huge_pages = i;
1625 static void __init hugetlb_init_hstates(void)
1627 struct hstate *h;
1629 for_each_hstate(h) {
1630 if (minimum_order > huge_page_order(h))
1631 minimum_order = huge_page_order(h);
1633 /* oversize hugepages were init'ed in early boot */
1634 if (!hstate_is_gigantic(h))
1635 hugetlb_hstate_alloc_pages(h);
1637 VM_BUG_ON(minimum_order == UINT_MAX);
1640 static char * __init memfmt(char *buf, unsigned long n)
1642 if (n >= (1UL << 30))
1643 sprintf(buf, "%lu GB", n >> 30);
1644 else if (n >= (1UL << 20))
1645 sprintf(buf, "%lu MB", n >> 20);
1646 else
1647 sprintf(buf, "%lu KB", n >> 10);
1648 return buf;
1651 static void __init report_hugepages(void)
1653 struct hstate *h;
1655 for_each_hstate(h) {
1656 char buf[32];
1657 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1658 memfmt(buf, huge_page_size(h)),
1659 h->free_huge_pages);
1663 #ifdef CONFIG_HIGHMEM
1664 static void try_to_free_low(struct hstate *h, unsigned long count,
1665 nodemask_t *nodes_allowed)
1667 int i;
1669 if (hstate_is_gigantic(h))
1670 return;
1672 for_each_node_mask(i, *nodes_allowed) {
1673 struct page *page, *next;
1674 struct list_head *freel = &h->hugepage_freelists[i];
1675 list_for_each_entry_safe(page, next, freel, lru) {
1676 if (count >= h->nr_huge_pages)
1677 return;
1678 if (PageHighMem(page))
1679 continue;
1680 list_del(&page->lru);
1681 update_and_free_page(h, page);
1682 h->free_huge_pages--;
1683 h->free_huge_pages_node[page_to_nid(page)]--;
1687 #else
1688 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1689 nodemask_t *nodes_allowed)
1692 #endif
1695 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1696 * balanced by operating on them in a round-robin fashion.
1697 * Returns 1 if an adjustment was made.
1699 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1700 int delta)
1702 int nr_nodes, node;
1704 VM_BUG_ON(delta != -1 && delta != 1);
1706 if (delta < 0) {
1707 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1708 if (h->surplus_huge_pages_node[node])
1709 goto found;
1711 } else {
1712 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1713 if (h->surplus_huge_pages_node[node] <
1714 h->nr_huge_pages_node[node])
1715 goto found;
1718 return 0;
1720 found:
1721 h->surplus_huge_pages += delta;
1722 h->surplus_huge_pages_node[node] += delta;
1723 return 1;
1726 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1727 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1728 nodemask_t *nodes_allowed)
1730 unsigned long min_count, ret;
1732 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1733 return h->max_huge_pages;
1736 * Increase the pool size
1737 * First take pages out of surplus state. Then make up the
1738 * remaining difference by allocating fresh huge pages.
1740 * We might race with alloc_buddy_huge_page() here and be unable
1741 * to convert a surplus huge page to a normal huge page. That is
1742 * not critical, though, it just means the overall size of the
1743 * pool might be one hugepage larger than it needs to be, but
1744 * within all the constraints specified by the sysctls.
1746 spin_lock(&hugetlb_lock);
1747 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1748 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1749 break;
1752 while (count > persistent_huge_pages(h)) {
1754 * If this allocation races such that we no longer need the
1755 * page, free_huge_page will handle it by freeing the page
1756 * and reducing the surplus.
1758 spin_unlock(&hugetlb_lock);
1759 if (hstate_is_gigantic(h))
1760 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1761 else
1762 ret = alloc_fresh_huge_page(h, nodes_allowed);
1763 spin_lock(&hugetlb_lock);
1764 if (!ret)
1765 goto out;
1767 /* Bail for signals. Probably ctrl-c from user */
1768 if (signal_pending(current))
1769 goto out;
1773 * Decrease the pool size
1774 * First return free pages to the buddy allocator (being careful
1775 * to keep enough around to satisfy reservations). Then place
1776 * pages into surplus state as needed so the pool will shrink
1777 * to the desired size as pages become free.
1779 * By placing pages into the surplus state independent of the
1780 * overcommit value, we are allowing the surplus pool size to
1781 * exceed overcommit. There are few sane options here. Since
1782 * alloc_buddy_huge_page() is checking the global counter,
1783 * though, we'll note that we're not allowed to exceed surplus
1784 * and won't grow the pool anywhere else. Not until one of the
1785 * sysctls are changed, or the surplus pages go out of use.
1787 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1788 min_count = max(count, min_count);
1789 try_to_free_low(h, min_count, nodes_allowed);
1790 while (min_count < persistent_huge_pages(h)) {
1791 if (!free_pool_huge_page(h, nodes_allowed, 0))
1792 break;
1793 cond_resched_lock(&hugetlb_lock);
1795 while (count < persistent_huge_pages(h)) {
1796 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1797 break;
1799 out:
1800 ret = persistent_huge_pages(h);
1801 spin_unlock(&hugetlb_lock);
1802 return ret;
1805 #define HSTATE_ATTR_RO(_name) \
1806 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1808 #define HSTATE_ATTR(_name) \
1809 static struct kobj_attribute _name##_attr = \
1810 __ATTR(_name, 0644, _name##_show, _name##_store)
1812 static struct kobject *hugepages_kobj;
1813 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1815 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1817 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1819 int i;
1821 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1822 if (hstate_kobjs[i] == kobj) {
1823 if (nidp)
1824 *nidp = NUMA_NO_NODE;
1825 return &hstates[i];
1828 return kobj_to_node_hstate(kobj, nidp);
1831 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1832 struct kobj_attribute *attr, char *buf)
1834 struct hstate *h;
1835 unsigned long nr_huge_pages;
1836 int nid;
1838 h = kobj_to_hstate(kobj, &nid);
1839 if (nid == NUMA_NO_NODE)
1840 nr_huge_pages = h->nr_huge_pages;
1841 else
1842 nr_huge_pages = h->nr_huge_pages_node[nid];
1844 return sprintf(buf, "%lu\n", nr_huge_pages);
1847 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1848 struct hstate *h, int nid,
1849 unsigned long count, size_t len)
1851 int err;
1852 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1854 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1855 err = -EINVAL;
1856 goto out;
1859 if (nid == NUMA_NO_NODE) {
1861 * global hstate attribute
1863 if (!(obey_mempolicy &&
1864 init_nodemask_of_mempolicy(nodes_allowed))) {
1865 NODEMASK_FREE(nodes_allowed);
1866 nodes_allowed = &node_states[N_MEMORY];
1868 } else if (nodes_allowed) {
1870 * per node hstate attribute: adjust count to global,
1871 * but restrict alloc/free to the specified node.
1873 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1874 init_nodemask_of_node(nodes_allowed, nid);
1875 } else
1876 nodes_allowed = &node_states[N_MEMORY];
1878 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1880 if (nodes_allowed != &node_states[N_MEMORY])
1881 NODEMASK_FREE(nodes_allowed);
1883 return len;
1884 out:
1885 NODEMASK_FREE(nodes_allowed);
1886 return err;
1889 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1890 struct kobject *kobj, const char *buf,
1891 size_t len)
1893 struct hstate *h;
1894 unsigned long count;
1895 int nid;
1896 int err;
1898 err = kstrtoul(buf, 10, &count);
1899 if (err)
1900 return err;
1902 h = kobj_to_hstate(kobj, &nid);
1903 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1906 static ssize_t nr_hugepages_show(struct kobject *kobj,
1907 struct kobj_attribute *attr, char *buf)
1909 return nr_hugepages_show_common(kobj, attr, buf);
1912 static ssize_t nr_hugepages_store(struct kobject *kobj,
1913 struct kobj_attribute *attr, const char *buf, size_t len)
1915 return nr_hugepages_store_common(false, kobj, buf, len);
1917 HSTATE_ATTR(nr_hugepages);
1919 #ifdef CONFIG_NUMA
1922 * hstate attribute for optionally mempolicy-based constraint on persistent
1923 * huge page alloc/free.
1925 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1926 struct kobj_attribute *attr, char *buf)
1928 return nr_hugepages_show_common(kobj, attr, buf);
1931 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1932 struct kobj_attribute *attr, const char *buf, size_t len)
1934 return nr_hugepages_store_common(true, kobj, buf, len);
1936 HSTATE_ATTR(nr_hugepages_mempolicy);
1937 #endif
1940 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1941 struct kobj_attribute *attr, char *buf)
1943 struct hstate *h = kobj_to_hstate(kobj, NULL);
1944 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1947 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1948 struct kobj_attribute *attr, const char *buf, size_t count)
1950 int err;
1951 unsigned long input;
1952 struct hstate *h = kobj_to_hstate(kobj, NULL);
1954 if (hstate_is_gigantic(h))
1955 return -EINVAL;
1957 err = kstrtoul(buf, 10, &input);
1958 if (err)
1959 return err;
1961 spin_lock(&hugetlb_lock);
1962 h->nr_overcommit_huge_pages = input;
1963 spin_unlock(&hugetlb_lock);
1965 return count;
1967 HSTATE_ATTR(nr_overcommit_hugepages);
1969 static ssize_t free_hugepages_show(struct kobject *kobj,
1970 struct kobj_attribute *attr, char *buf)
1972 struct hstate *h;
1973 unsigned long free_huge_pages;
1974 int nid;
1976 h = kobj_to_hstate(kobj, &nid);
1977 if (nid == NUMA_NO_NODE)
1978 free_huge_pages = h->free_huge_pages;
1979 else
1980 free_huge_pages = h->free_huge_pages_node[nid];
1982 return sprintf(buf, "%lu\n", free_huge_pages);
1984 HSTATE_ATTR_RO(free_hugepages);
1986 static ssize_t resv_hugepages_show(struct kobject *kobj,
1987 struct kobj_attribute *attr, char *buf)
1989 struct hstate *h = kobj_to_hstate(kobj, NULL);
1990 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1992 HSTATE_ATTR_RO(resv_hugepages);
1994 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1995 struct kobj_attribute *attr, char *buf)
1997 struct hstate *h;
1998 unsigned long surplus_huge_pages;
1999 int nid;
2001 h = kobj_to_hstate(kobj, &nid);
2002 if (nid == NUMA_NO_NODE)
2003 surplus_huge_pages = h->surplus_huge_pages;
2004 else
2005 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2007 return sprintf(buf, "%lu\n", surplus_huge_pages);
2009 HSTATE_ATTR_RO(surplus_hugepages);
2011 static struct attribute *hstate_attrs[] = {
2012 &nr_hugepages_attr.attr,
2013 &nr_overcommit_hugepages_attr.attr,
2014 &free_hugepages_attr.attr,
2015 &resv_hugepages_attr.attr,
2016 &surplus_hugepages_attr.attr,
2017 #ifdef CONFIG_NUMA
2018 &nr_hugepages_mempolicy_attr.attr,
2019 #endif
2020 NULL,
2023 static struct attribute_group hstate_attr_group = {
2024 .attrs = hstate_attrs,
2027 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2028 struct kobject **hstate_kobjs,
2029 struct attribute_group *hstate_attr_group)
2031 int retval;
2032 int hi = hstate_index(h);
2034 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2035 if (!hstate_kobjs[hi])
2036 return -ENOMEM;
2038 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2039 if (retval)
2040 kobject_put(hstate_kobjs[hi]);
2042 return retval;
2045 static void __init hugetlb_sysfs_init(void)
2047 struct hstate *h;
2048 int err;
2050 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2051 if (!hugepages_kobj)
2052 return;
2054 for_each_hstate(h) {
2055 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2056 hstate_kobjs, &hstate_attr_group);
2057 if (err)
2058 pr_err("Hugetlb: Unable to add hstate %s", h->name);
2062 #ifdef CONFIG_NUMA
2065 * node_hstate/s - associate per node hstate attributes, via their kobjects,
2066 * with node devices in node_devices[] using a parallel array. The array
2067 * index of a node device or _hstate == node id.
2068 * This is here to avoid any static dependency of the node device driver, in
2069 * the base kernel, on the hugetlb module.
2071 struct node_hstate {
2072 struct kobject *hugepages_kobj;
2073 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2075 struct node_hstate node_hstates[MAX_NUMNODES];
2078 * A subset of global hstate attributes for node devices
2080 static struct attribute *per_node_hstate_attrs[] = {
2081 &nr_hugepages_attr.attr,
2082 &free_hugepages_attr.attr,
2083 &surplus_hugepages_attr.attr,
2084 NULL,
2087 static struct attribute_group per_node_hstate_attr_group = {
2088 .attrs = per_node_hstate_attrs,
2092 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2093 * Returns node id via non-NULL nidp.
2095 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2097 int nid;
2099 for (nid = 0; nid < nr_node_ids; nid++) {
2100 struct node_hstate *nhs = &node_hstates[nid];
2101 int i;
2102 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2103 if (nhs->hstate_kobjs[i] == kobj) {
2104 if (nidp)
2105 *nidp = nid;
2106 return &hstates[i];
2110 BUG();
2111 return NULL;
2115 * Unregister hstate attributes from a single node device.
2116 * No-op if no hstate attributes attached.
2118 static void hugetlb_unregister_node(struct node *node)
2120 struct hstate *h;
2121 struct node_hstate *nhs = &node_hstates[node->dev.id];
2123 if (!nhs->hugepages_kobj)
2124 return; /* no hstate attributes */
2126 for_each_hstate(h) {
2127 int idx = hstate_index(h);
2128 if (nhs->hstate_kobjs[idx]) {
2129 kobject_put(nhs->hstate_kobjs[idx]);
2130 nhs->hstate_kobjs[idx] = NULL;
2134 kobject_put(nhs->hugepages_kobj);
2135 nhs->hugepages_kobj = NULL;
2139 * hugetlb module exit: unregister hstate attributes from node devices
2140 * that have them.
2142 static void hugetlb_unregister_all_nodes(void)
2144 int nid;
2147 * disable node device registrations.
2149 register_hugetlbfs_with_node(NULL, NULL);
2152 * remove hstate attributes from any nodes that have them.
2154 for (nid = 0; nid < nr_node_ids; nid++)
2155 hugetlb_unregister_node(node_devices[nid]);
2159 * Register hstate attributes for a single node device.
2160 * No-op if attributes already registered.
2162 static void hugetlb_register_node(struct node *node)
2164 struct hstate *h;
2165 struct node_hstate *nhs = &node_hstates[node->dev.id];
2166 int err;
2168 if (nhs->hugepages_kobj)
2169 return; /* already allocated */
2171 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2172 &node->dev.kobj);
2173 if (!nhs->hugepages_kobj)
2174 return;
2176 for_each_hstate(h) {
2177 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2178 nhs->hstate_kobjs,
2179 &per_node_hstate_attr_group);
2180 if (err) {
2181 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2182 h->name, node->dev.id);
2183 hugetlb_unregister_node(node);
2184 break;
2190 * hugetlb init time: register hstate attributes for all registered node
2191 * devices of nodes that have memory. All on-line nodes should have
2192 * registered their associated device by this time.
2194 static void __init hugetlb_register_all_nodes(void)
2196 int nid;
2198 for_each_node_state(nid, N_MEMORY) {
2199 struct node *node = node_devices[nid];
2200 if (node->dev.id == nid)
2201 hugetlb_register_node(node);
2205 * Let the node device driver know we're here so it can
2206 * [un]register hstate attributes on node hotplug.
2208 register_hugetlbfs_with_node(hugetlb_register_node,
2209 hugetlb_unregister_node);
2211 #else /* !CONFIG_NUMA */
2213 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2215 BUG();
2216 if (nidp)
2217 *nidp = -1;
2218 return NULL;
2221 static void hugetlb_unregister_all_nodes(void) { }
2223 static void hugetlb_register_all_nodes(void) { }
2225 #endif
2227 static void __exit hugetlb_exit(void)
2229 struct hstate *h;
2231 hugetlb_unregister_all_nodes();
2233 for_each_hstate(h) {
2234 kobject_put(hstate_kobjs[hstate_index(h)]);
2237 kobject_put(hugepages_kobj);
2238 kfree(htlb_fault_mutex_table);
2240 module_exit(hugetlb_exit);
2242 static int __init hugetlb_init(void)
2244 int i;
2246 if (!hugepages_supported())
2247 return 0;
2249 if (!size_to_hstate(default_hstate_size)) {
2250 default_hstate_size = HPAGE_SIZE;
2251 if (!size_to_hstate(default_hstate_size))
2252 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2254 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2255 if (default_hstate_max_huge_pages)
2256 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2258 hugetlb_init_hstates();
2259 gather_bootmem_prealloc();
2260 report_hugepages();
2262 hugetlb_sysfs_init();
2263 hugetlb_register_all_nodes();
2264 hugetlb_cgroup_file_init();
2266 #ifdef CONFIG_SMP
2267 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2268 #else
2269 num_fault_mutexes = 1;
2270 #endif
2271 htlb_fault_mutex_table =
2272 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2273 BUG_ON(!htlb_fault_mutex_table);
2275 for (i = 0; i < num_fault_mutexes; i++)
2276 mutex_init(&htlb_fault_mutex_table[i]);
2277 return 0;
2279 module_init(hugetlb_init);
2281 /* Should be called on processing a hugepagesz=... option */
2282 void __init hugetlb_add_hstate(unsigned int order)
2284 struct hstate *h;
2285 unsigned long i;
2287 if (size_to_hstate(PAGE_SIZE << order)) {
2288 pr_warning("hugepagesz= specified twice, ignoring\n");
2289 return;
2291 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2292 BUG_ON(order == 0);
2293 h = &hstates[hugetlb_max_hstate++];
2294 h->order = order;
2295 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2296 h->nr_huge_pages = 0;
2297 h->free_huge_pages = 0;
2298 for (i = 0; i < MAX_NUMNODES; ++i)
2299 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2300 INIT_LIST_HEAD(&h->hugepage_activelist);
2301 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2302 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2303 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2304 huge_page_size(h)/1024);
2306 parsed_hstate = h;
2309 static int __init hugetlb_nrpages_setup(char *s)
2311 unsigned long *mhp;
2312 static unsigned long *last_mhp;
2315 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2316 * so this hugepages= parameter goes to the "default hstate".
2318 if (!hugetlb_max_hstate)
2319 mhp = &default_hstate_max_huge_pages;
2320 else
2321 mhp = &parsed_hstate->max_huge_pages;
2323 if (mhp == last_mhp) {
2324 pr_warning("hugepages= specified twice without "
2325 "interleaving hugepagesz=, ignoring\n");
2326 return 1;
2329 if (sscanf(s, "%lu", mhp) <= 0)
2330 *mhp = 0;
2333 * Global state is always initialized later in hugetlb_init.
2334 * But we need to allocate >= MAX_ORDER hstates here early to still
2335 * use the bootmem allocator.
2337 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2338 hugetlb_hstate_alloc_pages(parsed_hstate);
2340 last_mhp = mhp;
2342 return 1;
2344 __setup("hugepages=", hugetlb_nrpages_setup);
2346 static int __init hugetlb_default_setup(char *s)
2348 default_hstate_size = memparse(s, &s);
2349 return 1;
2351 __setup("default_hugepagesz=", hugetlb_default_setup);
2353 static unsigned int cpuset_mems_nr(unsigned int *array)
2355 int node;
2356 unsigned int nr = 0;
2358 for_each_node_mask(node, cpuset_current_mems_allowed)
2359 nr += array[node];
2361 return nr;
2364 #ifdef CONFIG_SYSCTL
2365 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2366 struct ctl_table *table, int write,
2367 void __user *buffer, size_t *length, loff_t *ppos)
2369 struct hstate *h = &default_hstate;
2370 unsigned long tmp = h->max_huge_pages;
2371 int ret;
2373 if (!hugepages_supported())
2374 return -ENOTSUPP;
2376 table->data = &tmp;
2377 table->maxlen = sizeof(unsigned long);
2378 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2379 if (ret)
2380 goto out;
2382 if (write)
2383 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2384 NUMA_NO_NODE, tmp, *length);
2385 out:
2386 return ret;
2389 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2390 void __user *buffer, size_t *length, loff_t *ppos)
2393 return hugetlb_sysctl_handler_common(false, table, write,
2394 buffer, length, ppos);
2397 #ifdef CONFIG_NUMA
2398 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2399 void __user *buffer, size_t *length, loff_t *ppos)
2401 return hugetlb_sysctl_handler_common(true, table, write,
2402 buffer, length, ppos);
2404 #endif /* CONFIG_NUMA */
2406 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2407 void __user *buffer,
2408 size_t *length, loff_t *ppos)
2410 struct hstate *h = &default_hstate;
2411 unsigned long tmp;
2412 int ret;
2414 if (!hugepages_supported())
2415 return -ENOTSUPP;
2417 tmp = h->nr_overcommit_huge_pages;
2419 if (write && hstate_is_gigantic(h))
2420 return -EINVAL;
2422 table->data = &tmp;
2423 table->maxlen = sizeof(unsigned long);
2424 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2425 if (ret)
2426 goto out;
2428 if (write) {
2429 spin_lock(&hugetlb_lock);
2430 h->nr_overcommit_huge_pages = tmp;
2431 spin_unlock(&hugetlb_lock);
2433 out:
2434 return ret;
2437 #endif /* CONFIG_SYSCTL */
2439 void hugetlb_report_meminfo(struct seq_file *m)
2441 struct hstate *h = &default_hstate;
2442 if (!hugepages_supported())
2443 return;
2444 seq_printf(m,
2445 "HugePages_Total: %5lu\n"
2446 "HugePages_Free: %5lu\n"
2447 "HugePages_Rsvd: %5lu\n"
2448 "HugePages_Surp: %5lu\n"
2449 "Hugepagesize: %8lu kB\n",
2450 h->nr_huge_pages,
2451 h->free_huge_pages,
2452 h->resv_huge_pages,
2453 h->surplus_huge_pages,
2454 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2457 int hugetlb_report_node_meminfo(int nid, char *buf)
2459 struct hstate *h = &default_hstate;
2460 if (!hugepages_supported())
2461 return 0;
2462 return sprintf(buf,
2463 "Node %d HugePages_Total: %5u\n"
2464 "Node %d HugePages_Free: %5u\n"
2465 "Node %d HugePages_Surp: %5u\n",
2466 nid, h->nr_huge_pages_node[nid],
2467 nid, h->free_huge_pages_node[nid],
2468 nid, h->surplus_huge_pages_node[nid]);
2471 void hugetlb_show_meminfo(void)
2473 struct hstate *h;
2474 int nid;
2476 if (!hugepages_supported())
2477 return;
2479 for_each_node_state(nid, N_MEMORY)
2480 for_each_hstate(h)
2481 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2482 nid,
2483 h->nr_huge_pages_node[nid],
2484 h->free_huge_pages_node[nid],
2485 h->surplus_huge_pages_node[nid],
2486 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2489 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2490 unsigned long hugetlb_total_pages(void)
2492 struct hstate *h;
2493 unsigned long nr_total_pages = 0;
2495 for_each_hstate(h)
2496 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2497 return nr_total_pages;
2500 static int hugetlb_acct_memory(struct hstate *h, long delta)
2502 int ret = -ENOMEM;
2504 spin_lock(&hugetlb_lock);
2506 * When cpuset is configured, it breaks the strict hugetlb page
2507 * reservation as the accounting is done on a global variable. Such
2508 * reservation is completely rubbish in the presence of cpuset because
2509 * the reservation is not checked against page availability for the
2510 * current cpuset. Application can still potentially OOM'ed by kernel
2511 * with lack of free htlb page in cpuset that the task is in.
2512 * Attempt to enforce strict accounting with cpuset is almost
2513 * impossible (or too ugly) because cpuset is too fluid that
2514 * task or memory node can be dynamically moved between cpusets.
2516 * The change of semantics for shared hugetlb mapping with cpuset is
2517 * undesirable. However, in order to preserve some of the semantics,
2518 * we fall back to check against current free page availability as
2519 * a best attempt and hopefully to minimize the impact of changing
2520 * semantics that cpuset has.
2522 if (delta > 0) {
2523 if (gather_surplus_pages(h, delta) < 0)
2524 goto out;
2526 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2527 return_unused_surplus_pages(h, delta);
2528 goto out;
2532 ret = 0;
2533 if (delta < 0)
2534 return_unused_surplus_pages(h, (unsigned long) -delta);
2536 out:
2537 spin_unlock(&hugetlb_lock);
2538 return ret;
2541 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2543 struct resv_map *resv = vma_resv_map(vma);
2546 * This new VMA should share its siblings reservation map if present.
2547 * The VMA will only ever have a valid reservation map pointer where
2548 * it is being copied for another still existing VMA. As that VMA
2549 * has a reference to the reservation map it cannot disappear until
2550 * after this open call completes. It is therefore safe to take a
2551 * new reference here without additional locking.
2553 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2554 kref_get(&resv->refs);
2557 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2559 struct hstate *h = hstate_vma(vma);
2560 struct resv_map *resv = vma_resv_map(vma);
2561 struct hugepage_subpool *spool = subpool_vma(vma);
2562 unsigned long reserve, start, end;
2563 long gbl_reserve;
2565 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2566 return;
2568 start = vma_hugecache_offset(h, vma, vma->vm_start);
2569 end = vma_hugecache_offset(h, vma, vma->vm_end);
2571 reserve = (end - start) - region_count(resv, start, end);
2573 kref_put(&resv->refs, resv_map_release);
2575 if (reserve) {
2577 * Decrement reserve counts. The global reserve count may be
2578 * adjusted if the subpool has a minimum size.
2580 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2581 hugetlb_acct_memory(h, -gbl_reserve);
2586 * We cannot handle pagefaults against hugetlb pages at all. They cause
2587 * handle_mm_fault() to try to instantiate regular-sized pages in the
2588 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2589 * this far.
2591 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2593 BUG();
2594 return 0;
2597 const struct vm_operations_struct hugetlb_vm_ops = {
2598 .fault = hugetlb_vm_op_fault,
2599 .open = hugetlb_vm_op_open,
2600 .close = hugetlb_vm_op_close,
2603 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2604 int writable)
2606 pte_t entry;
2608 if (writable) {
2609 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2610 vma->vm_page_prot)));
2611 } else {
2612 entry = huge_pte_wrprotect(mk_huge_pte(page,
2613 vma->vm_page_prot));
2615 entry = pte_mkyoung(entry);
2616 entry = pte_mkhuge(entry);
2617 entry = arch_make_huge_pte(entry, vma, page, writable);
2619 return entry;
2622 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2623 unsigned long address, pte_t *ptep)
2625 pte_t entry;
2627 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2628 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2629 update_mmu_cache(vma, address, ptep);
2632 static int is_hugetlb_entry_migration(pte_t pte)
2634 swp_entry_t swp;
2636 if (huge_pte_none(pte) || pte_present(pte))
2637 return 0;
2638 swp = pte_to_swp_entry(pte);
2639 if (non_swap_entry(swp) && is_migration_entry(swp))
2640 return 1;
2641 else
2642 return 0;
2645 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2647 swp_entry_t swp;
2649 if (huge_pte_none(pte) || pte_present(pte))
2650 return 0;
2651 swp = pte_to_swp_entry(pte);
2652 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2653 return 1;
2654 else
2655 return 0;
2658 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2659 struct vm_area_struct *vma)
2661 pte_t *src_pte, *dst_pte, entry;
2662 struct page *ptepage;
2663 unsigned long addr;
2664 int cow;
2665 struct hstate *h = hstate_vma(vma);
2666 unsigned long sz = huge_page_size(h);
2667 unsigned long mmun_start; /* For mmu_notifiers */
2668 unsigned long mmun_end; /* For mmu_notifiers */
2669 int ret = 0;
2671 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2673 mmun_start = vma->vm_start;
2674 mmun_end = vma->vm_end;
2675 if (cow)
2676 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2678 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2679 spinlock_t *src_ptl, *dst_ptl;
2680 src_pte = huge_pte_offset(src, addr);
2681 if (!src_pte)
2682 continue;
2683 dst_pte = huge_pte_alloc(dst, addr, sz);
2684 if (!dst_pte) {
2685 ret = -ENOMEM;
2686 break;
2689 /* If the pagetables are shared don't copy or take references */
2690 if (dst_pte == src_pte)
2691 continue;
2693 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2694 src_ptl = huge_pte_lockptr(h, src, src_pte);
2695 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2696 entry = huge_ptep_get(src_pte);
2697 if (huge_pte_none(entry)) { /* skip none entry */
2699 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2700 is_hugetlb_entry_hwpoisoned(entry))) {
2701 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2703 if (is_write_migration_entry(swp_entry) && cow) {
2705 * COW mappings require pages in both
2706 * parent and child to be set to read.
2708 make_migration_entry_read(&swp_entry);
2709 entry = swp_entry_to_pte(swp_entry);
2710 set_huge_pte_at(src, addr, src_pte, entry);
2712 set_huge_pte_at(dst, addr, dst_pte, entry);
2713 } else {
2714 if (cow) {
2715 huge_ptep_set_wrprotect(src, addr, src_pte);
2716 mmu_notifier_invalidate_range(src, mmun_start,
2717 mmun_end);
2719 entry = huge_ptep_get(src_pte);
2720 ptepage = pte_page(entry);
2721 get_page(ptepage);
2722 page_dup_rmap(ptepage);
2723 set_huge_pte_at(dst, addr, dst_pte, entry);
2725 spin_unlock(src_ptl);
2726 spin_unlock(dst_ptl);
2729 if (cow)
2730 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2732 return ret;
2735 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2736 unsigned long start, unsigned long end,
2737 struct page *ref_page)
2739 int force_flush = 0;
2740 struct mm_struct *mm = vma->vm_mm;
2741 unsigned long address;
2742 pte_t *ptep;
2743 pte_t pte;
2744 spinlock_t *ptl;
2745 struct page *page;
2746 struct hstate *h = hstate_vma(vma);
2747 unsigned long sz = huge_page_size(h);
2748 const unsigned long mmun_start = start; /* For mmu_notifiers */
2749 const unsigned long mmun_end = end; /* For mmu_notifiers */
2751 WARN_ON(!is_vm_hugetlb_page(vma));
2752 BUG_ON(start & ~huge_page_mask(h));
2753 BUG_ON(end & ~huge_page_mask(h));
2755 tlb_start_vma(tlb, vma);
2756 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2757 address = start;
2758 again:
2759 for (; address < end; address += sz) {
2760 ptep = huge_pte_offset(mm, address);
2761 if (!ptep)
2762 continue;
2764 ptl = huge_pte_lock(h, mm, ptep);
2765 if (huge_pmd_unshare(mm, &address, ptep))
2766 goto unlock;
2768 pte = huge_ptep_get(ptep);
2769 if (huge_pte_none(pte))
2770 goto unlock;
2773 * Migrating hugepage or HWPoisoned hugepage is already
2774 * unmapped and its refcount is dropped, so just clear pte here.
2776 if (unlikely(!pte_present(pte))) {
2777 huge_pte_clear(mm, address, ptep);
2778 goto unlock;
2781 page = pte_page(pte);
2783 * If a reference page is supplied, it is because a specific
2784 * page is being unmapped, not a range. Ensure the page we
2785 * are about to unmap is the actual page of interest.
2787 if (ref_page) {
2788 if (page != ref_page)
2789 goto unlock;
2792 * Mark the VMA as having unmapped its page so that
2793 * future faults in this VMA will fail rather than
2794 * looking like data was lost
2796 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2799 pte = huge_ptep_get_and_clear(mm, address, ptep);
2800 tlb_remove_tlb_entry(tlb, ptep, address);
2801 if (huge_pte_dirty(pte))
2802 set_page_dirty(page);
2804 page_remove_rmap(page);
2805 force_flush = !__tlb_remove_page(tlb, page);
2806 if (force_flush) {
2807 address += sz;
2808 spin_unlock(ptl);
2809 break;
2811 /* Bail out after unmapping reference page if supplied */
2812 if (ref_page) {
2813 spin_unlock(ptl);
2814 break;
2816 unlock:
2817 spin_unlock(ptl);
2820 * mmu_gather ran out of room to batch pages, we break out of
2821 * the PTE lock to avoid doing the potential expensive TLB invalidate
2822 * and page-free while holding it.
2824 if (force_flush) {
2825 force_flush = 0;
2826 tlb_flush_mmu(tlb);
2827 if (address < end && !ref_page)
2828 goto again;
2830 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2831 tlb_end_vma(tlb, vma);
2834 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2835 struct vm_area_struct *vma, unsigned long start,
2836 unsigned long end, struct page *ref_page)
2838 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2841 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2842 * test will fail on a vma being torn down, and not grab a page table
2843 * on its way out. We're lucky that the flag has such an appropriate
2844 * name, and can in fact be safely cleared here. We could clear it
2845 * before the __unmap_hugepage_range above, but all that's necessary
2846 * is to clear it before releasing the i_mmap_rwsem. This works
2847 * because in the context this is called, the VMA is about to be
2848 * destroyed and the i_mmap_rwsem is held.
2850 vma->vm_flags &= ~VM_MAYSHARE;
2853 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2854 unsigned long end, struct page *ref_page)
2856 struct mm_struct *mm;
2857 struct mmu_gather tlb;
2859 mm = vma->vm_mm;
2861 tlb_gather_mmu(&tlb, mm, start, end);
2862 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2863 tlb_finish_mmu(&tlb, start, end);
2867 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2868 * mappping it owns the reserve page for. The intention is to unmap the page
2869 * from other VMAs and let the children be SIGKILLed if they are faulting the
2870 * same region.
2872 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2873 struct page *page, unsigned long address)
2875 struct hstate *h = hstate_vma(vma);
2876 struct vm_area_struct *iter_vma;
2877 struct address_space *mapping;
2878 pgoff_t pgoff;
2881 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2882 * from page cache lookup which is in HPAGE_SIZE units.
2884 address = address & huge_page_mask(h);
2885 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2886 vma->vm_pgoff;
2887 mapping = file_inode(vma->vm_file)->i_mapping;
2890 * Take the mapping lock for the duration of the table walk. As
2891 * this mapping should be shared between all the VMAs,
2892 * __unmap_hugepage_range() is called as the lock is already held
2894 i_mmap_lock_write(mapping);
2895 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2896 /* Do not unmap the current VMA */
2897 if (iter_vma == vma)
2898 continue;
2901 * Shared VMAs have their own reserves and do not affect
2902 * MAP_PRIVATE accounting but it is possible that a shared
2903 * VMA is using the same page so check and skip such VMAs.
2905 if (iter_vma->vm_flags & VM_MAYSHARE)
2906 continue;
2909 * Unmap the page from other VMAs without their own reserves.
2910 * They get marked to be SIGKILLed if they fault in these
2911 * areas. This is because a future no-page fault on this VMA
2912 * could insert a zeroed page instead of the data existing
2913 * from the time of fork. This would look like data corruption
2915 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2916 unmap_hugepage_range(iter_vma, address,
2917 address + huge_page_size(h), page);
2919 i_mmap_unlock_write(mapping);
2923 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2924 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2925 * cannot race with other handlers or page migration.
2926 * Keep the pte_same checks anyway to make transition from the mutex easier.
2928 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2929 unsigned long address, pte_t *ptep, pte_t pte,
2930 struct page *pagecache_page, spinlock_t *ptl)
2932 struct hstate *h = hstate_vma(vma);
2933 struct page *old_page, *new_page;
2934 int ret = 0, outside_reserve = 0;
2935 unsigned long mmun_start; /* For mmu_notifiers */
2936 unsigned long mmun_end; /* For mmu_notifiers */
2938 old_page = pte_page(pte);
2940 retry_avoidcopy:
2941 /* If no-one else is actually using this page, avoid the copy
2942 * and just make the page writable */
2943 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2944 page_move_anon_rmap(old_page, vma, address);
2945 set_huge_ptep_writable(vma, address, ptep);
2946 return 0;
2950 * If the process that created a MAP_PRIVATE mapping is about to
2951 * perform a COW due to a shared page count, attempt to satisfy
2952 * the allocation without using the existing reserves. The pagecache
2953 * page is used to determine if the reserve at this address was
2954 * consumed or not. If reserves were used, a partial faulted mapping
2955 * at the time of fork() could consume its reserves on COW instead
2956 * of the full address range.
2958 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2959 old_page != pagecache_page)
2960 outside_reserve = 1;
2962 page_cache_get(old_page);
2965 * Drop page table lock as buddy allocator may be called. It will
2966 * be acquired again before returning to the caller, as expected.
2968 spin_unlock(ptl);
2969 new_page = alloc_huge_page(vma, address, outside_reserve);
2971 if (IS_ERR(new_page)) {
2973 * If a process owning a MAP_PRIVATE mapping fails to COW,
2974 * it is due to references held by a child and an insufficient
2975 * huge page pool. To guarantee the original mappers
2976 * reliability, unmap the page from child processes. The child
2977 * may get SIGKILLed if it later faults.
2979 if (outside_reserve) {
2980 page_cache_release(old_page);
2981 BUG_ON(huge_pte_none(pte));
2982 unmap_ref_private(mm, vma, old_page, address);
2983 BUG_ON(huge_pte_none(pte));
2984 spin_lock(ptl);
2985 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2986 if (likely(ptep &&
2987 pte_same(huge_ptep_get(ptep), pte)))
2988 goto retry_avoidcopy;
2990 * race occurs while re-acquiring page table
2991 * lock, and our job is done.
2993 return 0;
2996 ret = (PTR_ERR(new_page) == -ENOMEM) ?
2997 VM_FAULT_OOM : VM_FAULT_SIGBUS;
2998 goto out_release_old;
3002 * When the original hugepage is shared one, it does not have
3003 * anon_vma prepared.
3005 if (unlikely(anon_vma_prepare(vma))) {
3006 ret = VM_FAULT_OOM;
3007 goto out_release_all;
3010 copy_user_huge_page(new_page, old_page, address, vma,
3011 pages_per_huge_page(h));
3012 __SetPageUptodate(new_page);
3013 set_page_huge_active(new_page);
3015 mmun_start = address & huge_page_mask(h);
3016 mmun_end = mmun_start + huge_page_size(h);
3017 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3020 * Retake the page table lock to check for racing updates
3021 * before the page tables are altered
3023 spin_lock(ptl);
3024 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3025 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3026 ClearPagePrivate(new_page);
3028 /* Break COW */
3029 huge_ptep_clear_flush(vma, address, ptep);
3030 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3031 set_huge_pte_at(mm, address, ptep,
3032 make_huge_pte(vma, new_page, 1));
3033 page_remove_rmap(old_page);
3034 hugepage_add_new_anon_rmap(new_page, vma, address);
3035 /* Make the old page be freed below */
3036 new_page = old_page;
3038 spin_unlock(ptl);
3039 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3040 out_release_all:
3041 page_cache_release(new_page);
3042 out_release_old:
3043 page_cache_release(old_page);
3045 spin_lock(ptl); /* Caller expects lock to be held */
3046 return ret;
3049 /* Return the pagecache page at a given address within a VMA */
3050 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3051 struct vm_area_struct *vma, unsigned long address)
3053 struct address_space *mapping;
3054 pgoff_t idx;
3056 mapping = vma->vm_file->f_mapping;
3057 idx = vma_hugecache_offset(h, vma, address);
3059 return find_lock_page(mapping, idx);
3063 * Return whether there is a pagecache page to back given address within VMA.
3064 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3066 static bool hugetlbfs_pagecache_present(struct hstate *h,
3067 struct vm_area_struct *vma, unsigned long address)
3069 struct address_space *mapping;
3070 pgoff_t idx;
3071 struct page *page;
3073 mapping = vma->vm_file->f_mapping;
3074 idx = vma_hugecache_offset(h, vma, address);
3076 page = find_get_page(mapping, idx);
3077 if (page)
3078 put_page(page);
3079 return page != NULL;
3082 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3083 struct address_space *mapping, pgoff_t idx,
3084 unsigned long address, pte_t *ptep, unsigned int flags)
3086 struct hstate *h = hstate_vma(vma);
3087 int ret = VM_FAULT_SIGBUS;
3088 int anon_rmap = 0;
3089 unsigned long size;
3090 struct page *page;
3091 pte_t new_pte;
3092 spinlock_t *ptl;
3095 * Currently, we are forced to kill the process in the event the
3096 * original mapper has unmapped pages from the child due to a failed
3097 * COW. Warn that such a situation has occurred as it may not be obvious
3099 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3100 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3101 current->pid);
3102 return ret;
3106 * Use page lock to guard against racing truncation
3107 * before we get page_table_lock.
3109 retry:
3110 page = find_lock_page(mapping, idx);
3111 if (!page) {
3112 size = i_size_read(mapping->host) >> huge_page_shift(h);
3113 if (idx >= size)
3114 goto out;
3115 page = alloc_huge_page(vma, address, 0);
3116 if (IS_ERR(page)) {
3117 ret = PTR_ERR(page);
3118 if (ret == -ENOMEM)
3119 ret = VM_FAULT_OOM;
3120 else
3121 ret = VM_FAULT_SIGBUS;
3122 goto out;
3124 clear_huge_page(page, address, pages_per_huge_page(h));
3125 __SetPageUptodate(page);
3126 set_page_huge_active(page);
3128 if (vma->vm_flags & VM_MAYSHARE) {
3129 int err;
3130 struct inode *inode = mapping->host;
3132 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3133 if (err) {
3134 put_page(page);
3135 if (err == -EEXIST)
3136 goto retry;
3137 goto out;
3139 ClearPagePrivate(page);
3141 spin_lock(&inode->i_lock);
3142 inode->i_blocks += blocks_per_huge_page(h);
3143 spin_unlock(&inode->i_lock);
3144 } else {
3145 lock_page(page);
3146 if (unlikely(anon_vma_prepare(vma))) {
3147 ret = VM_FAULT_OOM;
3148 goto backout_unlocked;
3150 anon_rmap = 1;
3152 } else {
3154 * If memory error occurs between mmap() and fault, some process
3155 * don't have hwpoisoned swap entry for errored virtual address.
3156 * So we need to block hugepage fault by PG_hwpoison bit check.
3158 if (unlikely(PageHWPoison(page))) {
3159 ret = VM_FAULT_HWPOISON |
3160 VM_FAULT_SET_HINDEX(hstate_index(h));
3161 goto backout_unlocked;
3166 * If we are going to COW a private mapping later, we examine the
3167 * pending reservations for this page now. This will ensure that
3168 * any allocations necessary to record that reservation occur outside
3169 * the spinlock.
3171 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3172 if (vma_needs_reservation(h, vma, address) < 0) {
3173 ret = VM_FAULT_OOM;
3174 goto backout_unlocked;
3177 ptl = huge_pte_lockptr(h, mm, ptep);
3178 spin_lock(ptl);
3179 size = i_size_read(mapping->host) >> huge_page_shift(h);
3180 if (idx >= size)
3181 goto backout;
3183 ret = 0;
3184 if (!huge_pte_none(huge_ptep_get(ptep)))
3185 goto backout;
3187 if (anon_rmap) {
3188 ClearPagePrivate(page);
3189 hugepage_add_new_anon_rmap(page, vma, address);
3190 } else
3191 page_dup_rmap(page);
3192 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3193 && (vma->vm_flags & VM_SHARED)));
3194 set_huge_pte_at(mm, address, ptep, new_pte);
3196 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3197 /* Optimization, do the COW without a second fault */
3198 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3201 spin_unlock(ptl);
3202 unlock_page(page);
3203 out:
3204 return ret;
3206 backout:
3207 spin_unlock(ptl);
3208 backout_unlocked:
3209 unlock_page(page);
3210 put_page(page);
3211 goto out;
3214 #ifdef CONFIG_SMP
3215 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3216 struct vm_area_struct *vma,
3217 struct address_space *mapping,
3218 pgoff_t idx, unsigned long address)
3220 unsigned long key[2];
3221 u32 hash;
3223 if (vma->vm_flags & VM_SHARED) {
3224 key[0] = (unsigned long) mapping;
3225 key[1] = idx;
3226 } else {
3227 key[0] = (unsigned long) mm;
3228 key[1] = address >> huge_page_shift(h);
3231 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3233 return hash & (num_fault_mutexes - 1);
3235 #else
3237 * For uniprocesor systems we always use a single mutex, so just
3238 * return 0 and avoid the hashing overhead.
3240 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3241 struct vm_area_struct *vma,
3242 struct address_space *mapping,
3243 pgoff_t idx, unsigned long address)
3245 return 0;
3247 #endif
3249 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3250 unsigned long address, unsigned int flags)
3252 pte_t *ptep, entry;
3253 spinlock_t *ptl;
3254 int ret;
3255 u32 hash;
3256 pgoff_t idx;
3257 struct page *page = NULL;
3258 struct page *pagecache_page = NULL;
3259 struct hstate *h = hstate_vma(vma);
3260 struct address_space *mapping;
3261 int need_wait_lock = 0;
3263 address &= huge_page_mask(h);
3265 ptep = huge_pte_offset(mm, address);
3266 if (ptep) {
3267 entry = huge_ptep_get(ptep);
3268 if (unlikely(is_hugetlb_entry_migration(entry))) {
3269 migration_entry_wait_huge(vma, mm, ptep);
3270 return 0;
3271 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3272 return VM_FAULT_HWPOISON_LARGE |
3273 VM_FAULT_SET_HINDEX(hstate_index(h));
3276 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3277 if (!ptep)
3278 return VM_FAULT_OOM;
3280 mapping = vma->vm_file->f_mapping;
3281 idx = vma_hugecache_offset(h, vma, address);
3284 * Serialize hugepage allocation and instantiation, so that we don't
3285 * get spurious allocation failures if two CPUs race to instantiate
3286 * the same page in the page cache.
3288 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3289 mutex_lock(&htlb_fault_mutex_table[hash]);
3291 entry = huge_ptep_get(ptep);
3292 if (huge_pte_none(entry)) {
3293 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3294 goto out_mutex;
3297 ret = 0;
3300 * entry could be a migration/hwpoison entry at this point, so this
3301 * check prevents the kernel from going below assuming that we have
3302 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3303 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3304 * handle it.
3306 if (!pte_present(entry))
3307 goto out_mutex;
3310 * If we are going to COW the mapping later, we examine the pending
3311 * reservations for this page now. This will ensure that any
3312 * allocations necessary to record that reservation occur outside the
3313 * spinlock. For private mappings, we also lookup the pagecache
3314 * page now as it is used to determine if a reservation has been
3315 * consumed.
3317 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3318 if (vma_needs_reservation(h, vma, address) < 0) {
3319 ret = VM_FAULT_OOM;
3320 goto out_mutex;
3323 if (!(vma->vm_flags & VM_MAYSHARE))
3324 pagecache_page = hugetlbfs_pagecache_page(h,
3325 vma, address);
3328 ptl = huge_pte_lock(h, mm, ptep);
3330 /* Check for a racing update before calling hugetlb_cow */
3331 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3332 goto out_ptl;
3335 * hugetlb_cow() requires page locks of pte_page(entry) and
3336 * pagecache_page, so here we need take the former one
3337 * when page != pagecache_page or !pagecache_page.
3339 page = pte_page(entry);
3340 if (page != pagecache_page)
3341 if (!trylock_page(page)) {
3342 need_wait_lock = 1;
3343 goto out_ptl;
3346 get_page(page);
3348 if (flags & FAULT_FLAG_WRITE) {
3349 if (!huge_pte_write(entry)) {
3350 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3351 pagecache_page, ptl);
3352 goto out_put_page;
3354 entry = huge_pte_mkdirty(entry);
3356 entry = pte_mkyoung(entry);
3357 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3358 flags & FAULT_FLAG_WRITE))
3359 update_mmu_cache(vma, address, ptep);
3360 out_put_page:
3361 if (page != pagecache_page)
3362 unlock_page(page);
3363 put_page(page);
3364 out_ptl:
3365 spin_unlock(ptl);
3367 if (pagecache_page) {
3368 unlock_page(pagecache_page);
3369 put_page(pagecache_page);
3371 out_mutex:
3372 mutex_unlock(&htlb_fault_mutex_table[hash]);
3374 * Generally it's safe to hold refcount during waiting page lock. But
3375 * here we just wait to defer the next page fault to avoid busy loop and
3376 * the page is not used after unlocked before returning from the current
3377 * page fault. So we are safe from accessing freed page, even if we wait
3378 * here without taking refcount.
3380 if (need_wait_lock)
3381 wait_on_page_locked(page);
3382 return ret;
3385 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3386 struct page **pages, struct vm_area_struct **vmas,
3387 unsigned long *position, unsigned long *nr_pages,
3388 long i, unsigned int flags)
3390 unsigned long pfn_offset;
3391 unsigned long vaddr = *position;
3392 unsigned long remainder = *nr_pages;
3393 struct hstate *h = hstate_vma(vma);
3395 while (vaddr < vma->vm_end && remainder) {
3396 pte_t *pte;
3397 spinlock_t *ptl = NULL;
3398 int absent;
3399 struct page *page;
3402 * If we have a pending SIGKILL, don't keep faulting pages and
3403 * potentially allocating memory.
3405 if (unlikely(fatal_signal_pending(current))) {
3406 remainder = 0;
3407 break;
3411 * Some archs (sparc64, sh*) have multiple pte_ts to
3412 * each hugepage. We have to make sure we get the
3413 * first, for the page indexing below to work.
3415 * Note that page table lock is not held when pte is null.
3417 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3418 if (pte)
3419 ptl = huge_pte_lock(h, mm, pte);
3420 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3423 * When coredumping, it suits get_dump_page if we just return
3424 * an error where there's an empty slot with no huge pagecache
3425 * to back it. This way, we avoid allocating a hugepage, and
3426 * the sparse dumpfile avoids allocating disk blocks, but its
3427 * huge holes still show up with zeroes where they need to be.
3429 if (absent && (flags & FOLL_DUMP) &&
3430 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3431 if (pte)
3432 spin_unlock(ptl);
3433 remainder = 0;
3434 break;
3438 * We need call hugetlb_fault for both hugepages under migration
3439 * (in which case hugetlb_fault waits for the migration,) and
3440 * hwpoisoned hugepages (in which case we need to prevent the
3441 * caller from accessing to them.) In order to do this, we use
3442 * here is_swap_pte instead of is_hugetlb_entry_migration and
3443 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3444 * both cases, and because we can't follow correct pages
3445 * directly from any kind of swap entries.
3447 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3448 ((flags & FOLL_WRITE) &&
3449 !huge_pte_write(huge_ptep_get(pte)))) {
3450 int ret;
3452 if (pte)
3453 spin_unlock(ptl);
3454 ret = hugetlb_fault(mm, vma, vaddr,
3455 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3456 if (!(ret & VM_FAULT_ERROR))
3457 continue;
3459 remainder = 0;
3460 break;
3463 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3464 page = pte_page(huge_ptep_get(pte));
3465 same_page:
3466 if (pages) {
3467 pages[i] = mem_map_offset(page, pfn_offset);
3468 get_page_foll(pages[i]);
3471 if (vmas)
3472 vmas[i] = vma;
3474 vaddr += PAGE_SIZE;
3475 ++pfn_offset;
3476 --remainder;
3477 ++i;
3478 if (vaddr < vma->vm_end && remainder &&
3479 pfn_offset < pages_per_huge_page(h)) {
3481 * We use pfn_offset to avoid touching the pageframes
3482 * of this compound page.
3484 goto same_page;
3486 spin_unlock(ptl);
3488 *nr_pages = remainder;
3489 *position = vaddr;
3491 return i ? i : -EFAULT;
3494 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3495 unsigned long address, unsigned long end, pgprot_t newprot)
3497 struct mm_struct *mm = vma->vm_mm;
3498 unsigned long start = address;
3499 pte_t *ptep;
3500 pte_t pte;
3501 struct hstate *h = hstate_vma(vma);
3502 unsigned long pages = 0;
3504 BUG_ON(address >= end);
3505 flush_cache_range(vma, address, end);
3507 mmu_notifier_invalidate_range_start(mm, start, end);
3508 i_mmap_lock_write(vma->vm_file->f_mapping);
3509 for (; address < end; address += huge_page_size(h)) {
3510 spinlock_t *ptl;
3511 ptep = huge_pte_offset(mm, address);
3512 if (!ptep)
3513 continue;
3514 ptl = huge_pte_lock(h, mm, ptep);
3515 if (huge_pmd_unshare(mm, &address, ptep)) {
3516 pages++;
3517 spin_unlock(ptl);
3518 continue;
3520 pte = huge_ptep_get(ptep);
3521 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3522 spin_unlock(ptl);
3523 continue;
3525 if (unlikely(is_hugetlb_entry_migration(pte))) {
3526 swp_entry_t entry = pte_to_swp_entry(pte);
3528 if (is_write_migration_entry(entry)) {
3529 pte_t newpte;
3531 make_migration_entry_read(&entry);
3532 newpte = swp_entry_to_pte(entry);
3533 set_huge_pte_at(mm, address, ptep, newpte);
3534 pages++;
3536 spin_unlock(ptl);
3537 continue;
3539 if (!huge_pte_none(pte)) {
3540 pte = huge_ptep_get_and_clear(mm, address, ptep);
3541 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3542 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3543 set_huge_pte_at(mm, address, ptep, pte);
3544 pages++;
3546 spin_unlock(ptl);
3549 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3550 * may have cleared our pud entry and done put_page on the page table:
3551 * once we release i_mmap_rwsem, another task can do the final put_page
3552 * and that page table be reused and filled with junk.
3554 flush_tlb_range(vma, start, end);
3555 mmu_notifier_invalidate_range(mm, start, end);
3556 i_mmap_unlock_write(vma->vm_file->f_mapping);
3557 mmu_notifier_invalidate_range_end(mm, start, end);
3559 return pages << h->order;
3562 int hugetlb_reserve_pages(struct inode *inode,
3563 long from, long to,
3564 struct vm_area_struct *vma,
3565 vm_flags_t vm_flags)
3567 long ret, chg;
3568 struct hstate *h = hstate_inode(inode);
3569 struct hugepage_subpool *spool = subpool_inode(inode);
3570 struct resv_map *resv_map;
3571 long gbl_reserve;
3574 * Only apply hugepage reservation if asked. At fault time, an
3575 * attempt will be made for VM_NORESERVE to allocate a page
3576 * without using reserves
3578 if (vm_flags & VM_NORESERVE)
3579 return 0;
3582 * Shared mappings base their reservation on the number of pages that
3583 * are already allocated on behalf of the file. Private mappings need
3584 * to reserve the full area even if read-only as mprotect() may be
3585 * called to make the mapping read-write. Assume !vma is a shm mapping
3587 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3588 resv_map = inode_resv_map(inode);
3590 chg = region_chg(resv_map, from, to);
3592 } else {
3593 resv_map = resv_map_alloc();
3594 if (!resv_map)
3595 return -ENOMEM;
3597 chg = to - from;
3599 set_vma_resv_map(vma, resv_map);
3600 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3603 if (chg < 0) {
3604 ret = chg;
3605 goto out_err;
3609 * There must be enough pages in the subpool for the mapping. If
3610 * the subpool has a minimum size, there may be some global
3611 * reservations already in place (gbl_reserve).
3613 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3614 if (gbl_reserve < 0) {
3615 ret = -ENOSPC;
3616 goto out_err;
3620 * Check enough hugepages are available for the reservation.
3621 * Hand the pages back to the subpool if there are not
3623 ret = hugetlb_acct_memory(h, gbl_reserve);
3624 if (ret < 0) {
3625 /* put back original number of pages, chg */
3626 (void)hugepage_subpool_put_pages(spool, chg);
3627 goto out_err;
3631 * Account for the reservations made. Shared mappings record regions
3632 * that have reservations as they are shared by multiple VMAs.
3633 * When the last VMA disappears, the region map says how much
3634 * the reservation was and the page cache tells how much of
3635 * the reservation was consumed. Private mappings are per-VMA and
3636 * only the consumed reservations are tracked. When the VMA
3637 * disappears, the original reservation is the VMA size and the
3638 * consumed reservations are stored in the map. Hence, nothing
3639 * else has to be done for private mappings here
3641 if (!vma || vma->vm_flags & VM_MAYSHARE)
3642 region_add(resv_map, from, to);
3643 return 0;
3644 out_err:
3645 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3646 kref_put(&resv_map->refs, resv_map_release);
3647 return ret;
3650 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3652 struct hstate *h = hstate_inode(inode);
3653 struct resv_map *resv_map = inode_resv_map(inode);
3654 long chg = 0;
3655 struct hugepage_subpool *spool = subpool_inode(inode);
3656 long gbl_reserve;
3658 if (resv_map)
3659 chg = region_truncate(resv_map, offset);
3660 spin_lock(&inode->i_lock);
3661 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3662 spin_unlock(&inode->i_lock);
3665 * If the subpool has a minimum size, the number of global
3666 * reservations to be released may be adjusted.
3668 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3669 hugetlb_acct_memory(h, -gbl_reserve);
3672 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3673 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3674 struct vm_area_struct *vma,
3675 unsigned long addr, pgoff_t idx)
3677 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3678 svma->vm_start;
3679 unsigned long sbase = saddr & PUD_MASK;
3680 unsigned long s_end = sbase + PUD_SIZE;
3682 /* Allow segments to share if only one is marked locked */
3683 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3684 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3687 * match the virtual addresses, permission and the alignment of the
3688 * page table page.
3690 if (pmd_index(addr) != pmd_index(saddr) ||
3691 vm_flags != svm_flags ||
3692 sbase < svma->vm_start || svma->vm_end < s_end)
3693 return 0;
3695 return saddr;
3698 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3700 unsigned long base = addr & PUD_MASK;
3701 unsigned long end = base + PUD_SIZE;
3704 * check on proper vm_flags and page table alignment
3706 if (vma->vm_flags & VM_MAYSHARE &&
3707 vma->vm_start <= base && end <= vma->vm_end)
3708 return 1;
3709 return 0;
3713 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3714 * and returns the corresponding pte. While this is not necessary for the
3715 * !shared pmd case because we can allocate the pmd later as well, it makes the
3716 * code much cleaner. pmd allocation is essential for the shared case because
3717 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3718 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3719 * bad pmd for sharing.
3721 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3723 struct vm_area_struct *vma = find_vma(mm, addr);
3724 struct address_space *mapping = vma->vm_file->f_mapping;
3725 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3726 vma->vm_pgoff;
3727 struct vm_area_struct *svma;
3728 unsigned long saddr;
3729 pte_t *spte = NULL;
3730 pte_t *pte;
3731 spinlock_t *ptl;
3733 if (!vma_shareable(vma, addr))
3734 return (pte_t *)pmd_alloc(mm, pud, addr);
3736 i_mmap_lock_write(mapping);
3737 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3738 if (svma == vma)
3739 continue;
3741 saddr = page_table_shareable(svma, vma, addr, idx);
3742 if (saddr) {
3743 spte = huge_pte_offset(svma->vm_mm, saddr);
3744 if (spte) {
3745 mm_inc_nr_pmds(mm);
3746 get_page(virt_to_page(spte));
3747 break;
3752 if (!spte)
3753 goto out;
3755 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3756 spin_lock(ptl);
3757 if (pud_none(*pud)) {
3758 pud_populate(mm, pud,
3759 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3760 } else {
3761 put_page(virt_to_page(spte));
3762 mm_inc_nr_pmds(mm);
3764 spin_unlock(ptl);
3765 out:
3766 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3767 i_mmap_unlock_write(mapping);
3768 return pte;
3772 * unmap huge page backed by shared pte.
3774 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3775 * indicated by page_count > 1, unmap is achieved by clearing pud and
3776 * decrementing the ref count. If count == 1, the pte page is not shared.
3778 * called with page table lock held.
3780 * returns: 1 successfully unmapped a shared pte page
3781 * 0 the underlying pte page is not shared, or it is the last user
3783 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3785 pgd_t *pgd = pgd_offset(mm, *addr);
3786 pud_t *pud = pud_offset(pgd, *addr);
3788 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3789 if (page_count(virt_to_page(ptep)) == 1)
3790 return 0;
3792 pud_clear(pud);
3793 put_page(virt_to_page(ptep));
3794 mm_dec_nr_pmds(mm);
3795 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3796 return 1;
3798 #define want_pmd_share() (1)
3799 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3800 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3802 return NULL;
3804 #define want_pmd_share() (0)
3805 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3807 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3808 pte_t *huge_pte_alloc(struct mm_struct *mm,
3809 unsigned long addr, unsigned long sz)
3811 pgd_t *pgd;
3812 pud_t *pud;
3813 pte_t *pte = NULL;
3815 pgd = pgd_offset(mm, addr);
3816 pud = pud_alloc(mm, pgd, addr);
3817 if (pud) {
3818 if (sz == PUD_SIZE) {
3819 pte = (pte_t *)pud;
3820 } else {
3821 BUG_ON(sz != PMD_SIZE);
3822 if (want_pmd_share() && pud_none(*pud))
3823 pte = huge_pmd_share(mm, addr, pud);
3824 else
3825 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3828 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3830 return pte;
3833 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3835 pgd_t *pgd;
3836 pud_t *pud;
3837 pmd_t *pmd = NULL;
3839 pgd = pgd_offset(mm, addr);
3840 if (pgd_present(*pgd)) {
3841 pud = pud_offset(pgd, addr);
3842 if (pud_present(*pud)) {
3843 if (pud_huge(*pud))
3844 return (pte_t *)pud;
3845 pmd = pmd_offset(pud, addr);
3848 return (pte_t *) pmd;
3851 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3854 * These functions are overwritable if your architecture needs its own
3855 * behavior.
3857 struct page * __weak
3858 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3859 int write)
3861 return ERR_PTR(-EINVAL);
3864 struct page * __weak
3865 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3866 pmd_t *pmd, int flags)
3868 struct page *page = NULL;
3869 spinlock_t *ptl;
3870 retry:
3871 ptl = pmd_lockptr(mm, pmd);
3872 spin_lock(ptl);
3874 * make sure that the address range covered by this pmd is not
3875 * unmapped from other threads.
3877 if (!pmd_huge(*pmd))
3878 goto out;
3879 if (pmd_present(*pmd)) {
3880 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3881 if (flags & FOLL_GET)
3882 get_page(page);
3883 } else {
3884 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3885 spin_unlock(ptl);
3886 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3887 goto retry;
3890 * hwpoisoned entry is treated as no_page_table in
3891 * follow_page_mask().
3894 out:
3895 spin_unlock(ptl);
3896 return page;
3899 struct page * __weak
3900 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3901 pud_t *pud, int flags)
3903 if (flags & FOLL_GET)
3904 return NULL;
3906 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
3909 #ifdef CONFIG_MEMORY_FAILURE
3912 * This function is called from memory failure code.
3913 * Assume the caller holds page lock of the head page.
3915 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3917 struct hstate *h = page_hstate(hpage);
3918 int nid = page_to_nid(hpage);
3919 int ret = -EBUSY;
3921 spin_lock(&hugetlb_lock);
3923 * Just checking !page_huge_active is not enough, because that could be
3924 * an isolated/hwpoisoned hugepage (which have >0 refcount).
3926 if (!page_huge_active(hpage) && !page_count(hpage)) {
3928 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3929 * but dangling hpage->lru can trigger list-debug warnings
3930 * (this happens when we call unpoison_memory() on it),
3931 * so let it point to itself with list_del_init().
3933 list_del_init(&hpage->lru);
3934 set_page_refcounted(hpage);
3935 h->free_huge_pages--;
3936 h->free_huge_pages_node[nid]--;
3937 ret = 0;
3939 spin_unlock(&hugetlb_lock);
3940 return ret;
3942 #endif
3944 bool isolate_huge_page(struct page *page, struct list_head *list)
3946 bool ret = true;
3948 VM_BUG_ON_PAGE(!PageHead(page), page);
3949 spin_lock(&hugetlb_lock);
3950 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
3951 ret = false;
3952 goto unlock;
3954 clear_page_huge_active(page);
3955 list_move_tail(&page->lru, list);
3956 unlock:
3957 spin_unlock(&hugetlb_lock);
3958 return ret;
3961 void putback_active_hugepage(struct page *page)
3963 VM_BUG_ON_PAGE(!PageHead(page), page);
3964 spin_lock(&hugetlb_lock);
3965 set_page_huge_active(page);
3966 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3967 spin_unlock(&hugetlb_lock);
3968 put_page(page);