4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
8 #include <linux/init.h>
10 #include <linux/fcntl.h>
11 #include <linux/slab.h>
12 #include <linux/kmod.h>
13 #include <linux/major.h>
14 #include <linux/device_cgroup.h>
15 #include <linux/highmem.h>
16 #include <linux/blkdev.h>
17 #include <linux/backing-dev.h>
18 #include <linux/module.h>
19 #include <linux/blkpg.h>
20 #include <linux/magic.h>
21 #include <linux/buffer_head.h>
22 #include <linux/swap.h>
23 #include <linux/pagevec.h>
24 #include <linux/writeback.h>
25 #include <linux/mpage.h>
26 #include <linux/mount.h>
27 #include <linux/uio.h>
28 #include <linux/namei.h>
29 #include <linux/log2.h>
30 #include <linux/cleancache.h>
31 #include <linux/dax.h>
32 #include <asm/uaccess.h>
36 struct block_device bdev
;
37 struct inode vfs_inode
;
40 static const struct address_space_operations def_blk_aops
;
42 static inline struct bdev_inode
*BDEV_I(struct inode
*inode
)
44 return container_of(inode
, struct bdev_inode
, vfs_inode
);
47 struct block_device
*I_BDEV(struct inode
*inode
)
49 return &BDEV_I(inode
)->bdev
;
51 EXPORT_SYMBOL(I_BDEV
);
53 static void bdev_write_inode(struct inode
*inode
)
55 spin_lock(&inode
->i_lock
);
56 while (inode
->i_state
& I_DIRTY
) {
57 spin_unlock(&inode
->i_lock
);
58 WARN_ON_ONCE(write_inode_now(inode
, true));
59 spin_lock(&inode
->i_lock
);
61 spin_unlock(&inode
->i_lock
);
64 /* Kill _all_ buffers and pagecache , dirty or not.. */
65 void kill_bdev(struct block_device
*bdev
)
67 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
69 if (mapping
->nrpages
== 0 && mapping
->nrshadows
== 0)
73 truncate_inode_pages(mapping
, 0);
75 EXPORT_SYMBOL(kill_bdev
);
77 /* Invalidate clean unused buffers and pagecache. */
78 void invalidate_bdev(struct block_device
*bdev
)
80 struct address_space
*mapping
= bdev
->bd_inode
->i_mapping
;
82 if (mapping
->nrpages
== 0)
86 lru_add_drain_all(); /* make sure all lru add caches are flushed */
87 invalidate_mapping_pages(mapping
, 0, -1);
88 /* 99% of the time, we don't need to flush the cleancache on the bdev.
89 * But, for the strange corners, lets be cautious
91 cleancache_invalidate_inode(mapping
);
93 EXPORT_SYMBOL(invalidate_bdev
);
95 int set_blocksize(struct block_device
*bdev
, int size
)
97 /* Size must be a power of two, and between 512 and PAGE_SIZE */
98 if (size
> PAGE_SIZE
|| size
< 512 || !is_power_of_2(size
))
101 /* Size cannot be smaller than the size supported by the device */
102 if (size
< bdev_logical_block_size(bdev
))
105 /* Don't change the size if it is same as current */
106 if (bdev
->bd_block_size
!= size
) {
108 bdev
->bd_block_size
= size
;
109 bdev
->bd_inode
->i_blkbits
= blksize_bits(size
);
115 EXPORT_SYMBOL(set_blocksize
);
117 int sb_set_blocksize(struct super_block
*sb
, int size
)
119 if (set_blocksize(sb
->s_bdev
, size
))
121 /* If we get here, we know size is power of two
122 * and it's value is between 512 and PAGE_SIZE */
123 sb
->s_blocksize
= size
;
124 sb
->s_blocksize_bits
= blksize_bits(size
);
125 return sb
->s_blocksize
;
128 EXPORT_SYMBOL(sb_set_blocksize
);
130 int sb_min_blocksize(struct super_block
*sb
, int size
)
132 int minsize
= bdev_logical_block_size(sb
->s_bdev
);
135 return sb_set_blocksize(sb
, size
);
138 EXPORT_SYMBOL(sb_min_blocksize
);
141 blkdev_get_block(struct inode
*inode
, sector_t iblock
,
142 struct buffer_head
*bh
, int create
)
144 bh
->b_bdev
= I_BDEV(inode
);
145 bh
->b_blocknr
= iblock
;
146 set_buffer_mapped(bh
);
151 blkdev_direct_IO(struct kiocb
*iocb
, struct iov_iter
*iter
, loff_t offset
)
153 struct file
*file
= iocb
->ki_filp
;
154 struct inode
*inode
= file
->f_mapping
->host
;
157 return dax_do_io(iocb
, inode
, iter
, offset
, blkdev_get_block
,
158 NULL
, DIO_SKIP_DIO_COUNT
);
159 return __blockdev_direct_IO(iocb
, inode
, I_BDEV(inode
), iter
, offset
,
160 blkdev_get_block
, NULL
, NULL
,
164 int __sync_blockdev(struct block_device
*bdev
, int wait
)
169 return filemap_flush(bdev
->bd_inode
->i_mapping
);
170 return filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
174 * Write out and wait upon all the dirty data associated with a block
175 * device via its mapping. Does not take the superblock lock.
177 int sync_blockdev(struct block_device
*bdev
)
179 return __sync_blockdev(bdev
, 1);
181 EXPORT_SYMBOL(sync_blockdev
);
184 * Write out and wait upon all dirty data associated with this
185 * device. Filesystem data as well as the underlying block
186 * device. Takes the superblock lock.
188 int fsync_bdev(struct block_device
*bdev
)
190 struct super_block
*sb
= get_super(bdev
);
192 int res
= sync_filesystem(sb
);
196 return sync_blockdev(bdev
);
198 EXPORT_SYMBOL(fsync_bdev
);
201 * freeze_bdev -- lock a filesystem and force it into a consistent state
202 * @bdev: blockdevice to lock
204 * If a superblock is found on this device, we take the s_umount semaphore
205 * on it to make sure nobody unmounts until the snapshot creation is done.
206 * The reference counter (bd_fsfreeze_count) guarantees that only the last
207 * unfreeze process can unfreeze the frozen filesystem actually when multiple
208 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
209 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
212 struct super_block
*freeze_bdev(struct block_device
*bdev
)
214 struct super_block
*sb
;
217 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
218 if (++bdev
->bd_fsfreeze_count
> 1) {
220 * We don't even need to grab a reference - the first call
221 * to freeze_bdev grab an active reference and only the last
222 * thaw_bdev drops it.
224 sb
= get_super(bdev
);
226 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
230 sb
= get_active_super(bdev
);
233 if (sb
->s_op
->freeze_super
)
234 error
= sb
->s_op
->freeze_super(sb
);
236 error
= freeze_super(sb
);
238 deactivate_super(sb
);
239 bdev
->bd_fsfreeze_count
--;
240 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
241 return ERR_PTR(error
);
243 deactivate_super(sb
);
246 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
247 return sb
; /* thaw_bdev releases s->s_umount */
249 EXPORT_SYMBOL(freeze_bdev
);
252 * thaw_bdev -- unlock filesystem
253 * @bdev: blockdevice to unlock
254 * @sb: associated superblock
256 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
258 int thaw_bdev(struct block_device
*bdev
, struct super_block
*sb
)
262 mutex_lock(&bdev
->bd_fsfreeze_mutex
);
263 if (!bdev
->bd_fsfreeze_count
)
267 if (--bdev
->bd_fsfreeze_count
> 0)
273 if (sb
->s_op
->thaw_super
)
274 error
= sb
->s_op
->thaw_super(sb
);
276 error
= thaw_super(sb
);
278 bdev
->bd_fsfreeze_count
++;
279 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
283 mutex_unlock(&bdev
->bd_fsfreeze_mutex
);
286 EXPORT_SYMBOL(thaw_bdev
);
288 static int blkdev_writepage(struct page
*page
, struct writeback_control
*wbc
)
290 return block_write_full_page(page
, blkdev_get_block
, wbc
);
293 static int blkdev_readpage(struct file
* file
, struct page
* page
)
295 return block_read_full_page(page
, blkdev_get_block
);
298 static int blkdev_readpages(struct file
*file
, struct address_space
*mapping
,
299 struct list_head
*pages
, unsigned nr_pages
)
301 return mpage_readpages(mapping
, pages
, nr_pages
, blkdev_get_block
);
304 static int blkdev_write_begin(struct file
*file
, struct address_space
*mapping
,
305 loff_t pos
, unsigned len
, unsigned flags
,
306 struct page
**pagep
, void **fsdata
)
308 return block_write_begin(mapping
, pos
, len
, flags
, pagep
,
312 static int blkdev_write_end(struct file
*file
, struct address_space
*mapping
,
313 loff_t pos
, unsigned len
, unsigned copied
,
314 struct page
*page
, void *fsdata
)
317 ret
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
320 page_cache_release(page
);
327 * for a block special file file_inode(file)->i_size is zero
328 * so we compute the size by hand (just as in block_read/write above)
330 static loff_t
block_llseek(struct file
*file
, loff_t offset
, int whence
)
332 struct inode
*bd_inode
= file
->f_mapping
->host
;
335 mutex_lock(&bd_inode
->i_mutex
);
336 retval
= fixed_size_llseek(file
, offset
, whence
, i_size_read(bd_inode
));
337 mutex_unlock(&bd_inode
->i_mutex
);
341 int blkdev_fsync(struct file
*filp
, loff_t start
, loff_t end
, int datasync
)
343 struct inode
*bd_inode
= filp
->f_mapping
->host
;
344 struct block_device
*bdev
= I_BDEV(bd_inode
);
347 error
= filemap_write_and_wait_range(filp
->f_mapping
, start
, end
);
352 * There is no need to serialise calls to blkdev_issue_flush with
353 * i_mutex and doing so causes performance issues with concurrent
354 * O_SYNC writers to a block device.
356 error
= blkdev_issue_flush(bdev
, GFP_KERNEL
, NULL
);
357 if (error
== -EOPNOTSUPP
)
362 EXPORT_SYMBOL(blkdev_fsync
);
365 * bdev_read_page() - Start reading a page from a block device
366 * @bdev: The device to read the page from
367 * @sector: The offset on the device to read the page to (need not be aligned)
368 * @page: The page to read
370 * On entry, the page should be locked. It will be unlocked when the page
371 * has been read. If the block driver implements rw_page synchronously,
372 * that will be true on exit from this function, but it need not be.
374 * Errors returned by this function are usually "soft", eg out of memory, or
375 * queue full; callers should try a different route to read this page rather
376 * than propagate an error back up the stack.
378 * Return: negative errno if an error occurs, 0 if submission was successful.
380 int bdev_read_page(struct block_device
*bdev
, sector_t sector
,
383 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
384 if (!ops
->rw_page
|| bdev_get_integrity(bdev
))
386 return ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
, READ
);
388 EXPORT_SYMBOL_GPL(bdev_read_page
);
391 * bdev_write_page() - Start writing a page to a block device
392 * @bdev: The device to write the page to
393 * @sector: The offset on the device to write the page to (need not be aligned)
394 * @page: The page to write
395 * @wbc: The writeback_control for the write
397 * On entry, the page should be locked and not currently under writeback.
398 * On exit, if the write started successfully, the page will be unlocked and
399 * under writeback. If the write failed already (eg the driver failed to
400 * queue the page to the device), the page will still be locked. If the
401 * caller is a ->writepage implementation, it will need to unlock the page.
403 * Errors returned by this function are usually "soft", eg out of memory, or
404 * queue full; callers should try a different route to write this page rather
405 * than propagate an error back up the stack.
407 * Return: negative errno if an error occurs, 0 if submission was successful.
409 int bdev_write_page(struct block_device
*bdev
, sector_t sector
,
410 struct page
*page
, struct writeback_control
*wbc
)
413 int rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
;
414 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
415 if (!ops
->rw_page
|| bdev_get_integrity(bdev
))
417 set_page_writeback(page
);
418 result
= ops
->rw_page(bdev
, sector
+ get_start_sect(bdev
), page
, rw
);
420 end_page_writeback(page
);
425 EXPORT_SYMBOL_GPL(bdev_write_page
);
428 * bdev_direct_access() - Get the address for directly-accessibly memory
429 * @bdev: The device containing the memory
430 * @sector: The offset within the device
431 * @addr: Where to put the address of the memory
432 * @pfn: The Page Frame Number for the memory
433 * @size: The number of bytes requested
435 * If a block device is made up of directly addressable memory, this function
436 * will tell the caller the PFN and the address of the memory. The address
437 * may be directly dereferenced within the kernel without the need to call
438 * ioremap(), kmap() or similar. The PFN is suitable for inserting into
441 * Return: negative errno if an error occurs, otherwise the number of bytes
442 * accessible at this address.
444 long bdev_direct_access(struct block_device
*bdev
, sector_t sector
,
445 void __pmem
**addr
, unsigned long *pfn
, long size
)
448 const struct block_device_operations
*ops
= bdev
->bd_disk
->fops
;
451 * The device driver is allowed to sleep, in order to make the
452 * memory directly accessible.
458 if (!ops
->direct_access
)
460 if ((sector
+ DIV_ROUND_UP(size
, 512)) >
461 part_nr_sects_read(bdev
->bd_part
))
463 sector
+= get_start_sect(bdev
);
464 if (sector
% (PAGE_SIZE
/ 512))
466 avail
= ops
->direct_access(bdev
, sector
, addr
, pfn
);
469 return min(avail
, size
);
471 EXPORT_SYMBOL_GPL(bdev_direct_access
);
477 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(bdev_lock
);
478 static struct kmem_cache
* bdev_cachep __read_mostly
;
480 static struct inode
*bdev_alloc_inode(struct super_block
*sb
)
482 struct bdev_inode
*ei
= kmem_cache_alloc(bdev_cachep
, GFP_KERNEL
);
485 return &ei
->vfs_inode
;
488 static void bdev_i_callback(struct rcu_head
*head
)
490 struct inode
*inode
= container_of(head
, struct inode
, i_rcu
);
491 struct bdev_inode
*bdi
= BDEV_I(inode
);
493 kmem_cache_free(bdev_cachep
, bdi
);
496 static void bdev_destroy_inode(struct inode
*inode
)
498 call_rcu(&inode
->i_rcu
, bdev_i_callback
);
501 static void init_once(void *foo
)
503 struct bdev_inode
*ei
= (struct bdev_inode
*) foo
;
504 struct block_device
*bdev
= &ei
->bdev
;
506 memset(bdev
, 0, sizeof(*bdev
));
507 mutex_init(&bdev
->bd_mutex
);
508 INIT_LIST_HEAD(&bdev
->bd_inodes
);
509 INIT_LIST_HEAD(&bdev
->bd_list
);
511 INIT_LIST_HEAD(&bdev
->bd_holder_disks
);
513 inode_init_once(&ei
->vfs_inode
);
514 /* Initialize mutex for freeze. */
515 mutex_init(&bdev
->bd_fsfreeze_mutex
);
518 static inline void __bd_forget(struct inode
*inode
)
520 list_del_init(&inode
->i_devices
);
521 inode
->i_bdev
= NULL
;
522 inode
->i_mapping
= &inode
->i_data
;
525 static void bdev_evict_inode(struct inode
*inode
)
527 struct block_device
*bdev
= &BDEV_I(inode
)->bdev
;
529 truncate_inode_pages_final(&inode
->i_data
);
530 invalidate_inode_buffers(inode
); /* is it needed here? */
532 spin_lock(&bdev_lock
);
533 while ( (p
= bdev
->bd_inodes
.next
) != &bdev
->bd_inodes
) {
534 __bd_forget(list_entry(p
, struct inode
, i_devices
));
536 list_del_init(&bdev
->bd_list
);
537 spin_unlock(&bdev_lock
);
540 static const struct super_operations bdev_sops
= {
541 .statfs
= simple_statfs
,
542 .alloc_inode
= bdev_alloc_inode
,
543 .destroy_inode
= bdev_destroy_inode
,
544 .drop_inode
= generic_delete_inode
,
545 .evict_inode
= bdev_evict_inode
,
548 static struct dentry
*bd_mount(struct file_system_type
*fs_type
,
549 int flags
, const char *dev_name
, void *data
)
551 return mount_pseudo(fs_type
, "bdev:", &bdev_sops
, NULL
, BDEVFS_MAGIC
);
554 static struct file_system_type bd_type
= {
557 .kill_sb
= kill_anon_super
,
560 struct super_block
*blockdev_superblock __read_mostly
;
561 EXPORT_SYMBOL_GPL(blockdev_superblock
);
563 void __init
bdev_cache_init(void)
566 static struct vfsmount
*bd_mnt
;
568 bdev_cachep
= kmem_cache_create("bdev_cache", sizeof(struct bdev_inode
),
569 0, (SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
|
570 SLAB_MEM_SPREAD
|SLAB_PANIC
),
572 err
= register_filesystem(&bd_type
);
574 panic("Cannot register bdev pseudo-fs");
575 bd_mnt
= kern_mount(&bd_type
);
577 panic("Cannot create bdev pseudo-fs");
578 blockdev_superblock
= bd_mnt
->mnt_sb
; /* For writeback */
582 * Most likely _very_ bad one - but then it's hardly critical for small
583 * /dev and can be fixed when somebody will need really large one.
584 * Keep in mind that it will be fed through icache hash function too.
586 static inline unsigned long hash(dev_t dev
)
588 return MAJOR(dev
)+MINOR(dev
);
591 static int bdev_test(struct inode
*inode
, void *data
)
593 return BDEV_I(inode
)->bdev
.bd_dev
== *(dev_t
*)data
;
596 static int bdev_set(struct inode
*inode
, void *data
)
598 BDEV_I(inode
)->bdev
.bd_dev
= *(dev_t
*)data
;
602 static LIST_HEAD(all_bdevs
);
604 struct block_device
*bdget(dev_t dev
)
606 struct block_device
*bdev
;
609 inode
= iget5_locked(blockdev_superblock
, hash(dev
),
610 bdev_test
, bdev_set
, &dev
);
615 bdev
= &BDEV_I(inode
)->bdev
;
617 if (inode
->i_state
& I_NEW
) {
618 bdev
->bd_contains
= NULL
;
619 bdev
->bd_super
= NULL
;
620 bdev
->bd_inode
= inode
;
621 bdev
->bd_block_size
= (1 << inode
->i_blkbits
);
622 bdev
->bd_part_count
= 0;
623 bdev
->bd_invalidated
= 0;
624 inode
->i_mode
= S_IFBLK
;
626 inode
->i_bdev
= bdev
;
627 inode
->i_data
.a_ops
= &def_blk_aops
;
628 mapping_set_gfp_mask(&inode
->i_data
, GFP_USER
);
629 spin_lock(&bdev_lock
);
630 list_add(&bdev
->bd_list
, &all_bdevs
);
631 spin_unlock(&bdev_lock
);
632 unlock_new_inode(inode
);
637 EXPORT_SYMBOL(bdget
);
640 * bdgrab -- Grab a reference to an already referenced block device
641 * @bdev: Block device to grab a reference to.
643 struct block_device
*bdgrab(struct block_device
*bdev
)
645 ihold(bdev
->bd_inode
);
648 EXPORT_SYMBOL(bdgrab
);
650 long nr_blockdev_pages(void)
652 struct block_device
*bdev
;
654 spin_lock(&bdev_lock
);
655 list_for_each_entry(bdev
, &all_bdevs
, bd_list
) {
656 ret
+= bdev
->bd_inode
->i_mapping
->nrpages
;
658 spin_unlock(&bdev_lock
);
662 void bdput(struct block_device
*bdev
)
664 iput(bdev
->bd_inode
);
667 EXPORT_SYMBOL(bdput
);
669 static struct block_device
*bd_acquire(struct inode
*inode
)
671 struct block_device
*bdev
;
673 spin_lock(&bdev_lock
);
674 bdev
= inode
->i_bdev
;
676 ihold(bdev
->bd_inode
);
677 spin_unlock(&bdev_lock
);
680 spin_unlock(&bdev_lock
);
682 bdev
= bdget(inode
->i_rdev
);
684 spin_lock(&bdev_lock
);
685 if (!inode
->i_bdev
) {
687 * We take an additional reference to bd_inode,
688 * and it's released in clear_inode() of inode.
689 * So, we can access it via ->i_mapping always
692 ihold(bdev
->bd_inode
);
693 inode
->i_bdev
= bdev
;
694 inode
->i_mapping
= bdev
->bd_inode
->i_mapping
;
695 list_add(&inode
->i_devices
, &bdev
->bd_inodes
);
697 spin_unlock(&bdev_lock
);
702 /* Call when you free inode */
704 void bd_forget(struct inode
*inode
)
706 struct block_device
*bdev
= NULL
;
708 spin_lock(&bdev_lock
);
709 if (!sb_is_blkdev_sb(inode
->i_sb
))
710 bdev
= inode
->i_bdev
;
712 spin_unlock(&bdev_lock
);
715 iput(bdev
->bd_inode
);
719 * bd_may_claim - test whether a block device can be claimed
720 * @bdev: block device of interest
721 * @whole: whole block device containing @bdev, may equal @bdev
722 * @holder: holder trying to claim @bdev
724 * Test whether @bdev can be claimed by @holder.
727 * spin_lock(&bdev_lock).
730 * %true if @bdev can be claimed, %false otherwise.
732 static bool bd_may_claim(struct block_device
*bdev
, struct block_device
*whole
,
735 if (bdev
->bd_holder
== holder
)
736 return true; /* already a holder */
737 else if (bdev
->bd_holder
!= NULL
)
738 return false; /* held by someone else */
739 else if (bdev
->bd_contains
== bdev
)
740 return true; /* is a whole device which isn't held */
742 else if (whole
->bd_holder
== bd_may_claim
)
743 return true; /* is a partition of a device that is being partitioned */
744 else if (whole
->bd_holder
!= NULL
)
745 return false; /* is a partition of a held device */
747 return true; /* is a partition of an un-held device */
751 * bd_prepare_to_claim - prepare to claim a block device
752 * @bdev: block device of interest
753 * @whole: the whole device containing @bdev, may equal @bdev
754 * @holder: holder trying to claim @bdev
756 * Prepare to claim @bdev. This function fails if @bdev is already
757 * claimed by another holder and waits if another claiming is in
758 * progress. This function doesn't actually claim. On successful
759 * return, the caller has ownership of bd_claiming and bd_holder[s].
762 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
766 * 0 if @bdev can be claimed, -EBUSY otherwise.
768 static int bd_prepare_to_claim(struct block_device
*bdev
,
769 struct block_device
*whole
, void *holder
)
772 /* if someone else claimed, fail */
773 if (!bd_may_claim(bdev
, whole
, holder
))
776 /* if claiming is already in progress, wait for it to finish */
777 if (whole
->bd_claiming
) {
778 wait_queue_head_t
*wq
= bit_waitqueue(&whole
->bd_claiming
, 0);
781 prepare_to_wait(wq
, &wait
, TASK_UNINTERRUPTIBLE
);
782 spin_unlock(&bdev_lock
);
784 finish_wait(wq
, &wait
);
785 spin_lock(&bdev_lock
);
794 * bd_start_claiming - start claiming a block device
795 * @bdev: block device of interest
796 * @holder: holder trying to claim @bdev
798 * @bdev is about to be opened exclusively. Check @bdev can be opened
799 * exclusively and mark that an exclusive open is in progress. Each
800 * successful call to this function must be matched with a call to
801 * either bd_finish_claiming() or bd_abort_claiming() (which do not
804 * This function is used to gain exclusive access to the block device
805 * without actually causing other exclusive open attempts to fail. It
806 * should be used when the open sequence itself requires exclusive
807 * access but may subsequently fail.
813 * Pointer to the block device containing @bdev on success, ERR_PTR()
816 static struct block_device
*bd_start_claiming(struct block_device
*bdev
,
819 struct gendisk
*disk
;
820 struct block_device
*whole
;
826 * @bdev might not have been initialized properly yet, look up
827 * and grab the outer block device the hard way.
829 disk
= get_gendisk(bdev
->bd_dev
, &partno
);
831 return ERR_PTR(-ENXIO
);
834 * Normally, @bdev should equal what's returned from bdget_disk()
835 * if partno is 0; however, some drivers (floppy) use multiple
836 * bdev's for the same physical device and @bdev may be one of the
837 * aliases. Keep @bdev if partno is 0. This means claimer
838 * tracking is broken for those devices but it has always been that
842 whole
= bdget_disk(disk
, 0);
844 whole
= bdgrab(bdev
);
846 module_put(disk
->fops
->owner
);
849 return ERR_PTR(-ENOMEM
);
851 /* prepare to claim, if successful, mark claiming in progress */
852 spin_lock(&bdev_lock
);
854 err
= bd_prepare_to_claim(bdev
, whole
, holder
);
856 whole
->bd_claiming
= holder
;
857 spin_unlock(&bdev_lock
);
860 spin_unlock(&bdev_lock
);
867 struct bd_holder_disk
{
868 struct list_head list
;
869 struct gendisk
*disk
;
873 static struct bd_holder_disk
*bd_find_holder_disk(struct block_device
*bdev
,
874 struct gendisk
*disk
)
876 struct bd_holder_disk
*holder
;
878 list_for_each_entry(holder
, &bdev
->bd_holder_disks
, list
)
879 if (holder
->disk
== disk
)
884 static int add_symlink(struct kobject
*from
, struct kobject
*to
)
886 return sysfs_create_link(from
, to
, kobject_name(to
));
889 static void del_symlink(struct kobject
*from
, struct kobject
*to
)
891 sysfs_remove_link(from
, kobject_name(to
));
895 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
896 * @bdev: the claimed slave bdev
897 * @disk: the holding disk
899 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
901 * This functions creates the following sysfs symlinks.
903 * - from "slaves" directory of the holder @disk to the claimed @bdev
904 * - from "holders" directory of the @bdev to the holder @disk
906 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
907 * passed to bd_link_disk_holder(), then:
909 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
910 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
912 * The caller must have claimed @bdev before calling this function and
913 * ensure that both @bdev and @disk are valid during the creation and
914 * lifetime of these symlinks.
920 * 0 on success, -errno on failure.
922 int bd_link_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
924 struct bd_holder_disk
*holder
;
927 mutex_lock(&bdev
->bd_mutex
);
929 WARN_ON_ONCE(!bdev
->bd_holder
);
931 /* FIXME: remove the following once add_disk() handles errors */
932 if (WARN_ON(!disk
->slave_dir
|| !bdev
->bd_part
->holder_dir
))
935 holder
= bd_find_holder_disk(bdev
, disk
);
941 holder
= kzalloc(sizeof(*holder
), GFP_KERNEL
);
947 INIT_LIST_HEAD(&holder
->list
);
951 ret
= add_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
955 ret
= add_symlink(bdev
->bd_part
->holder_dir
, &disk_to_dev(disk
)->kobj
);
959 * bdev could be deleted beneath us which would implicitly destroy
960 * the holder directory. Hold on to it.
962 kobject_get(bdev
->bd_part
->holder_dir
);
964 list_add(&holder
->list
, &bdev
->bd_holder_disks
);
968 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
972 mutex_unlock(&bdev
->bd_mutex
);
975 EXPORT_SYMBOL_GPL(bd_link_disk_holder
);
978 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
979 * @bdev: the calimed slave bdev
980 * @disk: the holding disk
982 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
987 void bd_unlink_disk_holder(struct block_device
*bdev
, struct gendisk
*disk
)
989 struct bd_holder_disk
*holder
;
991 mutex_lock(&bdev
->bd_mutex
);
993 holder
= bd_find_holder_disk(bdev
, disk
);
995 if (!WARN_ON_ONCE(holder
== NULL
) && !--holder
->refcnt
) {
996 del_symlink(disk
->slave_dir
, &part_to_dev(bdev
->bd_part
)->kobj
);
997 del_symlink(bdev
->bd_part
->holder_dir
,
998 &disk_to_dev(disk
)->kobj
);
999 kobject_put(bdev
->bd_part
->holder_dir
);
1000 list_del_init(&holder
->list
);
1004 mutex_unlock(&bdev
->bd_mutex
);
1006 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder
);
1010 * flush_disk - invalidates all buffer-cache entries on a disk
1012 * @bdev: struct block device to be flushed
1013 * @kill_dirty: flag to guide handling of dirty inodes
1015 * Invalidates all buffer-cache entries on a disk. It should be called
1016 * when a disk has been changed -- either by a media change or online
1019 static void flush_disk(struct block_device
*bdev
, bool kill_dirty
)
1021 if (__invalidate_device(bdev
, kill_dirty
)) {
1022 char name
[BDEVNAME_SIZE
] = "";
1025 disk_name(bdev
->bd_disk
, 0, name
);
1026 printk(KERN_WARNING
"VFS: busy inodes on changed media or "
1027 "resized disk %s\n", name
);
1032 if (disk_part_scan_enabled(bdev
->bd_disk
))
1033 bdev
->bd_invalidated
= 1;
1037 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1038 * @disk: struct gendisk to check
1039 * @bdev: struct bdev to adjust.
1041 * This routine checks to see if the bdev size does not match the disk size
1042 * and adjusts it if it differs.
1044 void check_disk_size_change(struct gendisk
*disk
, struct block_device
*bdev
)
1046 loff_t disk_size
, bdev_size
;
1048 disk_size
= (loff_t
)get_capacity(disk
) << 9;
1049 bdev_size
= i_size_read(bdev
->bd_inode
);
1050 if (disk_size
!= bdev_size
) {
1051 char name
[BDEVNAME_SIZE
];
1053 disk_name(disk
, 0, name
);
1055 "%s: detected capacity change from %lld to %lld\n",
1056 name
, bdev_size
, disk_size
);
1057 i_size_write(bdev
->bd_inode
, disk_size
);
1058 flush_disk(bdev
, false);
1061 EXPORT_SYMBOL(check_disk_size_change
);
1064 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1065 * @disk: struct gendisk to be revalidated
1067 * This routine is a wrapper for lower-level driver's revalidate_disk
1068 * call-backs. It is used to do common pre and post operations needed
1069 * for all revalidate_disk operations.
1071 int revalidate_disk(struct gendisk
*disk
)
1073 struct block_device
*bdev
;
1076 if (disk
->fops
->revalidate_disk
)
1077 ret
= disk
->fops
->revalidate_disk(disk
);
1079 bdev
= bdget_disk(disk
, 0);
1083 mutex_lock(&bdev
->bd_mutex
);
1084 check_disk_size_change(disk
, bdev
);
1085 bdev
->bd_invalidated
= 0;
1086 mutex_unlock(&bdev
->bd_mutex
);
1090 EXPORT_SYMBOL(revalidate_disk
);
1093 * This routine checks whether a removable media has been changed,
1094 * and invalidates all buffer-cache-entries in that case. This
1095 * is a relatively slow routine, so we have to try to minimize using
1096 * it. Thus it is called only upon a 'mount' or 'open'. This
1097 * is the best way of combining speed and utility, I think.
1098 * People changing diskettes in the middle of an operation deserve
1101 int check_disk_change(struct block_device
*bdev
)
1103 struct gendisk
*disk
= bdev
->bd_disk
;
1104 const struct block_device_operations
*bdops
= disk
->fops
;
1105 unsigned int events
;
1107 events
= disk_clear_events(disk
, DISK_EVENT_MEDIA_CHANGE
|
1108 DISK_EVENT_EJECT_REQUEST
);
1109 if (!(events
& DISK_EVENT_MEDIA_CHANGE
))
1112 flush_disk(bdev
, true);
1113 if (bdops
->revalidate_disk
)
1114 bdops
->revalidate_disk(bdev
->bd_disk
);
1118 EXPORT_SYMBOL(check_disk_change
);
1120 void bd_set_size(struct block_device
*bdev
, loff_t size
)
1122 unsigned bsize
= bdev_logical_block_size(bdev
);
1124 mutex_lock(&bdev
->bd_inode
->i_mutex
);
1125 i_size_write(bdev
->bd_inode
, size
);
1126 mutex_unlock(&bdev
->bd_inode
->i_mutex
);
1127 while (bsize
< PAGE_CACHE_SIZE
) {
1132 bdev
->bd_block_size
= bsize
;
1133 bdev
->bd_inode
->i_blkbits
= blksize_bits(bsize
);
1135 EXPORT_SYMBOL(bd_set_size
);
1137 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
);
1142 * mutex_lock(part->bd_mutex)
1143 * mutex_lock_nested(whole->bd_mutex, 1)
1146 static int __blkdev_get(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1148 struct gendisk
*disk
;
1149 struct module
*owner
;
1154 if (mode
& FMODE_READ
)
1156 if (mode
& FMODE_WRITE
)
1159 * hooks: /n/, see "layering violations".
1162 ret
= devcgroup_inode_permission(bdev
->bd_inode
, perm
);
1172 disk
= get_gendisk(bdev
->bd_dev
, &partno
);
1175 owner
= disk
->fops
->owner
;
1177 disk_block_events(disk
);
1178 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1179 if (!bdev
->bd_openers
) {
1180 bdev
->bd_disk
= disk
;
1181 bdev
->bd_queue
= disk
->queue
;
1182 bdev
->bd_contains
= bdev
;
1183 bdev
->bd_inode
->i_flags
= disk
->fops
->direct_access
? S_DAX
: 0;
1186 bdev
->bd_part
= disk_get_part(disk
, partno
);
1191 if (disk
->fops
->open
) {
1192 ret
= disk
->fops
->open(bdev
, mode
);
1193 if (ret
== -ERESTARTSYS
) {
1194 /* Lost a race with 'disk' being
1195 * deleted, try again.
1198 disk_put_part(bdev
->bd_part
);
1199 bdev
->bd_part
= NULL
;
1200 bdev
->bd_disk
= NULL
;
1201 bdev
->bd_queue
= NULL
;
1202 mutex_unlock(&bdev
->bd_mutex
);
1203 disk_unblock_events(disk
);
1211 bd_set_size(bdev
,(loff_t
)get_capacity(disk
)<<9);
1214 * If the device is invalidated, rescan partition
1215 * if open succeeded or failed with -ENOMEDIUM.
1216 * The latter is necessary to prevent ghost
1217 * partitions on a removed medium.
1219 if (bdev
->bd_invalidated
) {
1221 rescan_partitions(disk
, bdev
);
1222 else if (ret
== -ENOMEDIUM
)
1223 invalidate_partitions(disk
, bdev
);
1228 struct block_device
*whole
;
1229 whole
= bdget_disk(disk
, 0);
1234 ret
= __blkdev_get(whole
, mode
, 1);
1237 bdev
->bd_contains
= whole
;
1238 bdev
->bd_part
= disk_get_part(disk
, partno
);
1239 if (!(disk
->flags
& GENHD_FL_UP
) ||
1240 !bdev
->bd_part
|| !bdev
->bd_part
->nr_sects
) {
1244 bd_set_size(bdev
, (loff_t
)bdev
->bd_part
->nr_sects
<< 9);
1247 if (bdev
->bd_contains
== bdev
) {
1249 if (bdev
->bd_disk
->fops
->open
)
1250 ret
= bdev
->bd_disk
->fops
->open(bdev
, mode
);
1251 /* the same as first opener case, read comment there */
1252 if (bdev
->bd_invalidated
) {
1254 rescan_partitions(bdev
->bd_disk
, bdev
);
1255 else if (ret
== -ENOMEDIUM
)
1256 invalidate_partitions(bdev
->bd_disk
, bdev
);
1259 goto out_unlock_bdev
;
1261 /* only one opener holds refs to the module and disk */
1267 bdev
->bd_part_count
++;
1268 mutex_unlock(&bdev
->bd_mutex
);
1269 disk_unblock_events(disk
);
1273 disk_put_part(bdev
->bd_part
);
1274 bdev
->bd_disk
= NULL
;
1275 bdev
->bd_part
= NULL
;
1276 bdev
->bd_queue
= NULL
;
1277 if (bdev
!= bdev
->bd_contains
)
1278 __blkdev_put(bdev
->bd_contains
, mode
, 1);
1279 bdev
->bd_contains
= NULL
;
1281 mutex_unlock(&bdev
->bd_mutex
);
1282 disk_unblock_events(disk
);
1292 * blkdev_get - open a block device
1293 * @bdev: block_device to open
1294 * @mode: FMODE_* mask
1295 * @holder: exclusive holder identifier
1297 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1298 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1299 * @holder is invalid. Exclusive opens may nest for the same @holder.
1301 * On success, the reference count of @bdev is unchanged. On failure,
1308 * 0 on success, -errno on failure.
1310 int blkdev_get(struct block_device
*bdev
, fmode_t mode
, void *holder
)
1312 struct block_device
*whole
= NULL
;
1315 WARN_ON_ONCE((mode
& FMODE_EXCL
) && !holder
);
1317 if ((mode
& FMODE_EXCL
) && holder
) {
1318 whole
= bd_start_claiming(bdev
, holder
);
1319 if (IS_ERR(whole
)) {
1321 return PTR_ERR(whole
);
1325 res
= __blkdev_get(bdev
, mode
, 0);
1328 struct gendisk
*disk
= whole
->bd_disk
;
1330 /* finish claiming */
1331 mutex_lock(&bdev
->bd_mutex
);
1332 spin_lock(&bdev_lock
);
1335 BUG_ON(!bd_may_claim(bdev
, whole
, holder
));
1337 * Note that for a whole device bd_holders
1338 * will be incremented twice, and bd_holder
1339 * will be set to bd_may_claim before being
1342 whole
->bd_holders
++;
1343 whole
->bd_holder
= bd_may_claim
;
1345 bdev
->bd_holder
= holder
;
1348 /* tell others that we're done */
1349 BUG_ON(whole
->bd_claiming
!= holder
);
1350 whole
->bd_claiming
= NULL
;
1351 wake_up_bit(&whole
->bd_claiming
, 0);
1353 spin_unlock(&bdev_lock
);
1356 * Block event polling for write claims if requested. Any
1357 * write holder makes the write_holder state stick until
1358 * all are released. This is good enough and tracking
1359 * individual writeable reference is too fragile given the
1360 * way @mode is used in blkdev_get/put().
1362 if (!res
&& (mode
& FMODE_WRITE
) && !bdev
->bd_write_holder
&&
1363 (disk
->flags
& GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE
)) {
1364 bdev
->bd_write_holder
= true;
1365 disk_block_events(disk
);
1368 mutex_unlock(&bdev
->bd_mutex
);
1374 EXPORT_SYMBOL(blkdev_get
);
1377 * blkdev_get_by_path - open a block device by name
1378 * @path: path to the block device to open
1379 * @mode: FMODE_* mask
1380 * @holder: exclusive holder identifier
1382 * Open the blockdevice described by the device file at @path. @mode
1383 * and @holder are identical to blkdev_get().
1385 * On success, the returned block_device has reference count of one.
1391 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1393 struct block_device
*blkdev_get_by_path(const char *path
, fmode_t mode
,
1396 struct block_device
*bdev
;
1399 bdev
= lookup_bdev(path
);
1403 err
= blkdev_get(bdev
, mode
, holder
);
1405 return ERR_PTR(err
);
1407 if ((mode
& FMODE_WRITE
) && bdev_read_only(bdev
)) {
1408 blkdev_put(bdev
, mode
);
1409 return ERR_PTR(-EACCES
);
1414 EXPORT_SYMBOL(blkdev_get_by_path
);
1417 * blkdev_get_by_dev - open a block device by device number
1418 * @dev: device number of block device to open
1419 * @mode: FMODE_* mask
1420 * @holder: exclusive holder identifier
1422 * Open the blockdevice described by device number @dev. @mode and
1423 * @holder are identical to blkdev_get().
1425 * Use it ONLY if you really do not have anything better - i.e. when
1426 * you are behind a truly sucky interface and all you are given is a
1427 * device number. _Never_ to be used for internal purposes. If you
1428 * ever need it - reconsider your API.
1430 * On success, the returned block_device has reference count of one.
1436 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1438 struct block_device
*blkdev_get_by_dev(dev_t dev
, fmode_t mode
, void *holder
)
1440 struct block_device
*bdev
;
1445 return ERR_PTR(-ENOMEM
);
1447 err
= blkdev_get(bdev
, mode
, holder
);
1449 return ERR_PTR(err
);
1453 EXPORT_SYMBOL(blkdev_get_by_dev
);
1455 static int blkdev_open(struct inode
* inode
, struct file
* filp
)
1457 struct block_device
*bdev
;
1460 * Preserve backwards compatibility and allow large file access
1461 * even if userspace doesn't ask for it explicitly. Some mkfs
1462 * binary needs it. We might want to drop this workaround
1463 * during an unstable branch.
1465 filp
->f_flags
|= O_LARGEFILE
;
1467 if (filp
->f_flags
& O_NDELAY
)
1468 filp
->f_mode
|= FMODE_NDELAY
;
1469 if (filp
->f_flags
& O_EXCL
)
1470 filp
->f_mode
|= FMODE_EXCL
;
1471 if ((filp
->f_flags
& O_ACCMODE
) == 3)
1472 filp
->f_mode
|= FMODE_WRITE_IOCTL
;
1474 bdev
= bd_acquire(inode
);
1478 filp
->f_mapping
= bdev
->bd_inode
->i_mapping
;
1480 return blkdev_get(bdev
, filp
->f_mode
, filp
);
1483 static void __blkdev_put(struct block_device
*bdev
, fmode_t mode
, int for_part
)
1485 struct gendisk
*disk
= bdev
->bd_disk
;
1486 struct block_device
*victim
= NULL
;
1488 mutex_lock_nested(&bdev
->bd_mutex
, for_part
);
1490 bdev
->bd_part_count
--;
1492 if (!--bdev
->bd_openers
) {
1493 WARN_ON_ONCE(bdev
->bd_holders
);
1494 sync_blockdev(bdev
);
1497 * ->release can cause the queue to disappear, so flush all
1498 * dirty data before.
1500 bdev_write_inode(bdev
->bd_inode
);
1502 if (bdev
->bd_contains
== bdev
) {
1503 if (disk
->fops
->release
)
1504 disk
->fops
->release(disk
, mode
);
1506 if (!bdev
->bd_openers
) {
1507 struct module
*owner
= disk
->fops
->owner
;
1509 disk_put_part(bdev
->bd_part
);
1510 bdev
->bd_part
= NULL
;
1511 bdev
->bd_disk
= NULL
;
1512 if (bdev
!= bdev
->bd_contains
)
1513 victim
= bdev
->bd_contains
;
1514 bdev
->bd_contains
= NULL
;
1519 mutex_unlock(&bdev
->bd_mutex
);
1522 __blkdev_put(victim
, mode
, 1);
1525 void blkdev_put(struct block_device
*bdev
, fmode_t mode
)
1527 mutex_lock(&bdev
->bd_mutex
);
1529 if (mode
& FMODE_EXCL
) {
1533 * Release a claim on the device. The holder fields
1534 * are protected with bdev_lock. bd_mutex is to
1535 * synchronize disk_holder unlinking.
1537 spin_lock(&bdev_lock
);
1539 WARN_ON_ONCE(--bdev
->bd_holders
< 0);
1540 WARN_ON_ONCE(--bdev
->bd_contains
->bd_holders
< 0);
1542 /* bd_contains might point to self, check in a separate step */
1543 if ((bdev_free
= !bdev
->bd_holders
))
1544 bdev
->bd_holder
= NULL
;
1545 if (!bdev
->bd_contains
->bd_holders
)
1546 bdev
->bd_contains
->bd_holder
= NULL
;
1548 spin_unlock(&bdev_lock
);
1551 * If this was the last claim, remove holder link and
1552 * unblock evpoll if it was a write holder.
1554 if (bdev_free
&& bdev
->bd_write_holder
) {
1555 disk_unblock_events(bdev
->bd_disk
);
1556 bdev
->bd_write_holder
= false;
1561 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1562 * event. This is to ensure detection of media removal commanded
1563 * from userland - e.g. eject(1).
1565 disk_flush_events(bdev
->bd_disk
, DISK_EVENT_MEDIA_CHANGE
);
1567 mutex_unlock(&bdev
->bd_mutex
);
1569 __blkdev_put(bdev
, mode
, 0);
1571 EXPORT_SYMBOL(blkdev_put
);
1573 static int blkdev_close(struct inode
* inode
, struct file
* filp
)
1575 struct block_device
*bdev
= I_BDEV(filp
->f_mapping
->host
);
1576 blkdev_put(bdev
, filp
->f_mode
);
1580 static long block_ioctl(struct file
*file
, unsigned cmd
, unsigned long arg
)
1582 struct block_device
*bdev
= I_BDEV(file
->f_mapping
->host
);
1583 fmode_t mode
= file
->f_mode
;
1586 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1587 * to updated it before every ioctl.
1589 if (file
->f_flags
& O_NDELAY
)
1590 mode
|= FMODE_NDELAY
;
1592 mode
&= ~FMODE_NDELAY
;
1594 return blkdev_ioctl(bdev
, mode
, cmd
, arg
);
1598 * Write data to the block device. Only intended for the block device itself
1599 * and the raw driver which basically is a fake block device.
1601 * Does not take i_mutex for the write and thus is not for general purpose
1604 ssize_t
blkdev_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
1606 struct file
*file
= iocb
->ki_filp
;
1607 struct inode
*bd_inode
= file
->f_mapping
->host
;
1608 loff_t size
= i_size_read(bd_inode
);
1609 struct blk_plug plug
;
1612 if (bdev_read_only(I_BDEV(bd_inode
)))
1615 if (!iov_iter_count(from
))
1618 if (iocb
->ki_pos
>= size
)
1621 iov_iter_truncate(from
, size
- iocb
->ki_pos
);
1623 blk_start_plug(&plug
);
1624 ret
= __generic_file_write_iter(iocb
, from
);
1627 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
1631 blk_finish_plug(&plug
);
1634 EXPORT_SYMBOL_GPL(blkdev_write_iter
);
1636 ssize_t
blkdev_read_iter(struct kiocb
*iocb
, struct iov_iter
*to
)
1638 struct file
*file
= iocb
->ki_filp
;
1639 struct inode
*bd_inode
= file
->f_mapping
->host
;
1640 loff_t size
= i_size_read(bd_inode
);
1641 loff_t pos
= iocb
->ki_pos
;
1647 iov_iter_truncate(to
, size
);
1648 return generic_file_read_iter(iocb
, to
);
1650 EXPORT_SYMBOL_GPL(blkdev_read_iter
);
1653 * Try to release a page associated with block device when the system
1654 * is under memory pressure.
1656 static int blkdev_releasepage(struct page
*page
, gfp_t wait
)
1658 struct super_block
*super
= BDEV_I(page
->mapping
->host
)->bdev
.bd_super
;
1660 if (super
&& super
->s_op
->bdev_try_to_free_page
)
1661 return super
->s_op
->bdev_try_to_free_page(super
, page
, wait
);
1663 return try_to_free_buffers(page
);
1666 static const struct address_space_operations def_blk_aops
= {
1667 .readpage
= blkdev_readpage
,
1668 .readpages
= blkdev_readpages
,
1669 .writepage
= blkdev_writepage
,
1670 .write_begin
= blkdev_write_begin
,
1671 .write_end
= blkdev_write_end
,
1672 .writepages
= generic_writepages
,
1673 .releasepage
= blkdev_releasepage
,
1674 .direct_IO
= blkdev_direct_IO
,
1675 .is_dirty_writeback
= buffer_check_dirty_writeback
,
1678 const struct file_operations def_blk_fops
= {
1679 .open
= blkdev_open
,
1680 .release
= blkdev_close
,
1681 .llseek
= block_llseek
,
1682 .read_iter
= blkdev_read_iter
,
1683 .write_iter
= blkdev_write_iter
,
1684 .mmap
= generic_file_mmap
,
1685 .fsync
= blkdev_fsync
,
1686 .unlocked_ioctl
= block_ioctl
,
1687 #ifdef CONFIG_COMPAT
1688 .compat_ioctl
= compat_blkdev_ioctl
,
1690 .splice_read
= generic_file_splice_read
,
1691 .splice_write
= iter_file_splice_write
,
1694 int ioctl_by_bdev(struct block_device
*bdev
, unsigned cmd
, unsigned long arg
)
1697 mm_segment_t old_fs
= get_fs();
1699 res
= blkdev_ioctl(bdev
, 0, cmd
, arg
);
1704 EXPORT_SYMBOL(ioctl_by_bdev
);
1707 * lookup_bdev - lookup a struct block_device by name
1708 * @pathname: special file representing the block device
1710 * Get a reference to the blockdevice at @pathname in the current
1711 * namespace if possible and return it. Return ERR_PTR(error)
1714 struct block_device
*lookup_bdev(const char *pathname
)
1716 struct block_device
*bdev
;
1717 struct inode
*inode
;
1721 if (!pathname
|| !*pathname
)
1722 return ERR_PTR(-EINVAL
);
1724 error
= kern_path(pathname
, LOOKUP_FOLLOW
, &path
);
1726 return ERR_PTR(error
);
1728 inode
= d_backing_inode(path
.dentry
);
1730 if (!S_ISBLK(inode
->i_mode
))
1733 if (path
.mnt
->mnt_flags
& MNT_NODEV
)
1736 bdev
= bd_acquire(inode
);
1743 bdev
= ERR_PTR(error
);
1746 EXPORT_SYMBOL(lookup_bdev
);
1748 int __invalidate_device(struct block_device
*bdev
, bool kill_dirty
)
1750 struct super_block
*sb
= get_super(bdev
);
1755 * no need to lock the super, get_super holds the
1756 * read mutex so the filesystem cannot go away
1757 * under us (->put_super runs with the write lock
1760 shrink_dcache_sb(sb
);
1761 res
= invalidate_inodes(sb
, kill_dirty
);
1764 invalidate_bdev(bdev
);
1767 EXPORT_SYMBOL(__invalidate_device
);
1769 void iterate_bdevs(void (*func
)(struct block_device
*, void *), void *arg
)
1771 struct inode
*inode
, *old_inode
= NULL
;
1773 spin_lock(&blockdev_superblock
->s_inode_list_lock
);
1774 list_for_each_entry(inode
, &blockdev_superblock
->s_inodes
, i_sb_list
) {
1775 struct address_space
*mapping
= inode
->i_mapping
;
1777 spin_lock(&inode
->i_lock
);
1778 if (inode
->i_state
& (I_FREEING
|I_WILL_FREE
|I_NEW
) ||
1779 mapping
->nrpages
== 0) {
1780 spin_unlock(&inode
->i_lock
);
1784 spin_unlock(&inode
->i_lock
);
1785 spin_unlock(&blockdev_superblock
->s_inode_list_lock
);
1787 * We hold a reference to 'inode' so it couldn't have been
1788 * removed from s_inodes list while we dropped the
1789 * s_inode_list_lock We cannot iput the inode now as we can
1790 * be holding the last reference and we cannot iput it under
1791 * s_inode_list_lock. So we keep the reference and iput it
1797 func(I_BDEV(inode
), arg
);
1799 spin_lock(&blockdev_superblock
->s_inode_list_lock
);
1801 spin_unlock(&blockdev_superblock
->s_inode_list_lock
);