2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2, or (at
11 * your option) any later version.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/errno.h>
24 #include <linux/init.h>
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/radix-tree.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/kmemleak.h>
31 #include <linux/notifier.h>
32 #include <linux/cpu.h>
33 #include <linux/string.h>
34 #include <linux/bitops.h>
35 #include <linux/rcupdate.h>
36 #include <linux/preempt.h> /* in_interrupt() */
40 * The height_to_maxindex array needs to be one deeper than the maximum
41 * path as height 0 holds only 1 entry.
43 static unsigned long height_to_maxindex
[RADIX_TREE_MAX_PATH
+ 1] __read_mostly
;
46 * Radix tree node cache.
48 static struct kmem_cache
*radix_tree_node_cachep
;
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
61 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64 * Per-cpu pool of preloaded nodes
66 struct radix_tree_preload
{
68 /* nodes->private_data points to next preallocated node */
69 struct radix_tree_node
*nodes
;
71 static DEFINE_PER_CPU(struct radix_tree_preload
, radix_tree_preloads
) = { 0, };
73 static inline void *ptr_to_indirect(void *ptr
)
75 return (void *)((unsigned long)ptr
| RADIX_TREE_INDIRECT_PTR
);
78 static inline void *indirect_to_ptr(void *ptr
)
80 return (void *)((unsigned long)ptr
& ~RADIX_TREE_INDIRECT_PTR
);
83 static inline gfp_t
root_gfp_mask(struct radix_tree_root
*root
)
85 return root
->gfp_mask
& __GFP_BITS_MASK
;
88 static inline void tag_set(struct radix_tree_node
*node
, unsigned int tag
,
91 __set_bit(offset
, node
->tags
[tag
]);
94 static inline void tag_clear(struct radix_tree_node
*node
, unsigned int tag
,
97 __clear_bit(offset
, node
->tags
[tag
]);
100 static inline int tag_get(struct radix_tree_node
*node
, unsigned int tag
,
103 return test_bit(offset
, node
->tags
[tag
]);
106 static inline void root_tag_set(struct radix_tree_root
*root
, unsigned int tag
)
108 root
->gfp_mask
|= (__force gfp_t
)(1 << (tag
+ __GFP_BITS_SHIFT
));
111 static inline void root_tag_clear(struct radix_tree_root
*root
, unsigned int tag
)
113 root
->gfp_mask
&= (__force gfp_t
)~(1 << (tag
+ __GFP_BITS_SHIFT
));
116 static inline void root_tag_clear_all(struct radix_tree_root
*root
)
118 root
->gfp_mask
&= __GFP_BITS_MASK
;
121 static inline int root_tag_get(struct radix_tree_root
*root
, unsigned int tag
)
123 return (__force
unsigned)root
->gfp_mask
& (1 << (tag
+ __GFP_BITS_SHIFT
));
127 * Returns 1 if any slot in the node has this tag set.
128 * Otherwise returns 0.
130 static inline int any_tag_set(struct radix_tree_node
*node
, unsigned int tag
)
133 for (idx
= 0; idx
< RADIX_TREE_TAG_LONGS
; idx
++) {
134 if (node
->tags
[tag
][idx
])
141 * radix_tree_find_next_bit - find the next set bit in a memory region
143 * @addr: The address to base the search on
144 * @size: The bitmap size in bits
145 * @offset: The bitnumber to start searching at
147 * Unrollable variant of find_next_bit() for constant size arrays.
148 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
149 * Returns next bit offset, or size if nothing found.
151 static __always_inline
unsigned long
152 radix_tree_find_next_bit(const unsigned long *addr
,
153 unsigned long size
, unsigned long offset
)
155 if (!__builtin_constant_p(size
))
156 return find_next_bit(addr
, size
, offset
);
161 addr
+= offset
/ BITS_PER_LONG
;
162 tmp
= *addr
>> (offset
% BITS_PER_LONG
);
164 return __ffs(tmp
) + offset
;
165 offset
= (offset
+ BITS_PER_LONG
) & ~(BITS_PER_LONG
- 1);
166 while (offset
< size
) {
169 return __ffs(tmp
) + offset
;
170 offset
+= BITS_PER_LONG
;
177 * This assumes that the caller has performed appropriate preallocation, and
178 * that the caller has pinned this thread of control to the current CPU.
180 static struct radix_tree_node
*
181 radix_tree_node_alloc(struct radix_tree_root
*root
)
183 struct radix_tree_node
*ret
= NULL
;
184 gfp_t gfp_mask
= root_gfp_mask(root
);
187 * Preload code isn't irq safe and it doesn't make sence to use
188 * preloading in the interrupt anyway as all the allocations have to
189 * be atomic. So just do normal allocation when in interrupt.
191 if (!gfpflags_allow_blocking(gfp_mask
) && !in_interrupt()) {
192 struct radix_tree_preload
*rtp
;
195 * Provided the caller has preloaded here, we will always
196 * succeed in getting a node here (and never reach
199 rtp
= this_cpu_ptr(&radix_tree_preloads
);
202 rtp
->nodes
= ret
->private_data
;
203 ret
->private_data
= NULL
;
207 * Update the allocation stack trace as this is more useful
210 kmemleak_update_trace(ret
);
213 ret
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
215 BUG_ON(radix_tree_is_indirect_ptr(ret
));
219 static void radix_tree_node_rcu_free(struct rcu_head
*head
)
221 struct radix_tree_node
*node
=
222 container_of(head
, struct radix_tree_node
, rcu_head
);
226 * must only free zeroed nodes into the slab. radix_tree_shrink
227 * can leave us with a non-NULL entry in the first slot, so clear
228 * that here to make sure.
230 for (i
= 0; i
< RADIX_TREE_MAX_TAGS
; i
++)
231 tag_clear(node
, i
, 0);
233 node
->slots
[0] = NULL
;
236 kmem_cache_free(radix_tree_node_cachep
, node
);
240 radix_tree_node_free(struct radix_tree_node
*node
)
242 call_rcu(&node
->rcu_head
, radix_tree_node_rcu_free
);
246 * Load up this CPU's radix_tree_node buffer with sufficient objects to
247 * ensure that the addition of a single element in the tree cannot fail. On
248 * success, return zero, with preemption disabled. On error, return -ENOMEM
249 * with preemption not disabled.
251 * To make use of this facility, the radix tree must be initialised without
252 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
254 static int __radix_tree_preload(gfp_t gfp_mask
)
256 struct radix_tree_preload
*rtp
;
257 struct radix_tree_node
*node
;
261 rtp
= this_cpu_ptr(&radix_tree_preloads
);
262 while (rtp
->nr
< RADIX_TREE_PRELOAD_SIZE
) {
264 node
= kmem_cache_alloc(radix_tree_node_cachep
, gfp_mask
);
268 rtp
= this_cpu_ptr(&radix_tree_preloads
);
269 if (rtp
->nr
< RADIX_TREE_PRELOAD_SIZE
) {
270 node
->private_data
= rtp
->nodes
;
274 kmem_cache_free(radix_tree_node_cachep
, node
);
283 * Load up this CPU's radix_tree_node buffer with sufficient objects to
284 * ensure that the addition of a single element in the tree cannot fail. On
285 * success, return zero, with preemption disabled. On error, return -ENOMEM
286 * with preemption not disabled.
288 * To make use of this facility, the radix tree must be initialised without
289 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
291 int radix_tree_preload(gfp_t gfp_mask
)
293 /* Warn on non-sensical use... */
294 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask
));
295 return __radix_tree_preload(gfp_mask
);
297 EXPORT_SYMBOL(radix_tree_preload
);
300 * The same as above function, except we don't guarantee preloading happens.
301 * We do it, if we decide it helps. On success, return zero with preemption
302 * disabled. On error, return -ENOMEM with preemption not disabled.
304 int radix_tree_maybe_preload(gfp_t gfp_mask
)
306 if (gfpflags_allow_blocking(gfp_mask
))
307 return __radix_tree_preload(gfp_mask
);
308 /* Preloading doesn't help anything with this gfp mask, skip it */
312 EXPORT_SYMBOL(radix_tree_maybe_preload
);
315 * Return the maximum key which can be store into a
316 * radix tree with height HEIGHT.
318 static inline unsigned long radix_tree_maxindex(unsigned int height
)
320 return height_to_maxindex
[height
];
324 * Extend a radix tree so it can store key @index.
326 static int radix_tree_extend(struct radix_tree_root
*root
, unsigned long index
)
328 struct radix_tree_node
*node
;
329 struct radix_tree_node
*slot
;
333 /* Figure out what the height should be. */
334 height
= root
->height
+ 1;
335 while (index
> radix_tree_maxindex(height
))
338 if (root
->rnode
== NULL
) {
339 root
->height
= height
;
344 unsigned int newheight
;
345 if (!(node
= radix_tree_node_alloc(root
)))
348 /* Propagate the aggregated tag info into the new root */
349 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
350 if (root_tag_get(root
, tag
))
351 tag_set(node
, tag
, 0);
354 /* Increase the height. */
355 newheight
= root
->height
+1;
356 BUG_ON(newheight
& ~RADIX_TREE_HEIGHT_MASK
);
357 node
->path
= newheight
;
362 slot
= indirect_to_ptr(slot
);
365 node
->slots
[0] = slot
;
366 node
= ptr_to_indirect(node
);
367 rcu_assign_pointer(root
->rnode
, node
);
368 root
->height
= newheight
;
369 } while (height
> root
->height
);
375 * __radix_tree_create - create a slot in a radix tree
376 * @root: radix tree root
378 * @nodep: returns node
379 * @slotp: returns slot
381 * Create, if necessary, and return the node and slot for an item
382 * at position @index in the radix tree @root.
384 * Until there is more than one item in the tree, no nodes are
385 * allocated and @root->rnode is used as a direct slot instead of
386 * pointing to a node, in which case *@nodep will be NULL.
388 * Returns -ENOMEM, or 0 for success.
390 int __radix_tree_create(struct radix_tree_root
*root
, unsigned long index
,
391 struct radix_tree_node
**nodep
, void ***slotp
)
393 struct radix_tree_node
*node
= NULL
, *slot
;
394 unsigned int height
, shift
, offset
;
397 /* Make sure the tree is high enough. */
398 if (index
> radix_tree_maxindex(root
->height
)) {
399 error
= radix_tree_extend(root
, index
);
404 slot
= indirect_to_ptr(root
->rnode
);
406 height
= root
->height
;
407 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
409 offset
= 0; /* uninitialised var warning */
412 /* Have to add a child node. */
413 if (!(slot
= radix_tree_node_alloc(root
)))
418 rcu_assign_pointer(node
->slots
[offset
], slot
);
420 slot
->path
|= offset
<< RADIX_TREE_HEIGHT_SHIFT
;
422 rcu_assign_pointer(root
->rnode
, ptr_to_indirect(slot
));
425 /* Go a level down */
426 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
428 slot
= node
->slots
[offset
];
429 shift
-= RADIX_TREE_MAP_SHIFT
;
436 *slotp
= node
? node
->slots
+ offset
: (void **)&root
->rnode
;
441 * radix_tree_insert - insert into a radix tree
442 * @root: radix tree root
444 * @item: item to insert
446 * Insert an item into the radix tree at position @index.
448 int radix_tree_insert(struct radix_tree_root
*root
,
449 unsigned long index
, void *item
)
451 struct radix_tree_node
*node
;
455 BUG_ON(radix_tree_is_indirect_ptr(item
));
457 error
= __radix_tree_create(root
, index
, &node
, &slot
);
462 rcu_assign_pointer(*slot
, item
);
466 BUG_ON(tag_get(node
, 0, index
& RADIX_TREE_MAP_MASK
));
467 BUG_ON(tag_get(node
, 1, index
& RADIX_TREE_MAP_MASK
));
469 BUG_ON(root_tag_get(root
, 0));
470 BUG_ON(root_tag_get(root
, 1));
475 EXPORT_SYMBOL(radix_tree_insert
);
478 * __radix_tree_lookup - lookup an item in a radix tree
479 * @root: radix tree root
481 * @nodep: returns node
482 * @slotp: returns slot
484 * Lookup and return the item at position @index in the radix
487 * Until there is more than one item in the tree, no nodes are
488 * allocated and @root->rnode is used as a direct slot instead of
489 * pointing to a node, in which case *@nodep will be NULL.
491 void *__radix_tree_lookup(struct radix_tree_root
*root
, unsigned long index
,
492 struct radix_tree_node
**nodep
, void ***slotp
)
494 struct radix_tree_node
*node
, *parent
;
495 unsigned int height
, shift
;
498 node
= rcu_dereference_raw(root
->rnode
);
502 if (!radix_tree_is_indirect_ptr(node
)) {
509 *slotp
= (void **)&root
->rnode
;
512 node
= indirect_to_ptr(node
);
514 height
= node
->path
& RADIX_TREE_HEIGHT_MASK
;
515 if (index
> radix_tree_maxindex(height
))
518 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
522 slot
= node
->slots
+ ((index
>> shift
) & RADIX_TREE_MAP_MASK
);
523 node
= rcu_dereference_raw(*slot
);
527 shift
-= RADIX_TREE_MAP_SHIFT
;
529 } while (height
> 0);
539 * radix_tree_lookup_slot - lookup a slot in a radix tree
540 * @root: radix tree root
543 * Returns: the slot corresponding to the position @index in the
544 * radix tree @root. This is useful for update-if-exists operations.
546 * This function can be called under rcu_read_lock iff the slot is not
547 * modified by radix_tree_replace_slot, otherwise it must be called
548 * exclusive from other writers. Any dereference of the slot must be done
549 * using radix_tree_deref_slot.
551 void **radix_tree_lookup_slot(struct radix_tree_root
*root
, unsigned long index
)
555 if (!__radix_tree_lookup(root
, index
, NULL
, &slot
))
559 EXPORT_SYMBOL(radix_tree_lookup_slot
);
562 * radix_tree_lookup - perform lookup operation on a radix tree
563 * @root: radix tree root
566 * Lookup the item at the position @index in the radix tree @root.
568 * This function can be called under rcu_read_lock, however the caller
569 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
570 * them safely). No RCU barriers are required to access or modify the
571 * returned item, however.
573 void *radix_tree_lookup(struct radix_tree_root
*root
, unsigned long index
)
575 return __radix_tree_lookup(root
, index
, NULL
, NULL
);
577 EXPORT_SYMBOL(radix_tree_lookup
);
580 * radix_tree_tag_set - set a tag on a radix tree node
581 * @root: radix tree root
585 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
586 * corresponding to @index in the radix tree. From
587 * the root all the way down to the leaf node.
589 * Returns the address of the tagged item. Setting a tag on a not-present
592 void *radix_tree_tag_set(struct radix_tree_root
*root
,
593 unsigned long index
, unsigned int tag
)
595 unsigned int height
, shift
;
596 struct radix_tree_node
*slot
;
598 height
= root
->height
;
599 BUG_ON(index
> radix_tree_maxindex(height
));
601 slot
= indirect_to_ptr(root
->rnode
);
602 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
607 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
608 if (!tag_get(slot
, tag
, offset
))
609 tag_set(slot
, tag
, offset
);
610 slot
= slot
->slots
[offset
];
611 BUG_ON(slot
== NULL
);
612 shift
-= RADIX_TREE_MAP_SHIFT
;
616 /* set the root's tag bit */
617 if (slot
&& !root_tag_get(root
, tag
))
618 root_tag_set(root
, tag
);
622 EXPORT_SYMBOL(radix_tree_tag_set
);
625 * radix_tree_tag_clear - clear a tag on a radix tree node
626 * @root: radix tree root
630 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
631 * corresponding to @index in the radix tree. If
632 * this causes the leaf node to have no tags set then clear the tag in the
633 * next-to-leaf node, etc.
635 * Returns the address of the tagged item on success, else NULL. ie:
636 * has the same return value and semantics as radix_tree_lookup().
638 void *radix_tree_tag_clear(struct radix_tree_root
*root
,
639 unsigned long index
, unsigned int tag
)
641 struct radix_tree_node
*node
= NULL
;
642 struct radix_tree_node
*slot
= NULL
;
643 unsigned int height
, shift
;
644 int uninitialized_var(offset
);
646 height
= root
->height
;
647 if (index
> radix_tree_maxindex(height
))
650 shift
= height
* RADIX_TREE_MAP_SHIFT
;
651 slot
= indirect_to_ptr(root
->rnode
);
657 shift
-= RADIX_TREE_MAP_SHIFT
;
658 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
660 slot
= slot
->slots
[offset
];
667 if (!tag_get(node
, tag
, offset
))
669 tag_clear(node
, tag
, offset
);
670 if (any_tag_set(node
, tag
))
673 index
>>= RADIX_TREE_MAP_SHIFT
;
674 offset
= index
& RADIX_TREE_MAP_MASK
;
678 /* clear the root's tag bit */
679 if (root_tag_get(root
, tag
))
680 root_tag_clear(root
, tag
);
685 EXPORT_SYMBOL(radix_tree_tag_clear
);
688 * radix_tree_tag_get - get a tag on a radix tree node
689 * @root: radix tree root
691 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
695 * 0: tag not present or not set
698 * Note that the return value of this function may not be relied on, even if
699 * the RCU lock is held, unless tag modification and node deletion are excluded
702 int radix_tree_tag_get(struct radix_tree_root
*root
,
703 unsigned long index
, unsigned int tag
)
705 unsigned int height
, shift
;
706 struct radix_tree_node
*node
;
708 /* check the root's tag bit */
709 if (!root_tag_get(root
, tag
))
712 node
= rcu_dereference_raw(root
->rnode
);
716 if (!radix_tree_is_indirect_ptr(node
))
718 node
= indirect_to_ptr(node
);
720 height
= node
->path
& RADIX_TREE_HEIGHT_MASK
;
721 if (index
> radix_tree_maxindex(height
))
724 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
732 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
733 if (!tag_get(node
, tag
, offset
))
737 node
= rcu_dereference_raw(node
->slots
[offset
]);
738 shift
-= RADIX_TREE_MAP_SHIFT
;
742 EXPORT_SYMBOL(radix_tree_tag_get
);
745 * radix_tree_next_chunk - find next chunk of slots for iteration
747 * @root: radix tree root
748 * @iter: iterator state
749 * @flags: RADIX_TREE_ITER_* flags and tag index
750 * Returns: pointer to chunk first slot, or NULL if iteration is over
752 void **radix_tree_next_chunk(struct radix_tree_root
*root
,
753 struct radix_tree_iter
*iter
, unsigned flags
)
755 unsigned shift
, tag
= flags
& RADIX_TREE_ITER_TAG_MASK
;
756 struct radix_tree_node
*rnode
, *node
;
757 unsigned long index
, offset
, height
;
759 if ((flags
& RADIX_TREE_ITER_TAGGED
) && !root_tag_get(root
, tag
))
763 * Catch next_index overflow after ~0UL. iter->index never overflows
764 * during iterating; it can be zero only at the beginning.
765 * And we cannot overflow iter->next_index in a single step,
766 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
768 * This condition also used by radix_tree_next_slot() to stop
769 * contiguous iterating, and forbid swithing to the next chunk.
771 index
= iter
->next_index
;
772 if (!index
&& iter
->index
)
775 rnode
= rcu_dereference_raw(root
->rnode
);
776 if (radix_tree_is_indirect_ptr(rnode
)) {
777 rnode
= indirect_to_ptr(rnode
);
778 } else if (rnode
&& !index
) {
779 /* Single-slot tree */
781 iter
->next_index
= 1;
783 return (void **)&root
->rnode
;
788 height
= rnode
->path
& RADIX_TREE_HEIGHT_MASK
;
789 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
790 offset
= index
>> shift
;
792 /* Index outside of the tree */
793 if (offset
>= RADIX_TREE_MAP_SIZE
)
798 if ((flags
& RADIX_TREE_ITER_TAGGED
) ?
799 !test_bit(offset
, node
->tags
[tag
]) :
800 !node
->slots
[offset
]) {
802 if (flags
& RADIX_TREE_ITER_CONTIG
)
805 if (flags
& RADIX_TREE_ITER_TAGGED
)
806 offset
= radix_tree_find_next_bit(
811 while (++offset
< RADIX_TREE_MAP_SIZE
) {
812 if (node
->slots
[offset
])
815 index
&= ~((RADIX_TREE_MAP_SIZE
<< shift
) - 1);
816 index
+= offset
<< shift
;
817 /* Overflow after ~0UL */
820 if (offset
== RADIX_TREE_MAP_SIZE
)
824 /* This is leaf-node */
828 node
= rcu_dereference_raw(node
->slots
[offset
]);
831 shift
-= RADIX_TREE_MAP_SHIFT
;
832 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
835 /* Update the iterator state */
837 iter
->next_index
= (index
| RADIX_TREE_MAP_MASK
) + 1;
839 /* Construct iter->tags bit-mask from node->tags[tag] array */
840 if (flags
& RADIX_TREE_ITER_TAGGED
) {
841 unsigned tag_long
, tag_bit
;
843 tag_long
= offset
/ BITS_PER_LONG
;
844 tag_bit
= offset
% BITS_PER_LONG
;
845 iter
->tags
= node
->tags
[tag
][tag_long
] >> tag_bit
;
846 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
847 if (tag_long
< RADIX_TREE_TAG_LONGS
- 1) {
848 /* Pick tags from next element */
850 iter
->tags
|= node
->tags
[tag
][tag_long
+ 1] <<
851 (BITS_PER_LONG
- tag_bit
);
852 /* Clip chunk size, here only BITS_PER_LONG tags */
853 iter
->next_index
= index
+ BITS_PER_LONG
;
857 return node
->slots
+ offset
;
859 EXPORT_SYMBOL(radix_tree_next_chunk
);
862 * radix_tree_range_tag_if_tagged - for each item in given range set given
863 * tag if item has another tag set
864 * @root: radix tree root
865 * @first_indexp: pointer to a starting index of a range to scan
866 * @last_index: last index of a range to scan
867 * @nr_to_tag: maximum number items to tag
868 * @iftag: tag index to test
869 * @settag: tag index to set if tested tag is set
871 * This function scans range of radix tree from first_index to last_index
872 * (inclusive). For each item in the range if iftag is set, the function sets
873 * also settag. The function stops either after tagging nr_to_tag items or
874 * after reaching last_index.
876 * The tags must be set from the leaf level only and propagated back up the
877 * path to the root. We must do this so that we resolve the full path before
878 * setting any tags on intermediate nodes. If we set tags as we descend, then
879 * we can get to the leaf node and find that the index that has the iftag
880 * set is outside the range we are scanning. This reults in dangling tags and
881 * can lead to problems with later tag operations (e.g. livelocks on lookups).
883 * The function returns number of leaves where the tag was set and sets
884 * *first_indexp to the first unscanned index.
885 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
886 * be prepared to handle that.
888 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root
*root
,
889 unsigned long *first_indexp
, unsigned long last_index
,
890 unsigned long nr_to_tag
,
891 unsigned int iftag
, unsigned int settag
)
893 unsigned int height
= root
->height
;
894 struct radix_tree_node
*node
= NULL
;
895 struct radix_tree_node
*slot
;
897 unsigned long tagged
= 0;
898 unsigned long index
= *first_indexp
;
900 last_index
= min(last_index
, radix_tree_maxindex(height
));
901 if (index
> last_index
)
905 if (!root_tag_get(root
, iftag
)) {
906 *first_indexp
= last_index
+ 1;
910 *first_indexp
= last_index
+ 1;
911 root_tag_set(root
, settag
);
915 shift
= (height
- 1) * RADIX_TREE_MAP_SHIFT
;
916 slot
= indirect_to_ptr(root
->rnode
);
919 unsigned long upindex
;
922 offset
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
923 if (!slot
->slots
[offset
])
925 if (!tag_get(slot
, iftag
, offset
))
928 /* Go down one level */
929 shift
-= RADIX_TREE_MAP_SHIFT
;
931 slot
= slot
->slots
[offset
];
937 tag_set(slot
, settag
, offset
);
939 /* walk back up the path tagging interior nodes */
942 upindex
>>= RADIX_TREE_MAP_SHIFT
;
943 offset
= upindex
& RADIX_TREE_MAP_MASK
;
945 /* stop if we find a node with the tag already set */
946 if (tag_get(node
, settag
, offset
))
948 tag_set(node
, settag
, offset
);
953 * Small optimization: now clear that node pointer.
954 * Since all of this slot's ancestors now have the tag set
955 * from setting it above, we have no further need to walk
956 * back up the tree setting tags, until we update slot to
957 * point to another radix_tree_node.
962 /* Go to next item at level determined by 'shift' */
963 index
= ((index
>> shift
) + 1) << shift
;
964 /* Overflow can happen when last_index is ~0UL... */
965 if (index
> last_index
|| !index
)
967 if (tagged
>= nr_to_tag
)
969 while (((index
>> shift
) & RADIX_TREE_MAP_MASK
) == 0) {
971 * We've fully scanned this node. Go up. Because
972 * last_index is guaranteed to be in the tree, what
973 * we do below cannot wander astray.
976 shift
+= RADIX_TREE_MAP_SHIFT
;
980 * We need not to tag the root tag if there is no tag which is set with
981 * settag within the range from *first_indexp to last_index.
984 root_tag_set(root
, settag
);
985 *first_indexp
= index
;
989 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged
);
992 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
993 * @root: radix tree root
994 * @results: where the results of the lookup are placed
995 * @first_index: start the lookup from this key
996 * @max_items: place up to this many items at *results
998 * Performs an index-ascending scan of the tree for present items. Places
999 * them at *@results and returns the number of items which were placed at
1002 * The implementation is naive.
1004 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1005 * rcu_read_lock. In this case, rather than the returned results being
1006 * an atomic snapshot of the tree at a single point in time, the semantics
1007 * of an RCU protected gang lookup are as though multiple radix_tree_lookups
1008 * have been issued in individual locks, and results stored in 'results'.
1011 radix_tree_gang_lookup(struct radix_tree_root
*root
, void **results
,
1012 unsigned long first_index
, unsigned int max_items
)
1014 struct radix_tree_iter iter
;
1016 unsigned int ret
= 0;
1018 if (unlikely(!max_items
))
1021 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1022 results
[ret
] = indirect_to_ptr(rcu_dereference_raw(*slot
));
1025 if (++ret
== max_items
)
1031 EXPORT_SYMBOL(radix_tree_gang_lookup
);
1034 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1035 * @root: radix tree root
1036 * @results: where the results of the lookup are placed
1037 * @indices: where their indices should be placed (but usually NULL)
1038 * @first_index: start the lookup from this key
1039 * @max_items: place up to this many items at *results
1041 * Performs an index-ascending scan of the tree for present items. Places
1042 * their slots at *@results and returns the number of items which were
1043 * placed at *@results.
1045 * The implementation is naive.
1047 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1048 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1049 * protection, radix_tree_deref_slot may fail requiring a retry.
1052 radix_tree_gang_lookup_slot(struct radix_tree_root
*root
,
1053 void ***results
, unsigned long *indices
,
1054 unsigned long first_index
, unsigned int max_items
)
1056 struct radix_tree_iter iter
;
1058 unsigned int ret
= 0;
1060 if (unlikely(!max_items
))
1063 radix_tree_for_each_slot(slot
, root
, &iter
, first_index
) {
1064 results
[ret
] = slot
;
1066 indices
[ret
] = iter
.index
;
1067 if (++ret
== max_items
)
1073 EXPORT_SYMBOL(radix_tree_gang_lookup_slot
);
1076 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1078 * @root: radix tree root
1079 * @results: where the results of the lookup are placed
1080 * @first_index: start the lookup from this key
1081 * @max_items: place up to this many items at *results
1082 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1084 * Performs an index-ascending scan of the tree for present items which
1085 * have the tag indexed by @tag set. Places the items at *@results and
1086 * returns the number of items which were placed at *@results.
1089 radix_tree_gang_lookup_tag(struct radix_tree_root
*root
, void **results
,
1090 unsigned long first_index
, unsigned int max_items
,
1093 struct radix_tree_iter iter
;
1095 unsigned int ret
= 0;
1097 if (unlikely(!max_items
))
1100 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1101 results
[ret
] = indirect_to_ptr(rcu_dereference_raw(*slot
));
1104 if (++ret
== max_items
)
1110 EXPORT_SYMBOL(radix_tree_gang_lookup_tag
);
1113 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1114 * radix tree based on a tag
1115 * @root: radix tree root
1116 * @results: where the results of the lookup are placed
1117 * @first_index: start the lookup from this key
1118 * @max_items: place up to this many items at *results
1119 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1121 * Performs an index-ascending scan of the tree for present items which
1122 * have the tag indexed by @tag set. Places the slots at *@results and
1123 * returns the number of slots which were placed at *@results.
1126 radix_tree_gang_lookup_tag_slot(struct radix_tree_root
*root
, void ***results
,
1127 unsigned long first_index
, unsigned int max_items
,
1130 struct radix_tree_iter iter
;
1132 unsigned int ret
= 0;
1134 if (unlikely(!max_items
))
1137 radix_tree_for_each_tagged(slot
, root
, &iter
, first_index
, tag
) {
1138 results
[ret
] = slot
;
1139 if (++ret
== max_items
)
1145 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot
);
1147 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1148 #include <linux/sched.h> /* for cond_resched() */
1151 * This linear search is at present only useful to shmem_unuse_inode().
1153 static unsigned long __locate(struct radix_tree_node
*slot
, void *item
,
1154 unsigned long index
, unsigned long *found_index
)
1156 unsigned int shift
, height
;
1159 height
= slot
->path
& RADIX_TREE_HEIGHT_MASK
;
1160 shift
= (height
-1) * RADIX_TREE_MAP_SHIFT
;
1162 for ( ; height
> 1; height
--) {
1163 i
= (index
>> shift
) & RADIX_TREE_MAP_MASK
;
1165 if (slot
->slots
[i
] != NULL
)
1167 index
&= ~((1UL << shift
) - 1);
1168 index
+= 1UL << shift
;
1170 goto out
; /* 32-bit wraparound */
1172 if (i
== RADIX_TREE_MAP_SIZE
)
1176 shift
-= RADIX_TREE_MAP_SHIFT
;
1177 slot
= rcu_dereference_raw(slot
->slots
[i
]);
1182 /* Bottom level: check items */
1183 for (i
= 0; i
< RADIX_TREE_MAP_SIZE
; i
++) {
1184 if (slot
->slots
[i
] == item
) {
1185 *found_index
= index
+ i
;
1190 index
+= RADIX_TREE_MAP_SIZE
;
1196 * radix_tree_locate_item - search through radix tree for item
1197 * @root: radix tree root
1198 * @item: item to be found
1200 * Returns index where item was found, or -1 if not found.
1201 * Caller must hold no lock (since this time-consuming function needs
1202 * to be preemptible), and must check afterwards if item is still there.
1204 unsigned long radix_tree_locate_item(struct radix_tree_root
*root
, void *item
)
1206 struct radix_tree_node
*node
;
1207 unsigned long max_index
;
1208 unsigned long cur_index
= 0;
1209 unsigned long found_index
= -1;
1213 node
= rcu_dereference_raw(root
->rnode
);
1214 if (!radix_tree_is_indirect_ptr(node
)) {
1221 node
= indirect_to_ptr(node
);
1222 max_index
= radix_tree_maxindex(node
->path
&
1223 RADIX_TREE_HEIGHT_MASK
);
1224 if (cur_index
> max_index
) {
1229 cur_index
= __locate(node
, item
, cur_index
, &found_index
);
1232 } while (cur_index
!= 0 && cur_index
<= max_index
);
1237 unsigned long radix_tree_locate_item(struct radix_tree_root
*root
, void *item
)
1241 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1244 * radix_tree_shrink - shrink height of a radix tree to minimal
1245 * @root radix tree root
1247 static inline void radix_tree_shrink(struct radix_tree_root
*root
)
1249 /* try to shrink tree height */
1250 while (root
->height
> 0) {
1251 struct radix_tree_node
*to_free
= root
->rnode
;
1252 struct radix_tree_node
*slot
;
1254 BUG_ON(!radix_tree_is_indirect_ptr(to_free
));
1255 to_free
= indirect_to_ptr(to_free
);
1258 * The candidate node has more than one child, or its child
1259 * is not at the leftmost slot, we cannot shrink.
1261 if (to_free
->count
!= 1)
1263 if (!to_free
->slots
[0])
1267 * We don't need rcu_assign_pointer(), since we are simply
1268 * moving the node from one part of the tree to another: if it
1269 * was safe to dereference the old pointer to it
1270 * (to_free->slots[0]), it will be safe to dereference the new
1271 * one (root->rnode) as far as dependent read barriers go.
1273 slot
= to_free
->slots
[0];
1274 if (root
->height
> 1) {
1275 slot
->parent
= NULL
;
1276 slot
= ptr_to_indirect(slot
);
1282 * We have a dilemma here. The node's slot[0] must not be
1283 * NULLed in case there are concurrent lookups expecting to
1284 * find the item. However if this was a bottom-level node,
1285 * then it may be subject to the slot pointer being visible
1286 * to callers dereferencing it. If item corresponding to
1287 * slot[0] is subsequently deleted, these callers would expect
1288 * their slot to become empty sooner or later.
1290 * For example, lockless pagecache will look up a slot, deref
1291 * the page pointer, and if the page is 0 refcount it means it
1292 * was concurrently deleted from pagecache so try the deref
1293 * again. Fortunately there is already a requirement for logic
1294 * to retry the entire slot lookup -- the indirect pointer
1295 * problem (replacing direct root node with an indirect pointer
1296 * also results in a stale slot). So tag the slot as indirect
1297 * to force callers to retry.
1299 if (root
->height
== 0)
1300 *((unsigned long *)&to_free
->slots
[0]) |=
1301 RADIX_TREE_INDIRECT_PTR
;
1303 radix_tree_node_free(to_free
);
1308 * __radix_tree_delete_node - try to free node after clearing a slot
1309 * @root: radix tree root
1310 * @node: node containing @index
1312 * After clearing the slot at @index in @node from radix tree
1313 * rooted at @root, call this function to attempt freeing the
1314 * node and shrinking the tree.
1316 * Returns %true if @node was freed, %false otherwise.
1318 bool __radix_tree_delete_node(struct radix_tree_root
*root
,
1319 struct radix_tree_node
*node
)
1321 bool deleted
= false;
1324 struct radix_tree_node
*parent
;
1327 if (node
== indirect_to_ptr(root
->rnode
)) {
1328 radix_tree_shrink(root
);
1329 if (root
->height
== 0)
1335 parent
= node
->parent
;
1337 unsigned int offset
;
1339 offset
= node
->path
>> RADIX_TREE_HEIGHT_SHIFT
;
1340 parent
->slots
[offset
] = NULL
;
1343 root_tag_clear_all(root
);
1348 radix_tree_node_free(node
);
1358 * radix_tree_delete_item - delete an item from a radix tree
1359 * @root: radix tree root
1361 * @item: expected item
1363 * Remove @item at @index from the radix tree rooted at @root.
1365 * Returns the address of the deleted item, or NULL if it was not present
1366 * or the entry at the given @index was not @item.
1368 void *radix_tree_delete_item(struct radix_tree_root
*root
,
1369 unsigned long index
, void *item
)
1371 struct radix_tree_node
*node
;
1372 unsigned int offset
;
1377 entry
= __radix_tree_lookup(root
, index
, &node
, &slot
);
1381 if (item
&& entry
!= item
)
1385 root_tag_clear_all(root
);
1390 offset
= index
& RADIX_TREE_MAP_MASK
;
1393 * Clear all tags associated with the item to be deleted.
1394 * This way of doing it would be inefficient, but seldom is any set.
1396 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
1397 if (tag_get(node
, tag
, offset
))
1398 radix_tree_tag_clear(root
, index
, tag
);
1401 node
->slots
[offset
] = NULL
;
1404 __radix_tree_delete_node(root
, node
);
1408 EXPORT_SYMBOL(radix_tree_delete_item
);
1411 * radix_tree_delete - delete an item from a radix tree
1412 * @root: radix tree root
1415 * Remove the item at @index from the radix tree rooted at @root.
1417 * Returns the address of the deleted item, or NULL if it was not present.
1419 void *radix_tree_delete(struct radix_tree_root
*root
, unsigned long index
)
1421 return radix_tree_delete_item(root
, index
, NULL
);
1423 EXPORT_SYMBOL(radix_tree_delete
);
1426 * radix_tree_tagged - test whether any items in the tree are tagged
1427 * @root: radix tree root
1430 int radix_tree_tagged(struct radix_tree_root
*root
, unsigned int tag
)
1432 return root_tag_get(root
, tag
);
1434 EXPORT_SYMBOL(radix_tree_tagged
);
1437 radix_tree_node_ctor(void *arg
)
1439 struct radix_tree_node
*node
= arg
;
1441 memset(node
, 0, sizeof(*node
));
1442 INIT_LIST_HEAD(&node
->private_list
);
1445 static __init
unsigned long __maxindex(unsigned int height
)
1447 unsigned int width
= height
* RADIX_TREE_MAP_SHIFT
;
1448 int shift
= RADIX_TREE_INDEX_BITS
- width
;
1452 if (shift
>= BITS_PER_LONG
)
1454 return ~0UL >> shift
;
1457 static __init
void radix_tree_init_maxindex(void)
1461 for (i
= 0; i
< ARRAY_SIZE(height_to_maxindex
); i
++)
1462 height_to_maxindex
[i
] = __maxindex(i
);
1465 static int radix_tree_callback(struct notifier_block
*nfb
,
1466 unsigned long action
,
1469 int cpu
= (long)hcpu
;
1470 struct radix_tree_preload
*rtp
;
1471 struct radix_tree_node
*node
;
1473 /* Free per-cpu pool of perloaded nodes */
1474 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
1475 rtp
= &per_cpu(radix_tree_preloads
, cpu
);
1478 rtp
->nodes
= node
->private_data
;
1479 kmem_cache_free(radix_tree_node_cachep
, node
);
1486 void __init
radix_tree_init(void)
1488 radix_tree_node_cachep
= kmem_cache_create("radix_tree_node",
1489 sizeof(struct radix_tree_node
), 0,
1490 SLAB_PANIC
| SLAB_RECLAIM_ACCOUNT
,
1491 radix_tree_node_ctor
);
1492 radix_tree_init_maxindex();
1493 hotcpu_notifier(radix_tree_callback
, 0);