Linux 5.1.15
[linux/fpc-iii.git] / block / bio.c
bloba3c80a6c1fe51d4c18aa52fb5e508d958c6ba16d
1 /*
2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/bio.h>
21 #include <linux/blkdev.h>
22 #include <linux/uio.h>
23 #include <linux/iocontext.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/kernel.h>
27 #include <linux/export.h>
28 #include <linux/mempool.h>
29 #include <linux/workqueue.h>
30 #include <linux/cgroup.h>
31 #include <linux/blk-cgroup.h>
33 #include <trace/events/block.h>
34 #include "blk.h"
35 #include "blk-rq-qos.h"
38 * Test patch to inline a certain number of bi_io_vec's inside the bio
39 * itself, to shrink a bio data allocation from two mempool calls to one
41 #define BIO_INLINE_VECS 4
44 * if you change this list, also change bvec_alloc or things will
45 * break badly! cannot be bigger than what you can fit into an
46 * unsigned short
48 #define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
49 static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
50 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
52 #undef BV
55 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
56 * IO code that does not need private memory pools.
58 struct bio_set fs_bio_set;
59 EXPORT_SYMBOL(fs_bio_set);
62 * Our slab pool management
64 struct bio_slab {
65 struct kmem_cache *slab;
66 unsigned int slab_ref;
67 unsigned int slab_size;
68 char name[8];
70 static DEFINE_MUTEX(bio_slab_lock);
71 static struct bio_slab *bio_slabs;
72 static unsigned int bio_slab_nr, bio_slab_max;
74 static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
76 unsigned int sz = sizeof(struct bio) + extra_size;
77 struct kmem_cache *slab = NULL;
78 struct bio_slab *bslab, *new_bio_slabs;
79 unsigned int new_bio_slab_max;
80 unsigned int i, entry = -1;
82 mutex_lock(&bio_slab_lock);
84 i = 0;
85 while (i < bio_slab_nr) {
86 bslab = &bio_slabs[i];
88 if (!bslab->slab && entry == -1)
89 entry = i;
90 else if (bslab->slab_size == sz) {
91 slab = bslab->slab;
92 bslab->slab_ref++;
93 break;
95 i++;
98 if (slab)
99 goto out_unlock;
101 if (bio_slab_nr == bio_slab_max && entry == -1) {
102 new_bio_slab_max = bio_slab_max << 1;
103 new_bio_slabs = krealloc(bio_slabs,
104 new_bio_slab_max * sizeof(struct bio_slab),
105 GFP_KERNEL);
106 if (!new_bio_slabs)
107 goto out_unlock;
108 bio_slab_max = new_bio_slab_max;
109 bio_slabs = new_bio_slabs;
111 if (entry == -1)
112 entry = bio_slab_nr++;
114 bslab = &bio_slabs[entry];
116 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
117 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
118 SLAB_HWCACHE_ALIGN, NULL);
119 if (!slab)
120 goto out_unlock;
122 bslab->slab = slab;
123 bslab->slab_ref = 1;
124 bslab->slab_size = sz;
125 out_unlock:
126 mutex_unlock(&bio_slab_lock);
127 return slab;
130 static void bio_put_slab(struct bio_set *bs)
132 struct bio_slab *bslab = NULL;
133 unsigned int i;
135 mutex_lock(&bio_slab_lock);
137 for (i = 0; i < bio_slab_nr; i++) {
138 if (bs->bio_slab == bio_slabs[i].slab) {
139 bslab = &bio_slabs[i];
140 break;
144 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
145 goto out;
147 WARN_ON(!bslab->slab_ref);
149 if (--bslab->slab_ref)
150 goto out;
152 kmem_cache_destroy(bslab->slab);
153 bslab->slab = NULL;
155 out:
156 mutex_unlock(&bio_slab_lock);
159 unsigned int bvec_nr_vecs(unsigned short idx)
161 return bvec_slabs[--idx].nr_vecs;
164 void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
166 if (!idx)
167 return;
168 idx--;
170 BIO_BUG_ON(idx >= BVEC_POOL_NR);
172 if (idx == BVEC_POOL_MAX) {
173 mempool_free(bv, pool);
174 } else {
175 struct biovec_slab *bvs = bvec_slabs + idx;
177 kmem_cache_free(bvs->slab, bv);
181 struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
182 mempool_t *pool)
184 struct bio_vec *bvl;
187 * see comment near bvec_array define!
189 switch (nr) {
190 case 1:
191 *idx = 0;
192 break;
193 case 2 ... 4:
194 *idx = 1;
195 break;
196 case 5 ... 16:
197 *idx = 2;
198 break;
199 case 17 ... 64:
200 *idx = 3;
201 break;
202 case 65 ... 128:
203 *idx = 4;
204 break;
205 case 129 ... BIO_MAX_PAGES:
206 *idx = 5;
207 break;
208 default:
209 return NULL;
213 * idx now points to the pool we want to allocate from. only the
214 * 1-vec entry pool is mempool backed.
216 if (*idx == BVEC_POOL_MAX) {
217 fallback:
218 bvl = mempool_alloc(pool, gfp_mask);
219 } else {
220 struct biovec_slab *bvs = bvec_slabs + *idx;
221 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
224 * Make this allocation restricted and don't dump info on
225 * allocation failures, since we'll fallback to the mempool
226 * in case of failure.
228 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
231 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
232 * is set, retry with the 1-entry mempool
234 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
235 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
236 *idx = BVEC_POOL_MAX;
237 goto fallback;
241 (*idx)++;
242 return bvl;
245 void bio_uninit(struct bio *bio)
247 bio_disassociate_blkg(bio);
249 EXPORT_SYMBOL(bio_uninit);
251 static void bio_free(struct bio *bio)
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
256 bio_uninit(bio);
258 if (bs) {
259 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
262 * If we have front padding, adjust the bio pointer before freeing
264 p = bio;
265 p -= bs->front_pad;
267 mempool_free(p, &bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
275 * Users of this function have their own bio allocation. Subsequently,
276 * they must remember to pair any call to bio_init() with bio_uninit()
277 * when IO has completed, or when the bio is released.
279 void bio_init(struct bio *bio, struct bio_vec *table,
280 unsigned short max_vecs)
282 memset(bio, 0, sizeof(*bio));
283 atomic_set(&bio->__bi_remaining, 1);
284 atomic_set(&bio->__bi_cnt, 1);
286 bio->bi_io_vec = table;
287 bio->bi_max_vecs = max_vecs;
289 EXPORT_SYMBOL(bio_init);
292 * bio_reset - reinitialize a bio
293 * @bio: bio to reset
295 * Description:
296 * After calling bio_reset(), @bio will be in the same state as a freshly
297 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
298 * preserved are the ones that are initialized by bio_alloc_bioset(). See
299 * comment in struct bio.
301 void bio_reset(struct bio *bio)
303 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
305 bio_uninit(bio);
307 memset(bio, 0, BIO_RESET_BYTES);
308 bio->bi_flags = flags;
309 atomic_set(&bio->__bi_remaining, 1);
311 EXPORT_SYMBOL(bio_reset);
313 static struct bio *__bio_chain_endio(struct bio *bio)
315 struct bio *parent = bio->bi_private;
317 if (!parent->bi_status)
318 parent->bi_status = bio->bi_status;
319 bio_put(bio);
320 return parent;
323 static void bio_chain_endio(struct bio *bio)
325 bio_endio(__bio_chain_endio(bio));
329 * bio_chain - chain bio completions
330 * @bio: the target bio
331 * @parent: the @bio's parent bio
333 * The caller won't have a bi_end_io called when @bio completes - instead,
334 * @parent's bi_end_io won't be called until both @parent and @bio have
335 * completed; the chained bio will also be freed when it completes.
337 * The caller must not set bi_private or bi_end_io in @bio.
339 void bio_chain(struct bio *bio, struct bio *parent)
341 BUG_ON(bio->bi_private || bio->bi_end_io);
343 bio->bi_private = parent;
344 bio->bi_end_io = bio_chain_endio;
345 bio_inc_remaining(parent);
347 EXPORT_SYMBOL(bio_chain);
349 static void bio_alloc_rescue(struct work_struct *work)
351 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
352 struct bio *bio;
354 while (1) {
355 spin_lock(&bs->rescue_lock);
356 bio = bio_list_pop(&bs->rescue_list);
357 spin_unlock(&bs->rescue_lock);
359 if (!bio)
360 break;
362 generic_make_request(bio);
366 static void punt_bios_to_rescuer(struct bio_set *bs)
368 struct bio_list punt, nopunt;
369 struct bio *bio;
371 if (WARN_ON_ONCE(!bs->rescue_workqueue))
372 return;
374 * In order to guarantee forward progress we must punt only bios that
375 * were allocated from this bio_set; otherwise, if there was a bio on
376 * there for a stacking driver higher up in the stack, processing it
377 * could require allocating bios from this bio_set, and doing that from
378 * our own rescuer would be bad.
380 * Since bio lists are singly linked, pop them all instead of trying to
381 * remove from the middle of the list:
384 bio_list_init(&punt);
385 bio_list_init(&nopunt);
387 while ((bio = bio_list_pop(&current->bio_list[0])))
388 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
389 current->bio_list[0] = nopunt;
391 bio_list_init(&nopunt);
392 while ((bio = bio_list_pop(&current->bio_list[1])))
393 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
394 current->bio_list[1] = nopunt;
396 spin_lock(&bs->rescue_lock);
397 bio_list_merge(&bs->rescue_list, &punt);
398 spin_unlock(&bs->rescue_lock);
400 queue_work(bs->rescue_workqueue, &bs->rescue_work);
404 * bio_alloc_bioset - allocate a bio for I/O
405 * @gfp_mask: the GFP_* mask given to the slab allocator
406 * @nr_iovecs: number of iovecs to pre-allocate
407 * @bs: the bio_set to allocate from.
409 * Description:
410 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
411 * backed by the @bs's mempool.
413 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
414 * always be able to allocate a bio. This is due to the mempool guarantees.
415 * To make this work, callers must never allocate more than 1 bio at a time
416 * from this pool. Callers that need to allocate more than 1 bio must always
417 * submit the previously allocated bio for IO before attempting to allocate
418 * a new one. Failure to do so can cause deadlocks under memory pressure.
420 * Note that when running under generic_make_request() (i.e. any block
421 * driver), bios are not submitted until after you return - see the code in
422 * generic_make_request() that converts recursion into iteration, to prevent
423 * stack overflows.
425 * This would normally mean allocating multiple bios under
426 * generic_make_request() would be susceptible to deadlocks, but we have
427 * deadlock avoidance code that resubmits any blocked bios from a rescuer
428 * thread.
430 * However, we do not guarantee forward progress for allocations from other
431 * mempools. Doing multiple allocations from the same mempool under
432 * generic_make_request() should be avoided - instead, use bio_set's front_pad
433 * for per bio allocations.
435 * RETURNS:
436 * Pointer to new bio on success, NULL on failure.
438 struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
439 struct bio_set *bs)
441 gfp_t saved_gfp = gfp_mask;
442 unsigned front_pad;
443 unsigned inline_vecs;
444 struct bio_vec *bvl = NULL;
445 struct bio *bio;
446 void *p;
448 if (!bs) {
449 if (nr_iovecs > UIO_MAXIOV)
450 return NULL;
452 p = kmalloc(sizeof(struct bio) +
453 nr_iovecs * sizeof(struct bio_vec),
454 gfp_mask);
455 front_pad = 0;
456 inline_vecs = nr_iovecs;
457 } else {
458 /* should not use nobvec bioset for nr_iovecs > 0 */
459 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
460 nr_iovecs > 0))
461 return NULL;
463 * generic_make_request() converts recursion to iteration; this
464 * means if we're running beneath it, any bios we allocate and
465 * submit will not be submitted (and thus freed) until after we
466 * return.
468 * This exposes us to a potential deadlock if we allocate
469 * multiple bios from the same bio_set() while running
470 * underneath generic_make_request(). If we were to allocate
471 * multiple bios (say a stacking block driver that was splitting
472 * bios), we would deadlock if we exhausted the mempool's
473 * reserve.
475 * We solve this, and guarantee forward progress, with a rescuer
476 * workqueue per bio_set. If we go to allocate and there are
477 * bios on current->bio_list, we first try the allocation
478 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
479 * bios we would be blocking to the rescuer workqueue before
480 * we retry with the original gfp_flags.
483 if (current->bio_list &&
484 (!bio_list_empty(&current->bio_list[0]) ||
485 !bio_list_empty(&current->bio_list[1])) &&
486 bs->rescue_workqueue)
487 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
489 p = mempool_alloc(&bs->bio_pool, gfp_mask);
490 if (!p && gfp_mask != saved_gfp) {
491 punt_bios_to_rescuer(bs);
492 gfp_mask = saved_gfp;
493 p = mempool_alloc(&bs->bio_pool, gfp_mask);
496 front_pad = bs->front_pad;
497 inline_vecs = BIO_INLINE_VECS;
500 if (unlikely(!p))
501 return NULL;
503 bio = p + front_pad;
504 bio_init(bio, NULL, 0);
506 if (nr_iovecs > inline_vecs) {
507 unsigned long idx = 0;
509 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
510 if (!bvl && gfp_mask != saved_gfp) {
511 punt_bios_to_rescuer(bs);
512 gfp_mask = saved_gfp;
513 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
516 if (unlikely(!bvl))
517 goto err_free;
519 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
520 } else if (nr_iovecs) {
521 bvl = bio->bi_inline_vecs;
524 bio->bi_pool = bs;
525 bio->bi_max_vecs = nr_iovecs;
526 bio->bi_io_vec = bvl;
527 return bio;
529 err_free:
530 mempool_free(p, &bs->bio_pool);
531 return NULL;
533 EXPORT_SYMBOL(bio_alloc_bioset);
535 void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
537 unsigned long flags;
538 struct bio_vec bv;
539 struct bvec_iter iter;
541 __bio_for_each_segment(bv, bio, iter, start) {
542 char *data = bvec_kmap_irq(&bv, &flags);
543 memset(data, 0, bv.bv_len);
544 flush_dcache_page(bv.bv_page);
545 bvec_kunmap_irq(data, &flags);
548 EXPORT_SYMBOL(zero_fill_bio_iter);
551 * bio_put - release a reference to a bio
552 * @bio: bio to release reference to
554 * Description:
555 * Put a reference to a &struct bio, either one you have gotten with
556 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
558 void bio_put(struct bio *bio)
560 if (!bio_flagged(bio, BIO_REFFED))
561 bio_free(bio);
562 else {
563 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
566 * last put frees it
568 if (atomic_dec_and_test(&bio->__bi_cnt))
569 bio_free(bio);
572 EXPORT_SYMBOL(bio_put);
574 int bio_phys_segments(struct request_queue *q, struct bio *bio)
576 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
577 blk_recount_segments(q, bio);
579 return bio->bi_phys_segments;
583 * __bio_clone_fast - clone a bio that shares the original bio's biovec
584 * @bio: destination bio
585 * @bio_src: bio to clone
587 * Clone a &bio. Caller will own the returned bio, but not
588 * the actual data it points to. Reference count of returned
589 * bio will be one.
591 * Caller must ensure that @bio_src is not freed before @bio.
593 void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
595 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
598 * most users will be overriding ->bi_disk with a new target,
599 * so we don't set nor calculate new physical/hw segment counts here
601 bio->bi_disk = bio_src->bi_disk;
602 bio->bi_partno = bio_src->bi_partno;
603 bio_set_flag(bio, BIO_CLONED);
604 if (bio_flagged(bio_src, BIO_THROTTLED))
605 bio_set_flag(bio, BIO_THROTTLED);
606 bio->bi_opf = bio_src->bi_opf;
607 bio->bi_ioprio = bio_src->bi_ioprio;
608 bio->bi_write_hint = bio_src->bi_write_hint;
609 bio->bi_iter = bio_src->bi_iter;
610 bio->bi_io_vec = bio_src->bi_io_vec;
612 bio_clone_blkg_association(bio, bio_src);
613 blkcg_bio_issue_init(bio);
615 EXPORT_SYMBOL(__bio_clone_fast);
618 * bio_clone_fast - clone a bio that shares the original bio's biovec
619 * @bio: bio to clone
620 * @gfp_mask: allocation priority
621 * @bs: bio_set to allocate from
623 * Like __bio_clone_fast, only also allocates the returned bio
625 struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
627 struct bio *b;
629 b = bio_alloc_bioset(gfp_mask, 0, bs);
630 if (!b)
631 return NULL;
633 __bio_clone_fast(b, bio);
635 if (bio_integrity(bio)) {
636 int ret;
638 ret = bio_integrity_clone(b, bio, gfp_mask);
640 if (ret < 0) {
641 bio_put(b);
642 return NULL;
646 return b;
648 EXPORT_SYMBOL(bio_clone_fast);
651 * bio_add_pc_page - attempt to add page to bio
652 * @q: the target queue
653 * @bio: destination bio
654 * @page: page to add
655 * @len: vec entry length
656 * @offset: vec entry offset
658 * Attempt to add a page to the bio_vec maplist. This can fail for a
659 * number of reasons, such as the bio being full or target block device
660 * limitations. The target block device must allow bio's up to PAGE_SIZE,
661 * so it is always possible to add a single page to an empty bio.
663 * This should only be used by REQ_PC bios.
665 int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
666 *page, unsigned int len, unsigned int offset)
668 int retried_segments = 0;
669 struct bio_vec *bvec;
672 * cloned bio must not modify vec list
674 if (unlikely(bio_flagged(bio, BIO_CLONED)))
675 return 0;
677 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
678 return 0;
681 * For filesystems with a blocksize smaller than the pagesize
682 * we will often be called with the same page as last time and
683 * a consecutive offset. Optimize this special case.
685 if (bio->bi_vcnt > 0) {
686 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
688 if (page == prev->bv_page &&
689 offset == prev->bv_offset + prev->bv_len) {
690 prev->bv_len += len;
691 bio->bi_iter.bi_size += len;
692 goto done;
696 * If the queue doesn't support SG gaps and adding this
697 * offset would create a gap, disallow it.
699 if (bvec_gap_to_prev(q, prev, offset))
700 return 0;
703 if (bio_full(bio))
704 return 0;
707 * setup the new entry, we might clear it again later if we
708 * cannot add the page
710 bvec = &bio->bi_io_vec[bio->bi_vcnt];
711 bvec->bv_page = page;
712 bvec->bv_len = len;
713 bvec->bv_offset = offset;
714 bio->bi_vcnt++;
715 bio->bi_phys_segments++;
716 bio->bi_iter.bi_size += len;
719 * Perform a recount if the number of segments is greater
720 * than queue_max_segments(q).
723 while (bio->bi_phys_segments > queue_max_segments(q)) {
725 if (retried_segments)
726 goto failed;
728 retried_segments = 1;
729 blk_recount_segments(q, bio);
732 /* If we may be able to merge these biovecs, force a recount */
733 if (bio->bi_vcnt > 1 && biovec_phys_mergeable(q, bvec - 1, bvec))
734 bio_clear_flag(bio, BIO_SEG_VALID);
736 done:
737 return len;
739 failed:
740 bvec->bv_page = NULL;
741 bvec->bv_len = 0;
742 bvec->bv_offset = 0;
743 bio->bi_vcnt--;
744 bio->bi_iter.bi_size -= len;
745 blk_recount_segments(q, bio);
746 return 0;
748 EXPORT_SYMBOL(bio_add_pc_page);
751 * __bio_try_merge_page - try appending data to an existing bvec.
752 * @bio: destination bio
753 * @page: page to add
754 * @len: length of the data to add
755 * @off: offset of the data in @page
756 * @same_page: if %true only merge if the new data is in the same physical
757 * page as the last segment of the bio.
759 * Try to add the data at @page + @off to the last bvec of @bio. This is a
760 * a useful optimisation for file systems with a block size smaller than the
761 * page size.
763 * Return %true on success or %false on failure.
765 bool __bio_try_merge_page(struct bio *bio, struct page *page,
766 unsigned int len, unsigned int off, bool same_page)
768 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
769 return false;
771 if (bio->bi_vcnt > 0) {
772 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
773 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
774 bv->bv_offset + bv->bv_len - 1;
775 phys_addr_t page_addr = page_to_phys(page);
777 if (vec_end_addr + 1 != page_addr + off)
778 return false;
779 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
780 return false;
781 if (same_page && (vec_end_addr & PAGE_MASK) != page_addr)
782 return false;
784 bv->bv_len += len;
785 bio->bi_iter.bi_size += len;
786 return true;
788 return false;
790 EXPORT_SYMBOL_GPL(__bio_try_merge_page);
793 * __bio_add_page - add page to a bio in a new segment
794 * @bio: destination bio
795 * @page: page to add
796 * @len: length of the data to add
797 * @off: offset of the data in @page
799 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
800 * that @bio has space for another bvec.
802 void __bio_add_page(struct bio *bio, struct page *page,
803 unsigned int len, unsigned int off)
805 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
807 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
808 WARN_ON_ONCE(bio_full(bio));
810 bv->bv_page = page;
811 bv->bv_offset = off;
812 bv->bv_len = len;
814 bio->bi_iter.bi_size += len;
815 bio->bi_vcnt++;
817 EXPORT_SYMBOL_GPL(__bio_add_page);
820 * bio_add_page - attempt to add page to bio
821 * @bio: destination bio
822 * @page: page to add
823 * @len: vec entry length
824 * @offset: vec entry offset
826 * Attempt to add a page to the bio_vec maplist. This will only fail
827 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
829 int bio_add_page(struct bio *bio, struct page *page,
830 unsigned int len, unsigned int offset)
832 if (!__bio_try_merge_page(bio, page, len, offset, false)) {
833 if (bio_full(bio))
834 return 0;
835 __bio_add_page(bio, page, len, offset);
837 return len;
839 EXPORT_SYMBOL(bio_add_page);
841 static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
843 const struct bio_vec *bv = iter->bvec;
844 unsigned int len;
845 size_t size;
847 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
848 return -EINVAL;
850 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
851 size = bio_add_page(bio, bv->bv_page, len,
852 bv->bv_offset + iter->iov_offset);
853 if (size == len) {
854 if (!bio_flagged(bio, BIO_NO_PAGE_REF)) {
855 struct page *page;
856 int i;
858 mp_bvec_for_each_page(page, bv, i)
859 get_page(page);
862 iov_iter_advance(iter, size);
863 return 0;
866 return -EINVAL;
869 #define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
872 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
873 * @bio: bio to add pages to
874 * @iter: iov iterator describing the region to be mapped
876 * Pins pages from *iter and appends them to @bio's bvec array. The
877 * pages will have to be released using put_page() when done.
878 * For multi-segment *iter, this function only adds pages from the
879 * the next non-empty segment of the iov iterator.
881 static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
883 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
884 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
885 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
886 struct page **pages = (struct page **)bv;
887 ssize_t size, left;
888 unsigned len, i;
889 size_t offset;
892 * Move page array up in the allocated memory for the bio vecs as far as
893 * possible so that we can start filling biovecs from the beginning
894 * without overwriting the temporary page array.
896 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
897 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
899 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
900 if (unlikely(size <= 0))
901 return size ? size : -EFAULT;
903 for (left = size, i = 0; left > 0; left -= len, i++) {
904 struct page *page = pages[i];
906 len = min_t(size_t, PAGE_SIZE - offset, left);
907 if (WARN_ON_ONCE(bio_add_page(bio, page, len, offset) != len))
908 return -EINVAL;
909 offset = 0;
912 iov_iter_advance(iter, size);
913 return 0;
917 * bio_iov_iter_get_pages - add user or kernel pages to a bio
918 * @bio: bio to add pages to
919 * @iter: iov iterator describing the region to be added
921 * This takes either an iterator pointing to user memory, or one pointing to
922 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
923 * map them into the kernel. On IO completion, the caller should put those
924 * pages. If we're adding kernel pages, and the caller told us it's safe to
925 * do so, we just have to add the pages to the bio directly. We don't grab an
926 * extra reference to those pages (the user should already have that), and we
927 * don't put the page on IO completion. The caller needs to check if the bio is
928 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
929 * released.
931 * The function tries, but does not guarantee, to pin as many pages as
932 * fit into the bio, or are requested in *iter, whatever is smaller. If
933 * MM encounters an error pinning the requested pages, it stops. Error
934 * is returned only if 0 pages could be pinned.
936 int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
938 const bool is_bvec = iov_iter_is_bvec(iter);
939 unsigned short orig_vcnt = bio->bi_vcnt;
942 * If this is a BVEC iter, then the pages are kernel pages. Don't
943 * release them on IO completion, if the caller asked us to.
945 if (is_bvec && iov_iter_bvec_no_ref(iter))
946 bio_set_flag(bio, BIO_NO_PAGE_REF);
948 do {
949 int ret;
951 if (is_bvec)
952 ret = __bio_iov_bvec_add_pages(bio, iter);
953 else
954 ret = __bio_iov_iter_get_pages(bio, iter);
956 if (unlikely(ret))
957 return bio->bi_vcnt > orig_vcnt ? 0 : ret;
959 } while (iov_iter_count(iter) && !bio_full(bio));
961 return 0;
964 static void submit_bio_wait_endio(struct bio *bio)
966 complete(bio->bi_private);
970 * submit_bio_wait - submit a bio, and wait until it completes
971 * @bio: The &struct bio which describes the I/O
973 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
974 * bio_endio() on failure.
976 * WARNING: Unlike to how submit_bio() is usually used, this function does not
977 * result in bio reference to be consumed. The caller must drop the reference
978 * on his own.
980 int submit_bio_wait(struct bio *bio)
982 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
984 bio->bi_private = &done;
985 bio->bi_end_io = submit_bio_wait_endio;
986 bio->bi_opf |= REQ_SYNC;
987 submit_bio(bio);
988 wait_for_completion_io(&done);
990 return blk_status_to_errno(bio->bi_status);
992 EXPORT_SYMBOL(submit_bio_wait);
995 * bio_advance - increment/complete a bio by some number of bytes
996 * @bio: bio to advance
997 * @bytes: number of bytes to complete
999 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1000 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1001 * be updated on the last bvec as well.
1003 * @bio will then represent the remaining, uncompleted portion of the io.
1005 void bio_advance(struct bio *bio, unsigned bytes)
1007 if (bio_integrity(bio))
1008 bio_integrity_advance(bio, bytes);
1010 bio_advance_iter(bio, &bio->bi_iter, bytes);
1012 EXPORT_SYMBOL(bio_advance);
1014 void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1015 struct bio *src, struct bvec_iter *src_iter)
1017 struct bio_vec src_bv, dst_bv;
1018 void *src_p, *dst_p;
1019 unsigned bytes;
1021 while (src_iter->bi_size && dst_iter->bi_size) {
1022 src_bv = bio_iter_iovec(src, *src_iter);
1023 dst_bv = bio_iter_iovec(dst, *dst_iter);
1025 bytes = min(src_bv.bv_len, dst_bv.bv_len);
1027 src_p = kmap_atomic(src_bv.bv_page);
1028 dst_p = kmap_atomic(dst_bv.bv_page);
1030 memcpy(dst_p + dst_bv.bv_offset,
1031 src_p + src_bv.bv_offset,
1032 bytes);
1034 kunmap_atomic(dst_p);
1035 kunmap_atomic(src_p);
1037 flush_dcache_page(dst_bv.bv_page);
1039 bio_advance_iter(src, src_iter, bytes);
1040 bio_advance_iter(dst, dst_iter, bytes);
1043 EXPORT_SYMBOL(bio_copy_data_iter);
1046 * bio_copy_data - copy contents of data buffers from one bio to another
1047 * @src: source bio
1048 * @dst: destination bio
1050 * Stops when it reaches the end of either @src or @dst - that is, copies
1051 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1053 void bio_copy_data(struct bio *dst, struct bio *src)
1055 struct bvec_iter src_iter = src->bi_iter;
1056 struct bvec_iter dst_iter = dst->bi_iter;
1058 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1060 EXPORT_SYMBOL(bio_copy_data);
1063 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1064 * another
1065 * @src: source bio list
1066 * @dst: destination bio list
1068 * Stops when it reaches the end of either the @src list or @dst list - that is,
1069 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1070 * bios).
1072 void bio_list_copy_data(struct bio *dst, struct bio *src)
1074 struct bvec_iter src_iter = src->bi_iter;
1075 struct bvec_iter dst_iter = dst->bi_iter;
1077 while (1) {
1078 if (!src_iter.bi_size) {
1079 src = src->bi_next;
1080 if (!src)
1081 break;
1083 src_iter = src->bi_iter;
1086 if (!dst_iter.bi_size) {
1087 dst = dst->bi_next;
1088 if (!dst)
1089 break;
1091 dst_iter = dst->bi_iter;
1094 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1097 EXPORT_SYMBOL(bio_list_copy_data);
1099 struct bio_map_data {
1100 int is_our_pages;
1101 struct iov_iter iter;
1102 struct iovec iov[];
1105 static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
1106 gfp_t gfp_mask)
1108 struct bio_map_data *bmd;
1109 if (data->nr_segs > UIO_MAXIOV)
1110 return NULL;
1112 bmd = kmalloc(sizeof(struct bio_map_data) +
1113 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1114 if (!bmd)
1115 return NULL;
1116 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1117 bmd->iter = *data;
1118 bmd->iter.iov = bmd->iov;
1119 return bmd;
1123 * bio_copy_from_iter - copy all pages from iov_iter to bio
1124 * @bio: The &struct bio which describes the I/O as destination
1125 * @iter: iov_iter as source
1127 * Copy all pages from iov_iter to bio.
1128 * Returns 0 on success, or error on failure.
1130 static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
1132 int i;
1133 struct bio_vec *bvec;
1134 struct bvec_iter_all iter_all;
1136 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1137 ssize_t ret;
1139 ret = copy_page_from_iter(bvec->bv_page,
1140 bvec->bv_offset,
1141 bvec->bv_len,
1142 iter);
1144 if (!iov_iter_count(iter))
1145 break;
1147 if (ret < bvec->bv_len)
1148 return -EFAULT;
1151 return 0;
1155 * bio_copy_to_iter - copy all pages from bio to iov_iter
1156 * @bio: The &struct bio which describes the I/O as source
1157 * @iter: iov_iter as destination
1159 * Copy all pages from bio to iov_iter.
1160 * Returns 0 on success, or error on failure.
1162 static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1164 int i;
1165 struct bio_vec *bvec;
1166 struct bvec_iter_all iter_all;
1168 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1169 ssize_t ret;
1171 ret = copy_page_to_iter(bvec->bv_page,
1172 bvec->bv_offset,
1173 bvec->bv_len,
1174 &iter);
1176 if (!iov_iter_count(&iter))
1177 break;
1179 if (ret < bvec->bv_len)
1180 return -EFAULT;
1183 return 0;
1186 void bio_free_pages(struct bio *bio)
1188 struct bio_vec *bvec;
1189 int i;
1190 struct bvec_iter_all iter_all;
1192 bio_for_each_segment_all(bvec, bio, i, iter_all)
1193 __free_page(bvec->bv_page);
1195 EXPORT_SYMBOL(bio_free_pages);
1198 * bio_uncopy_user - finish previously mapped bio
1199 * @bio: bio being terminated
1201 * Free pages allocated from bio_copy_user_iov() and write back data
1202 * to user space in case of a read.
1204 int bio_uncopy_user(struct bio *bio)
1206 struct bio_map_data *bmd = bio->bi_private;
1207 int ret = 0;
1209 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1211 * if we're in a workqueue, the request is orphaned, so
1212 * don't copy into a random user address space, just free
1213 * and return -EINTR so user space doesn't expect any data.
1215 if (!current->mm)
1216 ret = -EINTR;
1217 else if (bio_data_dir(bio) == READ)
1218 ret = bio_copy_to_iter(bio, bmd->iter);
1219 if (bmd->is_our_pages)
1220 bio_free_pages(bio);
1222 kfree(bmd);
1223 bio_put(bio);
1224 return ret;
1228 * bio_copy_user_iov - copy user data to bio
1229 * @q: destination block queue
1230 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1231 * @iter: iovec iterator
1232 * @gfp_mask: memory allocation flags
1234 * Prepares and returns a bio for indirect user io, bouncing data
1235 * to/from kernel pages as necessary. Must be paired with
1236 * call bio_uncopy_user() on io completion.
1238 struct bio *bio_copy_user_iov(struct request_queue *q,
1239 struct rq_map_data *map_data,
1240 struct iov_iter *iter,
1241 gfp_t gfp_mask)
1243 struct bio_map_data *bmd;
1244 struct page *page;
1245 struct bio *bio;
1246 int i = 0, ret;
1247 int nr_pages;
1248 unsigned int len = iter->count;
1249 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1251 bmd = bio_alloc_map_data(iter, gfp_mask);
1252 if (!bmd)
1253 return ERR_PTR(-ENOMEM);
1256 * We need to do a deep copy of the iov_iter including the iovecs.
1257 * The caller provided iov might point to an on-stack or otherwise
1258 * shortlived one.
1260 bmd->is_our_pages = map_data ? 0 : 1;
1262 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1263 if (nr_pages > BIO_MAX_PAGES)
1264 nr_pages = BIO_MAX_PAGES;
1266 ret = -ENOMEM;
1267 bio = bio_kmalloc(gfp_mask, nr_pages);
1268 if (!bio)
1269 goto out_bmd;
1271 ret = 0;
1273 if (map_data) {
1274 nr_pages = 1 << map_data->page_order;
1275 i = map_data->offset / PAGE_SIZE;
1277 while (len) {
1278 unsigned int bytes = PAGE_SIZE;
1280 bytes -= offset;
1282 if (bytes > len)
1283 bytes = len;
1285 if (map_data) {
1286 if (i == map_data->nr_entries * nr_pages) {
1287 ret = -ENOMEM;
1288 break;
1291 page = map_data->pages[i / nr_pages];
1292 page += (i % nr_pages);
1294 i++;
1295 } else {
1296 page = alloc_page(q->bounce_gfp | gfp_mask);
1297 if (!page) {
1298 ret = -ENOMEM;
1299 break;
1303 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1304 if (!map_data)
1305 __free_page(page);
1306 break;
1309 len -= bytes;
1310 offset = 0;
1313 if (ret)
1314 goto cleanup;
1316 if (map_data)
1317 map_data->offset += bio->bi_iter.bi_size;
1320 * success
1322 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
1323 (map_data && map_data->from_user)) {
1324 ret = bio_copy_from_iter(bio, iter);
1325 if (ret)
1326 goto cleanup;
1327 } else {
1328 if (bmd->is_our_pages)
1329 zero_fill_bio(bio);
1330 iov_iter_advance(iter, bio->bi_iter.bi_size);
1333 bio->bi_private = bmd;
1334 if (map_data && map_data->null_mapped)
1335 bio_set_flag(bio, BIO_NULL_MAPPED);
1336 return bio;
1337 cleanup:
1338 if (!map_data)
1339 bio_free_pages(bio);
1340 bio_put(bio);
1341 out_bmd:
1342 kfree(bmd);
1343 return ERR_PTR(ret);
1347 * bio_map_user_iov - map user iovec into bio
1348 * @q: the struct request_queue for the bio
1349 * @iter: iovec iterator
1350 * @gfp_mask: memory allocation flags
1352 * Map the user space address into a bio suitable for io to a block
1353 * device. Returns an error pointer in case of error.
1355 struct bio *bio_map_user_iov(struct request_queue *q,
1356 struct iov_iter *iter,
1357 gfp_t gfp_mask)
1359 int j;
1360 struct bio *bio;
1361 int ret;
1362 struct bio_vec *bvec;
1363 struct bvec_iter_all iter_all;
1365 if (!iov_iter_count(iter))
1366 return ERR_PTR(-EINVAL);
1368 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1369 if (!bio)
1370 return ERR_PTR(-ENOMEM);
1372 while (iov_iter_count(iter)) {
1373 struct page **pages;
1374 ssize_t bytes;
1375 size_t offs, added = 0;
1376 int npages;
1378 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
1379 if (unlikely(bytes <= 0)) {
1380 ret = bytes ? bytes : -EFAULT;
1381 goto out_unmap;
1384 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
1386 if (unlikely(offs & queue_dma_alignment(q))) {
1387 ret = -EINVAL;
1388 j = 0;
1389 } else {
1390 for (j = 0; j < npages; j++) {
1391 struct page *page = pages[j];
1392 unsigned int n = PAGE_SIZE - offs;
1393 unsigned short prev_bi_vcnt = bio->bi_vcnt;
1395 if (n > bytes)
1396 n = bytes;
1398 if (!bio_add_pc_page(q, bio, page, n, offs))
1399 break;
1402 * check if vector was merged with previous
1403 * drop page reference if needed
1405 if (bio->bi_vcnt == prev_bi_vcnt)
1406 put_page(page);
1408 added += n;
1409 bytes -= n;
1410 offs = 0;
1412 iov_iter_advance(iter, added);
1415 * release the pages we didn't map into the bio, if any
1417 while (j < npages)
1418 put_page(pages[j++]);
1419 kvfree(pages);
1420 /* couldn't stuff something into bio? */
1421 if (bytes)
1422 break;
1425 bio_set_flag(bio, BIO_USER_MAPPED);
1428 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
1429 * it would normally disappear when its bi_end_io is run.
1430 * however, we need it for the unmap, so grab an extra
1431 * reference to it
1433 bio_get(bio);
1434 return bio;
1436 out_unmap:
1437 bio_for_each_segment_all(bvec, bio, j, iter_all) {
1438 put_page(bvec->bv_page);
1440 bio_put(bio);
1441 return ERR_PTR(ret);
1444 static void __bio_unmap_user(struct bio *bio)
1446 struct bio_vec *bvec;
1447 int i;
1448 struct bvec_iter_all iter_all;
1451 * make sure we dirty pages we wrote to
1453 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1454 if (bio_data_dir(bio) == READ)
1455 set_page_dirty_lock(bvec->bv_page);
1457 put_page(bvec->bv_page);
1460 bio_put(bio);
1464 * bio_unmap_user - unmap a bio
1465 * @bio: the bio being unmapped
1467 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1468 * process context.
1470 * bio_unmap_user() may sleep.
1472 void bio_unmap_user(struct bio *bio)
1474 __bio_unmap_user(bio);
1475 bio_put(bio);
1478 static void bio_map_kern_endio(struct bio *bio)
1480 bio_put(bio);
1484 * bio_map_kern - map kernel address into bio
1485 * @q: the struct request_queue for the bio
1486 * @data: pointer to buffer to map
1487 * @len: length in bytes
1488 * @gfp_mask: allocation flags for bio allocation
1490 * Map the kernel address into a bio suitable for io to a block
1491 * device. Returns an error pointer in case of error.
1493 struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1494 gfp_t gfp_mask)
1496 unsigned long kaddr = (unsigned long)data;
1497 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1498 unsigned long start = kaddr >> PAGE_SHIFT;
1499 const int nr_pages = end - start;
1500 int offset, i;
1501 struct bio *bio;
1503 bio = bio_kmalloc(gfp_mask, nr_pages);
1504 if (!bio)
1505 return ERR_PTR(-ENOMEM);
1507 offset = offset_in_page(kaddr);
1508 for (i = 0; i < nr_pages; i++) {
1509 unsigned int bytes = PAGE_SIZE - offset;
1511 if (len <= 0)
1512 break;
1514 if (bytes > len)
1515 bytes = len;
1517 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
1518 offset) < bytes) {
1519 /* we don't support partial mappings */
1520 bio_put(bio);
1521 return ERR_PTR(-EINVAL);
1524 data += bytes;
1525 len -= bytes;
1526 offset = 0;
1529 bio->bi_end_io = bio_map_kern_endio;
1530 return bio;
1532 EXPORT_SYMBOL(bio_map_kern);
1534 static void bio_copy_kern_endio(struct bio *bio)
1536 bio_free_pages(bio);
1537 bio_put(bio);
1540 static void bio_copy_kern_endio_read(struct bio *bio)
1542 char *p = bio->bi_private;
1543 struct bio_vec *bvec;
1544 int i;
1545 struct bvec_iter_all iter_all;
1547 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1548 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
1549 p += bvec->bv_len;
1552 bio_copy_kern_endio(bio);
1556 * bio_copy_kern - copy kernel address into bio
1557 * @q: the struct request_queue for the bio
1558 * @data: pointer to buffer to copy
1559 * @len: length in bytes
1560 * @gfp_mask: allocation flags for bio and page allocation
1561 * @reading: data direction is READ
1563 * copy the kernel address into a bio suitable for io to a block
1564 * device. Returns an error pointer in case of error.
1566 struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1567 gfp_t gfp_mask, int reading)
1569 unsigned long kaddr = (unsigned long)data;
1570 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1571 unsigned long start = kaddr >> PAGE_SHIFT;
1572 struct bio *bio;
1573 void *p = data;
1574 int nr_pages = 0;
1577 * Overflow, abort
1579 if (end < start)
1580 return ERR_PTR(-EINVAL);
1582 nr_pages = end - start;
1583 bio = bio_kmalloc(gfp_mask, nr_pages);
1584 if (!bio)
1585 return ERR_PTR(-ENOMEM);
1587 while (len) {
1588 struct page *page;
1589 unsigned int bytes = PAGE_SIZE;
1591 if (bytes > len)
1592 bytes = len;
1594 page = alloc_page(q->bounce_gfp | gfp_mask);
1595 if (!page)
1596 goto cleanup;
1598 if (!reading)
1599 memcpy(page_address(page), p, bytes);
1601 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1602 break;
1604 len -= bytes;
1605 p += bytes;
1608 if (reading) {
1609 bio->bi_end_io = bio_copy_kern_endio_read;
1610 bio->bi_private = data;
1611 } else {
1612 bio->bi_end_io = bio_copy_kern_endio;
1615 return bio;
1617 cleanup:
1618 bio_free_pages(bio);
1619 bio_put(bio);
1620 return ERR_PTR(-ENOMEM);
1624 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1625 * for performing direct-IO in BIOs.
1627 * The problem is that we cannot run set_page_dirty() from interrupt context
1628 * because the required locks are not interrupt-safe. So what we can do is to
1629 * mark the pages dirty _before_ performing IO. And in interrupt context,
1630 * check that the pages are still dirty. If so, fine. If not, redirty them
1631 * in process context.
1633 * We special-case compound pages here: normally this means reads into hugetlb
1634 * pages. The logic in here doesn't really work right for compound pages
1635 * because the VM does not uniformly chase down the head page in all cases.
1636 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1637 * handle them at all. So we skip compound pages here at an early stage.
1639 * Note that this code is very hard to test under normal circumstances because
1640 * direct-io pins the pages with get_user_pages(). This makes
1641 * is_page_cache_freeable return false, and the VM will not clean the pages.
1642 * But other code (eg, flusher threads) could clean the pages if they are mapped
1643 * pagecache.
1645 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1646 * deferred bio dirtying paths.
1650 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1652 void bio_set_pages_dirty(struct bio *bio)
1654 struct bio_vec *bvec;
1655 int i;
1656 struct bvec_iter_all iter_all;
1658 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1659 if (!PageCompound(bvec->bv_page))
1660 set_page_dirty_lock(bvec->bv_page);
1664 static void bio_release_pages(struct bio *bio)
1666 struct bio_vec *bvec;
1667 int i;
1668 struct bvec_iter_all iter_all;
1670 bio_for_each_segment_all(bvec, bio, i, iter_all)
1671 put_page(bvec->bv_page);
1675 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1676 * If they are, then fine. If, however, some pages are clean then they must
1677 * have been written out during the direct-IO read. So we take another ref on
1678 * the BIO and re-dirty the pages in process context.
1680 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
1681 * here on. It will run one put_page() against each page and will run one
1682 * bio_put() against the BIO.
1685 static void bio_dirty_fn(struct work_struct *work);
1687 static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1688 static DEFINE_SPINLOCK(bio_dirty_lock);
1689 static struct bio *bio_dirty_list;
1692 * This runs in process context
1694 static void bio_dirty_fn(struct work_struct *work)
1696 struct bio *bio, *next;
1698 spin_lock_irq(&bio_dirty_lock);
1699 next = bio_dirty_list;
1700 bio_dirty_list = NULL;
1701 spin_unlock_irq(&bio_dirty_lock);
1703 while ((bio = next) != NULL) {
1704 next = bio->bi_private;
1706 bio_set_pages_dirty(bio);
1707 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1708 bio_release_pages(bio);
1709 bio_put(bio);
1713 void bio_check_pages_dirty(struct bio *bio)
1715 struct bio_vec *bvec;
1716 unsigned long flags;
1717 int i;
1718 struct bvec_iter_all iter_all;
1720 bio_for_each_segment_all(bvec, bio, i, iter_all) {
1721 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1722 goto defer;
1725 if (!bio_flagged(bio, BIO_NO_PAGE_REF))
1726 bio_release_pages(bio);
1727 bio_put(bio);
1728 return;
1729 defer:
1730 spin_lock_irqsave(&bio_dirty_lock, flags);
1731 bio->bi_private = bio_dirty_list;
1732 bio_dirty_list = bio;
1733 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1734 schedule_work(&bio_dirty_work);
1737 void update_io_ticks(struct hd_struct *part, unsigned long now)
1739 unsigned long stamp;
1740 again:
1741 stamp = READ_ONCE(part->stamp);
1742 if (unlikely(stamp != now)) {
1743 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1744 __part_stat_add(part, io_ticks, 1);
1747 if (part->partno) {
1748 part = &part_to_disk(part)->part0;
1749 goto again;
1753 void generic_start_io_acct(struct request_queue *q, int op,
1754 unsigned long sectors, struct hd_struct *part)
1756 const int sgrp = op_stat_group(op);
1758 part_stat_lock();
1760 update_io_ticks(part, jiffies);
1761 part_stat_inc(part, ios[sgrp]);
1762 part_stat_add(part, sectors[sgrp], sectors);
1763 part_inc_in_flight(q, part, op_is_write(op));
1765 part_stat_unlock();
1767 EXPORT_SYMBOL(generic_start_io_acct);
1769 void generic_end_io_acct(struct request_queue *q, int req_op,
1770 struct hd_struct *part, unsigned long start_time)
1772 unsigned long now = jiffies;
1773 unsigned long duration = now - start_time;
1774 const int sgrp = op_stat_group(req_op);
1776 part_stat_lock();
1778 update_io_ticks(part, now);
1779 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
1780 part_stat_add(part, time_in_queue, duration);
1781 part_dec_in_flight(q, part, op_is_write(req_op));
1783 part_stat_unlock();
1785 EXPORT_SYMBOL(generic_end_io_acct);
1787 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1788 void bio_flush_dcache_pages(struct bio *bi)
1790 struct bio_vec bvec;
1791 struct bvec_iter iter;
1793 bio_for_each_segment(bvec, bi, iter)
1794 flush_dcache_page(bvec.bv_page);
1796 EXPORT_SYMBOL(bio_flush_dcache_pages);
1797 #endif
1799 static inline bool bio_remaining_done(struct bio *bio)
1802 * If we're not chaining, then ->__bi_remaining is always 1 and
1803 * we always end io on the first invocation.
1805 if (!bio_flagged(bio, BIO_CHAIN))
1806 return true;
1808 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1810 if (atomic_dec_and_test(&bio->__bi_remaining)) {
1811 bio_clear_flag(bio, BIO_CHAIN);
1812 return true;
1815 return false;
1819 * bio_endio - end I/O on a bio
1820 * @bio: bio
1822 * Description:
1823 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1824 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1825 * bio unless they own it and thus know that it has an end_io function.
1827 * bio_endio() can be called several times on a bio that has been chained
1828 * using bio_chain(). The ->bi_end_io() function will only be called the
1829 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1830 * generated if BIO_TRACE_COMPLETION is set.
1832 void bio_endio(struct bio *bio)
1834 again:
1835 if (!bio_remaining_done(bio))
1836 return;
1837 if (!bio_integrity_endio(bio))
1838 return;
1840 if (bio->bi_disk)
1841 rq_qos_done_bio(bio->bi_disk->queue, bio);
1844 * Need to have a real endio function for chained bios, otherwise
1845 * various corner cases will break (like stacking block devices that
1846 * save/restore bi_end_io) - however, we want to avoid unbounded
1847 * recursion and blowing the stack. Tail call optimization would
1848 * handle this, but compiling with frame pointers also disables
1849 * gcc's sibling call optimization.
1851 if (bio->bi_end_io == bio_chain_endio) {
1852 bio = __bio_chain_endio(bio);
1853 goto again;
1856 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1857 trace_block_bio_complete(bio->bi_disk->queue, bio,
1858 blk_status_to_errno(bio->bi_status));
1859 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1862 blk_throtl_bio_endio(bio);
1863 /* release cgroup info */
1864 bio_uninit(bio);
1865 if (bio->bi_end_io)
1866 bio->bi_end_io(bio);
1868 EXPORT_SYMBOL(bio_endio);
1871 * bio_split - split a bio
1872 * @bio: bio to split
1873 * @sectors: number of sectors to split from the front of @bio
1874 * @gfp: gfp mask
1875 * @bs: bio set to allocate from
1877 * Allocates and returns a new bio which represents @sectors from the start of
1878 * @bio, and updates @bio to represent the remaining sectors.
1880 * Unless this is a discard request the newly allocated bio will point
1881 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1882 * @bio is not freed before the split.
1884 struct bio *bio_split(struct bio *bio, int sectors,
1885 gfp_t gfp, struct bio_set *bs)
1887 struct bio *split;
1889 BUG_ON(sectors <= 0);
1890 BUG_ON(sectors >= bio_sectors(bio));
1892 split = bio_clone_fast(bio, gfp, bs);
1893 if (!split)
1894 return NULL;
1896 split->bi_iter.bi_size = sectors << 9;
1898 if (bio_integrity(split))
1899 bio_integrity_trim(split);
1901 bio_advance(bio, split->bi_iter.bi_size);
1903 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1904 bio_set_flag(split, BIO_TRACE_COMPLETION);
1906 return split;
1908 EXPORT_SYMBOL(bio_split);
1911 * bio_trim - trim a bio
1912 * @bio: bio to trim
1913 * @offset: number of sectors to trim from the front of @bio
1914 * @size: size we want to trim @bio to, in sectors
1916 void bio_trim(struct bio *bio, int offset, int size)
1918 /* 'bio' is a cloned bio which we need to trim to match
1919 * the given offset and size.
1922 size <<= 9;
1923 if (offset == 0 && size == bio->bi_iter.bi_size)
1924 return;
1926 bio_clear_flag(bio, BIO_SEG_VALID);
1928 bio_advance(bio, offset << 9);
1930 bio->bi_iter.bi_size = size;
1932 if (bio_integrity(bio))
1933 bio_integrity_trim(bio);
1936 EXPORT_SYMBOL_GPL(bio_trim);
1939 * create memory pools for biovec's in a bio_set.
1940 * use the global biovec slabs created for general use.
1942 int biovec_init_pool(mempool_t *pool, int pool_entries)
1944 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1946 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1950 * bioset_exit - exit a bioset initialized with bioset_init()
1952 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1953 * kzalloc()).
1955 void bioset_exit(struct bio_set *bs)
1957 if (bs->rescue_workqueue)
1958 destroy_workqueue(bs->rescue_workqueue);
1959 bs->rescue_workqueue = NULL;
1961 mempool_exit(&bs->bio_pool);
1962 mempool_exit(&bs->bvec_pool);
1964 bioset_integrity_free(bs);
1965 if (bs->bio_slab)
1966 bio_put_slab(bs);
1967 bs->bio_slab = NULL;
1969 EXPORT_SYMBOL(bioset_exit);
1972 * bioset_init - Initialize a bio_set
1973 * @bs: pool to initialize
1974 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1975 * @front_pad: Number of bytes to allocate in front of the returned bio
1976 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1977 * and %BIOSET_NEED_RESCUER
1979 * Description:
1980 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1981 * to ask for a number of bytes to be allocated in front of the bio.
1982 * Front pad allocation is useful for embedding the bio inside
1983 * another structure, to avoid allocating extra data to go with the bio.
1984 * Note that the bio must be embedded at the END of that structure always,
1985 * or things will break badly.
1986 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1987 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1988 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1989 * dispatch queued requests when the mempool runs out of space.
1992 int bioset_init(struct bio_set *bs,
1993 unsigned int pool_size,
1994 unsigned int front_pad,
1995 int flags)
1997 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1999 bs->front_pad = front_pad;
2001 spin_lock_init(&bs->rescue_lock);
2002 bio_list_init(&bs->rescue_list);
2003 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
2005 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
2006 if (!bs->bio_slab)
2007 return -ENOMEM;
2009 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
2010 goto bad;
2012 if ((flags & BIOSET_NEED_BVECS) &&
2013 biovec_init_pool(&bs->bvec_pool, pool_size))
2014 goto bad;
2016 if (!(flags & BIOSET_NEED_RESCUER))
2017 return 0;
2019 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
2020 if (!bs->rescue_workqueue)
2021 goto bad;
2023 return 0;
2024 bad:
2025 bioset_exit(bs);
2026 return -ENOMEM;
2028 EXPORT_SYMBOL(bioset_init);
2031 * Initialize and setup a new bio_set, based on the settings from
2032 * another bio_set.
2034 int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2036 int flags;
2038 flags = 0;
2039 if (src->bvec_pool.min_nr)
2040 flags |= BIOSET_NEED_BVECS;
2041 if (src->rescue_workqueue)
2042 flags |= BIOSET_NEED_RESCUER;
2044 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2046 EXPORT_SYMBOL(bioset_init_from_src);
2048 #ifdef CONFIG_BLK_CGROUP
2051 * bio_disassociate_blkg - puts back the blkg reference if associated
2052 * @bio: target bio
2054 * Helper to disassociate the blkg from @bio if a blkg is associated.
2056 void bio_disassociate_blkg(struct bio *bio)
2058 if (bio->bi_blkg) {
2059 blkg_put(bio->bi_blkg);
2060 bio->bi_blkg = NULL;
2063 EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
2066 * __bio_associate_blkg - associate a bio with the a blkg
2067 * @bio: target bio
2068 * @blkg: the blkg to associate
2070 * This tries to associate @bio with the specified @blkg. Association failure
2071 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2072 * be anything between @blkg and the root_blkg. This situation only happens
2073 * when a cgroup is dying and then the remaining bios will spill to the closest
2074 * alive blkg.
2076 * A reference will be taken on the @blkg and will be released when @bio is
2077 * freed.
2079 static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2081 bio_disassociate_blkg(bio);
2083 bio->bi_blkg = blkg_tryget_closest(blkg);
2087 * bio_associate_blkg_from_css - associate a bio with a specified css
2088 * @bio: target bio
2089 * @css: target css
2091 * Associate @bio with the blkg found by combining the css's blkg and the
2092 * request_queue of the @bio. This falls back to the queue's root_blkg if
2093 * the association fails with the css.
2095 void bio_associate_blkg_from_css(struct bio *bio,
2096 struct cgroup_subsys_state *css)
2098 struct request_queue *q = bio->bi_disk->queue;
2099 struct blkcg_gq *blkg;
2101 rcu_read_lock();
2103 if (!css || !css->parent)
2104 blkg = q->root_blkg;
2105 else
2106 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2108 __bio_associate_blkg(bio, blkg);
2110 rcu_read_unlock();
2112 EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
2114 #ifdef CONFIG_MEMCG
2116 * bio_associate_blkg_from_page - associate a bio with the page's blkg
2117 * @bio: target bio
2118 * @page: the page to lookup the blkcg from
2120 * Associate @bio with the blkg from @page's owning memcg and the respective
2121 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2122 * root_blkg.
2124 void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
2126 struct cgroup_subsys_state *css;
2128 if (!page->mem_cgroup)
2129 return;
2131 rcu_read_lock();
2133 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2134 bio_associate_blkg_from_css(bio, css);
2136 rcu_read_unlock();
2138 #endif /* CONFIG_MEMCG */
2141 * bio_associate_blkg - associate a bio with a blkg
2142 * @bio: target bio
2144 * Associate @bio with the blkg found from the bio's css and request_queue.
2145 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2146 * already associated, the css is reused and association redone as the
2147 * request_queue may have changed.
2149 void bio_associate_blkg(struct bio *bio)
2151 struct cgroup_subsys_state *css;
2153 rcu_read_lock();
2155 if (bio->bi_blkg)
2156 css = &bio_blkcg(bio)->css;
2157 else
2158 css = blkcg_css();
2160 bio_associate_blkg_from_css(bio, css);
2162 rcu_read_unlock();
2164 EXPORT_SYMBOL_GPL(bio_associate_blkg);
2167 * bio_clone_blkg_association - clone blkg association from src to dst bio
2168 * @dst: destination bio
2169 * @src: source bio
2171 void bio_clone_blkg_association(struct bio *dst, struct bio *src)
2173 rcu_read_lock();
2175 if (src->bi_blkg)
2176 __bio_associate_blkg(dst, src->bi_blkg);
2178 rcu_read_unlock();
2180 EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
2181 #endif /* CONFIG_BLK_CGROUP */
2183 static void __init biovec_init_slabs(void)
2185 int i;
2187 for (i = 0; i < BVEC_POOL_NR; i++) {
2188 int size;
2189 struct biovec_slab *bvs = bvec_slabs + i;
2191 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2192 bvs->slab = NULL;
2193 continue;
2196 size = bvs->nr_vecs * sizeof(struct bio_vec);
2197 bvs->slab = kmem_cache_create(bvs->name, size, 0,
2198 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
2202 static int __init init_bio(void)
2204 bio_slab_max = 2;
2205 bio_slab_nr = 0;
2206 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2207 GFP_KERNEL);
2208 if (!bio_slabs)
2209 panic("bio: can't allocate bios\n");
2211 bio_integrity_init();
2212 biovec_init_slabs();
2214 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
2215 panic("bio: can't allocate bios\n");
2217 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
2218 panic("bio: can't create integrity pool\n");
2220 return 0;
2222 subsys_initcall(init_bio);